src/os/solaris/vm/os_solaris.cpp

Mon, 14 Feb 2011 14:36:29 -0800

author
kvn
date
Mon, 14 Feb 2011 14:36:29 -0800
changeset 2567
850b2295a494
parent 2507
d70fe6ab4436
parent 2566
2a57c59eb548
child 2586
23ae54207126
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_solaris.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/filemap.hpp"
    36 #include "mutex_solaris.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "os_share_solaris.hpp"
    39 #include "prims/jniFastGetField.hpp"
    40 #include "prims/jvm.h"
    41 #include "prims/jvm_misc.hpp"
    42 #include "runtime/arguments.hpp"
    43 #include "runtime/extendedPC.hpp"
    44 #include "runtime/globals.hpp"
    45 #include "runtime/interfaceSupport.hpp"
    46 #include "runtime/java.hpp"
    47 #include "runtime/javaCalls.hpp"
    48 #include "runtime/mutexLocker.hpp"
    49 #include "runtime/objectMonitor.hpp"
    50 #include "runtime/osThread.hpp"
    51 #include "runtime/perfMemory.hpp"
    52 #include "runtime/sharedRuntime.hpp"
    53 #include "runtime/statSampler.hpp"
    54 #include "runtime/stubRoutines.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/timer.hpp"
    57 #include "services/attachListener.hpp"
    58 #include "services/runtimeService.hpp"
    59 #include "thread_solaris.inline.hpp"
    60 #include "utilities/decoder.hpp"
    61 #include "utilities/defaultStream.hpp"
    62 #include "utilities/events.hpp"
    63 #include "utilities/growableArray.hpp"
    64 #include "utilities/vmError.hpp"
    65 #ifdef TARGET_ARCH_x86
    66 # include "assembler_x86.inline.hpp"
    67 # include "nativeInst_x86.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_sparc
    70 # include "assembler_sparc.inline.hpp"
    71 # include "nativeInst_sparc.hpp"
    72 #endif
    73 #ifdef COMPILER1
    74 #include "c1/c1_Runtime1.hpp"
    75 #endif
    76 #ifdef COMPILER2
    77 #include "opto/runtime.hpp"
    78 #endif
    80 // put OS-includes here
    81 # include <dlfcn.h>
    82 # include <errno.h>
    83 # include <exception>
    84 # include <link.h>
    85 # include <poll.h>
    86 # include <pthread.h>
    87 # include <pwd.h>
    88 # include <schedctl.h>
    89 # include <setjmp.h>
    90 # include <signal.h>
    91 # include <stdio.h>
    92 # include <alloca.h>
    93 # include <sys/filio.h>
    94 # include <sys/ipc.h>
    95 # include <sys/lwp.h>
    96 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
    97 # include <sys/mman.h>
    98 # include <sys/processor.h>
    99 # include <sys/procset.h>
   100 # include <sys/pset.h>
   101 # include <sys/resource.h>
   102 # include <sys/shm.h>
   103 # include <sys/socket.h>
   104 # include <sys/stat.h>
   105 # include <sys/systeminfo.h>
   106 # include <sys/time.h>
   107 # include <sys/times.h>
   108 # include <sys/types.h>
   109 # include <sys/wait.h>
   110 # include <sys/utsname.h>
   111 # include <thread.h>
   112 # include <unistd.h>
   113 # include <sys/priocntl.h>
   114 # include <sys/rtpriocntl.h>
   115 # include <sys/tspriocntl.h>
   116 # include <sys/iapriocntl.h>
   117 # include <sys/loadavg.h>
   118 # include <string.h>
   119 # include <stdio.h>
   121 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
   122 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
   124 #define MAX_PATH (2 * K)
   126 // for timer info max values which include all bits
   127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   129 #ifdef _GNU_SOURCE
   130 // See bug #6514594
   131 extern "C" int madvise(caddr_t, size_t, int);
   132 extern "C"  int memcntl(caddr_t addr, size_t len, int cmd, caddr_t  arg,
   133      int attr, int mask);
   134 #endif //_GNU_SOURCE
   136 /*
   137   MPSS Changes Start.
   138   The JVM binary needs to be built and run on pre-Solaris 9
   139   systems, but the constants needed by MPSS are only in Solaris 9
   140   header files.  They are textually replicated here to allow
   141   building on earlier systems.  Once building on Solaris 8 is
   142   no longer a requirement, these #defines can be replaced by ordinary
   143   system .h inclusion.
   145   In earlier versions of the  JDK and Solaris, we used ISM for large pages.
   146   But ISM requires shared memory to achieve this and thus has many caveats.
   147   MPSS is a fully transparent and is a cleaner way to get large pages.
   148   Although we still require keeping ISM for backward compatiblitiy as well as
   149   giving the opportunity to use large pages on older systems it is
   150   recommended that MPSS be used for Solaris 9 and above.
   152 */
   154 #ifndef MC_HAT_ADVISE
   156 struct memcntl_mha {
   157   uint_t          mha_cmd;        /* command(s) */
   158   uint_t          mha_flags;
   159   size_t          mha_pagesize;
   160 };
   161 #define MC_HAT_ADVISE   7       /* advise hat map size */
   162 #define MHA_MAPSIZE_VA  0x1     /* set preferred page size */
   163 #define MAP_ALIGN       0x200   /* addr specifies alignment */
   165 #endif
   166 // MPSS Changes End.
   169 // Here are some liblgrp types from sys/lgrp_user.h to be able to
   170 // compile on older systems without this header file.
   172 #ifndef MADV_ACCESS_LWP
   173 # define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
   174 #endif
   175 #ifndef MADV_ACCESS_MANY
   176 # define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
   177 #endif
   179 #ifndef LGRP_RSRC_CPU
   180 # define LGRP_RSRC_CPU           0       /* CPU resources */
   181 #endif
   182 #ifndef LGRP_RSRC_MEM
   183 # define LGRP_RSRC_MEM           1       /* memory resources */
   184 #endif
   186 // Some more macros from sys/mman.h that are not present in Solaris 8.
   188 #ifndef MAX_MEMINFO_CNT
   189 /*
   190  * info_req request type definitions for meminfo
   191  * request types starting with MEMINFO_V are used for Virtual addresses
   192  * and should not be mixed with MEMINFO_PLGRP which is targeted for Physical
   193  * addresses
   194  */
   195 # define MEMINFO_SHIFT           16
   196 # define MEMINFO_MASK            (0xFF << MEMINFO_SHIFT)
   197 # define MEMINFO_VPHYSICAL       (0x01 << MEMINFO_SHIFT) /* get physical addr */
   198 # define MEMINFO_VLGRP           (0x02 << MEMINFO_SHIFT) /* get lgroup */
   199 # define MEMINFO_VPAGESIZE       (0x03 << MEMINFO_SHIFT) /* size of phys page */
   200 # define MEMINFO_VREPLCNT        (0x04 << MEMINFO_SHIFT) /* no. of replica */
   201 # define MEMINFO_VREPL           (0x05 << MEMINFO_SHIFT) /* physical replica */
   202 # define MEMINFO_VREPL_LGRP      (0x06 << MEMINFO_SHIFT) /* lgrp of replica */
   203 # define MEMINFO_PLGRP           (0x07 << MEMINFO_SHIFT) /* lgroup for paddr */
   205 /* maximum number of addresses meminfo() can process at a time */
   206 # define MAX_MEMINFO_CNT 256
   208 /* maximum number of request types */
   209 # define MAX_MEMINFO_REQ 31
   210 #endif
   212 // see thr_setprio(3T) for the basis of these numbers
   213 #define MinimumPriority 0
   214 #define NormalPriority  64
   215 #define MaximumPriority 127
   217 // Values for ThreadPriorityPolicy == 1
   218 int prio_policy1[MaxPriority+1] = { -99999, 0, 16, 32, 48, 64,
   219                                         80, 96, 112, 124, 127 };
   221 // System parameters used internally
   222 static clock_t clock_tics_per_sec = 100;
   224 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
   225 static bool enabled_extended_FILE_stdio = false;
   227 // For diagnostics to print a message once. see run_periodic_checks
   228 static bool check_addr0_done = false;
   229 static sigset_t check_signal_done;
   230 static bool check_signals = true;
   232 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
   233 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
   235 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
   238 // "default" initializers for missing libc APIs
   239 extern "C" {
   240   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   241   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
   243   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   244   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
   245 }
   247 // "default" initializers for pthread-based synchronization
   248 extern "C" {
   249   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   250   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   251 }
   253 // Thread Local Storage
   254 // This is common to all Solaris platforms so it is defined here,
   255 // in this common file.
   256 // The declarations are in the os_cpu threadLS*.hpp files.
   257 //
   258 // Static member initialization for TLS
   259 Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
   261 #ifndef PRODUCT
   262 #define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
   264 int ThreadLocalStorage::_tcacheHit = 0;
   265 int ThreadLocalStorage::_tcacheMiss = 0;
   267 void ThreadLocalStorage::print_statistics() {
   268   int total = _tcacheMiss+_tcacheHit;
   269   tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
   270                 _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
   271 }
   272 #undef _PCT
   273 #endif // PRODUCT
   275 Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
   276                                                         int index) {
   277   Thread *thread = get_thread_slow();
   278   if (thread != NULL) {
   279     address sp = os::current_stack_pointer();
   280     guarantee(thread->_stack_base == NULL ||
   281               (sp <= thread->_stack_base &&
   282                  sp >= thread->_stack_base - thread->_stack_size) ||
   283                is_error_reported(),
   284               "sp must be inside of selected thread stack");
   286     thread->set_self_raw_id(raw_id);  // mark for quick retrieval
   287     _get_thread_cache[ index ] = thread;
   288   }
   289   return thread;
   290 }
   293 static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
   294 #define NO_CACHED_THREAD ((Thread*)all_zero)
   296 void ThreadLocalStorage::pd_set_thread(Thread* thread) {
   298   // Store the new value before updating the cache to prevent a race
   299   // between get_thread_via_cache_slowly() and this store operation.
   300   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
   302   // Update thread cache with new thread if setting on thread create,
   303   // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
   304   uintptr_t raw = pd_raw_thread_id();
   305   int ix = pd_cache_index(raw);
   306   _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
   307 }
   309 void ThreadLocalStorage::pd_init() {
   310   for (int i = 0; i < _pd_cache_size; i++) {
   311     _get_thread_cache[i] = NO_CACHED_THREAD;
   312   }
   313 }
   315 // Invalidate all the caches (happens to be the same as pd_init).
   316 void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
   318 #undef NO_CACHED_THREAD
   320 // END Thread Local Storage
   322 static inline size_t adjust_stack_size(address base, size_t size) {
   323   if ((ssize_t)size < 0) {
   324     // 4759953: Compensate for ridiculous stack size.
   325     size = max_intx;
   326   }
   327   if (size > (size_t)base) {
   328     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
   329     size = (size_t)base;
   330   }
   331   return size;
   332 }
   334 static inline stack_t get_stack_info() {
   335   stack_t st;
   336   int retval = thr_stksegment(&st);
   337   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
   338   assert(retval == 0, "incorrect return value from thr_stksegment");
   339   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
   340   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
   341   return st;
   342 }
   344 address os::current_stack_base() {
   345   int r = thr_main() ;
   346   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   347   bool is_primordial_thread = r;
   349   // Workaround 4352906, avoid calls to thr_stksegment by
   350   // thr_main after the first one (it looks like we trash
   351   // some data, causing the value for ss_sp to be incorrect).
   352   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
   353     stack_t st = get_stack_info();
   354     if (is_primordial_thread) {
   355       // cache initial value of stack base
   356       os::Solaris::_main_stack_base = (address)st.ss_sp;
   357     }
   358     return (address)st.ss_sp;
   359   } else {
   360     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
   361     return os::Solaris::_main_stack_base;
   362   }
   363 }
   365 size_t os::current_stack_size() {
   366   size_t size;
   368   int r = thr_main() ;
   369   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   370   if(!r) {
   371     size = get_stack_info().ss_size;
   372   } else {
   373     struct rlimit limits;
   374     getrlimit(RLIMIT_STACK, &limits);
   375     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
   376   }
   377   // base may not be page aligned
   378   address base = current_stack_base();
   379   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
   380   return (size_t)(base - bottom);
   381 }
   383 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
   384   return localtime_r(clock, res);
   385 }
   387 // interruptible infrastructure
   389 // setup_interruptible saves the thread state before going into an
   390 // interruptible system call.
   391 // The saved state is used to restore the thread to
   392 // its former state whether or not an interrupt is received.
   393 // Used by classloader os::read
   394 // os::restartable_read calls skip this layer and stay in _thread_in_native
   396 void os::Solaris::setup_interruptible(JavaThread* thread) {
   398   JavaThreadState thread_state = thread->thread_state();
   400   assert(thread_state != _thread_blocked, "Coming from the wrong thread");
   401   assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
   402   OSThread* osthread = thread->osthread();
   403   osthread->set_saved_interrupt_thread_state(thread_state);
   404   thread->frame_anchor()->make_walkable(thread);
   405   ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
   406 }
   408 // Version of setup_interruptible() for threads that are already in
   409 // _thread_blocked. Used by os_sleep().
   410 void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
   411   thread->frame_anchor()->make_walkable(thread);
   412 }
   414 JavaThread* os::Solaris::setup_interruptible() {
   415   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   416   setup_interruptible(thread);
   417   return thread;
   418 }
   420 void os::Solaris::try_enable_extended_io() {
   421   typedef int (*enable_extended_FILE_stdio_t)(int, int);
   423   if (!UseExtendedFileIO) {
   424     return;
   425   }
   427   enable_extended_FILE_stdio_t enabler =
   428     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
   429                                          "enable_extended_FILE_stdio");
   430   if (enabler) {
   431     enabler(-1, -1);
   432   }
   433 }
   436 #ifdef ASSERT
   438 JavaThread* os::Solaris::setup_interruptible_native() {
   439   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   440   JavaThreadState thread_state = thread->thread_state();
   441   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   442   return thread;
   443 }
   445 void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
   446   JavaThreadState thread_state = thread->thread_state();
   447   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   448 }
   449 #endif
   451 // cleanup_interruptible reverses the effects of setup_interruptible
   452 // setup_interruptible_already_blocked() does not need any cleanup.
   454 void os::Solaris::cleanup_interruptible(JavaThread* thread) {
   455   OSThread* osthread = thread->osthread();
   457   ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
   458 }
   460 // I/O interruption related counters called in _INTERRUPTIBLE
   462 void os::Solaris::bump_interrupted_before_count() {
   463   RuntimeService::record_interrupted_before_count();
   464 }
   466 void os::Solaris::bump_interrupted_during_count() {
   467   RuntimeService::record_interrupted_during_count();
   468 }
   470 static int _processors_online = 0;
   472          jint os::Solaris::_os_thread_limit = 0;
   473 volatile jint os::Solaris::_os_thread_count = 0;
   475 julong os::available_memory() {
   476   return Solaris::available_memory();
   477 }
   479 julong os::Solaris::available_memory() {
   480   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
   481 }
   483 julong os::Solaris::_physical_memory = 0;
   485 julong os::physical_memory() {
   486    return Solaris::physical_memory();
   487 }
   489 julong os::allocatable_physical_memory(julong size) {
   490 #ifdef _LP64
   491    return size;
   492 #else
   493    julong result = MIN2(size, (julong)3835*M);
   494    if (!is_allocatable(result)) {
   495      // Memory allocations will be aligned but the alignment
   496      // is not known at this point.  Alignments will
   497      // be at most to LargePageSizeInBytes.  Protect
   498      // allocations from alignments up to illegal
   499      // values. If at this point 2G is illegal.
   500      julong reasonable_size = (julong)2*G - 2 * LargePageSizeInBytes;
   501      result =  MIN2(size, reasonable_size);
   502    }
   503    return result;
   504 #endif
   505 }
   507 static hrtime_t first_hrtime = 0;
   508 static const hrtime_t hrtime_hz = 1000*1000*1000;
   509 const int LOCK_BUSY = 1;
   510 const int LOCK_FREE = 0;
   511 const int LOCK_INVALID = -1;
   512 static volatile hrtime_t max_hrtime = 0;
   513 static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
   516 void os::Solaris::initialize_system_info() {
   517   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   518   _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
   519   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   520 }
   522 int os::active_processor_count() {
   523   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
   524   pid_t pid = getpid();
   525   psetid_t pset = PS_NONE;
   526   // Are we running in a processor set or is there any processor set around?
   527   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
   528     uint_t pset_cpus;
   529     // Query the number of cpus available to us.
   530     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
   531       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
   532       _processors_online = pset_cpus;
   533       return pset_cpus;
   534     }
   535   }
   536   // Otherwise return number of online cpus
   537   return online_cpus;
   538 }
   540 static bool find_processors_in_pset(psetid_t        pset,
   541                                     processorid_t** id_array,
   542                                     uint_t*         id_length) {
   543   bool result = false;
   544   // Find the number of processors in the processor set.
   545   if (pset_info(pset, NULL, id_length, NULL) == 0) {
   546     // Make up an array to hold their ids.
   547     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
   548     // Fill in the array with their processor ids.
   549     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
   550       result = true;
   551     }
   552   }
   553   return result;
   554 }
   556 // Callers of find_processors_online() must tolerate imprecise results --
   557 // the system configuration can change asynchronously because of DR
   558 // or explicit psradm operations.
   559 //
   560 // We also need to take care that the loop (below) terminates as the
   561 // number of processors online can change between the _SC_NPROCESSORS_ONLN
   562 // request and the loop that builds the list of processor ids.   Unfortunately
   563 // there's no reliable way to determine the maximum valid processor id,
   564 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
   565 // man pages, which claim the processor id set is "sparse, but
   566 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
   567 // exit the loop.
   568 //
   569 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
   570 // not available on S8.0.
   572 static bool find_processors_online(processorid_t** id_array,
   573                                    uint*           id_length) {
   574   const processorid_t MAX_PROCESSOR_ID = 100000 ;
   575   // Find the number of processors online.
   576   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
   577   // Make up an array to hold their ids.
   578   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
   579   // Processors need not be numbered consecutively.
   580   long found = 0;
   581   processorid_t next = 0;
   582   while (found < *id_length && next < MAX_PROCESSOR_ID) {
   583     processor_info_t info;
   584     if (processor_info(next, &info) == 0) {
   585       // NB, PI_NOINTR processors are effectively online ...
   586       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
   587         (*id_array)[found] = next;
   588         found += 1;
   589       }
   590     }
   591     next += 1;
   592   }
   593   if (found < *id_length) {
   594       // The loop above didn't identify the expected number of processors.
   595       // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
   596       // and re-running the loop, above, but there's no guarantee of progress
   597       // if the system configuration is in flux.  Instead, we just return what
   598       // we've got.  Note that in the worst case find_processors_online() could
   599       // return an empty set.  (As a fall-back in the case of the empty set we
   600       // could just return the ID of the current processor).
   601       *id_length = found ;
   602   }
   604   return true;
   605 }
   607 static bool assign_distribution(processorid_t* id_array,
   608                                 uint           id_length,
   609                                 uint*          distribution,
   610                                 uint           distribution_length) {
   611   // We assume we can assign processorid_t's to uint's.
   612   assert(sizeof(processorid_t) == sizeof(uint),
   613          "can't convert processorid_t to uint");
   614   // Quick check to see if we won't succeed.
   615   if (id_length < distribution_length) {
   616     return false;
   617   }
   618   // Assign processor ids to the distribution.
   619   // Try to shuffle processors to distribute work across boards,
   620   // assuming 4 processors per board.
   621   const uint processors_per_board = ProcessDistributionStride;
   622   // Find the maximum processor id.
   623   processorid_t max_id = 0;
   624   for (uint m = 0; m < id_length; m += 1) {
   625     max_id = MAX2(max_id, id_array[m]);
   626   }
   627   // The next id, to limit loops.
   628   const processorid_t limit_id = max_id + 1;
   629   // Make up markers for available processors.
   630   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id);
   631   for (uint c = 0; c < limit_id; c += 1) {
   632     available_id[c] = false;
   633   }
   634   for (uint a = 0; a < id_length; a += 1) {
   635     available_id[id_array[a]] = true;
   636   }
   637   // Step by "boards", then by "slot", copying to "assigned".
   638   // NEEDS_CLEANUP: The assignment of processors should be stateful,
   639   //                remembering which processors have been assigned by
   640   //                previous calls, etc., so as to distribute several
   641   //                independent calls of this method.  What we'd like is
   642   //                It would be nice to have an API that let us ask
   643   //                how many processes are bound to a processor,
   644   //                but we don't have that, either.
   645   //                In the short term, "board" is static so that
   646   //                subsequent distributions don't all start at board 0.
   647   static uint board = 0;
   648   uint assigned = 0;
   649   // Until we've found enough processors ....
   650   while (assigned < distribution_length) {
   651     // ... find the next available processor in the board.
   652     for (uint slot = 0; slot < processors_per_board; slot += 1) {
   653       uint try_id = board * processors_per_board + slot;
   654       if ((try_id < limit_id) && (available_id[try_id] == true)) {
   655         distribution[assigned] = try_id;
   656         available_id[try_id] = false;
   657         assigned += 1;
   658         break;
   659       }
   660     }
   661     board += 1;
   662     if (board * processors_per_board + 0 >= limit_id) {
   663       board = 0;
   664     }
   665   }
   666   if (available_id != NULL) {
   667     FREE_C_HEAP_ARRAY(bool, available_id);
   668   }
   669   return true;
   670 }
   672 bool os::distribute_processes(uint length, uint* distribution) {
   673   bool result = false;
   674   // Find the processor id's of all the available CPUs.
   675   processorid_t* id_array  = NULL;
   676   uint           id_length = 0;
   677   // There are some races between querying information and using it,
   678   // since processor sets can change dynamically.
   679   psetid_t pset = PS_NONE;
   680   // Are we running in a processor set?
   681   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
   682     result = find_processors_in_pset(pset, &id_array, &id_length);
   683   } else {
   684     result = find_processors_online(&id_array, &id_length);
   685   }
   686   if (result == true) {
   687     if (id_length >= length) {
   688       result = assign_distribution(id_array, id_length, distribution, length);
   689     } else {
   690       result = false;
   691     }
   692   }
   693   if (id_array != NULL) {
   694     FREE_C_HEAP_ARRAY(processorid_t, id_array);
   695   }
   696   return result;
   697 }
   699 bool os::bind_to_processor(uint processor_id) {
   700   // We assume that a processorid_t can be stored in a uint.
   701   assert(sizeof(uint) == sizeof(processorid_t),
   702          "can't convert uint to processorid_t");
   703   int bind_result =
   704     processor_bind(P_LWPID,                       // bind LWP.
   705                    P_MYID,                        // bind current LWP.
   706                    (processorid_t) processor_id,  // id.
   707                    NULL);                         // don't return old binding.
   708   return (bind_result == 0);
   709 }
   711 bool os::getenv(const char* name, char* buffer, int len) {
   712   char* val = ::getenv( name );
   713   if ( val == NULL
   714   ||   strlen(val) + 1  >  len ) {
   715     if (len > 0)  buffer[0] = 0; // return a null string
   716     return false;
   717   }
   718   strcpy( buffer, val );
   719   return true;
   720 }
   723 // Return true if user is running as root.
   725 bool os::have_special_privileges() {
   726   static bool init = false;
   727   static bool privileges = false;
   728   if (!init) {
   729     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   730     init = true;
   731   }
   732   return privileges;
   733 }
   736 void os::init_system_properties_values() {
   737   char arch[12];
   738   sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   740   // The next steps are taken in the product version:
   741   //
   742   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   743   // This library should be located at:
   744   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   745   //
   746   // If "/jre/lib/" appears at the right place in the path, then we
   747   // assume libjvm[_g].so is installed in a JDK and we use this path.
   748   //
   749   // Otherwise exit with message: "Could not create the Java virtual machine."
   750   //
   751   // The following extra steps are taken in the debugging version:
   752   //
   753   // If "/jre/lib/" does NOT appear at the right place in the path
   754   // instead of exit check for $JAVA_HOME environment variable.
   755   //
   756   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   757   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   758   // it looks like libjvm[_g].so is installed there
   759   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   760   //
   761   // Otherwise exit.
   762   //
   763   // Important note: if the location of libjvm.so changes this
   764   // code needs to be changed accordingly.
   766   // The next few definitions allow the code to be verbatim:
   767 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   768 #define free(p) FREE_C_HEAP_ARRAY(char, p)
   769 #define getenv(n) ::getenv(n)
   771 #define EXTENSIONS_DIR  "/lib/ext"
   772 #define ENDORSED_DIR    "/lib/endorsed"
   773 #define COMMON_DIR      "/usr/jdk/packages"
   775   {
   776     /* sysclasspath, java_home, dll_dir */
   777     {
   778         char *home_path;
   779         char *dll_path;
   780         char *pslash;
   781         char buf[MAXPATHLEN];
   782         os::jvm_path(buf, sizeof(buf));
   784         // Found the full path to libjvm.so.
   785         // Now cut the path to <java_home>/jre if we can.
