src/share/vm/gc_implementation/concurrentMarkSweep/binaryTreeDictionary.cpp

Mon, 28 Jul 2008 15:30:23 -0700

author
jmasa
date
Mon, 28 Jul 2008 15:30:23 -0700
changeset 704
850fdf70db2b
parent 631
d1605aabd0a1
parent 698
12eea04c8b06
child 1580
e018e6884bd8
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_binaryTreeDictionary.cpp.incl"
    28 ////////////////////////////////////////////////////////////////////////////////
    29 // A binary tree based search structure for free blocks.
    30 // This is currently used in the Concurrent Mark&Sweep implementation.
    31 ////////////////////////////////////////////////////////////////////////////////
    33 TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
    34   // Do some assertion checking here.
    35   return (TreeChunk*) fc;
    36 }
    38 void TreeChunk::verifyTreeChunkList() const {
    39   TreeChunk* nextTC = (TreeChunk*)next();
    40   if (prev() != NULL) { // interior list node shouldn'r have tree fields
    41     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
    42               embedded_list()->right()  == NULL, "should be clear");
    43   }
    44   if (nextTC != NULL) {
    45     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
    46     guarantee(nextTC->size() == size(), "wrong size");
    47     nextTC->verifyTreeChunkList();
    48   }
    49 }
    52 TreeList* TreeList::as_TreeList(TreeChunk* tc) {
    53   // This first free chunk in the list will be the tree list.
    54   assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
    55   TreeList* tl = tc->embedded_list();
    56   tc->set_list(tl);
    57 #ifdef ASSERT
    58   tl->set_protecting_lock(NULL);
    59 #endif
    60   tl->set_hint(0);
    61   tl->set_size(tc->size());
    62   tl->link_head(tc);
    63   tl->link_tail(tc);
    64   tl->set_count(1);
    65   tl->init_statistics();
    66   tl->setParent(NULL);
    67   tl->setLeft(NULL);
    68   tl->setRight(NULL);
    69   return tl;
    70 }
    71 TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
    72   TreeChunk* tc = (TreeChunk*) addr;
    73   assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
    74   // The space in the heap will have been mangled initially but
    75   // is not remangled when a free chunk is returned to the free list
    76   // (since it is used to maintain the chunk on the free list).
    77   assert((ZapUnusedHeapArea &&
    78           SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
    79           SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
    80           SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
    81           (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
    82     "Space should be clear or mangled");
    83   tc->setSize(size);
    84   tc->linkPrev(NULL);
    85   tc->linkNext(NULL);
    86   TreeList* tl = TreeList::as_TreeList(tc);
    87   return tl;
    88 }
    90 TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {
    92   TreeList* retTL = this;
    93   FreeChunk* list = head();
    94   assert(!list || list != list->next(), "Chunk on list twice");
    95   assert(tc != NULL, "Chunk being removed is NULL");
    96   assert(parent() == NULL || this == parent()->left() ||
    97     this == parent()->right(), "list is inconsistent");
    98   assert(tc->isFree(), "Header is not marked correctly");
    99   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   100   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   102   FreeChunk* prevFC = tc->prev();
   103   TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
   104   assert(list != NULL, "should have at least the target chunk");
   106   // Is this the first item on the list?
   107   if (tc == list) {
   108     // The "getChunk..." functions for a TreeList will not return the
   109     // first chunk in the list unless it is the last chunk in the list
   110     // because the first chunk is also acting as the tree node.
   111     // When coalescing happens, however, the first chunk in the a tree
   112     // list can be the start of a free range.  Free ranges are removed
   113     // from the free lists so that they are not available to be
   114     // allocated when the sweeper yields (giving up the free list lock)
   115     // to allow mutator activity.  If this chunk is the first in the
   116     // list and is not the last in the list, do the work to copy the
   117     // TreeList from the first chunk to the next chunk and update all
   118     // the TreeList pointers in the chunks in the list.
   119     if (nextTC == NULL) {
   120       assert(prevFC == NULL, "Not last chunk in the list")
   121       set_tail(NULL);
   122       set_head(NULL);
   123     } else {
   124       // copy embedded list.
   125       nextTC->set_embedded_list(tc->embedded_list());
   126       retTL = nextTC->embedded_list();
   127       // Fix the pointer to the list in each chunk in the list.
   128       // This can be slow for a long list.  Consider having
   129       // an option that does not allow the first chunk on the
   130       // list to be coalesced.
   131       for (TreeChunk* curTC = nextTC; curTC != NULL;
   132           curTC = TreeChunk::as_TreeChunk(curTC->next())) {
   133         curTC->set_list(retTL);
   134       }
   135       // Fix the parent to point to the new TreeList.
   136       if (retTL->parent() != NULL) {
   137         if (this == retTL->parent()->left()) {
   138           retTL->parent()->setLeft(retTL);
   139         } else {
   140           assert(this == retTL->parent()->right(), "Parent is incorrect");
   141           retTL->parent()->setRight(retTL);
   142         }
   143       }
   144       // Fix the children's parent pointers to point to the
   145       // new list.