   786         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   787         pslash = strrchr(buf, '/');
   788         if (pslash != NULL)
   789             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   790         dll_path = malloc(strlen(buf) + 1);
   791         if (dll_path == NULL)
   792             return;
   793         strcpy(dll_path, buf);
   794         Arguments::set_dll_dir(dll_path);
   796         if (pslash != NULL) {
   797             pslash = strrchr(buf, '/');
   798             if (pslash != NULL) {
   799                 *pslash = '\0';       /* get rid of /<arch> */
   800                 pslash = strrchr(buf, '/');
   801                 if (pslash != NULL)
   802                     *pslash = '\0';   /* get rid of /lib */
   803             }
   804         }
   806         home_path = malloc(strlen(buf) + 1);
   807         if (home_path == NULL)
   808             return;
   809         strcpy(home_path, buf);
   810         Arguments::set_java_home(home_path);
   812         if (!set_boot_path('/', ':'))
   813             return;
   814     }
   816     /*
   817      * Where to look for native libraries
   818      */
   819     {
   820       // Use dlinfo() to determine the correct java.library.path.
   821       //
   822       // If we're launched by the Java launcher, and the user
   823       // does not set java.library.path explicitly on the commandline,
   824       // the Java launcher sets LD_LIBRARY_PATH for us and unsets
   825       // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
   826       // dlinfo returns LD_LIBRARY_PATH + crle settings (including
   827       // /usr/lib), which is exactly what we want.
   828       //
   829       // If the user does set java.library.path, it completely
   830       // overwrites this setting, and always has.
   831       //
   832       // If we're not launched by the Java launcher, we may
   833       // get here with any/all of the LD_LIBRARY_PATH[_32|64]
   834       // settings.  Again, dlinfo does exactly what we want.
   836       Dl_serinfo     _info, *info = &_info;
   837       Dl_serpath     *path;
   838       char*          library_path;
   839       char           *common_path;
   840       int            i;
   842       // determine search path count and required buffer size
   843       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
   844         vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
   845       }
   847       // allocate new buffer and initialize
   848       info = (Dl_serinfo*)malloc(_info.dls_size);
   849       if (info == NULL) {
   850         vm_exit_out_of_memory(_info.dls_size,
   851                               "init_system_properties_values info");
   852       }
   853       info->dls_size = _info.dls_size;
   854       info->dls_cnt = _info.dls_cnt;
   856       // obtain search path information
   857       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
   858         free(info);
   859         vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
   860       }
   862       path = &info->dls_serpath[0];
   864       // Note: Due to a legacy implementation, most of the library path
   865       // is set in the launcher.  This was to accomodate linking restrictions
   866       // on legacy Solaris implementations (which are no longer supported).
   867       // Eventually, all the library path setting will be done here.
   868       //
   869       // However, to prevent the proliferation of improperly built native
   870       // libraries, the new path component /usr/jdk/packages is added here.
   872       // Determine the actual CPU architecture.
   873       char cpu_arch[12];
   874       sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
   875 #ifdef _LP64
   876       // If we are a 64-bit vm, perform the following translations:
   877       //   sparc   -> sparcv9
   878       //   i386    -> amd64
   879       if (strcmp(cpu_arch, "sparc") == 0)
   880         strcat(cpu_arch, "v9");
   881       else if (strcmp(cpu_arch, "i386") == 0)
   882         strcpy(cpu_arch, "amd64");
   883 #endif
   885       // Construct the invariant part of ld_library_path. Note that the
   886       // space for the colon and the trailing null are provided by the
   887       // nulls included by the sizeof operator.
   888       size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
   889       common_path = malloc(bufsize);
   890       if (common_path == NULL) {
   891         free(info);
   892         vm_exit_out_of_memory(bufsize,
   893                               "init_system_properties_values common_path");
   894       }
   895       sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
   897       // struct size is more than sufficient for the path components obtained
   898       // through the dlinfo() call, so only add additional space for the path
   899       // components explicitly added here.
   900       bufsize = info->dls_size + strlen(common_path);
   901       library_path = malloc(bufsize);
   902       if (library_path == NULL) {
   903         free(info);
   904         free(common_path);
   905         vm_exit_out_of_memory(bufsize,
   906                               "init_system_properties_values library_path");
   907       }
   908       library_path[0] = '\0';
   910       // Construct the desired Java library path from the linker's library
   911       // search path.
   912       //
   913       // For compatibility, it is optimal that we insert the additional path
   914       // components specific to the Java VM after those components specified
   915       // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
   916       // infrastructure.
   917       if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
   918         strcpy(library_path, common_path);
   919       } else {
   920         int inserted = 0;
   921         for (i = 0; i < info->dls_cnt; i++, path++) {
   922           uint_t flags = path->dls_flags & LA_SER_MASK;
   923           if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
   924             strcat(library_path, common_path);
   925             strcat(library_path, os::path_separator());
   926             inserted = 1;
   927           }
   928           strcat(library_path, path->dls_name);
   929           strcat(library_path, os::path_separator());
   930         }
   931         // eliminate trailing path separator
   932         library_path[strlen(library_path)-1] = '\0';
   933       }
   935       // happens before argument parsing - can't use a trace flag
   936       // tty->print_raw("init_system_properties_values: native lib path: ");
   937       // tty->print_raw_cr(library_path);
   939       // callee copies into its own buffer
   940       Arguments::set_library_path(library_path);
   942       free(common_path);
   943       free(library_path);
   944       free(info);
   945     }
   947     /*
   948      * Extensions directories.
   949      *
   950      * Note that the space for the colon and the trailing null are provided
   951      * by the nulls included by the sizeof operator (so actually one byte more
   952      * than necessary is allocated).
   953      */
   954     {
   955         char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
   956             sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
   957             sizeof(EXTENSIONS_DIR));
   958         sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
   959             Arguments::get_java_home());
   960         Arguments::set_ext_dirs(buf);
   961     }
   963     /* Endorsed standards default directory. */
   964     {
   965         char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   966         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   967         Arguments::set_endorsed_dirs(buf);
   968     }
   969   }
   971 #undef malloc
   972 #undef free
   973 #undef getenv
   974 #undef EXTENSIONS_DIR
   975 #undef ENDORSED_DIR
   976 #undef COMMON_DIR
   978 }
   980 void os::breakpoint() {
   981   BREAKPOINT;
   982 }
   984 bool os::obsolete_option(const JavaVMOption *option)
   985 {
   986   if (!strncmp(option->optionString, "-Xt", 3)) {
   987     return true;
   988   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
   989     return true;
   990   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
   991     return true;
   992   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
   993     return true;
   994   }
   995   return false;
   996 }
   998 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
   999   address  stackStart  = (address)thread->stack_base();
  1000   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
  1001   if (sp < stackStart && sp >= stackEnd ) return true;
  1002   return false;
  1005 extern "C" void breakpoint() {
  1006   // use debugger to set breakpoint here
  1009 // Returns an estimate of the current stack pointer. Result must be guaranteed to
  1010 // point into the calling threads stack, and be no lower than the current stack
  1011 // pointer.
  1012 address os::current_stack_pointer() {
  1013   volatile int dummy;
  1014   address sp = (address)&dummy + 8;     // %%%% need to confirm if this is right
  1015   return sp;
  1018 static thread_t main_thread;
  1020 // Thread start routine for all new Java threads
  1021 extern "C" void* java_start(void* thread_addr) {
  1022   // Try to randomize the cache line index of hot stack frames.
  1023   // This helps when threads of the same stack traces evict each other's
  1024   // cache lines. The threads can be either from the same JVM instance, or
  1025   // from different JVM instances. The benefit is especially true for
  1026   // processors with hyperthreading technology.
  1027   static int counter = 0;
  1028   int pid = os::current_process_id();
  1029   alloca(((pid ^ counter++) & 7) * 128);
  1031   int prio;
  1032   Thread* thread = (Thread*)thread_addr;
  1033   OSThread* osthr = thread->osthread();
  1035   osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
  1036   thread->_schedctl = (void *) schedctl_init () ;
  1038   if (UseNUMA) {
  1039     int lgrp_id = os::numa_get_group_id();
  1040     if (lgrp_id != -1) {
  1041       thread->set_lgrp_id(lgrp_id);
  1045   // If the creator called set priority before we started,
  1046   // we need to call set priority now that we have an lwp.
  1047   // Get the priority from libthread and set the priority
  1048   // for the new Solaris lwp.
  1049   if ( osthr->thread_id() != -1 ) {
  1050     if ( UseThreadPriorities ) {
  1051       thr_getprio(osthr->thread_id(), &prio);
  1052       if (ThreadPriorityVerbose) {
  1053         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT ", setting priority: %d\n",
  1054                       osthr->thread_id(), osthr->lwp_id(), prio );
  1056       os::set_native_priority(thread, prio);
  1058   } else if (ThreadPriorityVerbose) {
  1059     warning("Can't set priority in _start routine, thread id hasn't been set\n");
  1062   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
  1064   // initialize signal mask for this thread
  1065   os::Solaris::hotspot_sigmask(thread);
  1067   thread->run();
  1069   // One less thread is executing
  1070   // When the VMThread gets here, the main thread may have already exited
  1071   // which frees the CodeHeap containing the Atomic::dec code
  1072   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
  1073     Atomic::dec(&os::Solaris::_os_thread_count);
  1076   if (UseDetachedThreads) {
  1077     thr_exit(NULL);
  1078     ShouldNotReachHere();
  1080   return NULL;
  1083 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
  1084   // Allocate the OSThread object
  1085   OSThread* osthread = new OSThread(NULL, NULL);
  1086   if (osthread == NULL) return NULL;
  1088   // Store info on the Solaris thread into the OSThread
  1089   osthread->set_thread_id(thread_id);
  1090   osthread->set_lwp_id(_lwp_self());
  1091   thread->_schedctl = (void *) schedctl_init () ;
  1093   if (UseNUMA) {
  1094     int lgrp_id = os::numa_get_group_id();
  1095     if (lgrp_id != -1) {
  1096       thread->set_lgrp_id(lgrp_id);
  1100   if ( ThreadPriorityVerbose ) {
  1101     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
  1102                   osthread->thread_id(), osthread->lwp_id() );
  1105   // Initial thread state is INITIALIZED, not SUSPENDED
  1106   osthread->set_state(INITIALIZED);
  1108   return osthread;
  1111 void os::Solaris::hotspot_sigmask(Thread* thread) {
  1113   //Save caller's signal mask
  1114   sigset_t sigmask;
  1115   thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
  1116   OSThread *osthread = thread->osthread();
  1117   osthread->set_caller_sigmask(sigmask);
  1119   thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
  1120   if (!ReduceSignalUsage) {
  1121     if (thread->is_VM_thread()) {
  1122       // Only the VM thread handles BREAK_SIGNAL ...
  1123       thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
  1124     } else {
  1125       // ... all other threads block BREAK_SIGNAL
  1126       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
  1127       thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
  1132 bool os::create_attached_thread(JavaThread* thread) {
  1133 #ifdef ASSERT
  1134   thread->verify_not_published();
  1135 #endif
  1136   OSThread* osthread = create_os_thread(thread, thr_self());
  1137   if (osthread == NULL) {
  1138      return false;
  1141   // Initial thread state is RUNNABLE
  1142   osthread->set_state(RUNNABLE);
  1143   thread->set_osthread(osthread);
  1145   // initialize signal mask for this thread
  1146   // and save the caller's signal mask
  1147   os::Solaris::hotspot_sigmask(thread);
  1149   return true;
  1152 bool os::create_main_thread(JavaThread* thread) {
  1153 #ifdef ASSERT
  1154   thread->verify_not_published();
  1155 #endif
  1156   if (_starting_thread == NULL) {
  1157     _starting_thread = create_os_thread(thread, main_thread);
  1158      if (_starting_thread == NULL) {
  1159         return false;
  1163   // The primodial thread is runnable from the start
  1164   _starting_thread->set_state(RUNNABLE);
  1166   thread->set_osthread(_starting_thread);
  1168   // initialize signal mask for this thread
  1169   // and save the caller's signal mask
  1170   os::Solaris::hotspot_sigmask(thread);
  1172   return true;
  1175 // _T2_libthread is true if we believe we are running with the newer
  1176 // SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
  1177 bool os::Solaris::_T2_libthread = false;
  1179 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
  1180   // Allocate the OSThread object
  1181   OSThread* osthread = new OSThread(NULL, NULL);
  1182   if (osthread == NULL) {
  1183     return false;
  1186   if ( ThreadPriorityVerbose ) {
  1187     char *thrtyp;
  1188     switch ( thr_type ) {
  1189       case vm_thread:
  1190         thrtyp = (char *)"vm";
  1191         break;
  1192       case cgc_thread:
  1193         thrtyp = (char *)"cgc";
  1194         break;
  1195       case pgc_thread:
  1196         thrtyp = (char *)"pgc";
  1197         break;
  1198       case java_thread:
  1199         thrtyp = (char *)"java";
  1200         break;
  1201       case compiler_thread:
  1202         thrtyp = (char *)"compiler";
  1203         break;
  1204       case watcher_thread:
  1205         thrtyp = (char *)"watcher";
  1206         break;
  1207       default:
  1208         thrtyp = (char *)"unknown";
  1209         break;
  1211     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
  1214   // Calculate stack size if it's not specified by caller.
  1215   if (stack_size == 0) {
  1216     // The default stack size 1M (2M for LP64).
  1217     stack_size = (BytesPerWord >> 2) * K * K;
  1219     switch (thr_type) {
  1220     case os::java_thread:
  1221       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
  1222       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
  1223       break;
  1224     case os::compiler_thread:
  1225       if (CompilerThreadStackSize > 0) {
  1226         stack_size = (size_t)(CompilerThreadStackSize * K);
  1227         break;
  1228       } // else fall through:
  1229         // use VMThreadStackSize if CompilerThreadStackSize is not defined
  1230     case os::vm_thread:
  1231     case os::pgc_thread:
  1232     case os::cgc_thread:
  1233     case os::watcher_thread:
  1234       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
  1235       break;
  1238   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
  1240   // Initial state is ALLOCATED but not INITIALIZED
  1241   osthread->set_state(ALLOCATED);
  1243   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
  1244     // We got lots of threads. Check if we still have some address space left.
  1245     // Need to be at least 5Mb of unreserved address space. We do check by
  1246     // trying to reserve some.
  1247     const size_t VirtualMemoryBangSize = 20*K*K;
  1248     char* mem = os::reserve_memory(VirtualMemoryBangSize);
  1249     if (mem == NULL) {
  1250       delete osthread;
  1251       return false;
  1252     } else {
  1253       // Release the memory again
  1254       os::release_memory(mem, VirtualMemoryBangSize);
  1258   // Setup osthread because the child thread may need it.
  1259   thread->set_osthread(osthread);
  1261   // Create the Solaris thread
  1262   // explicit THR_BOUND for T2_libthread case in case
  1263   // that assumption is not accurate, but our alternate signal stack
  1264   // handling is based on it which must have bound threads
  1265   thread_t tid = 0;
  1266   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
  1267                    | ((UseBoundThreads || os::Solaris::T2_libthread() ||
  1268                        (thr_type == vm_thread) ||
  1269                        (thr_type == cgc_thread) ||
  1270                        (thr_type == pgc_thread) ||
  1271                        (thr_type == compiler_thread && BackgroundCompilation)) ?
  1272                       THR_BOUND : 0);
  1273   int      status;
  1275   // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
  1276   //
  1277   // On multiprocessors systems, libthread sometimes under-provisions our
  1278   // process with LWPs.  On a 30-way systems, for instance, we could have
  1279   // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
  1280   // to our process.  This can result in under utilization of PEs.
  1281   // I suspect the problem is related to libthread's LWP
  1282   // pool management and to the kernel's SIGBLOCKING "last LWP parked"
  1283   // upcall policy.
  1284   //
  1285   // The following code is palliative -- it attempts to ensure that our
  1286   // process has sufficient LWPs to take advantage of multiple PEs.
  1287   // Proper long-term cures include using user-level threads bound to LWPs
  1288   // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
  1289   // slight timing window with respect to sampling _os_thread_count, but
  1290   // the race is benign.  Also, we should periodically recompute
  1291   // _processors_online as the min of SC_NPROCESSORS_ONLN and the
  1292   // the number of PEs in our partition.  You might be tempted to use
  1293   // THR_NEW_LWP here, but I'd recommend against it as that could
  1294   // result in undesirable growth of the libthread's LWP pool.
  1295   // The fix below isn't sufficient; for instance, it doesn't take into count
  1296   // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
  1297   //
  1298   // Some pathologies this scheme doesn't handle:
  1299   // *  Threads can block, releasing the LWPs.  The LWPs can age out.
  1300   //    When a large number of threads become ready again there aren't
  1301   //    enough LWPs available to service them.  This can occur when the
  1302   //    number of ready threads oscillates.
  1303   // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
  1304   //
  1305   // Finally, we should call thr_setconcurrency() periodically to refresh
  1306   // the LWP pool and thwart the LWP age-out mechanism.
  1307   // The "+3" term provides a little slop -- we want to slightly overprovision.
  1309   if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
  1310     if (!(flags & THR_BOUND)) {
  1311       thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
  1314   // Although this doesn't hurt, we should warn of undefined behavior
  1315   // when using unbound T1 threads with schedctl().  This should never
  1316   // happen, as the compiler and VM threads are always created bound
  1317   DEBUG_ONLY(
  1318       if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
  1319           (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
  1320           ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
  1321            (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
  1322          warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
  1324   );
  1327   // Mark that we don't have an lwp or thread id yet.
  1328   // In case we attempt to set the priority before the thread starts.
  1329   osthread->set_lwp_id(-1);
  1330   osthread->set_thread_id(-1);
  1332   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
  1333   if (status != 0) {
  1334     if (PrintMiscellaneous && (Verbose || WizardMode)) {
  1335       perror("os::create_thread");
  1337     thread->set_osthread(NULL);
  1338     // Need to clean up stuff we've allocated so far
  1339     delete osthread;
  1340     return false;
  1343   Atomic::inc(&os::Solaris::_os_thread_count);
  1345   // Store info on the Solaris thread into the OSThread
  1346   osthread->set_thread_id(tid);
  1348   // Remember that we created this thread so we can set priority on it
  1349   osthread->set_vm_created();
  1351   // Set the default thread priority otherwise use NormalPriority
  1353   if ( UseThreadPriorities ) {
  1354      thr_setprio(tid, (DefaultThreadPriority == -1) ?
  1355                         java_to_os_priority[NormPriority] :
  1356                         DefaultThreadPriority);
  1359   // Initial thread state is INITIALIZED, not SUSPENDED
  1360   osthread->set_state(INITIALIZED);
  1362   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
  1363   return true;
  1366 /* defined for >= Solaris 10. This allows builds on earlier versions
  1367  *  of Solaris to take advantage of the newly reserved Solaris JVM signals
  1368  *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
  1369  *  and -XX:+UseAltSigs does nothing since these should have no conflict
  1370  */
  1371 #if !defined(SIGJVM1)
  1372 #define SIGJVM1 39
  1373 #define SIGJVM2 40
  1374 #endif
  1376 debug_only(static bool signal_sets_initialized = false);
  1377 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
  1378 int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
  1379 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
  1381 bool os::Solaris::is_sig_ignored(int sig) {
  1382       struct sigaction oact;
  1383       sigaction(sig, (struct sigaction*)NULL, &oact);
  1384       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
  1385                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
  1386       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
  1387            return true;
  1388       else
  1389            return false;
  1392 // Note: SIGRTMIN is a macro that calls sysconf() so it will
  1393 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
  1394 static bool isJVM1available() {
  1395   return SIGJVM1 < SIGRTMIN;
  1398 void os::Solaris::signal_sets_init() {
  1399   // Should also have an assertion stating we are still single-threaded.
  1400   assert(!signal_sets_initialized, "Already initialized");
  1401   // Fill in signals that are necessarily unblocked for all threads in
  1402   // the VM. Currently, we unblock the following signals:
  1403   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
  1404   //                         by -Xrs (=ReduceSignalUsage));
  1405   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
  1406   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
  1407   // the dispositions or masks wrt these signals.
  1408   // Programs embedding the VM that want to use the above signals for their
  1409   // own purposes must, at this time, use the "-Xrs" option to prevent
  1410   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
  1411   // (See bug 4345157, and other related bugs).
  1412   // In reality, though, unblocking these signals is really a nop, since
  1413   // these signals are not blocked by default.
  1414   sigemptyset(&unblocked_sigs);
  1415   sigemptyset(&allowdebug_blocked_sigs);
  1416   sigaddset(&unblocked_sigs, SIGILL);
  1417   sigaddset(&unblocked_sigs, SIGSEGV);
  1418   sigaddset(&unblocked_sigs, SIGBUS);
  1419   sigaddset(&unblocked_sigs, SIGFPE);
  1421   if (isJVM1available) {
  1422     os::Solaris::set_SIGinterrupt(SIGJVM1);
  1423     os::Solaris::set_SIGasync(SIGJVM2);
  1424   } else if (UseAltSigs) {
  1425     os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
  1426     os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
  1427   } else {
  1428     os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
  1429     os::Solaris::set_SIGasync(ASYNC_SIGNAL);
  1432   sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
  1433   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
  1435   if (!ReduceSignalUsage) {
  1436    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
  1437       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
  1438       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
  1440    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
  1441       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
  1442       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
  1444    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
  1445       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
  1446       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
  1449   // Fill in signals that are blocked by all but the VM thread.
  1450   sigemptyset(&vm_sigs);
  1451   if (!ReduceSignalUsage)
  1452     sigaddset(&vm_sigs, BREAK_SIGNAL);
  1453   debug_only(signal_sets_initialized = true);
  1455   // For diagnostics only used in run_periodic_checks
  1456   sigemptyset(&check_signal_done);
  1459 // These are signals that are unblocked while a thread is running Java.
  1460 // (For some reason, they get blocked by default.)
  1461 sigset_t* os::Solaris::unblocked_signals() {
  1462   assert(signal_sets_initialized, "Not initialized");
  1463   return &unblocked_sigs;
  1466 // These are the signals that are blocked while a (non-VM) thread is
  1467 // running Java. Only the VM thread handles these signals.
  1468 sigset_t* os::Solaris::vm_signals() {
  1469   assert(signal_sets_initialized, "Not initialized");
  1470   return &vm_sigs;
  1473 // These are signals that are blocked during cond_wait to allow debugger in
  1474 sigset_t* os::Solaris::allowdebug_blocked_signals() {
  1475   assert(signal_sets_initialized, "Not initialized");
  1476   return &allowdebug_blocked_sigs;
  1480 void _handle_uncaught_cxx_exception() {
  1481   VMError err("An uncaught C++ exception");
  1482   err.report_and_die();
  1486 // First crack at OS-specific initialization, from inside the new thread.
  1487 void os::initialize_thread() {
  1488   int r = thr_main() ;
  1489   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
  1490   if (r) {
  1491     JavaThread* jt = (JavaThread *)Thread::current();
  1492     assert(jt != NULL,"Sanity check");
  1493     size_t stack_size;
  1494     address base = jt->stack_base();
  1495     if (Arguments::created_by_java_launcher()) {
  1496       // Use 2MB to allow for Solaris 7 64 bit mode.
  1497       stack_size = JavaThread::stack_size_at_create() == 0
  1498         ? 2048*K : JavaThread::stack_size_at_create();
  1500       // There are rare cases when we may have already used more than
  1501       // the basic stack size allotment before this method is invoked.
  1502       // Attempt to allow for a normally sized java_stack.
  1503       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
  1504       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
  1505     } else {
  1506       // 6269555: If we were not created by a Java launcher, i.e. if we are
  1507       // running embedded in a native application, treat the primordial thread
  1508       // as much like a native attached thread as possible.  This means using
  1509       // the current stack size from thr_stksegment(), unless it is too large
  1510       // to reliably setup guard pages.  A reasonable max size is 8MB.
  1511       size_t current_size = current_stack_size();
  1512       // This should never happen, but just in case....
  1513       if (current_size == 0) current_size = 2 * K * K;
  1514       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
  1516     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
  1517     stack_size = (size_t)(base - bottom);
  1519     assert(stack_size > 0, "Stack size calculation problem");
  1521     if (stack_size > jt->stack_size()) {
  1522       NOT_PRODUCT(
  1523         struct rlimit limits;
  1524         getrlimit(RLIMIT_STACK, &limits);
  1525         size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
  1526         assert(size >= jt->stack_size(), "Stack size problem in main thread");
  1528       tty->print_cr(
  1529         "Stack size of %d Kb exceeds current limit of %d Kb.\n"
  1530         "(Stack sizes are rounded up to a multiple of the system page size.)\n"
  1531         "See limit(1) to increase the stack size limit.",
  1532         stack_size / K, jt->stack_size() / K);
  1533       vm_exit(1);
  1535     assert(jt->stack_size() >= stack_size,
  1536           "Attempt to map more stack than was allocated");
  1537     jt->set_stack_size(stack_size);
  1540    // 5/22/01: Right now alternate signal stacks do not handle
  1541    // throwing stack overflow exceptions, see bug 4463178
  1542    // Until a fix is found for this, T2 will NOT imply alternate signal
  1543    // stacks.
  1544    // If using T2 libthread threads, install an alternate signal stack.
  1545    // Because alternate stacks associate with LWPs on Solaris,
  1546    // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
  1547    // we prefer to explicitly stack bang.
  1548    // If not using T2 libthread, but using UseBoundThreads any threads
  1549    // (primordial thread, jni_attachCurrentThread) we do not create,
  1550    // probably are not bound, therefore they can not have an alternate
  1551    // signal stack. Since our stack banging code is generated and
  1552    // is shared across threads, all threads must be bound to allow
  1553    // using alternate signal stacks.  The alternative is to interpose
  1554    // on _lwp_create to associate an alt sig stack with each LWP,
  1555    // and this could be a problem when the JVM is embedded.
  1556    // We would prefer to use alternate signal stacks with T2
  1557    // Since there is currently no accurate way to detect T2
  1558    // we do not. Assuming T2 when running T1 causes sig 11s or assertions
  1559    // on installing alternate signal stacks
  1562    // 05/09/03: removed alternate signal stack support for Solaris
  1563    // The alternate signal stack mechanism is no longer needed to
  1564    // handle stack overflow. This is now handled by allocating
  1565    // guard pages (red zone) and stackbanging.
  1566    // Initially the alternate signal stack mechanism was removed because
  1567    // it did not work with T1 llibthread. Alternate
  1568    // signal stacks MUST have all threads bound to lwps. Applications
  1569    // can create their own threads and attach them without their being
  1570    // bound under T1. This is frequently the case for the primordial thread.
  1571    // If we were ever to reenable this mechanism we would need to
  1572    // use the dynamic check for T2 libthread.
  1574   os::Solaris::init_thread_fpu_state();
  1575   std::set_terminate(_handle_uncaught_cxx_exception);
  1580 // Free Solaris resources related to the OSThread
  1581 void os::free_thread(OSThread* osthread) {
  1582   assert(osthread != NULL, "os::free_thread but osthread not set");
  1585   // We are told to free resources of the argument thread,
  1586   // but we can only really operate on the current thread.
  1587   // The main thread must take the VMThread down synchronously
  1588   // before the main thread exits and frees up CodeHeap
  1589   guarantee((Thread::current()->osthread() == osthread
  1590      || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
  1591   if (Thread::current()->osthread() == osthread) {
  1592     // Restore caller's signal mask
  1593     sigset_t sigmask = osthread->caller_sigmask();
  1594     thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
  1596   delete osthread;
  1599 void os::pd_start_thread(Thread* thread) {
  1600   int status = thr_continue(thread->osthread()->thread_id());
  1601   assert_status(status == 0, status, "thr_continue failed");
  1605 intx os::current_thread_id() {
  1606   return (intx)thr_self();
  1609 static pid_t _initial_pid = 0;
  1611 int os::current_process_id() {
  1612   return (int)(_initial_pid ? _initial_pid : getpid());
  1615 int os::allocate_thread_local_storage() {
  1616   // %%%       in Win32 this allocates a memory segment pointed to by a
  1617   //           register.  Dan Stein can implement a similar feature in
  1618   //           Solaris.  Alternatively, the VM can do the same thing
  1619   //           explicitly: malloc some storage and keep the pointer in a
  1620   //           register (which is part of the thread's context) (or keep it
  1621   //           in TLS).
  1622   // %%%       In current versions of Solaris, thr_self and TSD can
  1623   //           be accessed via short sequences of displaced indirections.
  1624   //           The value of thr_self is available as %g7(36).
  1625   //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
  1626   //           assuming that the current thread already has a value bound to k.
  1627   //           It may be worth experimenting with such access patterns,
  1628   //           and later having the parameters formally exported from a Solaris
  1629   //           interface.  I think, however, that it will be faster to
  1630   //           maintain the invariant that %g2 always contains the
  1631   //           JavaThread in Java code, and have stubs simply
  1632   //           treat %g2 as a caller-save register, preserving it in a %lN.
  1633   thread_key_t tk;
  1634   if (thr_keycreate( &tk, NULL ) )
  1635     fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
  1636                   "(%s)", strerror(errno)));
  1637   return int(tk);
  1640 void os::free_thread_local_storage(int index) {
  1641   // %%% don't think we need anything here
  1642   // if ( pthread_key_delete((pthread_key_t) tk) )
  1643   //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
  1646 #define SMALLINT 32   // libthread allocate for tsd_common is a version specific
  1647                       // small number - point is NO swap space available
  1648 void os::thread_local_storage_at_put(int index, void* value) {
  1649   // %%% this is used only in threadLocalStorage.cpp
  1650   if (thr_setspecific((thread_key_t)index, value)) {
  1651     if (errno == ENOMEM) {
  1652        vm_exit_out_of_memory(SMALLINT, "thr_setspecific: out of swap space");
  1653     } else {
  1654       fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
  1655                     "(%s)", strerror(errno)));
  1657   } else {
  1658       ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
  1662 // This function could be called before TLS is initialized, for example, when
  1663 // VM receives an async signal or when VM causes a fatal error during
  1664 // initialization. Return NULL if thr_getspecific() fails.
  1665 void* os::thread_local_storage_at(int index) {
  1666   // %%% this is used only in threadLocalStorage.cpp
  1667   void* r = NULL;
  1668   return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
  1672 const int NANOSECS_PER_MILLISECS = 1000000;
  1673 // gethrtime can move backwards if read from one cpu and then a different cpu
  1674 // getTimeNanos is guaranteed to not move backward on Solaris
  1675 // local spinloop created as faster for a CAS on an int than
  1676 // a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
  1677 // supported on sparc v8 or pre supports_cx8 intel boxes.
  1678 // oldgetTimeNanos for systems which do not support CAS on 64bit jlong
  1679 // i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
  1680 inline hrtime_t oldgetTimeNanos() {
  1681   int gotlock = LOCK_INVALID;
  1682   hrtime_t newtime = gethrtime();
  1684   for (;;) {
  1685 // grab lock for max_hrtime
  1686     int curlock = max_hrtime_lock;
  1687     if (curlock & LOCK_BUSY)  continue;
  1688     if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
  1689     if (newtime > max_hrtime) {
  1690       max_hrtime = newtime;
  1691     } else {
  1692       newtime = max_hrtime;
  1694     // release lock
  1695     max_hrtime_lock = LOCK_FREE;
  1696     return newtime;
  1699 // gethrtime can move backwards if read from one cpu and then a different cpu
  1700 // getTimeNanos is guaranteed to not move backward on Solaris
  1701 inline hrtime_t getTimeNanos() {
  1702   if (VM_Version::supports_cx8()) {
  1703     const hrtime_t now = gethrtime();
  1704     // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
  1705     const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
  1706     if (now <= prev)  return prev;   // same or retrograde time;
  1707     const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
  1708     assert(obsv >= prev, "invariant");   // Monotonicity
  1709     // If the CAS succeeded then we're done and return "now".
  1710     // If the CAS failed and the observed value "obs" is >= now then
  1711     // we should return "obs".  If the CAS failed and now > obs > prv then
  1712     // some other thread raced this thread and installed a new value, in which case
  1713     // we could either (a) retry the entire operation, (b) retry trying to install now
  1714     // or (c) just return obs.  We use (c).   No loop is required although in some cases
  1715     // we might discard a higher "now" value in deference to a slightly lower but freshly
  1716     // installed obs value.   That's entirely benign -- it admits no new orderings compared
  1717     // to (a) or (b) -- and greatly reduces coherence traffic.
  1718     // We might also condition (c) on the magnitude of the delta between obs and now.
  1719     // Avoiding excessive CAS operations to hot RW locations is critical.
  1720     // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
  1721     return (prev == obsv) ? now : obsv ;
  1722   } else {
  1723     return oldgetTimeNanos();
  1727 // Time since start-up in seconds to a fine granularity.
  1728 // Used by VMSelfDestructTimer and the MemProfiler.
  1729 double os::elapsedTime() {
  1730   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
  1733 jlong os::elapsed_counter() {
  1734   return (jlong)(getTimeNanos() - first_hrtime);
  1737 jlong os::elapsed_frequency() {
  1738    return hrtime_hz;
  1741 // Return the real, user, and system times in seconds from an
  1742 // arbitrary fixed point in the past.
  1743 bool os::getTimesSecs(double* process_real_time,
  1744                   double* process_user_time,
  1745                   double* process_system_time) {
  1746   struct tms ticks;
  1747   clock_t real_ticks = times(&ticks);
  1749   if (real_ticks == (clock_t) (-1)) {
  1750     return false;
  1751   } else {
  1752     double ticks_per_second = (double) clock_tics_per_sec;
  1753     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1754     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1755     // For consistency return the real time from getTimeNanos()
  1756     // converted to seconds.
  1757     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
  1759     return true;
  1763 bool os::supports_vtime() { return true; }
  1765 bool os::enable_vtime() {
  1766   int fd = ::open("/proc/self/ctl", O_WRONLY);
  1767   if (fd == -1)
  1768     return false;
  1770   long cmd[] = { PCSET, PR_MSACCT };
  1771   int res = ::write(fd, cmd, sizeof(long) * 2);
  1772   ::close(fd);
  1773   if (res != sizeof(long) * 2)
  1774     return false;
  1776   return true;
  1779 bool os::vtime_enabled() {
  1780   int fd = ::open("/proc/self/status", O_RDONLY);
  1781   if (fd == -1)
  1782     return false;
  1784   pstatus_t status;
  1785   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
  1786   ::close(fd);
  1787   if (res != sizeof(pstatus_t))
  1788     return false;
  1790   return status.pr_flags & PR_MSACCT;
  1793 double os::elapsedVTime() {
  1794   return (double)gethrvtime() / (double)hrtime_hz;
  1797 // Used internally for comparisons only
  1798 // getTimeMillis guaranteed to not move backwards on Solaris
  1799 jlong getTimeMillis() {
  1800   jlong nanotime = getTimeNanos();
  1801   return (jlong)(nanotime / NANOSECS_PER_MILLISECS);
  1804 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
  1805 jlong os::javaTimeMillis() {
  1806   timeval t;
  1807   if (gettimeofday( &t, NULL) == -1)
  1808     fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
  1809   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
  1812 jlong os::javaTimeNanos() {
  1813   return (jlong)getTimeNanos();
  1816 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1817   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
  1818   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
  1819   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
  1820   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
  1823 char * os::local_time_string(char *buf, size_t buflen) {
  1824   struct tm t;
  1825   time_t long_time;
  1826   time(&long_time);
  1827   localtime_r(&long_time, &t);
  1828   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1829                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1830                t.tm_hour, t.tm_min, t.tm_sec);
  1831   return buf;
  1834 // Note: os::shutdown() might be called very early during initialization, or
  1835 // called from signal handler. Before adding something to os::shutdown(), make
  1836 // sure it is async-safe and can handle partially initialized VM.
  1837 void os::shutdown() {
  1839   // allow PerfMemory to attempt cleanup of any persistent resources
  1840   perfMemory_exit();
  1842   // needs to remove object in file system
  1843   AttachListener::abort();
  1845   // flush buffered output, finish log files
  1846   ostream_abort();
  1848   // Check for abort hook
  1849   abort_hook_t abort_hook = Arguments::abort_hook();
  1850   if (abort_hook != NULL) {
  1851     abort_hook();
  1855 // Note: os::abort() might be called very early during initialization, or
  1856 // called from signal handler. Before adding something to os::abort(), make
  1857 // sure it is async-safe and can handle partially initialized VM.
  1858 void os::abort(bool dump_core) {
  1859   os::shutdown();
  1860   if (dump_core) {
  1861 #ifndef PRODUCT
  1862     fdStream out(defaultStream::output_fd());
  1863     out.print_raw("Current thread is ");
  1864     char buf[16];
  1865     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1866     out.print_raw_cr(buf);
  1867     out.print_raw_cr("Dumping core ...");
  1868 #endif
  1869     ::abort(); // dump core (for debugging)
  1872   ::exit(1);
  1875 // Die immediately, no exit hook, no abort hook, no cleanup.
  1876 void os::die() {
  1877   _exit(-1);
  1880 // unused
  1881 void os::set_error_file(const char *logfile) {}
  1883 // DLL functions
  1885 const char* os::dll_file_extension() { return ".so"; }
  1887 // This must be hard coded because it's the system's temporary
  1888 // directory not the java application's temp directory, ala java.io.tmpdir.
  1889 const char* os::get_temp_directory() { return "/tmp"; }
  1891 static bool file_exists(const char* filename) {
  1892   struct stat statbuf;
  1893   if (filename == NULL || strlen(filename) == 0) {
  1894     return false;
  1896   return os::stat(filename, &statbuf) == 0;
  1899 void os::dll_build_name(char* buffer, size_t buflen,
  1900                         const char* pname, const char* fname) {
  1901   const size_t pnamelen = pname ? strlen(pname) : 0;
  1903   // Quietly truncate on buffer overflow.  Should be an error.
  1904   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1905     *buffer = '\0';
  1906     return;
  1909   if (pnamelen == 0) {
  1910     snprintf(buffer, buflen, "lib%s.so", fname);
  1911   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1912     int n;
  1913     char** pelements = split_path(pname, &n);
  1914     for (int i = 0 ; i < n ; i++) {
  1915       // really shouldn't be NULL but what the heck, check can't hurt
  1916       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1917         continue; // skip the empty path values
  1919       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1920       if (file_exists(buffer)) {
  1921         break;
  1924     // release the storage
  1925     for (int i = 0 ; i < n ; i++) {
  1926       if (pelements[i] != NULL) {
  1927         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1930     if (pelements != NULL) {
  1931       FREE_C_HEAP_ARRAY(char*, pelements);
  1933   } else {
  1934     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1938 const char* os::get_current_directory(char *buf, int buflen) {
  1939   return getcwd(buf, buflen);
  1942 // check if addr is inside libjvm[_g].so
  1943 bool os::address_is_in_vm(address addr) {
  1944   static address libjvm_base_addr;
  1945   Dl_info dlinfo;
  1947   if (libjvm_base_addr == NULL) {
  1948     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1949     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1950     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1953   if (dladdr((void *)addr, &dlinfo)) {
  1954     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1957   return false;
  1960 typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
  1961 static dladdr1_func_type dladdr1_func = NULL;
  1963 bool os::dll_address_to_function_name(address addr, char *buf,
  1964                                       int buflen, int * offset) {
  1965   Dl_info dlinfo;
  1967   // dladdr1_func was initialized in os::init()
  1968   if (dladdr1_func){
  1969       // yes, we have dladdr1
  1971       // Support for dladdr1 is checked at runtime; it may be
  1972       // available even if the vm is built on a machine that does
  1973       // not have dladdr1 support.  Make sure there is a value for
  1974       // RTLD_DL_SYMENT.
  1975       #ifndef RTLD_DL_SYMENT
  1976       #define RTLD_DL_SYMENT 1
  1977       #endif
  1978 #ifdef _LP64
  1979       Elf64_Sym * info;
  1980 #else
  1981       Elf32_Sym * info;
  1982 #endif
  1983       if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
  1984                        RTLD_DL_SYMENT)) {
  1985         if ((char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
  1986           if (buf != NULL) {
  1987             if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
  1988               jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1990             if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1991             return true;
  1994       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1995         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1996           dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  1997           return true;
  2000       if (buf != NULL) buf[0] = '\0';
  2001       if (offset != NULL) *offset  = -1;
  2002       return false;
  2003   } else {
  2004       // no, only dladdr is available
  2005       if (dladdr((void *)addr, &dlinfo)) {
  2006         if (buf != NULL) {
  2007           if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
  2008             jio_snprintf(buf, buflen, dlinfo.dli_sname);
  2010         if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  2011         return true;
  2012       } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  2013         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  2014           dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  2015           return true;
  2018       if (buf != NULL) buf[0] = '\0';
  2019       if (offset != NULL) *offset  = -1;
  2020       return false;
  2024 bool os::dll_address_to_library_name(address addr, char* buf,
  2025                                      int buflen, int* offset) {
  2026   Dl_info dlinfo;
  2028   if (dladdr((void*)addr, &dlinfo)){
  2029      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  2030      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  2031      return true;
  2032   } else {
  2033      if (buf) buf[0] = '\0';
  2034      if (offset) *offset = -1;
  2035      return false;
  2039 // Prints the names and full paths of all opened dynamic libraries
  2040 // for current process
  2041 void os::print_dll_info(outputStream * st) {
  2042     Dl_info dli;
  2043     void *handle;
  2044     Link_map *map;
  2045     Link_map *p;
  2047     st->print_cr("Dynamic libraries:"); st->flush();
  2049     if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
  2050         st->print_cr("Error: Cannot print dynamic libraries.");
  2051         return;
  2053     handle = dlopen(dli.dli_fname, RTLD_LAZY);
  2054     if (handle == NULL) {
  2055         st->print_cr("Error: Cannot print dynamic libraries.");
  2056         return;
  2058     dlinfo(handle, RTLD_DI_LINKMAP, &map);
  2059     if (map == NULL) {
  2060         st->print_cr("Error: Cannot print dynamic libraries.");
  2061         return;
  2064     while (map->l_prev != NULL)
  2065         map = map->l_prev;
  2067     while (map != NULL) {
  2068         st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
  2069         map = map->l_next;
  2072     dlclose(handle);
  2075   // Loads .dll/.so and
  2076   // in case of error it checks if .dll/.so was built for the
  2077   // same architecture as Hotspot is running on
  2079 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  2081   void * result= ::dlopen(filename, RTLD_LAZY);
  2082   if (result != NULL) {
  2083     // Successful loading
  2084     return result;
  2087   Elf32_Ehdr elf_head;
  2089   // Read system error message into ebuf
  2090   // It may or may not be overwritten below
  2091   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  2092   ebuf[ebuflen-1]='\0';
  2093   int diag_msg_max_length=ebuflen-strlen(ebuf);
  2094   char* diag_msg_buf=ebuf+strlen(ebuf);
  2096   if (diag_msg_max_length==0) {
  2097     // No more space in ebuf for additional diagnostics message
  2098     return NULL;
  2102   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  2104   if (file_descriptor < 0) {
  2105     // Can't open library, report dlerror() message
  2106     return NULL;
  2109   bool failed_to_read_elf_head=
  2110     (sizeof(elf_head)!=
  2111         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  2113   ::close(file_descriptor);
  2114   if (failed_to_read_elf_head) {
  2115     // file i/o error - report dlerror() msg
  2116     return NULL;
  2119   typedef struct {
  2120     Elf32_Half  code;         // Actual value as defined in elf.h
  2121     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  2122     char        elf_class;    // 32 or 64 bit
  2123     char        endianess;    // MSB or LSB
  2124     char*       name;         // String representation
  2125   } arch_t;
  2127   static const arch_t arch_array[]={
  2128     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2129     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2130     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  2131     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  2132     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2133     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2134     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  2135     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  2136     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  2137     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
  2138   };
  2140   #if  (defined IA32)
  2141     static  Elf32_Half running_arch_code=EM_386;
  2142   #elif   (defined AMD64)
  2143     static  Elf32_Half running_arch_code=EM_X86_64;
  2144   #elif  (defined IA64)
  2145     static  Elf32_Half running_arch_code=EM_IA_64;
  2146   #elif  (defined __sparc) && (defined _LP64)
  2147     static  Elf32_Half running_arch_code=EM_SPARCV9;
  2148   #elif  (defined __sparc) && (!defined _LP64)
  2149     static  Elf32_Half running_arch_code=EM_SPARC;
  2150   #elif  (defined __powerpc64__)
  2151     static  Elf32_Half running_arch_code=EM_PPC64;
  2152   #elif  (defined __powerpc__)
  2153     static  Elf32_Half running_arch_code=EM_PPC;
  2154   #elif (defined ARM)
  2155     static  Elf32_Half running_arch_code=EM_ARM;
  2156   #else
  2157     #error Method os::dll_load requires that one of following is defined:\
  2158          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
  2159   #endif
  2161   // Identify compatability class for VM's architecture and library's architecture
  2162   // Obtain string descriptions for architectures
  2164   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2165   int running_arch_index=-1;
  2167   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2168     if (running_arch_code == arch_array[i].code) {
  2169       running_arch_index    = i;
  2171     if (lib_arch.code == arch_array[i].code) {
  2172       lib_arch.compat_class = arch_array[i].compat_class;
  2173       lib_arch.name         = arch_array[i].name;
  2177   assert(running_arch_index != -1,
  2178     "Didn't find running architecture code (running_arch_code) in arch_array");
  2179   if (running_arch_index == -1) {
  2180     // Even though running architecture detection failed
  2181     // we may still continue with reporting dlerror() message
  2182     return NULL;
  2185   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2186     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2187     return NULL;
  2190   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2191     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2192     return NULL;
  2195   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2196     if ( lib_arch.name!=NULL ) {
  2197       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2198         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2199         lib_arch.name, arch_array[running_arch_index].name);
  2200     } else {
  2201       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2202       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2203         lib_arch.code,
  2204         arch_array[running_arch_index].name);
  2208   return NULL;
  2211 void* os::dll_lookup(void* handle, const char* name) {
  2212   return dlsym(handle, name);
  2215 int os::stat(const char *path, struct stat *sbuf) {
  2216   char pathbuf[MAX_PATH];
  2217   if (strlen(path) > MAX_PATH - 1) {
  2218     errno = ENAMETOOLONG;
  2219     return -1;
  2221   os::native_path(strcpy(pathbuf, path));
  2222   return ::stat(pathbuf, sbuf);
  2225 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2226   int fd = ::open(filename, O_RDONLY);
  2227   if (fd == -1) {
  2228      return false;
  2231   char buf[32];
  2232   int bytes;
  2233   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2234     st->print_raw(buf, bytes);
  2237   ::close(fd);
  2239   return true;
  2242 void os::print_os_info(outputStream* st) {
  2243   st->print("OS:");
  2245   if (!_print_ascii_file("/etc/release", st)) {
  2246     st->print("Solaris");
  2248   st->cr();
  2250   // kernel
  2251   st->print("uname:");
  2252   struct utsname name;
  2253   uname(&name);
  2254   st->print(name.sysname); st->print(" ");
  2255   st->print(name.release); st->print(" ");
  2256   st->print(name.version); st->print(" ");
  2257   st->print(name.machine);
  2259   // libthread
  2260   if (os::Solaris::T2_libthread()) st->print("  (T2 libthread)");
  2261   else st->print("  (T1 libthread)");
  2262   st->cr();
  2264   // rlimit
  2265   st->print("rlimit:");
  2266   struct rlimit rlim;
  2268   st->print(" STACK ");
  2269   getrlimit(RLIMIT_STACK, &rlim);
  2270   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2271   else st->print("%uk", rlim.rlim_cur >> 10);
  2273   st->print(", CORE ");
  2274   getrlimit(RLIMIT_CORE, &rlim);
  2275   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2276   else st->print("%uk", rlim.rlim_cur >> 10);
  2278   st->print(", NOFILE ");
  2279   getrlimit(RLIMIT_NOFILE, &rlim);
  2280   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2281   else st->print("%d", rlim.rlim_cur);
  2283   st->print(", AS ");
  2284   getrlimit(RLIMIT_AS, &rlim);
  2285   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2286   else st->print("%uk", rlim.rlim_cur >> 10);
  2287   st->cr();
  2289   // load average
  2290   st->print("load average:");
  2291   double loadavg[3];
  2292   os::loadavg(loadavg, 3);
  2293   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  2294   st->cr();
  2298 static bool check_addr0(outputStream* st) {
  2299   jboolean status = false;
  2300   int fd = ::open("/proc/self/map",O_RDONLY);
  2301   if (fd >= 0) {
  2302     prmap_t p;
  2303     while(::read(fd, &p, sizeof(p)) > 0) {
  2304       if (p.pr_vaddr == 0x0) {
  2305         st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
  2306         st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
  2307         st->print("Access:");
  2308         st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
  2309         st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
  2310         st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
  2311         st->cr();
  2312         status = true;
  2314       ::close(fd);
  2317   return status;
  2320 void os::print_memory_info(outputStream* st) {
  2321   st->print("Memory:");
  2322   st->print(" %dk page", os::vm_page_size()>>10);
  2323   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
  2324   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
  2325   st->cr();
  2326   (void) check_addr0(st);
  2329 // Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
  2330 // but they're the same for all the solaris architectures that we support.
  2331 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2332                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2333                           "ILL_COPROC", "ILL_BADSTK" };
  2335 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2336                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2337                           "FPE_FLTINV", "FPE_FLTSUB" };
  2339 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2341 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2343 void os::print_siginfo(outputStream* st, void* siginfo) {
  2344   st->print("siginfo:");
  2346   const int buflen = 100;
  2347   char buf[buflen];
  2348   siginfo_t *si = (siginfo_t*)siginfo;
  2349   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2350   char *err = strerror(si->si_errno);
  2351   if (si->si_errno != 0 && err != NULL) {
  2352     st->print("si_errno=%s", err);
  2353   } else {
  2354     st->print("si_errno=%d", si->si_errno);
  2356   const int c = si->si_code;
  2357   assert(c > 0, "unexpected si_code");
  2358   switch (si->si_signo) {
  2359   case SIGILL:
  2360     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2361     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2362     break;
  2363   case SIGFPE:
  2364     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2365     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2366     break;
  2367   case SIGSEGV:
  2368     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2369     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2370     break;
  2371   case SIGBUS:
  2372     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2373     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2374     break;
  2375   default:
  2376     st->print(", si_code=%d", si->si_code);
  2377     // no si_addr
  2380   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2381       UseSharedSpaces) {
  2382     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2383     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2384       st->print("\n\nError accessing class data sharing archive."   \
  2385                 " Mapped file inaccessible during execution, "      \
  2386                 " possible disk/network problem.");
  2389   st->cr();
  2392 // Moved from whole group, because we need them here for diagnostic
  2393 // prints.