   146       assert(right() == retTL->right(), "Should have been copied");
   147       if (retTL->right() != NULL) {
   148         retTL->right()->setParent(retTL);
   149       }
   150       assert(left() == retTL->left(), "Should have been copied");
   151       if (retTL->left() != NULL) {
   152         retTL->left()->setParent(retTL);
   153       }
   154       retTL->link_head(nextTC);
   155       assert(nextTC->isFree(), "Should be a free chunk");
   156     }
   157   } else {
   158     if (nextTC == NULL) {
   159       // Removing chunk at tail of list
   160       link_tail(prevFC);
   161     }
   162     // Chunk is interior to the list
   163     prevFC->linkAfter(nextTC);
   164   }
   166   // Below this point the embeded TreeList being used for the
   167   // tree node may have changed. Don't use "this"
   168   // TreeList*.
   169   // chunk should still be a free chunk (bit set in _prev)
   170   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
   171     "Wrong sized chunk in list");
   172   debug_only(
   173     tc->linkPrev(NULL);
   174     tc->linkNext(NULL);
   175     tc->set_list(NULL);
   176     bool prev_found = false;
   177     bool next_found = false;
   178     for (FreeChunk* curFC = retTL->head();
   179          curFC != NULL; curFC = curFC->next()) {
   180       assert(curFC != tc, "Chunk is still in list");
   181       if (curFC == prevFC) {
   182         prev_found = true;
   183       }
   184       if (curFC == nextTC) {
   185         next_found = true;
   186       }
   187     }
   188     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
   189     assert(nextTC == NULL || next_found, "Chunk was lost from list");
   190     assert(retTL->parent() == NULL ||
   191            retTL == retTL->parent()->left() ||
   192            retTL == retTL->parent()->right(),
   193            "list is inconsistent");
   194   )
   195   retTL->decrement_count();
   197   assert(tc->isFree(), "Should still be a free chunk");
   198   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
   199     "list invariant");
   200   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
   201     "list invariant");
   202   return retTL;
   203 }
   204 void TreeList::returnChunkAtTail(TreeChunk* chunk) {
   205   assert(chunk != NULL, "returning NULL chunk");
   206   assert(chunk->list() == this, "list should be set for chunk");
   207   assert(tail() != NULL, "The tree list is embedded in the first chunk");
   208   // which means that the list can never be empty.
   209   assert(!verifyChunkInFreeLists(chunk), "Double entry");
   210   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   211   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   213   FreeChunk* fc = tail();
   214   fc->linkAfter(chunk);
   215   link_tail(chunk);
   217   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
   218   increment_count();
   219   debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
   220   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   221   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   222 }
   224 // Add this chunk at the head of the list.  "At the head of the list"
   225 // is defined to be after the chunk pointer to by head().  This is
   226 // because the TreeList is embedded in the first TreeChunk in the
   227 // list.  See the definition of TreeChunk.
   228 void TreeList::returnChunkAtHead(TreeChunk* chunk) {
   229   assert(chunk->list() == this, "list should be set for chunk");
   230   assert(head() != NULL, "The tree list is embedded in the first chunk");
   231   assert(chunk != NULL, "returning NULL chunk");
   232   assert(!verifyChunkInFreeLists(chunk), "Double entry");
   233   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   234   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   236   FreeChunk* fc = head()->next();
   237   if (fc != NULL) {
   238     chunk->linkAfter(fc);
   239   } else {
   240     assert(tail() == NULL, "List is inconsistent");
   241     link_tail(chunk);
   242   }
   243   head()->linkAfter(chunk);
   244   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
   245   increment_count();
   246   debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
   247   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   248   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   249 }
   251 TreeChunk* TreeList::head_as_TreeChunk() {
   252   assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
   253     "Wrong type of chunk?");
   254   return TreeChunk::as_TreeChunk(head());
   255 }
   257 TreeChunk* TreeList::first_available() {
   258   guarantee(head() != NULL, "The head of the list cannot be NULL");
   259   FreeChunk* fc = head()->next();
   260   TreeChunk* retTC;
   261   if (fc == NULL) {
   262     retTC = head_as_TreeChunk();
   263   } else {
   264     retTC = TreeChunk::as_TreeChunk(fc);
   265   }
   266   assert(retTC->list() == this, "Wrong type of chunk.");
   267   return retTC;
   268 }
   270 BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
   271   _splay(splay)
   272 {
   273   assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
   275   reset(mr);
   276   assert(root()->left() == NULL, "reset check failed");
   277   assert(root()->right() == NULL, "reset check failed");
   278   assert(root()->head()->next() == NULL, "reset check failed");
   279   assert(root()->head()->prev() == NULL, "reset check failed");
   280   assert(totalSize() == root()->size(), "reset check failed");
   281   assert(totalFreeBlocks() == 1, "reset check failed");
   282 }
   284 void BinaryTreeDictionary::inc_totalSize(size_t inc) {
   285   _totalSize = _totalSize + inc;
   286 }
   288 void BinaryTreeDictionary::dec_totalSize(size_t dec) {
   289   _totalSize = _totalSize - dec;
   290 }
   292 void BinaryTreeDictionary::reset(MemRegion mr) {
   293   assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
   294   set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
   295   set_totalSize(mr.word_size());
   296   set_totalFreeBlocks(1);
   297 }
   299 void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
   300   MemRegion mr(addr, heap_word_size(byte_size));
   301   reset(mr);
   302 }
   304 void BinaryTreeDictionary::reset() {
   305   set_root(NULL);
   306   set_totalSize(0);
   307   set_totalFreeBlocks(0);
   308 }
   310 // Get a free block of size at least size from tree, or NULL.
   311 // If a splay step is requested, the removal algorithm (only) incorporates
   312 // a splay step as follows:
   313 // . the search proceeds down the tree looking for a possible
   314 //   match. At the (closest) matching location, an appropriate splay step is applied
   315 //   (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
   316 //   if available, and if it's the last chunk, the node is deleted. A deteleted
   317 //   node is replaced in place by its tree successor.
   318 TreeChunk*
   319 BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
   320 {
   321   TreeList *curTL, *prevTL;
   322   TreeChunk* retTC = NULL;
   323   assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
   324   if (FLSVerifyDictionary) {
   325     verifyTree();
   326   }
   327   // starting at the root, work downwards trying to find match.
   328   // Remember the last node of size too great or too small.
   329   for (prevTL = curTL = root(); curTL != NULL;) {
   330     if (curTL->size() == size) {        // exact match
   331       break;
   332     }
   333     prevTL = curTL;
   334     if (curTL->size() < size) {        // proceed to right sub-tree
   335       curTL = curTL->right();
   336     } else {                           // proceed to left sub-tree
   337       assert(curTL->size() > size, "size inconsistency");
   338       curTL = curTL->left();
   339     }
   340   }
   341   if (curTL == NULL) { // couldn't find exact match
   342     // try and find the next larger size by walking back up the search path
   343     for (curTL = prevTL; curTL != NULL;) {
   344       if (curTL->size() >= size) break;
   345       else curTL = curTL->parent();
   346     }
   347     assert(curTL == NULL || curTL->count() > 0,
   348       "An empty list should not be in the tree");
   349   }
   350   if (curTL != NULL) {
   351     assert(curTL->size() >= size, "size inconsistency");
   352     if (UseCMSAdaptiveFreeLists) {
   354       // A candidate chunk has been found.  If it is already under
   355       // populated, get a chunk associated with the hint for this
   356       // chunk.
   357       if (curTL->surplus() <= 0) {
   358         /* Use the hint to find a size with a surplus, and reset the hint. */
   359         TreeList* hintTL = curTL;
   360         while (hintTL->hint() != 0) {
   361           assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
   362             "hint points in the wrong direction");
   363           hintTL = findList(hintTL->hint());
   364           assert(curTL != hintTL, "Infinite loop");
   365           if (hintTL == NULL ||
   366               hintTL == curTL /* Should not happen but protect against it */ ) {
   367             // No useful hint.  Set the hint to NULL and go on.
   368             curTL->set_hint(0);
   369             break;
   370           }
   371           assert(hintTL->size() > size, "hint is inconsistent");
   372           if (hintTL->surplus() > 0) {
   373             // The hint led to a list that has a surplus.  Use it.
   374             // Set the hint for the candidate to an overpopulated
   375             // size.
   376             curTL->set_hint(hintTL->size());
   377             // Change the candidate.
   378             curTL = hintTL;
   379             break;
   380           }
   381           // The evm code reset the hint of the candidate as
   382           // at an interrim point.  Why?  Seems like this leaves
   383           // the hint pointing to a list that didn't work.
   384           // curTL->set_hint(hintTL->size());
   385         }
   386       }
   387     }
   388     // don't waste time splaying if chunk's singleton
   389     if (splay && curTL->head()->next() != NULL) {
   390       semiSplayStep(curTL);
   391     }
   392     retTC = curTL->first_available();
   393     assert((retTC != NULL) && (curTL->count() > 0),
   394       "A list in the binary tree should not be NULL");
   395     assert(retTC->size() >= size,
   396       "A chunk of the wrong size was found");
   397     removeChunkFromTree(retTC);
   398     assert(retTC->isFree(), "Header is not marked correctly");
   399   }
   401   if (FLSVerifyDictionary) {
   402     verify();
   403   }
   404   return retTC;
   405 }
   407 TreeList* BinaryTreeDictionary::findList(size_t size) const {
   408   TreeList* curTL;
   409   for (curTL = root(); curTL != NULL;) {
   410     if (curTL->size() == size) {        // exact match
   411       break;
   412     }
   414     if (curTL->size() < size) {        // proceed to right sub-tree
   415       curTL = curTL->right();
   416     } else {                           // proceed to left sub-tree
   417       assert(curTL->size() > size, "size inconsistency");
   418       curTL = curTL->left();
   419     }
   420   }
   421   return curTL;
   422 }
   425 bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
   426   size_t size = tc->size();
   427   TreeList* tl = findList(size);
   428   if (tl == NULL) {
   429     return false;
   430   } else {
   431     return tl->verifyChunkInFreeLists(tc);
   432   }
   433 }
   435 FreeChunk* BinaryTreeDictionary::findLargestDict() const {
   436   TreeList *curTL = root();
   437   if (curTL != NULL) {
   438     while(curTL->right() != NULL) curTL = curTL->right();
   439     return curTL->first_available();
   440   } else {
   441     return NULL;
   442   }
   443 }
   445 // Remove the current chunk from the tree.  If it is not the last
   446 // chunk in a list on a tree node, just unlink it.
   447 // If it is the last chunk in the list (the next link is NULL),
   448 // remove the node and repair the tree.