  2394 #define OLDMAXSIGNUM 32
  2395 static int Maxsignum = 0;
  2396 static int *ourSigFlags = NULL;
  2398 extern "C" void sigINTRHandler(int, siginfo_t*, void*);
  2400 int os::Solaris::get_our_sigflags(int sig) {
  2401   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2402   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2403   return ourSigFlags[sig];
  2406 void os::Solaris::set_our_sigflags(int sig, int flags) {
  2407   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2408   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2409   ourSigFlags[sig] = flags;
  2413 static const char* get_signal_handler_name(address handler,
  2414                                            char* buf, int buflen) {
  2415   int offset;
  2416   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  2417   if (found) {
  2418     // skip directory names
  2419     const char *p1, *p2;
  2420     p1 = buf;
  2421     size_t len = strlen(os::file_separator());
  2422     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  2423     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  2424   } else {
  2425     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  2427   return buf;
  2430 static void print_signal_handler(outputStream* st, int sig,
  2431                                   char* buf, size_t buflen) {
  2432   struct sigaction sa;
  2434   sigaction(sig, NULL, &sa);
  2436   st->print("%s: ", os::exception_name(sig, buf, buflen));
  2438   address handler = (sa.sa_flags & SA_SIGINFO)
  2439                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  2440                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
  2442   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  2443     st->print("SIG_DFL");
  2444   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  2445     st->print("SIG_IGN");
  2446   } else {
  2447     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  2450   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  2452   address rh = VMError::get_resetted_sighandler(sig);
  2453   // May be, handler was resetted by VMError?
  2454   if(rh != NULL) {
  2455     handler = rh;
  2456     sa.sa_flags = VMError::get_resetted_sigflags(sig);
  2459   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  2461   // Check: is it our handler?
  2462   if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
  2463      handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
  2464     // It is our signal handler
  2465     // check for flags
  2466     if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  2467       st->print(
  2468         ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  2469         os::Solaris::get_our_sigflags(sig));
  2472   st->cr();
  2475 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2476   st->print_cr("Signal Handlers:");
  2477   print_signal_handler(st, SIGSEGV, buf, buflen);
  2478   print_signal_handler(st, SIGBUS , buf, buflen);
  2479   print_signal_handler(st, SIGFPE , buf, buflen);
  2480   print_signal_handler(st, SIGPIPE, buf, buflen);
  2481   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2482   print_signal_handler(st, SIGILL , buf, buflen);
  2483   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2484   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
  2485   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2486   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
  2487   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2488   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
  2489   print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
  2490   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
  2493 static char saved_jvm_path[MAXPATHLEN] = { 0 };
  2495 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2496 void os::jvm_path(char *buf, jint buflen) {
  2497   // Error checking.
  2498   if (buflen < MAXPATHLEN) {
  2499     assert(false, "must use a large-enough buffer");
  2500     buf[0] = '\0';
  2501     return;
  2503   // Lazy resolve the path to current module.
  2504   if (saved_jvm_path[0] != 0) {
  2505     strcpy(buf, saved_jvm_path);
  2506     return;
  2509   Dl_info dlinfo;
  2510   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
  2511   assert(ret != 0, "cannot locate libjvm");
  2512   realpath((char *)dlinfo.dli_fname, buf);
  2514   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
  2515     // Support for the gamma launcher.  Typical value for buf is
  2516     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2517     // the right place in the string, then assume we are installed in a JDK and
  2518     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2519     // up the path so it looks like libjvm.so is installed there (append a
  2520     // fake suffix hotspot/libjvm.so).
  2521     const char *p = buf + strlen(buf) - 1;
  2522     for (int count = 0; p > buf && count < 5; ++count) {
  2523       for (--p; p > buf && *p != '/'; --p)
  2524         /* empty */ ;
  2527     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2528       // Look for JAVA_HOME in the environment.
  2529       char* java_home_var = ::getenv("JAVA_HOME");
  2530       if (java_home_var != NULL && java_home_var[0] != 0) {
  2531         char cpu_arch[12];
  2532         char* jrelib_p;
  2533         int   len;
  2534         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
  2535 #ifdef _LP64
  2536         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
  2537         if (strcmp(cpu_arch, "sparc") == 0) {
  2538           strcat(cpu_arch, "v9");
  2539         } else if (strcmp(cpu_arch, "i386") == 0) {
  2540           strcpy(cpu_arch, "amd64");
  2542 #endif
  2543         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2544         p = strrchr(buf, '/');
  2545         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2546         p = strstr(p, "_g") ? "_g" : "";
  2548         realpath(java_home_var, buf);
  2549         // determine if this is a legacy image or modules image
  2550         // modules image doesn't have "jre" subdirectory
  2551         len = strlen(buf);
  2552         jrelib_p = buf + len;
  2553         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2554         if (0 != access(buf, F_OK)) {
  2555           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2558         if (0 == access(buf, F_OK)) {
  2559           // Use current module name "libjvm[_g].so" instead of
  2560           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2561           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2562           len = strlen(buf);
  2563           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
  2564         } else {
  2565           // Go back to path of .so
  2566           realpath((char *)dlinfo.dli_fname, buf);
  2572   strcpy(saved_jvm_path, buf);
  2576 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2577   // no prefix required, not even "_"
  2581 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2582   // no suffix required
  2585 // This method is a copy of JDK's sysGetLastErrorString
  2586 // from src/solaris/hpi/src/system_md.c
  2588 size_t os::lasterror(char *buf, size_t len) {
  2590   if (errno == 0)  return 0;
  2592   const char *s = ::strerror(errno);
  2593   size_t n = ::strlen(s);
  2594   if (n >= len) {
  2595     n = len - 1;
  2597   ::strncpy(buf, s, n);
  2598   buf[n] = '\0';
  2599   return n;
  2603 // sun.misc.Signal
  2605 extern "C" {
  2606   static void UserHandler(int sig, void *siginfo, void *context) {
  2607     // Ctrl-C is pressed during error reporting, likely because the error
  2608     // handler fails to abort. Let VM die immediately.
  2609     if (sig == SIGINT && is_error_reported()) {
  2610        os::die();
  2613     os::signal_notify(sig);
  2614     // We do not need to reinstate the signal handler each time...
  2618 void* os::user_handler() {
  2619   return CAST_FROM_FN_PTR(void*, UserHandler);
  2622 extern "C" {
  2623   typedef void (*sa_handler_t)(int);
  2624   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2627 void* os::signal(int signal_number, void* handler) {
  2628   struct sigaction sigAct, oldSigAct;
  2629   sigfillset(&(sigAct.sa_mask));
  2630   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
  2631   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2633   if (sigaction(signal_number, &sigAct, &oldSigAct))
  2634     // -1 means registration failed
  2635     return (void *)-1;
  2637   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2640 void os::signal_raise(int signal_number) {
  2641   raise(signal_number);
  2644 /*
  2645  * The following code is moved from os.cpp for making this
  2646  * code platform specific, which it is by its very nature.
  2647  */
  2649 // a counter for each possible signal value
  2650 static int Sigexit = 0;
  2651 static int Maxlibjsigsigs;
  2652 static jint *pending_signals = NULL;
  2653 static int *preinstalled_sigs = NULL;
  2654 static struct sigaction *chainedsigactions = NULL;
  2655 static sema_t sig_sem;
  2656 typedef int (*version_getting_t)();
  2657 version_getting_t os::Solaris::get_libjsig_version = NULL;
  2658 static int libjsigversion = NULL;
  2660 int os::sigexitnum_pd() {
  2661   assert(Sigexit > 0, "signal memory not yet initialized");
  2662   return Sigexit;
  2665 void os::Solaris::init_signal_mem() {
  2666   // Initialize signal structures
  2667   Maxsignum = SIGRTMAX;
  2668   Sigexit = Maxsignum+1;
  2669   assert(Maxsignum >0, "Unable to obtain max signal number");
  2671   Maxlibjsigsigs = Maxsignum;
  2673   // pending_signals has one int per signal
  2674   // The additional signal is for SIGEXIT - exit signal to signal_thread
  2675   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1));
  2676   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
  2678   if (UseSignalChaining) {
  2679      chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
  2680        * (Maxsignum + 1));
  2681      memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
  2682      preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1));
  2683      memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
  2685   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ));
  2686   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
  2689 void os::signal_init_pd() {
  2690   int ret;
  2692   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
  2693   assert(ret == 0, "sema_init() failed");
  2696 void os::signal_notify(int signal_number) {
  2697   int ret;
  2699   Atomic::inc(&pending_signals[signal_number]);
  2700   ret = ::sema_post(&sig_sem);
  2701   assert(ret == 0, "sema_post() failed");
  2704 static int check_pending_signals(bool wait_for_signal) {
  2705   int ret;
  2706   while (true) {
  2707     for (int i = 0; i < Sigexit + 1; i++) {
  2708       jint n = pending_signals[i];
  2709       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2710         return i;
  2713     if (!wait_for_signal) {
  2714       return -1;
  2716     JavaThread *thread = JavaThread::current();
  2717     ThreadBlockInVM tbivm(thread);
  2719     bool threadIsSuspended;
  2720     do {
  2721       thread->set_suspend_equivalent();
  2722       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2723       while((ret = ::sema_wait(&sig_sem)) == EINTR)
  2725       assert(ret == 0, "sema_wait() failed");
  2727       // were we externally suspended while we were waiting?
  2728       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2729       if (threadIsSuspended) {
  2730         //
  2731         // The semaphore has been incremented, but while we were waiting
  2732         // another thread suspended us. We don't want to continue running
  2733         // while suspended because that would surprise the thread that
  2734         // suspended us.
  2735         //
  2736         ret = ::sema_post(&sig_sem);
  2737         assert(ret == 0, "sema_post() failed");
  2739         thread->java_suspend_self();
  2741     } while (threadIsSuspended);
  2745 int os::signal_lookup() {
  2746   return check_pending_signals(false);
  2749 int os::signal_wait() {
  2750   return check_pending_signals(true);
  2753 ////////////////////////////////////////////////////////////////////////////////
  2754 // Virtual Memory
  2756 static int page_size = -1;
  2758 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
  2759 // clear this var if support is not available.
  2760 static bool has_map_align = true;
  2762 int os::vm_page_size() {
  2763   assert(page_size != -1, "must call os::init");
  2764   return page_size;
  2767 // Solaris allocates memory by pages.
  2768 int os::vm_allocation_granularity() {
  2769   assert(page_size != -1, "must call os::init");
  2770   return page_size;
  2773 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
  2774   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2775   size_t size = bytes;
  2776   return
  2777      NULL != Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
  2780 bool os::commit_memory(char* addr, size_t bytes, size_t alignment_hint,
  2781                        bool exec) {
  2782   if (commit_memory(addr, bytes, exec)) {
  2783     if (UseMPSS && alignment_hint > (size_t)vm_page_size()) {
  2784       // If the large page size has been set and the VM
  2785       // is using large pages, use the large page size
  2786       // if it is smaller than the alignment hint. This is
  2787       // a case where the VM wants to use a larger alignment size
  2788       // for its own reasons but still want to use large pages
  2789       // (which is what matters to setting the mpss range.
  2790       size_t page_size = 0;
  2791       if (large_page_size() < alignment_hint) {
  2792         assert(UseLargePages, "Expected to be here for large page use only");
  2793         page_size = large_page_size();
  2794       } else {
  2795         // If the alignment hint is less than the large page
  2796         // size, the VM wants a particular alignment (thus the hint)
  2797         // for internal reasons.  Try to set the mpss range using
  2798         // the alignment_hint.
  2799         page_size = alignment_hint;
  2801       // Since this is a hint, ignore any failures.
  2802       (void)Solaris::set_mpss_range(addr, bytes, page_size);
  2804     return true;
  2806   return false;
  2809 // Uncommit the pages in a specified region.
  2810 void os::free_memory(char* addr, size_t bytes) {
  2811   if (madvise(addr, bytes, MADV_FREE) < 0) {
  2812     debug_only(warning("MADV_FREE failed."));
  2813     return;
  2817 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2818   return os::commit_memory(addr, size);
  2821 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2822   return os::uncommit_memory(addr, size);
  2825 // Change the page size in a given range.
  2826 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2827   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
  2828   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
  2829   Solaris::set_mpss_range(addr, bytes, alignment_hint);
  2832 // Tell the OS to make the range local to the first-touching LWP
  2833 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2834   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2835   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
  2836     debug_only(warning("MADV_ACCESS_LWP failed."));
  2840 // Tell the OS that this range would be accessed from different LWPs.
  2841 void os::numa_make_global(char *addr, size_t bytes) {
  2842   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2843   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
  2844     debug_only(warning("MADV_ACCESS_MANY failed."));
  2848 // Get the number of the locality groups.
  2849 size_t os::numa_get_groups_num() {
  2850   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
  2851   return n != -1 ? n : 1;
  2854 // Get a list of leaf locality groups. A leaf lgroup is group that
  2855 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
  2856 // board. An LWP is assigned to one of these groups upon creation.
  2857 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2858    if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
  2859      ids[0] = 0;
  2860      return 1;
  2862    int result_size = 0, top = 1, bottom = 0, cur = 0;
  2863    for (int k = 0; k < size; k++) {
  2864      int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
  2865                                     (Solaris::lgrp_id_t*)&ids[top], size - top);
  2866      if (r == -1) {
  2867        ids[0] = 0;
  2868        return 1;
  2870      if (!r) {
  2871        // That's a leaf node.
  2872        assert (bottom <= cur, "Sanity check");
  2873        // Check if the node has memory
  2874        if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
  2875                                    NULL, 0, LGRP_RSRC_MEM) > 0) {
  2876          ids[bottom++] = ids[cur];
  2879      top += r;
  2880      cur++;
  2882    if (bottom == 0) {
  2883      // Handle a situation, when the OS reports no memory available.
  2884      // Assume UMA architecture.
  2885      ids[0] = 0;
  2886      return 1;
  2888    return bottom;
  2891 // Detect the topology change. Typically happens during CPU plugging-unplugging.
  2892 bool os::numa_topology_changed() {
  2893   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
  2894   if (is_stale != -1 && is_stale) {
  2895     Solaris::lgrp_fini(Solaris::lgrp_cookie());
  2896     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
  2897     assert(c != 0, "Failure to initialize LGRP API");
  2898     Solaris::set_lgrp_cookie(c);
  2899     return true;
  2901   return false;
  2904 // Get the group id of the current LWP.
  2905 int os::numa_get_group_id() {
  2906   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
  2907   if (lgrp_id == -1) {
  2908     return 0;
  2910   const int size = os::numa_get_groups_num();
  2911   int *ids = (int*)alloca(size * sizeof(int));
  2913   // Get the ids of all lgroups with memory; r is the count.
  2914   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
  2915                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
  2916   if (r <= 0) {
  2917     return 0;
  2919   return ids[os::random() % r];
  2922 // Request information about the page.
  2923 bool os::get_page_info(char *start, page_info* info) {
  2924   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2925   uint64_t addr = (uintptr_t)start;
  2926   uint64_t outdata[2];
  2927   uint_t validity = 0;
  2929   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
  2930     return false;
  2933   info->size = 0;
  2934   info->lgrp_id = -1;
  2936   if ((validity & 1) != 0) {
  2937     if ((validity & 2) != 0) {
  2938       info->lgrp_id = outdata[0];
  2940     if ((validity & 4) != 0) {
  2941       info->size = outdata[1];
  2943     return true;
  2945   return false;
  2948 // Scan the pages from start to end until a page different than
  2949 // the one described in the info parameter is encountered.
  2950 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2951   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2952   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
  2953   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
  2954   uint_t validity[MAX_MEMINFO_CNT];
  2956   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
  2957   uint64_t p = (uint64_t)start;
  2958   while (p < (uint64_t)end) {
  2959     addrs[0] = p;
  2960     size_t addrs_count = 1;
  2961     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] < (uint64_t)end) {
  2962       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
  2963       addrs_count++;
  2966     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
  2967       return NULL;
  2970     size_t i = 0;
  2971     for (; i < addrs_count; i++) {
  2972       if ((validity[i] & 1) != 0) {
  2973         if ((validity[i] & 4) != 0) {
  2974           if (outdata[types * i + 1] != page_expected->size) {
  2975             break;
  2977         } else
  2978           if (page_expected->size != 0) {
  2979             break;
  2982         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
  2983           if (outdata[types * i] != page_expected->lgrp_id) {
  2984             break;
  2987       } else {
  2988         return NULL;
  2992     if (i != addrs_count) {
  2993       if ((validity[i] & 2) != 0) {
  2994         page_found->lgrp_id = outdata[types * i];
  2995       } else {
  2996         page_found->lgrp_id = -1;
  2998       if ((validity[i] & 4) != 0) {
  2999         page_found->size = outdata[types * i + 1];
  3000       } else {
  3001         page_found->size = 0;
  3003       return (char*)addrs[i];
  3006     p = addrs[addrs_count - 1] + page_size;
  3008   return end;
  3011 bool os::uncommit_memory(char* addr, size_t bytes) {
  3012   size_t size = bytes;
  3013   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3014   // uncommitted page. Otherwise, the read/write might succeed if we
  3015   // have enough swap space to back the physical page.
  3016   return
  3017     NULL != Solaris::mmap_chunk(addr, size,
  3018                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
  3019                                 PROT_NONE);
  3022 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
  3023   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
  3025   if (b == MAP_FAILED) {
  3026     return NULL;
  3028   return b;
  3031 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
  3032   char* addr = requested_addr;
  3033   int flags = MAP_PRIVATE | MAP_NORESERVE;
  3035   assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
  3037   if (fixed) {
  3038     flags |= MAP_FIXED;
  3039   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
  3040     flags |= MAP_ALIGN;
  3041     addr = (char*) alignment_hint;
  3044   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3045   // uncommitted page. Otherwise, the read/write might succeed if we
  3046   // have enough swap space to back the physical page.
  3047   return mmap_chunk(addr, bytes, flags, PROT_NONE);
  3050 char* os::reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
  3051   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
  3053   guarantee(requested_addr == NULL || requested_addr == addr,
  3054             "OS failed to return requested mmap address.");
  3055   return addr;
  3058 // Reserve memory at an arbitrary address, only if that area is
  3059 // available (and not reserved for something else).
  3061 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3062   const int max_tries = 10;
  3063   char* base[max_tries];
  3064   size_t size[max_tries];
  3066   // Solaris adds a gap between mmap'ed regions.  The size of the gap
  3067   // is dependent on the requested size and the MMU.  Our initial gap
  3068   // value here is just a guess and will be corrected later.
  3069   bool had_top_overlap = false;
  3070   bool have_adjusted_gap = false;
  3071   size_t gap = 0x400000;
  3073   // Assert only that the size is a multiple of the page size, since
  3074   // that's all that mmap requires, and since that's all we really know
  3075   // about at this low abstraction level.  If we need higher alignment,
  3076   // we can either pass an alignment to this method or verify alignment
  3077   // in one of the methods further up the call chain.  See bug 5044738.
  3078   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3080   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
  3081   // Give it a try, if the kernel honors the hint we can return immediately.
  3082   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
  3083   volatile int err = errno;
  3084   if (addr == requested_addr) {
  3085     return addr;
  3086   } else if (addr != NULL) {
  3087     unmap_memory(addr, bytes);
  3090   if (PrintMiscellaneous && Verbose) {
  3091     char buf[256];
  3092     buf[0] = '\0';
  3093     if (addr == NULL) {
  3094       jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
  3096     warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
  3097             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
  3098             "%s", bytes, requested_addr, addr, buf);
  3101   // Address hint method didn't work.  Fall back to the old method.
  3102   // In theory, once SNV becomes our oldest supported platform, this
  3103   // code will no longer be needed.
  3104   //
  3105   // Repeatedly allocate blocks until the block is allocated at the
  3106   // right spot. Give up after max_tries.
  3107   int i;
  3108   for (i = 0; i < max_tries; ++i) {
  3109     base[i] = reserve_memory(bytes);
  3111     if (base[i] != NULL) {
  3112       // Is this the block we wanted?
  3113       if (base[i] == requested_addr) {
  3114         size[i] = bytes;
  3115         break;
  3118       // check that the gap value is right
  3119       if (had_top_overlap && !have_adjusted_gap) {
  3120         size_t actual_gap = base[i-1] - base[i] - bytes;
  3121         if (gap != actual_gap) {
  3122           // adjust the gap value and retry the last 2 allocations
  3123           assert(i > 0, "gap adjustment code problem");
  3124           have_adjusted_gap = true;  // adjust the gap only once, just in case
  3125           gap = actual_gap;
  3126           if (PrintMiscellaneous && Verbose) {
  3127             warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
  3129           unmap_memory(base[i], bytes);
  3130           unmap_memory(base[i-1], size[i-1]);
  3131           i-=2;
  3132           continue;
  3136       // Does this overlap the block we wanted? Give back the overlapped
  3137       // parts and try again.
  3138       //
  3139       // There is still a bug in this code: if top_overlap == bytes,
  3140       // the overlap is offset from requested region by the value of gap.
  3141       // In this case giving back the overlapped part will not work,
  3142       // because we'll give back the entire block at base[i] and
  3143       // therefore the subsequent allocation will not generate a new gap.
  3144       // This could be fixed with a new algorithm that used larger
  3145       // or variable size chunks to find the requested region -
  3146       // but such a change would introduce additional complications.
  3147       // It's rare enough that the planets align for this bug,
  3148       // so we'll just wait for a fix for 6204603/5003415 which
  3149       // will provide a mmap flag to allow us to avoid this business.
  3151       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3152       if (top_overlap >= 0 && top_overlap < bytes) {
  3153         had_top_overlap = true;
  3154         unmap_memory(base[i], top_overlap);
  3155         base[i] += top_overlap;
  3156         size[i] = bytes - top_overlap;
  3157       } else {
  3158         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3159         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3160           if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
  3161             warning("attempt_reserve_memory_at: possible alignment bug");
  3163           unmap_memory(requested_addr, bottom_overlap);
  3164           size[i] = bytes - bottom_overlap;
  3165         } else {
  3166           size[i] = bytes;
  3172   // Give back the unused reserved pieces.
  3174   for (int j = 0; j < i; ++j) {
  3175     if (base[j] != NULL) {
  3176       unmap_memory(base[j], size[j]);
  3180   return (i < max_tries) ? requested_addr : NULL;
  3183 bool os::release_memory(char* addr, size_t bytes) {
  3184   size_t size = bytes;
  3185   return munmap(addr, size) == 0;
  3188 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
  3189   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
  3190          "addr must be page aligned");
  3191   int retVal = mprotect(addr, bytes, prot);
  3192   return retVal == 0;
  3195 // Protect memory (Used to pass readonly pages through
  3196 // JNI GetArray<type>Elements with empty arrays.)
  3197 // Also, used for serialization page and for compressed oops null pointer
  3198 // checking.
  3199 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3200                         bool is_committed) {
  3201   unsigned int p = 0;
  3202   switch (prot) {
  3203   case MEM_PROT_NONE: p = PROT_NONE; break;
  3204   case MEM_PROT_READ: p = PROT_READ; break;
  3205   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3206   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3207   default:
  3208     ShouldNotReachHere();
  3210   // is_committed is unused.
  3211   return solaris_mprotect(addr, bytes, p);
  3214 // guard_memory and unguard_memory only happens within stack guard pages.
  3215 // Since ISM pertains only to the heap, guard and unguard memory should not
  3216 /// happen with an ISM region.
  3217 bool os::guard_memory(char* addr, size_t bytes) {
  3218   return solaris_mprotect(addr, bytes, PROT_NONE);
  3221 bool os::unguard_memory(char* addr, size_t bytes) {
  3222   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
  3225 // Large page support
  3227 // UseLargePages is the master flag to enable/disable large page memory.
  3228 // UseMPSS and UseISM are supported for compatibility reasons. Their combined
  3229 // effects can be described in the following table:
  3230 //
  3231 // UseLargePages UseMPSS UseISM
  3232 //    false         *       *   => UseLargePages is the master switch, turning
  3233 //                                 it off will turn off both UseMPSS and
  3234 //                                 UseISM. VM will not use large page memory
  3235 //                                 regardless the settings of UseMPSS/UseISM.
  3236 //     true      false    false => Unless future Solaris provides other
  3237 //                                 mechanism to use large page memory, this
  3238 //                                 combination is equivalent to -UseLargePages,
  3239 //                                 VM will not use large page memory
  3240 //     true      true     false => JVM will use MPSS for large page memory.
  3241 //                                 This is the default behavior.
  3242 //     true      false    true  => JVM will use ISM for large page memory.
  3243 //     true      true     true  => JVM will use ISM if it is available.
  3244 //                                 Otherwise, JVM will fall back to MPSS.
  3245 //                                 Becaues ISM is now available on all
  3246 //                                 supported Solaris versions, this combination
  3247 //                                 is equivalent to +UseISM -UseMPSS.
  3249 typedef int (*getpagesizes_func_type) (size_t[], int);
  3250 static size_t _large_page_size = 0;
  3252 bool os::Solaris::ism_sanity_check(bool warn, size_t * page_size) {
  3253   // x86 uses either 2M or 4M page, depending on whether PAE (Physical Address
  3254   // Extensions) mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. Sparc
  3255   // can support multiple page sizes.
  3257   // Don't bother to probe page size because getpagesizes() comes with MPSS.
  3258   // ISM is only recommended on old Solaris where there is no MPSS support.
  3259   // Simply choose a conservative value as default.