   449 TreeChunk*
   450 BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
   451   assert(tc != NULL, "Should not call with a NULL chunk");
   452   assert(tc->isFree(), "Header is not marked correctly");
   454   TreeList *newTL, *parentTL;
   455   TreeChunk* retTC;
   456   TreeList* tl = tc->list();
   457   debug_only(
   458     bool removing_only_chunk = false;
   459     if (tl == _root) {
   460       if ((_root->left() == NULL) && (_root->right() == NULL)) {
   461         if (_root->count() == 1) {
   462           assert(_root->head() == tc, "Should only be this one chunk");
   463           removing_only_chunk = true;
   464         }
   465       }
   466     }
   467   )
   468   assert(tl != NULL, "List should be set");
   469   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
   470          tl == tl->parent()->right(), "list is inconsistent");
   472   bool complicatedSplice = false;
   474   retTC = tc;
   475   // Removing this chunk can have the side effect of changing the node
   476   // (TreeList*) in the tree.  If the node is the root, update it.
   477   TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
   478   assert(tc->isFree(), "Chunk should still be free");
   479   assert(replacementTL->parent() == NULL ||
   480          replacementTL == replacementTL->parent()->left() ||
   481          replacementTL == replacementTL->parent()->right(),
   482          "list is inconsistent");
   483   if (tl == root()) {
   484     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
   485     set_root(replacementTL);
   486   }
   487   debug_only(
   488     if (tl != replacementTL) {
   489       assert(replacementTL->head() != NULL,
   490         "If the tree list was replaced, it should not be a NULL list");
   491       TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
   492       TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
   493       assert(rhl == replacementTL, "Broken head");
   494       assert(rtl == replacementTL, "Broken tail");
   495       assert(replacementTL->size() == tc->size(),  "Broken size");
   496     }
   497   )
   499   // Does the tree need to be repaired?
   500   if (replacementTL->count() == 0) {
   501     assert(replacementTL->head() == NULL &&
   502            replacementTL->tail() == NULL, "list count is incorrect");
   503     // Find the replacement node for the (soon to be empty) node being removed.
   504     // if we have a single (or no) child, splice child in our stead
   505     if (replacementTL->left() == NULL) {
   506       // left is NULL so pick right.  right may also be NULL.
   507       newTL = replacementTL->right();
   508       debug_only(replacementTL->clearRight();)
   509     } else if (replacementTL->right() == NULL) {
   510       // right is NULL
   511       newTL = replacementTL->left();
   512       debug_only(replacementTL->clearLeft();)
   513     } else {  // we have both children, so, by patriarchal convention,
   514               // my replacement is least node in right sub-tree
   515       complicatedSplice = true;
   516       newTL = removeTreeMinimum(replacementTL->right());
   517       assert(newTL != NULL && newTL->left() == NULL &&
   518              newTL->right() == NULL, "sub-tree minimum exists");
   519     }
   520     // newTL is the replacement for the (soon to be empty) node.
   521     // newTL may be NULL.
   522     // should verify; we just cleanly excised our replacement
   523     if (FLSVerifyDictionary) {
   524       verifyTree();
   525     }
   526     // first make newTL my parent's child
   527     if ((parentTL = replacementTL->parent()) == NULL) {
   528       // newTL should be root
   529       assert(tl == root(), "Incorrectly replacing root");
   530       set_root(newTL);
   531       if (newTL != NULL) {
   532         newTL->clearParent();
   533       }
   534     } else if (parentTL->right() == replacementTL) {
   535       // replacementTL is a right child
   536       parentTL->setRight(newTL);
   537     } else {                                // replacementTL is a left child
   538       assert(parentTL->left() == replacementTL, "should be left child");
   539       parentTL->setLeft(newTL);
   540     }
   541     debug_only(replacementTL->clearParent();)
   542     if (complicatedSplice) {  // we need newTL to get replacementTL's
   543                               // two children
   544       assert(newTL != NULL &&
   545              newTL->left() == NULL && newTL->right() == NULL,
   546             "newTL should not have encumbrances from the past");
   547       // we'd like to assert as below:
   548       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
   549       //       "else !complicatedSplice");
   550       // ... however, the above assertion is too strong because we aren't
   551       // guaranteed that replacementTL->right() is still NULL.
   552       // Recall that we removed
   553       // the right sub-tree minimum from replacementTL.
   554       // That may well have been its right
   555       // child! So we'll just assert half of the above:
   556       assert(replacementTL->left() != NULL, "else !complicatedSplice");
   557       newTL->setLeft(replacementTL->left());
   558       newTL->setRight(replacementTL->right());
   559       debug_only(
   560         replacementTL->clearRight();
   561         replacementTL->clearLeft();
   562       )
   563     }
   564     assert(replacementTL->right() == NULL &&
   565            replacementTL->left() == NULL &&
   566            replacementTL->parent() == NULL,
   567         "delete without encumbrances");
   568   }
   570   assert(totalSize() >= retTC->size(), "Incorrect total size");
   571   dec_totalSize(retTC->size());     // size book-keeping
   572   assert(totalFreeBlocks() > 0, "Incorrect total count");
   573   set_totalFreeBlocks(totalFreeBlocks() - 1);
   575   assert(retTC != NULL, "null chunk?");
   576   assert(retTC->prev() == NULL && retTC->next() == NULL,
   577          "should return without encumbrances");
   578   if (FLSVerifyDictionary) {
   579     verifyTree();
   580   }
   581   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
   582   return TreeChunk::as_TreeChunk(retTC);
   583 }
   585 // Remove the leftmost node (lm) in the tree and return it.
   586 // If lm has a right child, link it to the left node of
   587 // the parent of lm.
   588 TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
   589   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
   590   // locate the subtree minimum by walking down left branches
   591   TreeList* curTL = tl;
   592   for (; curTL->left() != NULL; curTL = curTL->left());
   593   // obviously curTL now has at most one child, a right child
   594   if (curTL != root()) {  // Should this test just be removed?
   595     TreeList* parentTL = curTL->parent();
   596     if (parentTL->left() == curTL) { // curTL is a left child
   597       parentTL->setLeft(curTL->right());
   598     } else {
   599       // If the list tl has no left child, then curTL may be
   600       // the right child of parentTL.
   601       assert(parentTL->right() == curTL, "should be a right child");
   602       parentTL->setRight(curTL->right());
   603     }
   604   } else {
   605     // The only use of this method would not pass the root of the
   606     // tree (as indicated by the assertion above that the tree list
   607     // has a parent) but the specification does not explicitly exclude the
   608     // passing of the root so accomodate it.
   609     set_root(NULL);
   610   }
   611   debug_only(
   612     curTL->clearParent();  // Test if this needs to be cleared
   613     curTL->clearRight();    // recall, above, left child is already null
   614   )
   615   // we just excised a (non-root) node, we should still verify all tree invariants
   616   if (FLSVerifyDictionary) {
   617     verifyTree();
   618   }
   619   return curTL;
   620 }
   622 // Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
   623 // The simplifications are the following:
   624 // . we splay only when we delete (not when we insert)
   625 // . we apply a single spay step per deletion/access
   626 // By doing such partial splaying, we reduce the amount of restructuring,
   627 // while getting a reasonably efficient search tree (we think).
   628 // [Measurements will be needed to (in)validate this expectation.]
   630 void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
   631   // apply a semi-splay step at the given node:
   632   // . if root, norting needs to be done
   633   // . if child of root, splay once
   634   // . else zig-zig or sig-zag depending on path from grandparent
   635   if (root() == tc) return;
   636   warning("*** Splaying not yet implemented; "
   637           "tree operations may be inefficient ***");
   638 }
   640 void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
   641   TreeList *curTL, *prevTL;
   642   size_t size = fc->size();
   644   assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
   645   if (FLSVerifyDictionary) {
   646     verifyTree();
   647   }
   648   // XXX: do i need to clear the FreeChunk fields, let me do it just in case
   649   // Revisit this later
   651   fc->clearNext();
   652   fc->linkPrev(NULL);
   654   // work down from the _root, looking for insertion point
   655   for (prevTL = curTL = root(); curTL != NULL;) {
   656     if (curTL->size() == size)  // exact match
   657       break;
   658     prevTL = curTL;
   659     if (curTL->size() > size) { // follow left branch
   660       curTL = curTL->left();
   661     } else {                    // follow right branch
   662       assert(curTL->size() < size, "size inconsistency");
   663       curTL = curTL->right();
   664     }
   665   }
   666   TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
   667   // This chunk is being returned to the binary try.  It's embedded
   668   // TreeList should be unused at this point.
   669   tc->initialize();
   670   if (curTL != NULL) {          // exact match
   671     tc->set_list(curTL);
   672     curTL->returnChunkAtTail(tc);
   673   } else {                     // need a new node in tree
   674     tc->clearNext();
   675     tc->linkPrev(NULL);
   676     TreeList* newTL = TreeList::as_TreeList(tc);
   677     assert(((TreeChunk*)tc)->list() == newTL,
   678       "List was not initialized correctly");
   679     if (prevTL == NULL) {      // we are the only tree node
   680       assert(root() == NULL, "control point invariant");
   681       set_root(newTL);
   682     } else {                   // insert under prevTL ...