  3260   *page_size = LargePageSizeInBytes ? LargePageSizeInBytes :
  3261                SPARC_ONLY(4 * M) IA32_ONLY(4 * M) AMD64_ONLY(2 * M)
  3262                ARM_ONLY(2 * M);
  3264   // ISM is available on all supported Solaris versions
  3265   return true;
  3268 // Insertion sort for small arrays (descending order).
  3269 static void insertion_sort_descending(size_t* array, int len) {
  3270   for (int i = 0; i < len; i++) {
  3271     size_t val = array[i];
  3272     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
  3273       size_t tmp = array[key];
  3274       array[key] = array[key - 1];
  3275       array[key - 1] = tmp;
  3280 bool os::Solaris::mpss_sanity_check(bool warn, size_t * page_size) {
  3281   getpagesizes_func_type getpagesizes_func =
  3282     CAST_TO_FN_PTR(getpagesizes_func_type, dlsym(RTLD_DEFAULT, "getpagesizes"));
  3283   if (getpagesizes_func == NULL) {
  3284     if (warn) {
  3285       warning("MPSS is not supported by the operating system.");
  3287     return false;
  3290   const unsigned int usable_count = VM_Version::page_size_count();
  3291   if (usable_count == 1) {
  3292     return false;
  3295   // Fill the array of page sizes.
  3296   int n = getpagesizes_func(_page_sizes, page_sizes_max);
  3297   assert(n > 0, "Solaris bug?");
  3298   if (n == page_sizes_max) {
  3299     // Add a sentinel value (necessary only if the array was completely filled
  3300     // since it is static (zeroed at initialization)).
  3301     _page_sizes[--n] = 0;
  3302     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
  3304   assert(_page_sizes[n] == 0, "missing sentinel");
  3306   if (n == 1) return false;     // Only one page size available.
  3308   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
  3309   // select up to usable_count elements.  First sort the array, find the first
  3310   // acceptable value, then copy the usable sizes to the top of the array and
  3311   // trim the rest.  Make sure to include the default page size :-).
  3312   //
  3313   // A better policy could get rid of the 4M limit by taking the sizes of the
  3314   // important VM memory regions (java heap and possibly the code cache) into
  3315   // account.
  3316   insertion_sort_descending(_page_sizes, n);
  3317   const size_t size_limit =
  3318     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
  3319   int beg;
  3320   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
  3321   const int end = MIN2((int)usable_count, n) - 1;
  3322   for (int cur = 0; cur < end; ++cur, ++beg) {
  3323     _page_sizes[cur] = _page_sizes[beg];
  3325   _page_sizes[end] = vm_page_size();
  3326   _page_sizes[end + 1] = 0;
  3328   if (_page_sizes[end] > _page_sizes[end - 1]) {
  3329     // Default page size is not the smallest; sort again.
  3330     insertion_sort_descending(_page_sizes, end + 1);
  3332   *page_size = _page_sizes[0];
  3334   return true;
  3337 bool os::large_page_init() {
  3338   if (!UseLargePages) {
  3339     UseISM = false;
  3340     UseMPSS = false;
  3341     return false;
  3344   // print a warning if any large page related flag is specified on command line
  3345   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
  3346                          !FLAG_IS_DEFAULT(UseISM)               ||
  3347                          !FLAG_IS_DEFAULT(UseMPSS)              ||
  3348                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3349   UseISM = UseISM &&
  3350            Solaris::ism_sanity_check(warn_on_failure, &_large_page_size);
  3351   if (UseISM) {
  3352     // ISM disables MPSS to be compatible with old JDK behavior
  3353     UseMPSS = false;
  3354     _page_sizes[0] = _large_page_size;
  3355     _page_sizes[1] = vm_page_size();
  3358   UseMPSS = UseMPSS &&
  3359             Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
  3361   UseLargePages = UseISM || UseMPSS;
  3362   return UseLargePages;
  3365 bool os::Solaris::set_mpss_range(caddr_t start, size_t bytes, size_t align) {
  3366   // Signal to OS that we want large pages for addresses
  3367   // from addr, addr + bytes
  3368   struct memcntl_mha mpss_struct;
  3369   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
  3370   mpss_struct.mha_pagesize = align;
  3371   mpss_struct.mha_flags = 0;
  3372   if (memcntl(start, bytes, MC_HAT_ADVISE,
  3373               (caddr_t) &mpss_struct, 0, 0) < 0) {
  3374     debug_only(warning("Attempt to use MPSS failed."));
  3375     return false;
  3377   return true;
  3380 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  3381   // "exec" is passed in but not used.  Creating the shared image for
  3382   // the code cache doesn't have an SHM_X executable permission to check.
  3383   assert(UseLargePages && UseISM, "only for ISM large pages");
  3385   size_t size = bytes;
  3386   char* retAddr = NULL;
  3387   int shmid;
  3388   key_t ismKey;
  3390   bool warn_on_failure = UseISM &&
  3391                         (!FLAG_IS_DEFAULT(UseLargePages)         ||
  3392                          !FLAG_IS_DEFAULT(UseISM)                ||
  3393                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3394                         );
  3395   char msg[128];
  3397   ismKey = IPC_PRIVATE;
  3399   // Create a large shared memory region to attach to based on size.
  3400   // Currently, size is the total size of the heap
  3401   shmid = shmget(ismKey, size, SHM_R | SHM_W | IPC_CREAT);
  3402   if (shmid == -1){
  3403      if (warn_on_failure) {
  3404        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3405        warning(msg);
  3407      return NULL;
  3410   // Attach to the region
  3411   retAddr = (char *) shmat(shmid, 0, SHM_SHARE_MMU | SHM_R | SHM_W);
  3412   int err = errno;
  3414   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3415   // will be deleted when it's detached by shmdt() or when the process
  3416   // terminates. If shmat() is not successful this will remove the shared
  3417   // segment immediately.
  3418   shmctl(shmid, IPC_RMID, NULL);
  3420   if (retAddr == (char *) -1) {
  3421     if (warn_on_failure) {
  3422       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3423       warning(msg);
  3425     return NULL;
  3428   return retAddr;
  3431 bool os::release_memory_special(char* base, size_t bytes) {
  3432   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3433   int rslt = shmdt(base);
  3434   return rslt == 0;
  3437 size_t os::large_page_size() {
  3438   return _large_page_size;
  3441 // MPSS allows application to commit large page memory on demand; with ISM
  3442 // the entire memory region must be allocated as shared memory.
  3443 bool os::can_commit_large_page_memory() {
  3444   return UseISM ? false : true;
  3447 bool os::can_execute_large_page_memory() {
  3448   return UseISM ? false : true;
  3451 static int os_sleep(jlong millis, bool interruptible) {
  3452   const jlong limit = INT_MAX;
  3453   jlong prevtime;
  3454   int res;
  3456   while (millis > limit) {
  3457     if ((res = os_sleep(limit, interruptible)) != OS_OK)
  3458       return res;
  3459     millis -= limit;
  3462   // Restart interrupted polls with new parameters until the proper delay
  3463   // has been completed.
  3465   prevtime = getTimeMillis();
  3467   while (millis > 0) {
  3468     jlong newtime;
  3470     if (!interruptible) {
  3471       // Following assert fails for os::yield_all:
  3472       // assert(!thread->is_Java_thread(), "must not be java thread");
  3473       res = poll(NULL, 0, millis);
  3474     } else {
  3475       JavaThread *jt = JavaThread::current();
  3477       INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
  3478         os::Solaris::clear_interrupted);
  3481     // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
  3482     // thread.Interrupt.
  3484     // See c/r 6751923. Poll can return 0 before time
  3485     // has elapsed if time is set via clock_settime (as NTP does).
  3486     // res == 0 if poll timed out (see man poll RETURN VALUES)
  3487     // using the logic below checks that we really did
  3488     // sleep at least "millis" if not we'll sleep again.
  3489     if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
  3490       newtime = getTimeMillis();
  3491       assert(newtime >= prevtime, "time moving backwards");
  3492     /* Doing prevtime and newtime in microseconds doesn't help precision,
  3493        and trying to round up to avoid lost milliseconds can result in a
  3494        too-short delay. */
  3495       millis -= newtime - prevtime;
  3496       if(millis <= 0)
  3497         return OS_OK;
  3498       prevtime = newtime;
  3499     } else
  3500       return res;
  3503   return OS_OK;
  3506 // Read calls from inside the vm need to perform state transitions
  3507 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3508   INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3511 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
  3512   INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3515 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3516   assert(thread == Thread::current(),  "thread consistency check");
  3518   // TODO-FIXME: this should be removed.
  3519   // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
  3520   // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
  3521   // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
  3522   // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
  3523   // is fooled into believing that the system is making progress. In the code below we block the
  3524   // the watcher thread while safepoint is in progress so that it would not appear as though the
  3525   // system is making progress.
  3526   if (!Solaris::T2_libthread() &&
  3527       thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
  3528     // We now try to acquire the threads lock. Since this lock is held by the VM thread during
  3529     // the entire safepoint, the watcher thread will  line up here during the safepoint.
  3530     Threads_lock->lock_without_safepoint_check();
  3531     Threads_lock->unlock();
  3534   if (thread->is_Java_thread()) {
  3535     // This is a JavaThread so we honor the _thread_blocked protocol
  3536     // even for sleeps of 0 milliseconds. This was originally done
  3537     // as a workaround for bug 4338139. However, now we also do it
  3538     // to honor the suspend-equivalent protocol.
  3540     JavaThread *jt = (JavaThread *) thread;
  3541     ThreadBlockInVM tbivm(jt);
  3543     jt->set_suspend_equivalent();
  3544     // cleared by handle_special_suspend_equivalent_condition() or
  3545     // java_suspend_self() via check_and_wait_while_suspended()
  3547     int ret_code;
  3548     if (millis <= 0) {
  3549       thr_yield();
  3550       ret_code = 0;
  3551     } else {
  3552       // The original sleep() implementation did not create an
  3553       // OSThreadWaitState helper for sleeps of 0 milliseconds.
  3554       // I'm preserving that decision for now.
  3555       OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3557       ret_code = os_sleep(millis, interruptible);
  3560     // were we externally suspended while we were waiting?
  3561     jt->check_and_wait_while_suspended();
  3563     return ret_code;
  3566   // non-JavaThread from this point on:
  3568   if (millis <= 0) {
  3569     thr_yield();
  3570     return 0;
  3573   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3575   return os_sleep(millis, interruptible);
  3578 int os::naked_sleep() {
  3579   // %% make the sleep time an integer flag. for now use 1 millisec.
  3580   return os_sleep(1, false);
  3583 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3584 void os::infinite_sleep() {
  3585   while (true) {    // sleep forever ...
  3586     ::sleep(100);   // ... 100 seconds at a time
  3590 // Used to convert frequent JVM_Yield() to nops
  3591 bool os::dont_yield() {
  3592   if (DontYieldALot) {
  3593     static hrtime_t last_time = 0;
  3594     hrtime_t diff = getTimeNanos() - last_time;
  3596     if (diff < DontYieldALotInterval * 1000000)
  3597       return true;
  3599     last_time += diff;
  3601     return false;
  3603   else {
  3604     return false;
  3608 // Caveat: Solaris os::yield() causes a thread-state transition whereas
  3609 // the linux and win32 implementations do not.  This should be checked.
  3611 void os::yield() {
  3612   // Yields to all threads with same or greater priority
  3613   os::sleep(Thread::current(), 0, false);
  3616 // Note that yield semantics are defined by the scheduling class to which
  3617 // the thread currently belongs.  Typically, yield will _not yield to
  3618 // other equal or higher priority threads that reside on the dispatch queues
  3619 // of other CPUs.
  3621 os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
  3624 // On Solaris we found that yield_all doesn't always yield to all other threads.
  3625 // There have been cases where there is a thread ready to execute but it doesn't
  3626 // get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
  3627 // The 1 millisecond wait doesn't seem long enough for the kernel to issue a
  3628 // SIGWAITING signal which will cause a new lwp to be created. So we count the
  3629 // number of times yield_all is called in the one loop and increase the sleep
  3630 // time after 8 attempts. If this fails too we increase the concurrency level
  3631 // so that the starving thread would get an lwp
  3633 void os::yield_all(int attempts) {
  3634   // Yields to all threads, including threads with lower priorities
  3635   if (attempts == 0) {
  3636     os::sleep(Thread::current(), 1, false);
  3637   } else {
  3638     int iterations = attempts % 30;
  3639     if (iterations == 0 && !os::Solaris::T2_libthread()) {
  3640       // thr_setconcurrency and _getconcurrency make sense only under T1.
  3641       int noofLWPS = thr_getconcurrency();
  3642       if (noofLWPS < (Threads::number_of_threads() + 2)) {
  3643         thr_setconcurrency(thr_getconcurrency() + 1);
  3645     } else if (iterations < 25) {
  3646       os::sleep(Thread::current(), 1, false);
  3647     } else {
  3648       os::sleep(Thread::current(), 10, false);
  3653 // Called from the tight loops to possibly influence time-sharing heuristics
  3654 void os::loop_breaker(int attempts) {
  3655   os::yield_all(attempts);
  3659 // Interface for setting lwp priorities.  If we are using T2 libthread,
  3660 // which forces the use of BoundThreads or we manually set UseBoundThreads,
  3661 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
  3662 // function is meaningless in this mode so we must adjust the real lwp's priority
  3663 // The routines below implement the getting and setting of lwp priorities.
  3664 //
  3665 // Note: There are three priority scales used on Solaris.  Java priotities
  3666 //       which range from 1 to 10, libthread "thr_setprio" scale which range
  3667 //       from 0 to 127, and the current scheduling class of the process we
  3668 //       are running in.  This is typically from -60 to +60.
  3669 //       The setting of the lwp priorities in done after a call to thr_setprio
  3670 //       so Java priorities are mapped to libthread priorities and we map from
  3671 //       the latter to lwp priorities.  We don't keep priorities stored in
  3672 //       Java priorities since some of our worker threads want to set priorities
  3673 //       higher than all Java threads.
  3674 //
  3675 // For related information:
  3676 // (1)  man -s 2 priocntl
  3677 // (2)  man -s 4 priocntl
  3678 // (3)  man dispadmin
  3679 // =    librt.so
  3680 // =    libthread/common/rtsched.c - thrp_setlwpprio().
  3681 // =    ps -cL <pid> ... to validate priority.
  3682 // =    sched_get_priority_min and _max
  3683 //              pthread_create
  3684 //              sched_setparam
  3685 //              pthread_setschedparam
  3686 //
  3687 // Assumptions:
  3688 // +    We assume that all threads in the process belong to the same
  3689 //              scheduling class.   IE. an homogenous process.
  3690 // +    Must be root or in IA group to change change "interactive" attribute.
  3691 //              Priocntl() will fail silently.  The only indication of failure is when
  3692 //              we read-back the value and notice that it hasn't changed.
  3693 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
  3694 // +    For RT, change timeslice as well.  Invariant:
  3695 //              constant "priority integral"
  3696 //              Konst == TimeSlice * (60-Priority)
  3697 //              Given a priority, compute appropriate timeslice.
  3698 // +    Higher numerical values have higher priority.
  3700 // sched class attributes
  3701 typedef struct {
  3702         int   schedPolicy;              // classID
  3703         int   maxPrio;
  3704         int   minPrio;
  3705 } SchedInfo;
  3708 static SchedInfo tsLimits, iaLimits, rtLimits;
  3710 #ifdef ASSERT
  3711 static int  ReadBackValidate = 1;
  3712 #endif
  3713 static int  myClass     = 0;
  3714 static int  myMin       = 0;
  3715 static int  myMax       = 0;
  3716 static int  myCur       = 0;
  3717 static bool priocntl_enable = false;
  3720 // Call the version of priocntl suitable for all supported versions
  3721 // of Solaris. We need to call through this wrapper so that we can
  3722 // build on Solaris 9 and run on Solaris 8, 9 and 10.
  3723 //
  3724 // This code should be removed if we ever stop supporting Solaris 8
  3725 // and earlier releases.
  3727 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
  3728 typedef long (*priocntl_type)(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
  3729 static priocntl_type priocntl_ptr = priocntl_stub;
  3731 // Stub to set the value of the real pointer, and then call the real
  3732 // function.
  3734 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg) {
  3735   // Try Solaris 8- name only.
  3736   priocntl_type tmp = (priocntl_type)dlsym(RTLD_DEFAULT, "__priocntl");
  3737   guarantee(tmp != NULL, "priocntl function not found.");
  3738   priocntl_ptr = tmp;
  3739   return (*priocntl_ptr)(PC_VERSION, idtype, id, cmd, arg);
  3743 // lwp_priocntl_init
  3744 //
  3745 // Try to determine the priority scale for our process.
  3746 //
  3747 // Return errno or 0 if OK.
  3748 //
  3749 static
  3750 int     lwp_priocntl_init ()
  3752   int rslt;
  3753   pcinfo_t ClassInfo;
  3754   pcparms_t ParmInfo;
  3755   int i;
  3757   if (!UseThreadPriorities) return 0;
  3759   // We are using Bound threads, we need to determine our priority ranges
  3760   if (os::Solaris::T2_libthread() || UseBoundThreads) {
  3761     // If ThreadPriorityPolicy is 1, switch tables
  3762     if (ThreadPriorityPolicy == 1) {
  3763       for (i = 0 ; i < MaxPriority+1; i++)
  3764         os::java_to_os_priority[i] = prio_policy1[i];
  3767   // Not using Bound Threads, set to ThreadPolicy 1
  3768   else {
  3769     for ( i = 0 ; i < MaxPriority+1; i++ ) {
  3770       os::java_to_os_priority[i] = prio_policy1[i];
  3772     return 0;
  3776   // Get IDs for a set of well-known scheduling classes.
  3777   // TODO-FIXME: GETCLINFO returns the current # of classes in the
  3778   // the system.  We should have a loop that iterates over the
  3779   // classID values, which are known to be "small" integers.
  3781   strcpy(ClassInfo.pc_clname, "TS");
  3782   ClassInfo.pc_cid = -1;
  3783   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3784   if (rslt < 0) return errno;
  3785   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
  3786   tsLimits.schedPolicy = ClassInfo.pc_cid;
  3787   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
  3788   tsLimits.minPrio = -tsLimits.maxPrio;
  3790   strcpy(ClassInfo.pc_clname, "IA");
  3791   ClassInfo.pc_cid = -1;
  3792   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3793   if (rslt < 0) return errno;
  3794   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
  3795   iaLimits.schedPolicy = ClassInfo.pc_cid;
  3796   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
  3797   iaLimits.minPrio = -iaLimits.maxPrio;
  3799   strcpy(ClassInfo.pc_clname, "RT");
  3800   ClassInfo.pc_cid = -1;
  3801   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3802   if (rslt < 0) return errno;
  3803   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
  3804   rtLimits.schedPolicy = ClassInfo.pc_cid;
  3805   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
  3806   rtLimits.minPrio = 0;
  3809   // Query our "current" scheduling class.
  3810   // This will normally be IA,TS or, rarely, RT.
  3811   memset (&ParmInfo, 0, sizeof(ParmInfo));
  3812   ParmInfo.pc_cid = PC_CLNULL;
  3813   rslt = (*priocntl_ptr) (PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo );
  3814   if ( rslt < 0 ) return errno;
  3815   myClass = ParmInfo.pc_cid;
  3817   // We now know our scheduling classId, get specific information
  3818   // the class.
  3819   ClassInfo.pc_cid = myClass;
  3820   ClassInfo.pc_clname[0] = 0;
  3821   rslt = (*priocntl_ptr) (PC_VERSION, (idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo );
  3822   if ( rslt < 0 ) return errno;
  3824   if (ThreadPriorityVerbose)
  3825     tty->print_cr ("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
  3827   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3828   ParmInfo.pc_cid = PC_CLNULL;
  3829   rslt = (*priocntl_ptr)(PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  3830   if (rslt < 0) return errno;
  3832   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3833     myMin = rtLimits.minPrio;
  3834     myMax = rtLimits.maxPrio;
  3835   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3836     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3837     myMin = iaLimits.minPrio;
  3838     myMax = iaLimits.maxPrio;
  3839     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
  3840   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3841     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3842     myMin = tsLimits.minPrio;
  3843     myMax = tsLimits.maxPrio;
  3844     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
  3845   } else {
  3846     // No clue - punt
  3847     if (ThreadPriorityVerbose)
  3848       tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
  3849     return EINVAL;      // no clue, punt
  3852   if (ThreadPriorityVerbose)
  3853         tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
  3855   priocntl_enable = true;  // Enable changing priorities
  3856   return 0;
  3859 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
  3860 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
  3861 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
  3864 // scale_to_lwp_priority
  3865 //
  3866 // Convert from the libthread "thr_setprio" scale to our current
  3867 // lwp scheduling class scale.
  3868 //
  3869 static
  3870 int     scale_to_lwp_priority (int rMin, int rMax, int x)
  3872   int v;
  3874   if (x == 127) return rMax;            // avoid round-down
  3875     v = (((x*(rMax-rMin)))/128)+rMin;
  3876   return v;
  3880 // set_lwp_priority
  3881 //
  3882 // Set the priority of the lwp.  This call should only be made
  3883 // when using bound threads (T2 threads are bound by default).
  3884 //
  3885 int     set_lwp_priority (int ThreadID, int lwpid, int newPrio )
  3887   int rslt;
  3888   int Actual, Expected, prv;
  3889   pcparms_t ParmInfo;                   // for GET-SET
  3890 #ifdef ASSERT
  3891   pcparms_t ReadBack;                   // for readback
  3892 #endif
  3894   // Set priority via PC_GETPARMS, update, PC_SETPARMS
  3895   // Query current values.
  3896   // TODO: accelerate this by eliminating the PC_GETPARMS call.
  3897   // Cache "pcparms_t" in global ParmCache.
  3898   // TODO: elide set-to-same-value
  3900   // If something went wrong on init, don't change priorities.
  3901   if ( !priocntl_enable ) {
  3902     if (ThreadPriorityVerbose)
  3903       tty->print_cr("Trying to set priority but init failed, ignoring");
  3904     return EINVAL;
  3908   // If lwp hasn't started yet, just return
  3909   // the _start routine will call us again.
  3910   if ( lwpid <= 0 ) {
  3911     if (ThreadPriorityVerbose) {
  3912       tty->print_cr ("deferring the set_lwp_priority of thread " INTPTR_FORMAT " to %d, lwpid not set",
  3913                      ThreadID, newPrio);
  3915     return 0;
  3918   if (ThreadPriorityVerbose) {
  3919     tty->print_cr ("set_lwp_priority(" INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
  3920                    ThreadID, lwpid, newPrio);
  3923   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3924   ParmInfo.pc_cid = PC_CLNULL;
  3925   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
  3926   if (rslt < 0) return errno;
  3928   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3929     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
  3930     rtInfo->rt_pri     = scale_to_lwp_priority (rtLimits.minPrio, rtLimits.maxPrio, newPrio);
  3931     rtInfo->rt_tqsecs  = RT_NOCHANGE;
  3932     rtInfo->rt_tqnsecs = RT_NOCHANGE;
  3933     if (ThreadPriorityVerbose) {
  3934       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
  3936   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3937     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3938     int maxClamped     = MIN2(iaLimits.maxPrio, (int)iaInfo->ia_uprilim);
  3939     iaInfo->ia_upri    = scale_to_lwp_priority(iaLimits.minPrio, maxClamped, newPrio);
  3940     iaInfo->ia_uprilim = IA_NOCHANGE;
  3941     iaInfo->ia_mode    = IA_NOCHANGE;
  3942     if (ThreadPriorityVerbose) {
  3943       tty->print_cr ("IA: [%d...%d] %d->%d\n",
  3944                iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
  3946   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3947     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3948     int maxClamped     = MIN2(tsLimits.maxPrio, (int)tsInfo->ts_uprilim);
  3949     prv                = tsInfo->ts_upri;
  3950     tsInfo->ts_upri    = scale_to_lwp_priority(tsLimits.minPrio, maxClamped, newPrio);
  3951     tsInfo->ts_uprilim = IA_NOCHANGE;
  3952     if (ThreadPriorityVerbose) {
  3953       tty->print_cr ("TS: %d [%d...%d] %d->%d\n",
  3954                prv, tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
  3956     if (prv == tsInfo->ts_upri) return 0;
  3957   } else {
  3958     if ( ThreadPriorityVerbose ) {
  3959       tty->print_cr ("Unknown scheduling class\n");
  3961       return EINVAL;    // no clue, punt
  3964   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
  3965   if (ThreadPriorityVerbose && rslt) {
  3966     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
  3968   if (rslt < 0) return errno;
  3970 #ifdef ASSERT
  3971   // Sanity check: read back what we just attempted to set.
  3972   // In theory it could have changed in the interim ...
  3973   //
  3974   // The priocntl system call is tricky.
  3975   // Sometimes it'll validate the priority value argument and
  3976   // return EINVAL if unhappy.  At other times it fails silently.
  3977   // Readbacks are prudent.