   683       if (prevTL->size() < size) {   // am right child
   684         assert(prevTL->right() == NULL, "control point invariant");
   685         prevTL->setRight(newTL);
   686       } else {                       // am left child
   687         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
   688         prevTL->setLeft(newTL);
   689       }
   690     }
   691   }
   692   assert(tc->list() != NULL, "Tree list should be set");
   694   inc_totalSize(size);
   695   // Method 'totalSizeInTree' walks through the every block in the
   696   // tree, so it can cause significant performance loss if there are
   697   // many blocks in the tree
   698   assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
   699   set_totalFreeBlocks(totalFreeBlocks() + 1);
   700   if (FLSVerifyDictionary) {
   701     verifyTree();
   702   }
   703 }
   705 size_t BinaryTreeDictionary::maxChunkSize() const {
   706   verify_par_locked();
   707   TreeList* tc = root();
   708   if (tc == NULL) return 0;
   709   for (; tc->right() != NULL; tc = tc->right());
   710   return tc->size();
   711 }
   713 size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
   714   size_t res;
   715   res = tl->count();
   716 #ifdef ASSERT
   717   size_t cnt;
   718   FreeChunk* tc = tl->head();
   719   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
   720   assert(res == cnt, "The count is not being maintained correctly");
   721 #endif
   722   return res;
   723 }
   725 size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
   726   if (tl == NULL)
   727     return 0;
   728   return (tl->size() * totalListLength(tl)) +
   729          totalSizeInTree(tl->left())    +
   730          totalSizeInTree(tl->right());
   731 }
   733 double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
   734   if (tl == NULL) {
   735     return 0.0;
   736   }
   737   double size = (double)(tl->size());
   738   double curr = size * size * totalListLength(tl);
   739   curr += sum_of_squared_block_sizes(tl->left());
   740   curr += sum_of_squared_block_sizes(tl->right());
   741   return curr;
   742 }
   744 size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
   745   if (tl == NULL)
   746     return 0;
   747   return totalListLength(tl) +
   748          totalFreeBlocksInTree(tl->left()) +
   749          totalFreeBlocksInTree(tl->right());
   750 }
   752 size_t BinaryTreeDictionary::numFreeBlocks() const {
   753   assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
   754          "_totalFreeBlocks inconsistency");
   755   return totalFreeBlocks();
   756 }
   758 size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
   759   if (tl == NULL)
   760     return 0;
   761   return 1 + MAX2(treeHeightHelper(tl->left()),
   762                   treeHeightHelper(tl->right()));
   763 }
   765 size_t BinaryTreeDictionary::treeHeight() const {
   766   return treeHeightHelper(root());
   767 }
   769 size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
   770   if (tl == NULL) {
   771     return 0;
   772   }
   773   return 1 + totalNodesHelper(tl->left()) +
   774     totalNodesHelper(tl->right());
   775 }
   777 size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
   778   return totalNodesHelper(root());
   779 }
   781 void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
   782   TreeList* nd = findList(size);
   783   if (nd) {
   784     if (split) {
   785       if (birth) {
   786         nd->increment_splitBirths();
   787         nd->increment_surplus();
   788       }  else {
   789         nd->increment_splitDeaths();
   790         nd->decrement_surplus();
   791       }
   792     } else {
   793       if (birth) {
   794         nd->increment_coalBirths();
   795         nd->increment_surplus();
   796       } else {
   797         nd->increment_coalDeaths();
   798         nd->decrement_surplus();
   799       }
   800     }
   801   }
   802   // A list for this size may not be found (nd == 0) if
   803   //   This is a death where the appropriate list is now
   804   //     empty and has been removed from the list.
   805   //   This is a birth associated with a LinAB.  The chunk
   806   //     for the LinAB is not in the dictionary.
   807 }
   809 bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
   810   TreeList* list_of_size = findList(size);
   811   // None of requested size implies overpopulated.
   812   return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
   813          list_of_size->count() > list_of_size->coalDesired();
   814 }
   816 // Closures for walking the binary tree.
   817 //   do_list() walks the free list in a node applying the closure
   818 //     to each free chunk in the list
   819 //   do_tree() walks the nodes in the binary tree applying do_list()
   820 //     to each list at each node.
   822 class TreeCensusClosure : public StackObj {
   823  protected:
   824   virtual void do_list(FreeList* fl) = 0;
   825  public:
   826   virtual void do_tree(TreeList* tl) = 0;
   827 };
   829 class AscendTreeCensusClosure : public TreeCensusClosure {
   830  public:
   831   void do_tree(TreeList* tl) {
   832     if (tl != NULL) {
   833       do_tree(tl->left());
   834       do_list(tl);
   835       do_tree(tl->right());
   836     }
   837   }
   838 };
   840 class DescendTreeCensusClosure : public TreeCensusClosure {
   841  public:
   842   void do_tree(TreeList* tl) {
   843     if (tl != NULL) {
   844       do_tree(tl->right());
   845       do_list(tl);
   846       do_tree(tl->left());
   847     }
   848   }
   849 };
   851 // For each list in the tree, calculate the desired, desired
   852 // coalesce, count before sweep, and surplus before sweep.
   853 class BeginSweepClosure : public AscendTreeCensusClosure {
   854   double _percentage;
   855   float _inter_sweep_current;
   856   float _inter_sweep_estimate;
   858  public:
   859   BeginSweepClosure(double p, float inter_sweep_current,
   860                               float inter_sweep_estimate) :
   861    _percentage(p),
   862    _inter_sweep_current(inter_sweep_current),
   863    _inter_sweep_estimate(inter_sweep_estimate) { }
   865   void do_list(FreeList* fl) {
   866     double coalSurplusPercent = _percentage;
   867     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate);
   868     fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
   869     fl->set_beforeSweep(fl->count());
   870     fl->set_bfrSurp(fl->surplus());
   871   }
   872 };
   874 // Used to search the tree until a condition is met.
   875 // Similar to TreeCensusClosure but searches the
   876 // tree and returns promptly when found.
   878 class TreeSearchClosure : public StackObj {
   879  protected:
   880   virtual bool do_list(FreeList* fl) = 0;
   881  public:
   882   virtual bool do_tree(TreeList* tl) = 0;
   883 };
   885 #if 0 //  Don't need this yet but here for symmetry.
   886 class AscendTreeSearchClosure : public TreeSearchClosure {
   887  public:
   888   bool do_tree(TreeList* tl) {
   889     if (tl != NULL) {
   890       if (do_tree(tl->left())) return true;
   891       if (do_list(tl)) return true;
   892       if (do_tree(tl->right())) return true;
   893     }
   894     return false;
   895   }
   896 };
   897 #endif
   899 class DescendTreeSearchClosure : public TreeSearchClosure {
   900  public:
   901   bool do_tree(TreeList* tl) {
   902     if (tl != NULL) {
   903       if (do_tree(tl->right())) return true;
   904       if (do_list(tl)) return true;
   905       if (do_tree(tl->left())) return true;
   906     }
   907     return false;
   908   }
   909 };
   911 // Searches the tree for a chunk that ends at the
   912 // specified address.
   913 class EndTreeSearchClosure : public DescendTreeSearchClosure {
   914   HeapWord* _target;
   915   FreeChunk* _found;
   917  public:
   918   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
   919   bool do_list(FreeList* fl) {
   920     FreeChunk* item = fl->head();
   921     while (item != NULL) {
   922       if (item->end() == _target) {
   923         _found = item;
   924         return true;
   925       }
   926       item = item->next();
   927     }
   928     return false;
   929   }
   930   FreeChunk* found() { return _found; }
   931 };
   933 FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
   934   EndTreeSearchClosure etsc(target);
   935   bool found_target = etsc.do_tree(root());
   936   assert(found_target || etsc.found() == NULL, "Consistency check");
   937   assert(!found_target || etsc.found() != NULL, "Consistency check");
   938   return etsc.found();
   939 }
   941 void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
   942   float inter_sweep_current, float inter_sweep_estimate) {
   943   BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
   944                                             inter_sweep_estimate);
   945   bsc.do_tree(root());
   946 }
   948 // Closures and methods for calculating total bytes returned to the
   949 // free lists in the tree.
   950 NOT_PRODUCT(
   951   class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
   952    public:
   953     void do_list(FreeList* fl) {
   954       fl->set_returnedBytes(0);
   955     }
   956   };
   958   void BinaryTreeDictionary::initializeDictReturnedBytes() {
   959     InitializeDictReturnedBytesClosure idrb;
   960     idrb.do_tree(root());
   961   }
   963   class ReturnedBytesClosure : public AscendTreeCensusClosure {
   964     size_t _dictReturnedBytes;
   965    public:
   966     ReturnedBytesClosure() { _dictReturnedBytes = 0; }
   967     void do_list(FreeList* fl) {
   968       _dictReturnedBytes += fl->returnedBytes();
   969     }
   970     size_t dictReturnedBytes() { return _dictReturnedBytes; }
   971   };
   973   size_t BinaryTreeDictionary::sumDictReturnedBytes() {
   974     ReturnedBytesClosure rbc;
   975     rbc.do_tree(root());
   977     return rbc.dictReturnedBytes();
   978   }
   980   // Count the number of entries in the tree.
   981   class treeCountClosure : public DescendTreeCensusClosure {
   982    public:
   983     uint count;
   984     treeCountClosure(uint c) { count = c; }
   985     void do_list(FreeList* fl) {
   986       count++;
   987     }
   988   };
   990   size_t BinaryTreeDictionary::totalCount() {
   991     treeCountClosure ctc(0);
   992     ctc.do_tree(root());
   993     return ctc.count;
   994   }
   995 )
   997 // Calculate surpluses for the lists in the tree.
   998 class setTreeSurplusClosure : public AscendTreeCensusClosure {
   999   double percentage;
  1000  public:
  1001   setTreeSurplusClosure(double v) { percentage = v; }
  1002   void do_list(FreeList* fl) {
  1003     double splitSurplusPercent = percentage;
  1004     fl->set_surplus(fl->count() -
  1005                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
  1007 };
  1009 void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
  1010   setTreeSurplusClosure sts(splitSurplusPercent);
  1011   sts.do_tree(root());
  1014 // Set hints for the lists in the tree.
  1015 class setTreeHintsClosure : public DescendTreeCensusClosure {
  1016   size_t hint;
  1017  public:
  1018   setTreeHintsClosure(size_t v) { hint = v; }
  1019   void do_list(FreeList* fl) {
  1020     fl->set_hint(hint);
  1021     assert(fl->hint() == 0 || fl->hint() > fl->size(),
  1022       "Current hint is inconsistent");
  1023     if (fl->surplus() > 0) {
  1024       hint = fl->size();
  1027 };
  1029 void BinaryTreeDictionary::setTreeHints(void) {
  1030   setTreeHintsClosure sth(0);
  1031   sth.do_tree(root());
  1034 // Save count before previous sweep and splits and coalesces.
  1035 class clearTreeCensusClosure : public AscendTreeCensusClosure {
  1036   void do_list(FreeList* fl) {
  1037     fl->set_prevSweep(fl->count());
  1038     fl->set_coalBirths(0);
  1039     fl->set_coalDeaths(0);
  1040     fl->set_splitBirths(0);
  1041     fl->set_splitDeaths(0);
  1043 };
  1045 void BinaryTreeDictionary::clearTreeCensus(void) {
  1046   clearTreeCensusClosure ctc;
  1047   ctc.do_tree(root());
  1050 // Do reporting and post sweep clean up.
  1051 void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
  1052   // Does walking the tree 3 times hurt?