  3979   if (!ReadBackValidate) return 0;
  3981   memset(&ReadBack, 0, sizeof(pcparms_t));
  3982   ReadBack.pc_cid = PC_CLNULL;
  3983   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
  3984   assert(rslt >= 0, "priocntl failed");
  3985   Actual = Expected = 0xBAD;
  3986   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
  3987   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3988     Actual   = RTPRI(ReadBack)->rt_pri;
  3989     Expected = RTPRI(ParmInfo)->rt_pri;
  3990   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3991     Actual   = IAPRI(ReadBack)->ia_upri;
  3992     Expected = IAPRI(ParmInfo)->ia_upri;
  3993   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3994     Actual   = TSPRI(ReadBack)->ts_upri;
  3995     Expected = TSPRI(ParmInfo)->ts_upri;
  3996   } else {
  3997     if ( ThreadPriorityVerbose ) {
  3998       tty->print_cr("set_lwp_priority: unexpected class in readback: %d\n", ParmInfo.pc_cid);
  4002   if (Actual != Expected) {
  4003     if ( ThreadPriorityVerbose ) {
  4004       tty->print_cr ("set_lwp_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
  4005              lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
  4008 #endif
  4010   return 0;
  4015 // Solaris only gives access to 128 real priorities at a time,
  4016 // so we expand Java's ten to fill this range.  This would be better
  4017 // if we dynamically adjusted relative priorities.
  4018 //
  4019 // The ThreadPriorityPolicy option allows us to select 2 different
  4020 // priority scales.
  4021 //
  4022 // ThreadPriorityPolicy=0
  4023 // Since the Solaris' default priority is MaximumPriority, we do not
  4024 // set a priority lower than Max unless a priority lower than
  4025 // NormPriority is requested.
  4026 //
  4027 // ThreadPriorityPolicy=1
  4028 // This mode causes the priority table to get filled with
  4029 // linear values.  NormPriority get's mapped to 50% of the
  4030 // Maximum priority an so on.  This will cause VM threads
  4031 // to get unfair treatment against other Solaris processes
  4032 // which do not explicitly alter their thread priorities.
  4033 //
  4036 int os::java_to_os_priority[MaxPriority + 1] = {
  4037   -99999,         // 0 Entry should never be used
  4039   0,              // 1 MinPriority
  4040   32,             // 2
  4041   64,             // 3
  4043   96,             // 4
  4044   127,            // 5 NormPriority
  4045   127,            // 6
  4047   127,            // 7
  4048   127,            // 8
  4049   127,            // 9 NearMaxPriority
  4051   127             // 10 MaxPriority
  4052 };
  4055 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4056   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
  4057   if ( !UseThreadPriorities ) return OS_OK;
  4058   int status = thr_setprio(thread->osthread()->thread_id(), newpri);
  4059   if ( os::Solaris::T2_libthread() || (UseBoundThreads && thread->osthread()->is_vm_created()) )
  4060     status |= (set_lwp_priority (thread->osthread()->thread_id(),
  4061                     thread->osthread()->lwp_id(), newpri ));
  4062   return (status == 0) ? OS_OK : OS_ERR;
  4066 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4067   int p;
  4068   if ( !UseThreadPriorities ) {
  4069     *priority_ptr = NormalPriority;
  4070     return OS_OK;
  4072   int status = thr_getprio(thread->osthread()->thread_id(), &p);
  4073   if (status != 0) {
  4074     return OS_ERR;
  4076   *priority_ptr = p;
  4077   return OS_OK;
  4081 // Hint to the underlying OS that a task switch would not be good.
  4082 // Void return because it's a hint and can fail.
  4083 void os::hint_no_preempt() {
  4084   schedctl_start(schedctl_init());
  4087 void os::interrupt(Thread* thread) {
  4088   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4090   OSThread* osthread = thread->osthread();
  4092   int isInterrupted = osthread->interrupted();
  4093   if (!isInterrupted) {
  4094       osthread->set_interrupted(true);
  4095       OrderAccess::fence();
  4096       // os::sleep() is implemented with either poll (NULL,0,timeout) or
  4097       // by parking on _SleepEvent.  If the former, thr_kill will unwedge
  4098       // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
  4099       ParkEvent * const slp = thread->_SleepEvent ;
  4100       if (slp != NULL) slp->unpark() ;
  4103   // For JSR166:  unpark after setting status but before thr_kill -dl
  4104   if (thread->is_Java_thread()) {
  4105     ((JavaThread*)thread)->parker()->unpark();
  4108   // Handle interruptible wait() ...
  4109   ParkEvent * const ev = thread->_ParkEvent ;
  4110   if (ev != NULL) ev->unpark() ;
  4112   // When events are used everywhere for os::sleep, then this thr_kill
  4113   // will only be needed if UseVMInterruptibleIO is true.
  4115   if (!isInterrupted) {
  4116     int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
  4117     assert_status(status == 0, status, "thr_kill");
  4119     // Bump thread interruption counter
  4120     RuntimeService::record_thread_interrupt_signaled_count();
  4125 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4126   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4128   OSThread* osthread = thread->osthread();
  4130   bool res = osthread->interrupted();
  4132   // NOTE that since there is no "lock" around these two operations,
  4133   // there is the possibility that the interrupted flag will be
  4134   // "false" but that the interrupt event will be set. This is
  4135   // intentional. The effect of this is that Object.wait() will appear
  4136   // to have a spurious wakeup, which is not harmful, and the
  4137   // possibility is so rare that it is not worth the added complexity
  4138   // to add yet another lock. It has also been recommended not to put
  4139   // the interrupted flag into the os::Solaris::Event structure,
  4140   // because it hides the issue.
  4141   if (res && clear_interrupted) {
  4142     osthread->set_interrupted(false);
  4144   return res;
  4148 void os::print_statistics() {
  4151 int os::message_box(const char* title, const char* message) {
  4152   int i;
  4153   fdStream err(defaultStream::error_fd());
  4154   for (i = 0; i < 78; i++) err.print_raw("=");
  4155   err.cr();
  4156   err.print_raw_cr(title);
  4157   for (i = 0; i < 78; i++) err.print_raw("-");
  4158   err.cr();
  4159   err.print_raw_cr(message);
  4160   for (i = 0; i < 78; i++) err.print_raw("=");
  4161   err.cr();
  4163   char buf[16];
  4164   // Prevent process from exiting upon "read error" without consuming all CPU
  4165   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4167   return buf[0] == 'y' || buf[0] == 'Y';
  4170 // A lightweight implementation that does not suspend the target thread and
  4171 // thus returns only a hint. Used for profiling only!
  4172 ExtendedPC os::get_thread_pc(Thread* thread) {
  4173   // Make sure that it is called by the watcher and the Threads lock is owned.
  4174   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
  4175   // For now, is only used to profile the VM Thread
  4176   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4177   ExtendedPC epc;
  4179   GetThreadPC_Callback  cb(ProfileVM_lock);
  4180   OSThread *osthread = thread->osthread();
  4181   const int time_to_wait = 400; // 400ms wait for initial response
  4182   int status = cb.interrupt(thread, time_to_wait);
  4184   if (cb.is_done() ) {
  4185     epc = cb.addr();
  4186   } else {
  4187     DEBUG_ONLY(tty->print_cr("Failed to get pc for thread: %d got %d status",
  4188                               osthread->thread_id(), status););
  4189     // epc is already NULL
  4191   return epc;
  4195 // This does not do anything on Solaris. This is basically a hook for being
  4196 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
  4197 void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
  4198   f(value, method, args, thread);
  4201 // This routine may be used by user applications as a "hook" to catch signals.
  4202 // The user-defined signal handler must pass unrecognized signals to this
  4203 // routine, and if it returns true (non-zero), then the signal handler must
  4204 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4205 // routine will never retun false (zero), but instead will execute a VM panic
  4206 // routine kill the process.
  4207 //
  4208 // If this routine returns false, it is OK to call it again.  This allows
  4209 // the user-defined signal handler to perform checks either before or after
  4210 // the VM performs its own checks.  Naturally, the user code would be making
  4211 // a serious error if it tried to handle an exception (such as a null check
  4212 // or breakpoint) that the VM was generating for its own correct operation.
  4213 //
  4214 // This routine may recognize any of the following kinds of signals:
  4215 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
  4216 // os::Solaris::SIGasync
  4217 // It should be consulted by handlers for any of those signals.
  4218 // It explicitly does not recognize os::Solaris::SIGinterrupt
  4219 //
  4220 // The caller of this routine must pass in the three arguments supplied
  4221 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4222 // field of the structure passed to sigaction().  This routine assumes that
  4223 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4224 //
  4225 // Note that the VM will print warnings if it detects conflicting signal
  4226 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4227 //
  4228 extern "C" JNIEXPORT int
  4229 JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext,
  4230                           int abort_if_unrecognized);
  4233 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
  4234   JVM_handle_solaris_signal(sig, info, ucVoid, true);
  4237 /* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
  4238    is needed to provoke threads blocked on IO to return an EINTR
  4239    Note: this explicitly does NOT call JVM_handle_solaris_signal and
  4240    does NOT participate in signal chaining due to requirement for
  4241    NOT setting SA_RESTART to make EINTR work. */
  4242 extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
  4243    if (UseSignalChaining) {
  4244       struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
  4245       if (actp && actp->sa_handler) {
  4246         vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
  4251 // This boolean allows users to forward their own non-matching signals
  4252 // to JVM_handle_solaris_signal, harmlessly.
  4253 bool os::Solaris::signal_handlers_are_installed = false;
  4255 // For signal-chaining
  4256 bool os::Solaris::libjsig_is_loaded = false;
  4257 typedef struct sigaction *(*get_signal_t)(int);
  4258 get_signal_t os::Solaris::get_signal_action = NULL;
  4260 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
  4261   struct sigaction *actp = NULL;
  4263   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
  4264     // Retrieve the old signal handler from libjsig
  4265     actp = (*get_signal_action)(sig);
  4267   if (actp == NULL) {
  4268     // Retrieve the preinstalled signal handler from jvm
  4269     actp = get_preinstalled_handler(sig);
  4272   return actp;
  4275 static bool call_chained_handler(struct sigaction *actp, int sig,
  4276                                  siginfo_t *siginfo, void *context) {
  4277   // Call the old signal handler
  4278   if (actp->sa_handler == SIG_DFL) {
  4279     // It's more reasonable to let jvm treat it as an unexpected exception
  4280     // instead of taking the default action.
  4281     return false;
  4282   } else if (actp->sa_handler != SIG_IGN) {
  4283     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4284       // automaticlly block the signal
  4285       sigaddset(&(actp->sa_mask), sig);
  4288     sa_handler_t hand;
  4289     sa_sigaction_t sa;
  4290     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4291     // retrieve the chained handler
  4292     if (siginfo_flag_set) {
  4293       sa = actp->sa_sigaction;
  4294     } else {
  4295       hand = actp->sa_handler;
  4298     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4299       actp->sa_handler = SIG_DFL;
  4302     // try to honor the signal mask
  4303     sigset_t oset;
  4304     thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4306     // call into the chained handler
  4307     if (siginfo_flag_set) {
  4308       (*sa)(sig, siginfo, context);
  4309     } else {
  4310       (*hand)(sig);
  4313     // restore the signal mask
  4314     thr_sigsetmask(SIG_SETMASK, &oset, 0);
  4316   // Tell jvm's signal handler the signal is taken care of.
  4317   return true;
  4320 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4321   bool chained = false;
  4322   // signal-chaining
  4323   if (UseSignalChaining) {
  4324     struct sigaction *actp = get_chained_signal_action(sig);
  4325     if (actp != NULL) {
  4326       chained = call_chained_handler(actp, sig, siginfo, context);
  4329   return chained;
  4332 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
  4333   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4334   if (preinstalled_sigs[sig] != 0) {
  4335     return &chainedsigactions[sig];
  4337   return NULL;
  4340 void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4342   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
  4343   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4344   chainedsigactions[sig] = oldAct;
  4345   preinstalled_sigs[sig] = 1;
  4348 void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
  4349   // Check for overwrite.
  4350   struct sigaction oldAct;
  4351   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4352   void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4353                                       : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4354   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4355       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4356       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
  4357     if (AllowUserSignalHandlers || !set_installed) {
  4358       // Do not overwrite; user takes responsibility to forward to us.
  4359       return;
  4360     } else if (UseSignalChaining) {
  4361       if (oktochain) {
  4362         // save the old handler in jvm
  4363         save_preinstalled_handler(sig, oldAct);
  4364       } else {
  4365         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
  4367       // libjsig also interposes the sigaction() call below and saves the
  4368       // old sigaction on it own.
  4369     } else {
  4370       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4371                     "%#lx for signal %d.", (long)oldhand, sig));
  4375   struct sigaction sigAct;
  4376   sigfillset(&(sigAct.sa_mask));
  4377   sigAct.sa_handler = SIG_DFL;
  4379   sigAct.sa_sigaction = signalHandler;
  4380   // Handle SIGSEGV on alternate signal stack if
  4381   // not using stack banging
  4382   if (!UseStackBanging && sig == SIGSEGV) {
  4383     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
  4384   // Interruptible i/o requires SA_RESTART cleared so EINTR
  4385   // is returned instead of restarting system calls
  4386   } else if (sig == os::Solaris::SIGinterrupt()) {
  4387     sigemptyset(&sigAct.sa_mask);
  4388     sigAct.sa_handler = NULL;
  4389     sigAct.sa_flags = SA_SIGINFO;
  4390     sigAct.sa_sigaction = sigINTRHandler;
  4391   } else {
  4392     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
  4394   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
  4396   sigaction(sig, &sigAct, &oldAct);
  4398   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4399                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4400   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4404 #define DO_SIGNAL_CHECK(sig) \
  4405   if (!sigismember(&check_signal_done, sig)) \
  4406     os::Solaris::check_signal_handler(sig)
  4408 // This method is a periodic task to check for misbehaving JNI applications
  4409 // under CheckJNI, we can add any periodic checks here
  4411 void os::run_periodic_checks() {
  4412   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
  4413   // thereby preventing a NULL checks.
  4414   if(!check_addr0_done) check_addr0_done = check_addr0(tty);
  4416   if (check_signals == false) return;
  4418   // SEGV and BUS if overridden could potentially prevent
  4419   // generation of hs*.log in the event of a crash, debugging
  4420   // such a case can be very challenging, so we absolutely
  4421   // check for the following for a good measure:
  4422   DO_SIGNAL_CHECK(SIGSEGV);
  4423   DO_SIGNAL_CHECK(SIGILL);
  4424   DO_SIGNAL_CHECK(SIGFPE);
  4425   DO_SIGNAL_CHECK(SIGBUS);
  4426   DO_SIGNAL_CHECK(SIGPIPE);
  4427   DO_SIGNAL_CHECK(SIGXFSZ);
  4429   // ReduceSignalUsage allows the user to override these handlers
  4430   // see comments at the very top and jvm_solaris.h
  4431   if (!ReduceSignalUsage) {
  4432     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4433     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4434     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4435     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4438   // See comments above for using JVM1/JVM2 and UseAltSigs
  4439   DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
  4440   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
  4444 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4446 static os_sigaction_t os_sigaction = NULL;
  4448 void os::Solaris::check_signal_handler(int sig) {
  4449   char buf[O_BUFLEN];
  4450   address jvmHandler = NULL;
  4452   struct sigaction act;
  4453   if (os_sigaction == NULL) {
  4454     // only trust the default sigaction, in case it has been interposed
  4455     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4456     if (os_sigaction == NULL) return;
  4459   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4461   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4462     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4463     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4466   switch(sig) {
  4467     case SIGSEGV:
  4468     case SIGBUS:
  4469     case SIGFPE:
  4470     case SIGPIPE:
  4471     case SIGXFSZ:
  4472     case SIGILL:
  4473       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4474       break;
  4476     case SHUTDOWN1_SIGNAL:
  4477     case SHUTDOWN2_SIGNAL:
  4478     case SHUTDOWN3_SIGNAL:
  4479     case BREAK_SIGNAL:
  4480       jvmHandler = (address)user_handler();
  4481       break;
  4483     default:
  4484       int intrsig = os::Solaris::SIGinterrupt();
  4485       int asynsig = os::Solaris::SIGasync();
  4487       if (sig == intrsig) {
  4488         jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
  4489       } else if (sig == asynsig) {
  4490         jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4491       } else {
  4492         return;
  4494       break;
  4498   if (thisHandler != jvmHandler) {
  4499     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4500     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4501     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4502     // No need to check this sig any longer
  4503     sigaddset(&check_signal_done, sig);
  4504   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  4505     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4506     tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
  4507     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4508     // No need to check this sig any longer
  4509     sigaddset(&check_signal_done, sig);
  4512   // Print all the signal handler state
  4513   if (sigismember(&check_signal_done, sig)) {
  4514     print_signal_handlers(tty, buf, O_BUFLEN);
  4519 void os::Solaris::install_signal_handlers() {
  4520   bool libjsigdone = false;
  4521   signal_handlers_are_installed = true;
  4523   // signal-chaining
  4524   typedef void (*signal_setting_t)();
  4525   signal_setting_t begin_signal_setting = NULL;
  4526   signal_setting_t end_signal_setting = NULL;
  4527   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4528                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4529   if (begin_signal_setting != NULL) {
  4530     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4531                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4532     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4533                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4534     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
  4535                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
  4536     libjsig_is_loaded = true;
  4537     if (os::Solaris::get_libjsig_version != NULL) {
  4538       libjsigversion =  (*os::Solaris::get_libjsig_version)();
  4540     assert(UseSignalChaining, "should enable signal-chaining");
  4542   if (libjsig_is_loaded) {
  4543     // Tell libjsig jvm is setting signal handlers
  4544     (*begin_signal_setting)();
  4547   set_signal_handler(SIGSEGV, true, true);
  4548   set_signal_handler(SIGPIPE, true, true);
  4549   set_signal_handler(SIGXFSZ, true, true);
  4550   set_signal_handler(SIGBUS, true, true);
  4551   set_signal_handler(SIGILL, true, true);
  4552   set_signal_handler(SIGFPE, true, true);
  4555   if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
  4557     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
  4558     // can not register overridable signals which might be > 32
  4559     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
  4560     // Tell libjsig jvm has finished setting signal handlers
  4561       (*end_signal_setting)();
  4562       libjsigdone = true;
  4566   // Never ok to chain our SIGinterrupt
  4567   set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
  4568   set_signal_handler(os::Solaris::SIGasync(), true, true);
  4570   if (libjsig_is_loaded && !libjsigdone) {
  4571     // Tell libjsig jvm finishes setting signal handlers
  4572     (*end_signal_setting)();
  4575   // We don't activate signal checker if libjsig is in place, we trust ourselves
  4576   // and if UserSignalHandler is installed all bets are off
  4577   if (CheckJNICalls) {
  4578     if (libjsig_is_loaded) {
  4579       tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4580       check_signals = false;
  4582     if (AllowUserSignalHandlers) {
  4583       tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4584       check_signals = false;
  4590 void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
  4592 const char * signames[] = {
  4593   "SIG0",
  4594   "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
  4595   "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
  4596   "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
  4597   "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
  4598   "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
  4599   "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
  4600   "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
  4601   "SIGCANCEL", "SIGLOST"
  4602 };
  4604 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4605   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4606     // signal
  4607     if (exception_code < sizeof(signames)/sizeof(const char*)) {
  4608        jio_snprintf(buf, size, "%s", signames[exception_code]);
  4609     } else {
  4610        jio_snprintf(buf, size, "SIG%d", exception_code);
  4612     return buf;
  4613   } else {
  4614     return NULL;
  4618 // (Static) wrappers for the new libthread API
  4619 int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
  4620 int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
  4621 int_fnP_thread_t_i os::Solaris::_thr_setmutator;
  4622 int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
  4623 int_fnP_thread_t os::Solaris::_thr_continue_mutator;
  4625 // (Static) wrapper for getisax(2) call.
  4626 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
  4628 // (Static) wrappers for the liblgrp API
  4629 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
  4630 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
  4631 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
  4632 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
  4633 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
  4634 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
  4635 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
  4636 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
  4637 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
  4639 // (Static) wrapper for meminfo() call.
  4640 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
  4642 static address resolve_symbol_lazy(const char* name) {
  4643   address addr = (address) dlsym(RTLD_DEFAULT, name);
  4644   if(addr == NULL) {
  4645     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
  4646     addr = (address) dlsym(RTLD_NEXT, name);
  4648   return addr;
  4651 static address resolve_symbol(const char* name) {
  4652   address addr = resolve_symbol_lazy(name);
  4653   if(addr == NULL) {
  4654     fatal(dlerror());
  4656   return addr;
  4661 // isT2_libthread()
  4662 //
  4663 // Routine to determine if we are currently using the new T2 libthread.
  4664 //
  4665 // We determine if we are using T2 by reading /proc/self/lstatus and
  4666 // looking for a thread with the ASLWP bit set.  If we find this status
  4667 // bit set, we must assume that we are NOT using T2.  The T2 team
  4668 // has approved this algorithm.
  4669 //
  4670 // We need to determine if we are running with the new T2 libthread
  4671 // since setting native thread priorities is handled differently
  4672 // when using this library.  All threads created using T2 are bound
  4673 // threads. Calling thr_setprio is meaningless in this case.
  4674 //
  4675 bool isT2_libthread() {
  4676   static prheader_t * lwpArray = NULL;
  4677   static int lwpSize = 0;
  4678   static int lwpFile = -1;
  4679   lwpstatus_t * that;
  4680   char lwpName [128];
  4681   bool isT2 = false;
  4683 #define ADR(x)  ((uintptr_t)(x))
  4684 #define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
  4686   lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
  4687   if (lwpFile < 0) {
  4688       if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
  4689       return false;
  4691   lwpSize = 16*1024;
  4692   for (;;) {
  4693     ::lseek64 (lwpFile, 0, SEEK_SET);
  4694     lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize);
  4695     if (::read(lwpFile, lwpArray, lwpSize) < 0) {
  4696       if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
  4697       break;
  4699     if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
  4700        // We got a good snapshot - now iterate over the list.
  4701       int aslwpcount = 0;
  4702       for (int i = 0; i < lwpArray->pr_nent; i++ ) {
  4703         that = LWPINDEX(lwpArray,i);
  4704         if (that->pr_flags & PR_ASLWP) {
  4705           aslwpcount++;
  4708       if (aslwpcount == 0) isT2 = true;
  4709       break;
  4711     lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
  4712     FREE_C_HEAP_ARRAY(char, lwpArray);  // retry.
  4715   FREE_C_HEAP_ARRAY(char, lwpArray);
  4716   ::close (lwpFile);
  4717   if (ThreadPriorityVerbose) {
  4718     if (isT2) tty->print_cr("We are running with a T2 libthread\n");
  4719     else tty->print_cr("We are not running with a T2 libthread\n");
  4721   return isT2;
  4725 void os::Solaris::libthread_init() {
  4726   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
  4728   // Determine if we are running with the new T2 libthread
  4729   os::Solaris::set_T2_libthread(isT2_libthread());
  4731   lwp_priocntl_init();
  4733   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
  4734   if(func == NULL) {
  4735     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
  4736     // Guarantee that this VM is running on an new enough OS (5.6 or
  4737     // later) that it will have a new enough libthread.so.
  4738     guarantee(func != NULL, "libthread.so is too old.");
  4741   // Initialize the new libthread getstate API wrappers
  4742   func = resolve_symbol("thr_getstate");
  4743   os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
  4745   func = resolve_symbol("thr_setstate");
  4746   os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
  4748   func = resolve_symbol("thr_setmutator");
  4749   os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
  4751   func = resolve_symbol("thr_suspend_mutator");
  4752   os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4754   func = resolve_symbol("thr_continue_mutator");
  4755   os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4757   int size;
  4758   void (*handler_info_func)(address *, int *);
  4759   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
  4760   handler_info_func(&handler_start, &size);
  4761   handler_end = handler_start + size;
  4765 int_fnP_mutex_tP os::Solaris::_mutex_lock;
  4766 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
  4767 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
  4768 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
  4769 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
  4770 int os::Solaris::_mutex_scope = USYNC_THREAD;
  4772 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
  4773 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
  4774 int_fnP_cond_tP os::Solaris::_cond_signal;
  4775 int_fnP_cond_tP os::Solaris::_cond_broadcast;
  4776 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
  4777 int_fnP_cond_tP os::Solaris::_cond_destroy;
  4778 int os::Solaris::_cond_scope = USYNC_THREAD;
  4780 void os::Solaris::synchronization_init() {
  4781   if(UseLWPSynchronization) {
  4782     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
  4783     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
  4784     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
  4785     os::Solaris::set_mutex_init(lwp_mutex_init);
  4786     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
  4787     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4789     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
  4790     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
  4791     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
  4792     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
  4793     os::Solaris::set_cond_init(lwp_cond_init);
  4794     os::Solaris::set_cond_destroy(lwp_cond_destroy);
  4795     os::Solaris::set_cond_scope(USYNC_THREAD);
  4797   else {
  4798     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4799     os::Solaris::set_cond_scope(USYNC_THREAD);
  4801     if(UsePthreads) {
  4802       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
  4803       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
  4804       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
  4805       os::Solaris::set_mutex_init(pthread_mutex_default_init);
  4806       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
  4808       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
  4809       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
  4810       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
  4811       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
  4812       os::Solaris::set_cond_init(pthread_cond_default_init);
  4813       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
  4815     else {
  4816       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
  4817       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
  4818       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
  4819       os::Solaris::set_mutex_init(::mutex_init);
  4820       os::Solaris::set_mutex_destroy(::mutex_destroy);
  4822       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
  4823       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
  4824       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
  4825       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
  4826       os::Solaris::set_cond_init(::cond_init);
  4827       os::Solaris::set_cond_destroy(::cond_destroy);
  4832 bool os::Solaris::liblgrp_init() {
  4833   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
  4834   if (handle != NULL) {
  4835     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
  4836     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
  4837     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
  4838     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
  4839     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
  4840     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
  4841     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
  4842     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
  4843                                        dlsym(handle, "lgrp_cookie_stale")));
  4845     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
  4846     set_lgrp_cookie(c);
  4847     return true;
  4849   return false;
  4852 void os::Solaris::misc_sym_init() {
  4853   address func;
  4855   // getisax
  4856   func = resolve_symbol_lazy("getisax");
  4857   if (func != NULL) {
  4858     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
  4861   // meminfo
  4862   func = resolve_symbol_lazy("meminfo");
  4863   if (func != NULL) {
  4864     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
  4868 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
  4869   assert(_getisax != NULL, "_getisax not set");
  4870   return _getisax(array, n);
  4873 // Symbol doesn't exist in Solaris 8 pset.h
  4874 #ifndef PS_MYID
  4875 #define PS_MYID -3
  4876 #endif
  4878 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
  4879 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
  4880 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
  4882 void init_pset_getloadavg_ptr(void) {
  4883   pset_getloadavg_ptr =
  4884     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
  4885   if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
  4886     warning("pset_getloadavg function not found");
  4890 int os::Solaris::_dev_zero_fd = -1;
  4892 // this is called _before_ the global arguments have been parsed
  4893 void os::init(void) {
  4894   _initial_pid = getpid();
  4896   max_hrtime = first_hrtime = gethrtime();
  4898   init_random(1234567);
  4900   page_size = sysconf(_SC_PAGESIZE);
  4901   if (page_size == -1)
  4902     fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
  4903                   strerror(errno)));
  4904   init_page_sizes((size_t) page_size);
  4906   Solaris::initialize_system_info();
  4908   // Initialize misc. symbols as soon as possible, so we can use them
  4909   // if we need them.
  4910   Solaris::misc_sym_init();
  4912   int fd = ::open("/dev/zero", O_RDWR);
  4913   if (fd < 0) {
  4914     fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
  4915   } else {
  4916     Solaris::set_dev_zero_fd(fd);
  4918     // Close on exec, child won't inherit.
  4919     fcntl(fd, F_SETFD, FD_CLOEXEC);
  4922   clock_tics_per_sec = CLK_TCK;
  4924   // check if dladdr1() exists; dladdr1 can provide more information than
  4925   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
  4926   // and is available on linker patches for 5.7 and 5.8.
  4927   // libdl.so must have been loaded, this call is just an entry lookup
  4928   void * hdl = dlopen("libdl.so", RTLD_NOW);
  4929   if (hdl)
  4930     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
  4932   // (Solaris only) this switches to calls that actually do locking.
  4933   ThreadCritical::initialize();
  4935   main_thread = thr_self();
  4937   // Constant minimum stack size allowed. It must be at least
  4938   // the minimum of what the OS supports (thr_min_stack()), and
  4939   // enough to allow the thread to get to user bytecode execution.
  4940   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
  4941   // If the pagesize of the VM is greater than 8K determine the appropriate
  4942   // number of initial guard pages.  The user can change this with the
  4943   // command line arguments, if needed.
  4944   if (vm_page_size() > 8*K) {
  4945     StackYellowPages = 1;
  4946     StackRedPages = 1;
  4947     StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
  4951 // To install functions for atexit system call
  4952 extern "C" {
  4953   static void perfMemory_exit_helper() {
  4954     perfMemory_exit();
  4958 // this is called _after_ the global arguments have been parsed
  4959 jint os::init_2(void) {
  4960   // try to enable extended file IO ASAP, see 6431278
  4961   os::Solaris::try_enable_extended_io();
  4963   // Allocate a single page and mark it as readable for safepoint polling.  Also
  4964   // use this first mmap call to check support for MAP_ALIGN.
  4965   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
  4966                                                       page_size,
  4967                                                       MAP_PRIVATE | MAP_ALIGN,
  4968                                                       PROT_READ);
  4969   if (polling_page == NULL) {
  4970     has_map_align = false;
  4971     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
  4972                                                 PROT_READ);
  4975   os::set_polling_page(polling_page);
  4977 #ifndef PRODUCT
  4978   if( Verbose && PrintMiscellaneous )
  4979     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4980 #endif
  4982   if (!UseMembar) {
  4983     address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
  4984     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  4985     os::set_memory_serialize_page( mem_serialize_page );
  4987 #ifndef PRODUCT
  4988     if(Verbose && PrintMiscellaneous)
  4989       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4990 #endif
  4993   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  4995   // Check minimum allowable stack size for thread creation and to initialize
  4996   // the java system classes, including StackOverflowError - depends on page
  4997   // size.  Add a page for compiler2 recursion in main thread.
  4998   // Add in 2*BytesPerWord times page size to account for VM stack during
  4999   // class initialization depending on 32 or 64 bit VM.
  5000   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
  5001             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  5002                     2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
  5004   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5005   if (threadStackSizeInBytes != 0 &&
  5006     threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
  5007     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
  5008                   os::Solaris::min_stack_allowed/K);
  5009     return JNI_ERR;
  5012   // For 64kbps there will be a 64kb page size, which makes
  5013   // the usable default stack size quite a bit less.  Increase the
  5014   // stack for 64kb (or any > than 8kb) pages, this increases
  5015   // virtual memory fragmentation (since we're not creating the
  5016   // stack on a power of 2 boundary.  The real fix for this
  5017   // should be to fix the guard page mechanism.
  5019   if (vm_page_size() > 8*K) {
  5020       threadStackSizeInBytes = (threadStackSizeInBytes != 0)
  5021          ? threadStackSizeInBytes +
  5022            ((StackYellowPages + StackRedPages) * vm_page_size())
  5023          : 0;
  5024       ThreadStackSize = threadStackSizeInBytes/K;
  5027   // Make the stack size a multiple of the page size so that
  5028   // the yellow/red zones can be guarded.
  5029   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5030         vm_page_size()));
  5032   Solaris::libthread_init();
  5034   if (UseNUMA) {
  5035     if (!Solaris::liblgrp_init()) {
  5036       UseNUMA = false;
  5037     } else {
  5038       size_t lgrp_limit = os::numa_get_groups_num();
  5039       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit);
  5040       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
  5041       FREE_C_HEAP_ARRAY(int, lgrp_ids);
  5042       if (lgrp_num < 2) {
  5043         // There's only one locality group, disable NUMA.
  5044         UseNUMA = false;
  5047     if (!UseNUMA && ForceNUMA) {
  5048       UseNUMA = true;
  5052   Solaris::signal_sets_init();
  5053   Solaris::init_signal_mem();
  5054   Solaris::install_signal_handlers();
  5056   if (libjsigversion < JSIG_VERSION_1_4_1) {
  5057     Maxlibjsigsigs = OLDMAXSIGNUM;
  5060   // initialize synchronization primitives to use either thread or
  5061   // lwp synchronization (controlled by UseLWPSynchronization)
  5062   Solaris::synchronization_init();
  5064   if (MaxFDLimit) {
  5065     // set the number of file descriptors to max. print out error
  5066     // if getrlimit/setrlimit fails but continue regardless.
  5067     struct rlimit nbr_files;
  5068     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5069     if (status != 0) {
  5070       if (PrintMiscellaneous && (Verbose || WizardMode))
  5071         perror("os::init_2 getrlimit failed");
  5072     } else {
  5073       nbr_files.rlim_cur = nbr_files.rlim_max;
  5074       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5075       if (status != 0) {
  5076         if (PrintMiscellaneous && (Verbose || WizardMode))
  5077           perror("os::init_2 setrlimit failed");
  5082   // Calculate theoretical max. size of Threads to guard gainst
  5083   // artifical out-of-memory situations, where all available address-
  5084   // space has been reserved by thread stacks. Default stack size is 1Mb.
  5085   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
  5086     JavaThread::stack_size_at_create() : (1*K*K);
  5087   assert(pre_thread_stack_size != 0, "Must have a stack");
  5088   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
  5089   // we should start doing Virtual Memory banging. Currently when the threads will
  5090   // have used all but 200Mb of space.
  5091   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
  5092   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
  5094   // at-exit methods are called in the reverse order of their registration.
  5095   // In Solaris 7 and earlier, atexit functions are called on return from
  5096   // main or as a result of a call to exit(3C). There can be only 32 of
  5097   // these functions registered and atexit() does not set errno. In Solaris
  5098   // 8 and later, there is no limit to the number of functions registered
  5099   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
  5100   // functions are called upon dlclose(3DL) in addition to return from main
  5101   // and exit(3C).
  5103   if (PerfAllowAtExitRegistration) {
  5104     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5105     // atexit functions can be delayed until process exit time, which
  5106     // can be problematic for embedded VM situations. Embedded VMs should
  5107     // call DestroyJavaVM() to assure that VM resources are released.
  5109     // note: perfMemory_exit_helper atexit function may be removed in
  5110     // the future if the appropriate cleanup code can be added to the
  5111     // VM_Exit VMOperation's doit method.
  5112     if (atexit(perfMemory_exit_helper) != 0) {
  5113       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  5117   // Init pset_loadavg function pointer
  5118   init_pset_getloadavg_ptr();
  5120   return JNI_OK;
  5123 void os::init_3(void) {
  5124   return;
  5127 // Mark the polling page as unreadable
  5128 void os::make_polling_page_unreadable(void) {
  5129   if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
  5130     fatal("Could not disable polling page");
  5131 };
  5133 // Mark the polling page as readable
  5134 void os::make_polling_page_readable(void) {
  5135   if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
  5136     fatal("Could not enable polling page");
  5137 };
  5139 // OS interface.
  5141 bool os::check_heap(bool force) { return true; }
  5143 typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
  5144 static vsnprintf_t sol_vsnprintf = NULL;
  5146 int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
  5147   if (!sol_vsnprintf) {
  5148     //search  for the named symbol in the objects that were loaded after libjvm
  5149     void* where = RTLD_NEXT;
  5150     if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5151         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5152     if (!sol_vsnprintf){
  5153       //search  for the named symbol in the objects that were loaded before libjvm
  5154       where = RTLD_DEFAULT;
  5155       if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5156         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5157       assert(sol_vsnprintf != NULL, "vsnprintf not found");
  5160   return (*sol_vsnprintf)(buf, count, fmt, argptr);
  5164 // Is a (classpath) directory empty?
  5165 bool os::dir_is_empty(const char* path) {
  5166   DIR *dir = NULL;
  5167   struct dirent *ptr;
  5169   dir = opendir(path);
  5170   if (dir == NULL) return true;
  5172   /* Scan the directory */
  5173   bool result = true;
  5174   char buf[sizeof(struct dirent) + MAX_PATH];
  5175   struct dirent *dbuf = (struct dirent *) buf;
  5176   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
  5177     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5178       result = false;
  5181   closedir(dir);
  5182   return result;
  5185 // This code originates from JDK's sysOpen and open64_w
  5186 // from src/solaris/hpi/src/system_md.c
  5188 #ifndef O_DELETE
  5189 #define O_DELETE 0x10000
  5190 #endif
  5192 // Open a file. Unlink the file immediately after open returns
  5193 // if the specified oflag has the O_DELETE flag set.
  5194 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5196 int os::open(const char *path, int oflag, int mode) {
  5197   if (strlen(path) > MAX_PATH - 1) {
  5198     errno = ENAMETOOLONG;
  5199     return -1;
  5201   int fd;
  5202   int o_delete = (oflag & O_DELETE);
  5203   oflag = oflag & ~O_DELETE;
  5205   fd = ::open64(path, oflag, mode);
  5206   if (fd == -1) return -1;
  5208   //If the open succeeded, the file might still be a directory
  5210     struct stat64 buf64;
  5211     int ret = ::fstat64(fd, &buf64);
  5212     int st_mode = buf64.st_mode;
  5214     if (ret != -1) {
  5215       if ((st_mode & S_IFMT) == S_IFDIR) {
  5216         errno = EISDIR;
  5217         ::close(fd);
  5218         return -1;
  5220     } else {
  5221       ::close(fd);
  5222       return -1;
  5225     /*
  5226      * 32-bit Solaris systems suffer from:
  5228      * - an historical default soft limit of 256 per-process file
  5229      *   descriptors that is too low for many Java programs.
  5231      * - a design flaw where file descriptors created using stdio
  5232      *   fopen must be less than 256, _even_ when the first limit above
  5233      *   has been raised.  This can cause calls to fopen (but not calls to
  5234      *   open, for example) to fail mysteriously, perhaps in 3rd party
  5235      *   native code (although the JDK itself uses fopen).  One can hardly
  5236      *   criticize them for using this most standard of all functions.
  5238      * We attempt to make everything work anyways by:
  5240      * - raising the soft limit on per-process file descriptors beyond
  5241      *   256
  5243      * - As of Solaris 10u4, we can request that Solaris raise the 256
  5244      *   stdio fopen limit by calling function enable_extended_FILE_stdio.
  5245      *   This is done in init_2 and recorded in enabled_extended_FILE_stdio
  5247      * - If we are stuck on an old (pre 10u4) Solaris system, we can
  5248      *   workaround the bug by remapping non-stdio file descriptors below
  5249      *   256 to ones beyond 256, which is done below.
  5251      * See:
  5252      * 1085341: 32-bit stdio routines should support file descriptors >255
  5253      * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
  5254      * 6431278: Netbeans crash on 32 bit Solaris: need to call
  5255      *          enable_extended_FILE_stdio() in VM initialisation
  5256      * Giri Mandalika's blog
  5257      * http://technopark02.blogspot.com/2005_05_01_archive.html
  5258      */
  5259 #ifndef  _LP64
  5260      if ((!enabled_extended_FILE_stdio) && fd < 256) {
  5261          int newfd = ::fcntl(fd, F_DUPFD, 256);
  5262          if (newfd != -1) {
  5263              ::close(fd);
  5264              fd = newfd;
  5267 #endif // 32-bit Solaris
  5268     /*
  5269      * All file descriptors that are opened in the JVM and not
  5270      * specifically destined for a subprocess should have the
  5271      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5272      * party native code might fork and exec without closing all
  5273      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5274      * UNIXProcess.c), and this in turn might:
  5276      * - cause end-of-file to fail to be detected on some file
  5277      *   descriptors, resulting in mysterious hangs, or
  5279      * - might cause an fopen in the subprocess to fail on a system
  5280      *   suffering from bug 1085341.
  5282      * (Yes, the default setting of the close-on-exec flag is a Unix
  5283      * design flaw)
  5285      * See:
  5286      * 1085341: 32-bit stdio routines should support file descriptors >255
  5287      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5288      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5289      */
  5290 #ifdef FD_CLOEXEC
  5292         int flags = ::fcntl(fd, F_GETFD);
  5293         if (flags != -1)
  5294             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5296 #endif
  5298   if (o_delete != 0) {
  5299     ::unlink(path);
  5301   return fd;
  5304 // create binary file, rewriting existing file if required
  5305 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5306   int oflags = O_WRONLY | O_CREAT;
  5307   if (!rewrite_existing) {
  5308     oflags |= O_EXCL;
  5310   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5313 // return current position of file pointer
  5314 jlong os::current_file_offset(int fd) {
  5315   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5318 // move file pointer to the specified offset
  5319 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5320   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5323 jlong os::lseek(int fd, jlong offset, int whence) {
  5324   return (jlong) ::lseek64(fd, offset, whence);
  5327 char * os::native_path(char *path) {
  5328   return path;
  5331 int os::ftruncate(int fd, jlong length) {
  5332   return ::ftruncate64(fd, length);
  5335 int os::fsync(int fd)  {
  5336   RESTARTABLE_RETURN_INT(::fsync(fd));
  5339 int os::available(int fd, jlong *bytes) {
  5340   jlong cur, end;
  5341   int mode;
  5342   struct stat64 buf64;
  5344   if (::fstat64(fd, &buf64) >= 0) {
  5345     mode = buf64.st_mode;
  5346     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5347       /*
  5348       * XXX: is the following call interruptible? If so, this might
  5349       * need to go through the INTERRUPT_IO() wrapper as for other
  5350       * blocking, interruptible calls in this file.
  5351       */
  5352       int n,ioctl_return;
  5354       INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
  5355       if (ioctl_return>= 0) {
  5356           *bytes = n;
  5357         return 1;
  5361   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5362     return 0;
  5363   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5364     return 0;
  5365   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5366     return 0;
  5368   *bytes = end - cur;
  5369   return 1;
  5372 // Map a block of memory.
  5373 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  5374                      char *addr, size_t bytes, bool read_only,
  5375                      bool allow_exec) {
  5376   int prot;
  5377   int flags;
  5379   if (read_only) {
  5380     prot = PROT_READ;
  5381     flags = MAP_SHARED;
  5382   } else {
  5383     prot = PROT_READ | PROT_WRITE;
  5384     flags = MAP_PRIVATE;
  5387   if (allow_exec) {
  5388     prot |= PROT_EXEC;
  5391   if (addr != NULL) {
  5392     flags |= MAP_FIXED;
  5395   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5396                                      fd, file_offset);
  5397   if (mapped_address == MAP_FAILED) {
  5398     return NULL;
  5400   return mapped_address;
  5404 // Remap a block of memory.
  5405 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  5406                        char *addr, size_t bytes, bool read_only,
  5407                        bool allow_exec) {
  5408   // same as map_memory() on this OS
  5409   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5410                         allow_exec);
  5414 // Unmap a block of memory.
  5415 bool os::unmap_memory(char* addr, size_t bytes) {
  5416   return munmap(addr, bytes) == 0;
  5419 void os::pause() {
  5420   char filename[MAX_PATH];
  5421   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5422     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5423   } else {
  5424     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5427   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5428   if (fd != -1) {
  5429     struct stat buf;
  5430     ::close(fd);
  5431     while (::stat(filename, &buf) == 0) {
  5432       (void)::poll(NULL, 0, 100);
  5434   } else {
  5435     jio_fprintf(stderr,
  5436       "Could not open pause file '%s', continuing immediately.\n", filename);
  5440 #ifndef PRODUCT
  5441 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5442 // Turn this on if you need to trace synch operations.
  5443 // Set RECORD_SYNCH_LIMIT to a large-enough value,
  5444 // and call record_synch_enable and record_synch_disable
  5445 // around the computation of interest.
  5447 void record_synch(char* name, bool returning);  // defined below
  5449 class RecordSynch {
  5450   char* _name;
  5451  public:
  5452   RecordSynch(char* name) :_name(name)
  5453                  { record_synch(_name, false); }
  5454   ~RecordSynch() { record_synch(_name,   true);  }
  5455 };
  5457 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
  5458 extern "C" ret name params {                                    \
  5459   typedef ret name##_t params;                                  \
  5460   static name##_t* implem = NULL;                               \
  5461   static int callcount = 0;                                     \
  5462   if (implem == NULL) {                                         \
  5463     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
  5464     if (implem == NULL)  fatal(dlerror());                      \
  5465   }                                                             \
  5466   ++callcount;                                                  \
  5467   RecordSynch _rs(#name);                                       \
  5468   inner;                                                        \
  5469   return implem args;                                           \
  5471 // in dbx, examine callcounts this way:
  5472 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
  5474 #define CHECK_POINTER_OK(p) \
  5475   (Universe::perm_gen() == NULL || !Universe::is_reserved_heap((oop)(p)))
  5476 #define CHECK_MU \
  5477   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
  5478 #define CHECK_CV \
  5479   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
  5480 #define CHECK_P(p) \
  5481   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
  5483 #define CHECK_MUTEX(mutex_op) \
  5484 CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
  5486 CHECK_MUTEX(   mutex_lock)
  5487 CHECK_MUTEX(  _mutex_lock)
  5488 CHECK_MUTEX( mutex_unlock)
  5489 CHECK_MUTEX(_mutex_unlock)
  5490 CHECK_MUTEX( mutex_trylock)
  5491 CHECK_MUTEX(_mutex_trylock)
  5493 #define CHECK_COND(cond_op) \
  5494 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
  5496 CHECK_COND( cond_wait);
  5497 CHECK_COND(_cond_wait);
  5498 CHECK_COND(_cond_wait_cancel);
  5500 #define CHECK_COND2(cond_op) \
  5501 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
  5503 CHECK_COND2( cond_timedwait);
  5504 CHECK_COND2(_cond_timedwait);
  5505 CHECK_COND2(_cond_timedwait_cancel);
  5507 // do the _lwp_* versions too
  5508 #define mutex_t lwp_mutex_t
  5509 #define cond_t  lwp_cond_t
  5510 CHECK_MUTEX(  _lwp_mutex_lock)
  5511 CHECK_MUTEX(  _lwp_mutex_unlock)
  5512 CHECK_MUTEX(  _lwp_mutex_trylock)
  5513 CHECK_MUTEX( __lwp_mutex_lock)
  5514 CHECK_MUTEX( __lwp_mutex_unlock)
  5515 CHECK_MUTEX( __lwp_mutex_trylock)
  5516 CHECK_MUTEX(___lwp_mutex_lock)
  5517 CHECK_MUTEX(___lwp_mutex_unlock)
  5519 CHECK_COND(  _lwp_cond_wait);
  5520 CHECK_COND( __lwp_cond_wait);
  5521 CHECK_COND(___lwp_cond_wait);
  5523 CHECK_COND2(  _lwp_cond_timedwait);
  5524 CHECK_COND2( __lwp_cond_timedwait);
  5525 #undef mutex_t
  5526 #undef cond_t
  5528 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5529 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5530 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5531 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5532 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5533 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5534 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5535 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5538 // recording machinery:
  5540 enum { RECORD_SYNCH_LIMIT = 200 };
  5541 char* record_synch_name[RECORD_SYNCH_LIMIT];
  5542 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
  5543 bool record_synch_returning[RECORD_SYNCH_LIMIT];
  5544 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
  5545 int record_synch_count = 0;
  5546 bool record_synch_enabled = false;
  5548 // in dbx, examine recorded data this way:
  5549 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
  5551 void record_synch(char* name, bool returning) {
  5552   if (record_synch_enabled) {
  5553     if (record_synch_count < RECORD_SYNCH_LIMIT) {
  5554       record_synch_name[record_synch_count] = name;
  5555       record_synch_returning[record_synch_count] = returning;
  5556       record_synch_thread[record_synch_count] = thr_self();
  5557       record_synch_arg0ptr[record_synch_count] = &name;
  5558       record_synch_count++;
  5560     // put more checking code here:
  5561     // ...
  5565 void record_synch_enable() {
  5566   // start collecting trace data, if not already doing so
  5567   if (!record_synch_enabled)  record_synch_count = 0;
  5568   record_synch_enabled = true;
  5571 void record_synch_disable() {
  5572   // stop collecting trace data
  5573   record_synch_enabled = false;
  5576 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5577 #endif // PRODUCT
  5579 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5580 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
  5581                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5584 // JVMTI & JVM monitoring and management support
  5585 // The thread_cpu_time() and current_thread_cpu_time() are only
  5586 // supported if is_thread_cpu_time_supported() returns true.
  5587 // They are not supported on Solaris T1.
  5589 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5590 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5591 // of a thread.
  5592 //
  5593 // current_thread_cpu_time() and thread_cpu_time(Thread *)
  5594 // returns the fast estimate available on the platform.
  5596 // hrtime_t gethrvtime() return value includes
  5597 // user time but does not include system time
  5598 jlong os::current_thread_cpu_time() {
  5599   return (jlong) gethrvtime();
  5602 jlong os::thread_cpu_time(Thread *thread) {
  5603   // return user level CPU time only to be consistent with
  5604   // what current_thread_cpu_time returns.