  1053   setTreeSurplus(splitSurplusPercent);
  1054   setTreeHints();
  1055   if (PrintGC && Verbose) {
  1056     reportStatistics();
  1058   clearTreeCensus();
  1061 // Print summary statistics
  1062 void BinaryTreeDictionary::reportStatistics() const {
  1063   verify_par_locked();
  1064   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
  1065          "------------------------------------\n");
  1066   size_t totalSize = totalChunkSize(debug_only(NULL));
  1067   size_t    freeBlocks = numFreeBlocks();
  1068   gclog_or_tty->print("Total Free Space: %d\n", totalSize);
  1069   gclog_or_tty->print("Max   Chunk Size: %d\n", maxChunkSize());
  1070   gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
  1071   if (freeBlocks > 0) {
  1072     gclog_or_tty->print("Av.  Block  Size: %d\n", totalSize/freeBlocks);
  1074   gclog_or_tty->print("Tree      Height: %d\n", treeHeight());
  1077 // Print census information - counts, births, deaths, etc.
  1078 // for each list in the tree.  Also print some summary
  1079 // information.
  1080 class printTreeCensusClosure : public AscendTreeCensusClosure {
  1081   int _print_line;
  1082   size_t _totalFree;
  1083   FreeList _total;
  1085  public:
  1086   printTreeCensusClosure() {
  1087     _print_line = 0;
  1088     _totalFree = 0;
  1090   FreeList* total() { return &_total; }
  1091   size_t totalFree() { return _totalFree; }
  1092   void do_list(FreeList* fl) {
  1093     if (++_print_line >= 40) {
  1094       FreeList::print_labels_on(gclog_or_tty, "size");
  1095       _print_line = 0;
  1097     fl->print_on(gclog_or_tty);
  1098     _totalFree +=            fl->count()            * fl->size()        ;
  1099     total()->set_count(      total()->count()       + fl->count()      );
  1100     total()->set_bfrSurp(    total()->bfrSurp()     + fl->bfrSurp()    );
  1101     total()->set_surplus(    total()->splitDeaths() + fl->surplus()    );
  1102     total()->set_desired(    total()->desired()     + fl->desired()    );
  1103     total()->set_prevSweep(  total()->prevSweep()   + fl->prevSweep()  );
  1104     total()->set_beforeSweep(total()->beforeSweep() + fl->beforeSweep());
  1105     total()->set_coalBirths( total()->coalBirths()  + fl->coalBirths() );
  1106     total()->set_coalDeaths( total()->coalDeaths()  + fl->coalDeaths() );
  1107     total()->set_splitBirths(total()->splitBirths() + fl->splitBirths());
  1108     total()->set_splitDeaths(total()->splitDeaths() + fl->splitDeaths());
  1110 };
  1112 void BinaryTreeDictionary::printDictCensus(void) const {
  1114   gclog_or_tty->print("\nBinaryTree\n");
  1115   FreeList::print_labels_on(gclog_or_tty, "size");
  1116   printTreeCensusClosure ptc;
  1117   ptc.do_tree(root());
  1119   FreeList* total = ptc.total();
  1120   FreeList::print_labels_on(gclog_or_tty, " ");
  1121   total->print_on(gclog_or_tty, "TOTAL\t");
  1122   gclog_or_tty->print(
  1123               "totalFree(words): " SIZE_FORMAT_W(16)
  1124               " growth: %8.5f  deficit: %8.5f\n",
  1125               ptc.totalFree(),
  1126               (double)(total->splitBirths() + total->coalBirths()
  1127                      - total->splitDeaths() - total->coalDeaths())
  1128               /(total->prevSweep() != 0 ? (double)total->prevSweep() : 1.0),
  1129              (double)(total->desired() - total->count())
  1130              /(total->desired() != 0 ? (double)total->desired() : 1.0));
  1133 // Verify the following tree invariants:
  1134 // . _root has no parent
  1135 // . parent and child point to each other
  1136 // . each node's key correctly related to that of its child(ren)
  1137 void BinaryTreeDictionary::verifyTree() const {
  1138   guarantee(root() == NULL || totalFreeBlocks() == 0 ||
  1139     totalSize() != 0, "_totalSize should't be 0?");
  1140   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
  1141   verifyTreeHelper(root());
  1144 size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
  1145   size_t ct = 0;
  1146   for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
  1147     ct++;
  1148     assert(curFC->prev() == NULL || curFC->prev()->isFree(),
  1149       "Chunk should be free");
  1151   return ct;
  1154 // Note: this helper is recursive rather than iterative, so use with
  1155 // caution on very deep trees; and watch out for stack overflow errors;
  1156 // In general, to be used only for debugging.
  1157 void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
  1158   if (tl == NULL)
  1159     return;
  1160   guarantee(tl->size() != 0, "A list must has a size");
  1161   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
  1162          "parent<-/->left");
  1163   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
  1164          "parent<-/->right");;
  1165   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
  1166          "parent !> left");
  1167   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
  1168          "parent !< left");
  1169   guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
  1170   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
  1171     "list inconsistency");
  1172   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
  1173     "list count is inconsistent");
  1174   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
  1175     "list is incorrectly constructed");
  1176   size_t count = verifyPrevFreePtrs(tl);
  1177   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
  1178   if (tl->head() != NULL) {
  1179     tl->head_as_TreeChunk()->verifyTreeChunkList();
  1181   verifyTreeHelper(tl->left());
  1182   verifyTreeHelper(tl->right());
  1185 void BinaryTreeDictionary::verify() const {
  1186   verifyTree();
  1187   guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");

mercurial