  5605   // thread_cpu_time_info() must be changed if this changes
  5606   return os::thread_cpu_time(thread, false /* user time only */);
  5609 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5610   if (user_sys_cpu_time) {
  5611     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5612   } else {
  5613     return os::current_thread_cpu_time();
  5617 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5618   char proc_name[64];
  5619   int count;
  5620   prusage_t prusage;
  5621   jlong lwp_time;
  5622   int fd;
  5624   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
  5625                      getpid(),
  5626                      thread->osthread()->lwp_id());
  5627   fd = ::open(proc_name, O_RDONLY);
  5628   if ( fd == -1 ) return -1;
  5630   do {
  5631     count = ::pread(fd,
  5632                   (void *)&prusage.pr_utime,
  5633                   thr_time_size,
  5634                   thr_time_off);
  5635   } while (count < 0 && errno == EINTR);
  5636   ::close(fd);
  5637   if ( count < 0 ) return -1;
  5639   if (user_sys_cpu_time) {
  5640     // user + system CPU time
  5641     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
  5642                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
  5643                  (jlong)prusage.pr_stime.tv_nsec +
  5644                  (jlong)prusage.pr_utime.tv_nsec;
  5645   } else {
  5646     // user level CPU time only
  5647     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
  5648                 (jlong)prusage.pr_utime.tv_nsec;
  5651   return(lwp_time);
  5654 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5655   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5656   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5657   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5658   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5661 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5662   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5663   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5664   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5665   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5668 bool os::is_thread_cpu_time_supported() {
  5669   if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
  5670     return true;
  5671   } else {
  5672     return false;
  5676 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5677 // Return the load average for our processor set if the primitive exists
  5678 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
  5679 int os::loadavg(double loadavg[], int nelem) {
  5680   if (pset_getloadavg_ptr != NULL) {
  5681     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
  5682   } else {
  5683     return ::getloadavg(loadavg, nelem);
  5687 //---------------------------------------------------------------------------------
  5689 static address same_page(address x, address y) {
  5690   intptr_t page_bits = -os::vm_page_size();
  5691   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  5692     return x;
  5693   else if (x > y)
  5694     return (address)(intptr_t(y) | ~page_bits) + 1;
  5695   else
  5696     return (address)(intptr_t(y) & page_bits);
  5699 bool os::find(address addr, outputStream* st) {
  5700   Dl_info dlinfo;
  5701   memset(&dlinfo, 0, sizeof(dlinfo));
  5702   if (dladdr(addr, &dlinfo)) {
  5703 #ifdef _LP64
  5704     st->print("0x%016lx: ", addr);
  5705 #else
  5706     st->print("0x%08x: ", addr);
  5707 #endif
  5708     if (dlinfo.dli_sname != NULL)
  5709       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
  5710     else if (dlinfo.dli_fname)
  5711       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
  5712     else
  5713       st->print("<absolute address>");
  5714     if (dlinfo.dli_fname)  st->print(" in %s", dlinfo.dli_fname);
  5715 #ifdef _LP64
  5716     if (dlinfo.dli_fbase)  st->print(" at 0x%016lx", dlinfo.dli_fbase);
  5717 #else
  5718     if (dlinfo.dli_fbase)  st->print(" at 0x%08x", dlinfo.dli_fbase);
  5719 #endif
  5720     st->cr();
  5722     if (Verbose) {
  5723       // decode some bytes around the PC
  5724       address begin = same_page(addr-40, addr);
  5725       address end   = same_page(addr+40, addr);
  5726       address       lowest = (address) dlinfo.dli_sname;
  5727       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5728       if (begin < lowest)  begin = lowest;
  5729       Dl_info dlinfo2;
  5730       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5731           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5732         end = (address) dlinfo2.dli_saddr;
  5733       Disassembler::decode(begin, end, st);
  5735     return true;
  5737   return false;
  5740 // Following function has been added to support HotSparc's libjvm.so running
  5741 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
  5742 // src/solaris/hpi/native_threads in the EVM codebase.
  5743 //
  5744 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
  5745 // libraries and should thus be removed. We will leave it behind for a while
  5746 // until we no longer want to able to run on top of 1.3.0 Solaris production
  5747 // JDK. See 4341971.
  5749 #define STACK_SLACK 0x800
  5751 extern "C" {
  5752   intptr_t sysThreadAvailableStackWithSlack() {
  5753     stack_t st;
  5754     intptr_t retval, stack_top;
  5755     retval = thr_stksegment(&st);
  5756     assert(retval == 0, "incorrect return value from thr_stksegment");
  5757     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
  5758     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
  5759     stack_top=(intptr_t)st.ss_sp-st.ss_size;
  5760     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
  5764 // Just to get the Kernel build to link on solaris for testing.
  5766 extern "C" {
  5767 class ASGCT_CallTrace;
  5768 void AsyncGetCallTrace(ASGCT_CallTrace *trace, jint depth, void* ucontext)
  5769   KERNEL_RETURN;
  5773 // ObjectMonitor park-unpark infrastructure ...
  5774 //
  5775 // We implement Solaris and Linux PlatformEvents with the
  5776 // obvious condvar-mutex-flag triple.
  5777 // Another alternative that works quite well is pipes:
  5778 // Each PlatformEvent consists of a pipe-pair.
  5779 // The thread associated with the PlatformEvent
  5780 // calls park(), which reads from the input end of the pipe.
  5781 // Unpark() writes into the other end of the pipe.
  5782 // The write-side of the pipe must be set NDELAY.
  5783 // Unfortunately pipes consume a large # of handles.
  5784 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
  5785 // Using pipes for the 1st few threads might be workable, however.
  5786 //
  5787 // park() is permitted to return spuriously.
  5788 // Callers of park() should wrap the call to park() in
  5789 // an appropriate loop.  A litmus test for the correct
  5790 // usage of park is the following: if park() were modified
  5791 // to immediately return 0 your code should still work,
  5792 // albeit degenerating to a spin loop.
  5793 //
  5794 // An interesting optimization for park() is to use a trylock()
  5795 // to attempt to acquire the mutex.  If the trylock() fails
  5796 // then we know that a concurrent unpark() operation is in-progress.
  5797 // in that case the park() code could simply set _count to 0
  5798 // and return immediately.  The subsequent park() operation *might*
  5799 // return immediately.  That's harmless as the caller of park() is
  5800 // expected to loop.  By using trylock() we will have avoided a
  5801 // avoided a context switch caused by contention on the per-thread mutex.
  5802 //
  5803 // TODO-FIXME:
  5804 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
  5805 //     objectmonitor implementation.
  5806 // 2.  Collapse the JSR166 parker event, and the
  5807 //     objectmonitor ParkEvent into a single "Event" construct.
  5808 // 3.  In park() and unpark() add:
  5809 //     assert (Thread::current() == AssociatedWith).
  5810 // 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
  5811 //     1-out-of-N park() operations will return immediately.
  5812 //
  5813 // _Event transitions in park()
  5814 //   -1 => -1 : illegal
  5815 //    1 =>  0 : pass - return immediately
  5816 //    0 => -1 : block
  5817 //
  5818 // _Event serves as a restricted-range semaphore.
  5819 //
  5820 // Another possible encoding of _Event would be with
  5821 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
  5822 //
  5823 // TODO-FIXME: add DTRACE probes for:
  5824 // 1.   Tx parks
  5825 // 2.   Ty unparks Tx
  5826 // 3.   Tx resumes from park
  5829 // value determined through experimentation
  5830 #define ROUNDINGFIX 11
  5832 // utility to compute the abstime argument to timedwait.
  5833 // TODO-FIXME: switch from compute_abstime() to unpackTime().
  5835 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
  5836   // millis is the relative timeout time
  5837   // abstime will be the absolute timeout time
  5838   if (millis < 0)  millis = 0;
  5839   struct timeval now;
  5840   int status = gettimeofday(&now, NULL);
  5841   assert(status == 0, "gettimeofday");
  5842   jlong seconds = millis / 1000;
  5843   jlong max_wait_period;
  5845   if (UseLWPSynchronization) {
  5846     // forward port of fix for 4275818 (not sleeping long enough)
  5847     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
  5848     // _lwp_cond_timedwait() used a round_down algorithm rather
  5849     // than a round_up. For millis less than our roundfactor
  5850     // it rounded down to 0 which doesn't meet the spec.
  5851     // For millis > roundfactor we may return a bit sooner, but
  5852     // since we can not accurately identify the patch level and
  5853     // this has already been fixed in Solaris 9 and 8 we will
  5854     // leave it alone rather than always rounding down.
  5856     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
  5857        // It appears that when we go directly through Solaris _lwp_cond_timedwait()
  5858            // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
  5859            max_wait_period = 21000000;
  5860   } else {
  5861     max_wait_period = 50000000;
  5863   millis %= 1000;
  5864   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
  5865      seconds = max_wait_period;
  5867   abstime->tv_sec = now.tv_sec  + seconds;
  5868   long       usec = now.tv_usec + millis * 1000;
  5869   if (usec >= 1000000) {
  5870     abstime->tv_sec += 1;
  5871     usec -= 1000000;
  5873   abstime->tv_nsec = usec * 1000;
  5874   return abstime;
  5877 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5878 // Conceptually TryPark() should be equivalent to park(0).
  5880 int os::PlatformEvent::TryPark() {
  5881   for (;;) {
  5882     const int v = _Event ;
  5883     guarantee ((v == 0) || (v == 1), "invariant") ;
  5884     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5888 void os::PlatformEvent::park() {           // AKA: down()
  5889   // Invariant: Only the thread associated with the Event/PlatformEvent
  5890   // may call park().
  5891   int v ;
  5892   for (;;) {
  5893       v = _Event ;
  5894       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5896   guarantee (v >= 0, "invariant") ;
  5897   if (v == 0) {
  5898      // Do this the hard way by blocking ...
  5899      // See http://monaco.sfbay/detail.jsf?cr=5094058.
  5900      // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  5901      // Only for SPARC >= V8PlusA
  5902 #if defined(__sparc) && defined(COMPILER2)
  5903      if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  5904 #endif
  5905      int status = os::Solaris::mutex_lock(_mutex);
  5906      assert_status(status == 0, status,  "mutex_lock");
  5907      guarantee (_nParked == 0, "invariant") ;
  5908      ++ _nParked ;
  5909      while (_Event < 0) {
  5910         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5911         // Treat this the same as if the wait was interrupted
  5912         // With usr/lib/lwp going to kernel, always handle ETIME
  5913         status = os::Solaris::cond_wait(_cond, _mutex);
  5914         if (status == ETIME) status = EINTR ;
  5915         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5917      -- _nParked ;
  5918      _Event = 0 ;
  5919      status = os::Solaris::mutex_unlock(_mutex);
  5920      assert_status(status == 0, status, "mutex_unlock");
  5924 int os::PlatformEvent::park(jlong millis) {
  5925   guarantee (_nParked == 0, "invariant") ;
  5926   int v ;
  5927   for (;;) {
  5928       v = _Event ;
  5929       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5931   guarantee (v >= 0, "invariant") ;
  5932   if (v != 0) return OS_OK ;
  5934   int ret = OS_TIMEOUT;
  5935   timestruc_t abst;
  5936   compute_abstime (&abst, millis);
  5938   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  5939   // For Solaris SPARC set fprs.FEF=0 prior to parking.
  5940   // Only for SPARC >= V8PlusA
  5941 #if defined(__sparc) && defined(COMPILER2)
  5942  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  5943 #endif
  5944   int status = os::Solaris::mutex_lock(_mutex);
  5945   assert_status(status == 0, status, "mutex_lock");
  5946   guarantee (_nParked == 0, "invariant") ;
  5947   ++ _nParked ;
  5948   while (_Event < 0) {
  5949      int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
  5950      assert_status(status == 0 || status == EINTR ||
  5951                    status == ETIME || status == ETIMEDOUT,
  5952                    status, "cond_timedwait");
  5953      if (!FilterSpuriousWakeups) break ;                // previous semantics
  5954      if (status == ETIME || status == ETIMEDOUT) break ;
  5955      // We consume and ignore EINTR and spurious wakeups.
  5957   -- _nParked ;
  5958   if (_Event >= 0) ret = OS_OK ;
  5959   _Event = 0 ;
  5960   status = os::Solaris::mutex_unlock(_mutex);
  5961   assert_status(status == 0, status, "mutex_unlock");
  5962   return ret;
  5965 void os::PlatformEvent::unpark() {
  5966   int v, AnyWaiters;
  5968   // Increment _Event.
  5969   // Another acceptable implementation would be to simply swap 1
  5970   // into _Event:
  5971   //   if (Swap (&_Event, 1) < 0) {
  5972   //      mutex_lock (_mutex) ; AnyWaiters = nParked; mutex_unlock (_mutex) ;
  5973   //      if (AnyWaiters) cond_signal (_cond) ;
  5974   //   }
  5976   for (;;) {
  5977     v = _Event ;
  5978     if (v > 0) {
  5979        // The LD of _Event could have reordered or be satisfied
  5980        // by a read-aside from this processor's write buffer.
  5981        // To avoid problems execute a barrier and then
  5982        // ratify the value.  A degenerate CAS() would also work.
  5983        // Viz., CAS (v+0, &_Event, v) == v).
  5984        OrderAccess::fence() ;
  5985        if (_Event == v) return ;
  5986        continue ;
  5988     if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  5991   // If the thread associated with the event was parked, wake it.
  5992   if (v < 0) {
  5993      int status ;
  5994      // Wait for the thread assoc with the PlatformEvent to vacate.
  5995      status = os::Solaris::mutex_lock(_mutex);
  5996      assert_status(status == 0, status, "mutex_lock");
  5997      AnyWaiters = _nParked ;
  5998      status = os::Solaris::mutex_unlock(_mutex);
  5999      assert_status(status == 0, status, "mutex_unlock");
  6000      guarantee (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  6001      if (AnyWaiters != 0) {
  6002        // We intentional signal *after* dropping the lock
  6003        // to avoid a common class of futile wakeups.
  6004        status = os::Solaris::cond_signal(_cond);
  6005        assert_status(status == 0, status, "cond_signal");
  6010 // JSR166
  6011 // -------------------------------------------------------
  6013 /*
  6014  * The solaris and linux implementations of park/unpark are fairly
  6015  * conservative for now, but can be improved. They currently use a
  6016  * mutex/condvar pair, plus _counter.
  6017  * Park decrements _counter if > 0, else does a condvar wait.  Unpark
  6018  * sets count to 1 and signals condvar.  Only one thread ever waits
  6019  * on the condvar. Contention seen when trying to park implies that someone
  6020  * is unparking you, so don't wait. And spurious returns are fine, so there
  6021  * is no need to track notifications.
  6022  */
  6024 #define NANOSECS_PER_SEC 1000000000
  6025 #define NANOSECS_PER_MILLISEC 1000000
  6026 #define MAX_SECS 100000000
  6028 /*
  6029  * This code is common to linux and solaris and will be moved to a
  6030  * common place in dolphin.
  6032  * The passed in time value is either a relative time in nanoseconds
  6033  * or an absolute time in milliseconds. Either way it has to be unpacked
  6034  * into suitable seconds and nanoseconds components and stored in the
  6035  * given timespec structure.
  6036  * Given time is a 64-bit value and the time_t used in the timespec is only
  6037  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6038  * overflow if times way in the future are given. Further on Solaris versions
  6039  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6040  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6041  * As it will be 28 years before "now + 100000000" will overflow we can
  6042  * ignore overflow and just impose a hard-limit on seconds using the value
  6043  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6044  * years from "now".
  6045  */
  6046 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6047   assert (time > 0, "convertTime");
  6049   struct timeval now;
  6050   int status = gettimeofday(&now, NULL);
  6051   assert(status == 0, "gettimeofday");
  6053   time_t max_secs = now.tv_sec + MAX_SECS;
  6055   if (isAbsolute) {
  6056     jlong secs = time / 1000;
  6057     if (secs > max_secs) {
  6058       absTime->tv_sec = max_secs;
  6060     else {
  6061       absTime->tv_sec = secs;
  6063     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6065   else {
  6066     jlong secs = time / NANOSECS_PER_SEC;
  6067     if (secs >= MAX_SECS) {
  6068       absTime->tv_sec = max_secs;
  6069       absTime->tv_nsec = 0;
  6071     else {
  6072       absTime->tv_sec = now.tv_sec + secs;
  6073       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6074       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6075         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6076         ++absTime->tv_sec; // note: this must be <= max_secs
  6080   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6081   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6082   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6083   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6086 void Parker::park(bool isAbsolute, jlong time) {
  6088   // Optional fast-path check:
  6089   // Return immediately if a permit is available.
  6090   if (_counter > 0) {
  6091       _counter = 0 ;
  6092       OrderAccess::fence();
  6093       return ;
  6096   // Optional fast-exit: Check interrupt before trying to wait
  6097   Thread* thread = Thread::current();
  6098   assert(thread->is_Java_thread(), "Must be JavaThread");
  6099   JavaThread *jt = (JavaThread *)thread;
  6100   if (Thread::is_interrupted(thread, false)) {
  6101     return;
  6104   // First, demultiplex/decode time arguments
  6105   timespec absTime;
  6106   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6107     return;
  6109   if (time > 0) {
  6110     // Warning: this code might be exposed to the old Solaris time
  6111     // round-down bugs.  Grep "roundingFix" for details.
  6112     unpackTime(&absTime, isAbsolute, time);
  6115   // Enter safepoint region
  6116   // Beware of deadlocks such as 6317397.
  6117   // The per-thread Parker:: _mutex is a classic leaf-lock.
  6118   // In particular a thread must never block on the Threads_lock while
  6119   // holding the Parker:: mutex.  If safepoints are pending both the
  6120   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6121   ThreadBlockInVM tbivm(jt);
  6123   // Don't wait if cannot get lock since interference arises from
  6124   // unblocking.  Also. check interrupt before trying wait
  6125   if (Thread::is_interrupted(thread, false) ||
  6126       os::Solaris::mutex_trylock(_mutex) != 0) {
  6127     return;
  6130   int status ;
  6132   if (_counter > 0)  { // no wait needed
  6133     _counter = 0;
  6134     status = os::Solaris::mutex_unlock(_mutex);
  6135     assert (status == 0, "invariant") ;
  6136     OrderAccess::fence();
  6137     return;
  6140 #ifdef ASSERT
  6141   // Don't catch signals while blocked; let the running threads have the signals.
  6142   // (This allows a debugger to break into the running thread.)
  6143   sigset_t oldsigs;
  6144   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
  6145   thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6146 #endif
  6148   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6149   jt->set_suspend_equivalent();
  6150   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6152   // Do this the hard way by blocking ...
  6153   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6154   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  6155   // Only for SPARC >= V8PlusA
  6156 #if defined(__sparc) && defined(COMPILER2)
  6157   if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6158 #endif
  6160   if (time == 0) {
  6161     status = os::Solaris::cond_wait (_cond, _mutex) ;
  6162   } else {
  6163     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
  6165   // Note that an untimed cond_wait() can sometimes return ETIME on older
  6166   // versions of the Solaris.
  6167   assert_status(status == 0 || status == EINTR ||
  6168                 status == ETIME || status == ETIMEDOUT,
  6169                 status, "cond_timedwait");
  6171 #ifdef ASSERT
  6172   thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
  6173 #endif
  6174   _counter = 0 ;
  6175   status = os::Solaris::mutex_unlock(_mutex);
  6176   assert_status(status == 0, status, "mutex_unlock") ;
  6178   // If externally suspended while waiting, re-suspend
  6179   if (jt->handle_special_suspend_equivalent_condition()) {
  6180     jt->java_suspend_self();
  6182   OrderAccess::fence();
  6185 void Parker::unpark() {
  6186   int s, status ;
  6187   status = os::Solaris::mutex_lock (_mutex) ;
  6188   assert (status == 0, "invariant") ;
  6189   s = _counter;
  6190   _counter = 1;
  6191   status = os::Solaris::mutex_unlock (_mutex) ;
  6192   assert (status == 0, "invariant") ;
  6194   if (s < 1) {
  6195     status = os::Solaris::cond_signal (_cond) ;
  6196     assert (status == 0, "invariant") ;
  6200 extern char** environ;
  6202 // Run the specified command in a separate process. Return its exit value,
  6203 // or -1 on failure (e.g. can't fork a new process).
  6204 // Unlike system(), this function can be called from signal handler. It
  6205 // doesn't block SIGINT et al.
  6206 int os::fork_and_exec(char* cmd) {
  6207   char * argv[4];
  6208   argv[0] = (char *)"sh";
  6209   argv[1] = (char *)"-c";
  6210   argv[2] = cmd;
  6211   argv[3] = NULL;
  6213   // fork is async-safe, fork1 is not so can't use in signal handler
  6214   pid_t pid;
  6215   Thread* t = ThreadLocalStorage::get_thread_slow();
  6216   if (t != NULL && t->is_inside_signal_handler()) {
  6217     pid = fork();
  6218   } else {
  6219     pid = fork1();
  6222   if (pid < 0) {
  6223     // fork failed
  6224     warning("fork failed: %s", strerror(errno));
  6225     return -1;
  6227   } else if (pid == 0) {
  6228     // child process
  6230     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
  6231     execve("/usr/bin/sh", argv, environ);
  6233     // execve failed
  6234     _exit(-1);
  6236   } else  {
  6237     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6238     // care about the actual exit code, for now.
  6240     int status;
  6242     // Wait for the child process to exit.  This returns immediately if
  6243     // the child has already exited. */
  6244     while (waitpid(pid, &status, 0) < 0) {
  6245         switch (errno) {
  6246         case ECHILD: return 0;
  6247         case EINTR: break;
  6248         default: return -1;
  6252     if (WIFEXITED(status)) {
  6253        // The child exited normally; get its exit code.
  6254        return WEXITSTATUS(status);
  6255     } else if (WIFSIGNALED(status)) {
  6256        // The child exited because of a signal
  6257        // The best value to return is 0x80 + signal number,
  6258        // because that is what all Unix shells do, and because
  6259        // it allows callers to distinguish between process exit and
  6260        // process death by signal.
  6261        return 0x80 + WTERMSIG(status);
  6262     } else {
  6263        // Unknown exit code; pass it through
  6264        return status;
  6269 // is_headless_jre()
  6270 //
  6271 // Test for the existence of libmawt in motif21 or xawt directories
  6272 // in order to report if we are running in a headless jre
  6273 //
  6274 bool os::is_headless_jre() {
  6275     struct stat statbuf;
  6276     char buf[MAXPATHLEN];
  6277     char libmawtpath[MAXPATHLEN];
  6278     const char *xawtstr  = "/xawt/libmawt.so";
  6279     const char *motifstr = "/motif21/libmawt.so";
  6280     char *p;
  6282     // Get path to libjvm.so
  6283     os::jvm_path(buf, sizeof(buf));
  6285     // Get rid of libjvm.so
  6286     p = strrchr(buf, '/');
  6287     if (p == NULL) return false;
  6288     else *p = '\0';
  6290     // Get rid of client or server
  6291     p = strrchr(buf, '/');
  6292     if (p == NULL) return false;
  6293     else *p = '\0';
  6295     // check xawt/libmawt.so
  6296     strcpy(libmawtpath, buf);
  6297     strcat(libmawtpath, xawtstr);
  6298     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6300     // check motif21/libmawt.so
  6301     strcpy(libmawtpath, buf);
  6302     strcat(libmawtpath, motifstr);
  6303     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6305     return true;
  6308 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
  6309   INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
  6312 int os::close(int fd) {
  6313   RESTARTABLE_RETURN_INT(::close(fd));
  6316 int os::socket_close(int fd) {
  6317   RESTARTABLE_RETURN_INT(::close(fd));
  6320 int os::recv(int fd, char *buf, int nBytes, int flags) {
  6321   INTERRUPTIBLE_RETURN_INT(::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6325 int os::send(int fd, char *buf, int nBytes, int flags) {
  6326   INTERRUPTIBLE_RETURN_INT(::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6329 int os::raw_send(int fd, char *buf, int nBytes, int flags) {
  6330   RESTARTABLE_RETURN_INT(::send(fd, buf, nBytes, flags));
  6333 // As both poll and select can be interrupted by signals, we have to be
  6334 // prepared to restart the system call after updating the timeout, unless
  6335 // a poll() is done with timeout == -1, in which case we repeat with this
  6336 // "wait forever" value.
  6338 int os::timeout(int fd, long timeout) {
  6339   int res;
  6340   struct timeval t;
  6341   julong prevtime, newtime;
  6342   static const char* aNull = 0;
  6343   struct pollfd pfd;
  6344   pfd.fd = fd;
  6345   pfd.events = POLLIN;
  6347   gettimeofday(&t, &aNull);
  6348   prevtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec / 1000;
  6350   for(;;) {
  6351     INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
  6352     if(res == OS_ERR && errno == EINTR) {
  6353         if(timeout != -1) {
  6354           gettimeofday(&t, &aNull);
  6355           newtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec /1000;
  6356           timeout -= newtime - prevtime;
  6357           if(timeout <= 0)
  6358             return OS_OK;
  6359           prevtime = newtime;
  6361     } else return res;
  6365 int os::connect(int fd, struct sockaddr *him, int len) {
  6366   int _result;
  6367   INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,
  6368                           os::Solaris::clear_interrupted);
  6370   // Depending on when thread interruption is reset, _result could be
  6371   // one of two values when errno == EINTR
  6373   if (((_result == OS_INTRPT) || (_result == OS_ERR))
  6374                                         && (errno == EINTR)) {
  6375      /* restarting a connect() changes its errno semantics */
  6376      INTERRUPTIBLE(::connect(fd, him, len), _result,
  6377                      os::Solaris::clear_interrupted);
  6378      /* undo these changes */
  6379      if (_result == OS_ERR) {
  6380        if (errno == EALREADY) {
  6381          errno = EINPROGRESS; /* fall through */
  6382        } else if (errno == EISCONN) {
  6383          errno = 0;
  6384          return OS_OK;
  6388    return _result;
  6391 int os::accept(int fd, struct sockaddr *him, int *len) {
  6392   if (fd < 0)
  6393    return OS_ERR;
  6394   INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him,\
  6395     (socklen_t*) len), os::Solaris::clear_interrupted);
  6398 int os::recvfrom(int fd, char *buf, int nBytes, int flags,
  6399                              sockaddr *from, int *fromlen) {
  6400    //%%note jvm_r11
  6401   INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes,\
  6402     flags, from, fromlen), os::Solaris::clear_interrupted);
  6405 int os::sendto(int fd, char *buf, int len, int flags,
  6406                            struct sockaddr *to, int tolen) {
  6407   //%%note jvm_r11
  6408   INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags,\
  6409     to, tolen), os::Solaris::clear_interrupted);
  6412 int os::socket_available(int fd, jint *pbytes) {
  6413    if (fd < 0)
  6414      return OS_OK;
  6416    int ret;
  6418    RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
  6420    //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  6421    // is expected to return 0 on failure and 1 on success to the jdk.
  6423    return (ret == OS_ERR) ? 0 : 1;
  6427 int os::bind(int fd, struct sockaddr *him, int len) {
  6428    INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
  6429      os::Solaris::clear_interrupted);

mercurial