src/cpu/sparc/vm/assembler_sparc.hpp

Fri, 07 Jan 2011 15:54:32 -0800

author
dcubed
date
Fri, 07 Jan 2011 15:54:32 -0800
changeset 2425
84f36150fcc3
parent 2399
7737fa7ec2b5
parent 2423
b1a2afa37ec4
child 2442
5ae3e3b03224
child 2447
5577848f5923
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
    26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
    28 class BiasedLockingCounters;
    30 // <sys/trap.h> promises that the system will not use traps 16-31
    31 #define ST_RESERVED_FOR_USER_0 0x10
    33 /* Written: David Ungar 4/19/97 */
    35 // Contains all the definitions needed for sparc assembly code generation.
    37 // Register aliases for parts of the system:
    39 // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
    40 // across context switches in V8+ ABI.  Of course, there are no 64 bit regs
    41 // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
    43 // g2-g4 are scratch registers called "application globals".  Their
    44 // meaning is reserved to the "compilation system"--which means us!
    45 // They are are not supposed to be touched by ordinary C code, although
    46 // highly-optimized C code might steal them for temps.  They are safe
    47 // across thread switches, and the ABI requires that they be safe
    48 // across function calls.
    49 //
    50 // g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
    51 // across func calls, and V8+ also allows g5 to be clobbered across
    52 // func calls.  Also, g1 and g5 can get touched while doing shared
    53 // library loading.
    54 //
    55 // We must not touch g7 (it is the thread-self register) and g6 is
    56 // reserved for certain tools.  g0, of course, is always zero.
    57 //
    58 // (Sources:  SunSoft Compilers Group, thread library engineers.)
    60 // %%%% The interpreter should be revisited to reduce global scratch regs.
    62 // This global always holds the current JavaThread pointer:
    64 REGISTER_DECLARATION(Register, G2_thread , G2);
    65 REGISTER_DECLARATION(Register, G6_heapbase , G6);
    67 // The following globals are part of the Java calling convention:
    69 REGISTER_DECLARATION(Register, G5_method             , G5);
    70 REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
    71 REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
    73 // The following globals are used for the new C1 & interpreter calling convention:
    74 REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
    76 // This local is used to preserve G2_thread in the interpreter and in stubs:
    77 REGISTER_DECLARATION(Register, L7_thread_cache , L7);
    79 // These globals are used as scratch registers in the interpreter:
    81 REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
    82 REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
    83 REGISTER_DECLARATION(Register, G3_scratch    , G3);
    84 REGISTER_DECLARATION(Register, G4_scratch    , G4);
    86 // These globals are used as short-lived scratch registers in the compiler:
    88 REGISTER_DECLARATION(Register, Gtemp  , G5);
    90 // JSR 292 fixed register usages:
    91 REGISTER_DECLARATION(Register, G5_method_type        , G5);
    92 REGISTER_DECLARATION(Register, G3_method_handle      , G3);
    93 REGISTER_DECLARATION(Register, L7_mh_SP_save         , L7);
    95 // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
    96 // because a single patchable "set" instruction (NativeMovConstReg,
    97 // or NativeMovConstPatching for compiler1) instruction
    98 // serves to set up either quantity, depending on whether the compiled
    99 // call site is an inline cache or is megamorphic.  See the function
   100 // CompiledIC::set_to_megamorphic.
   101 //
   102 // If a inline cache targets an interpreted method, then the
   103 // G5 register will be used twice during the call.  First,
   104 // the call site will be patched to load a compiledICHolder
   105 // into G5. (This is an ordered pair of ic_klass, method.)
   106 // The c2i adapter will first check the ic_klass, then load
   107 // G5_method with the method part of the pair just before
   108 // jumping into the interpreter.
   109 //
   110 // Note that G5_method is only the method-self for the interpreter,
   111 // and is logically unrelated to G5_megamorphic_method.
   112 //
   113 // Invariants on G2_thread (the JavaThread pointer):
   114 //  - it should not be used for any other purpose anywhere
   115 //  - it must be re-initialized by StubRoutines::call_stub()
   116 //  - it must be preserved around every use of call_VM
   118 // We can consider using g2/g3/g4 to cache more values than the
   119 // JavaThread, such as the card-marking base or perhaps pointers into
   120 // Eden.  It's something of a waste to use them as scratch temporaries,
   121 // since they are not supposed to be volatile.  (Of course, if we find
   122 // that Java doesn't benefit from application globals, then we can just
   123 // use them as ordinary temporaries.)
   124 //
   125 // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
   126 // it makes sense to use them routinely for procedure linkage,
   127 // whenever the On registers are not applicable.  Examples:  G5_method,
   128 // G5_inline_cache_klass, and a double handful of miscellaneous compiler
   129 // stubs.  This means that compiler stubs, etc., should be kept to a
   130 // maximum of two or three G-register arguments.
   133 // stub frames
   135 REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
   137 // Interpreter frames
   139 #ifdef CC_INTERP
   140 REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
   141 REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
   142 REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
   143 REGISTER_DECLARATION(Register, L2_scratch       , L2);
   144 REGISTER_DECLARATION(Register, L3_scratch       , L3);
   145 REGISTER_DECLARATION(Register, L4_scratch       , L4);
   146 REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
   147 REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
   148 REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
   149 REGISTER_DECLARATION(Register, O5_savedSP       , O5);
   150 REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
   151                                                        // a copy SP, so in 64-bit it's a biased value.  The bias
   152                                                        // is added and removed as needed in the frame code.
   153 // Interface to signature handler
   154 REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
   155 REGISTER_DECLARATION(Register, Lmethod          , L6); // methodOop when calling signature handler
   157 #else
   158 REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
   159 REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
   160 REGISTER_DECLARATION(Register, Lmethod          , L2);
   161 REGISTER_DECLARATION(Register, Llocals          , L3);
   162 REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
   163                                                        // must match Llocals in asm interpreter
   164 REGISTER_DECLARATION(Register, Lmonitors        , L4);
   165 REGISTER_DECLARATION(Register, Lbyte_code       , L5);
   166 // When calling out from the interpreter we record SP so that we can remove any extra stack
   167 // space allocated during adapter transitions. This register is only live from the point
   168 // of the call until we return.
   169 REGISTER_DECLARATION(Register, Llast_SP         , L5);
   170 REGISTER_DECLARATION(Register, Lscratch         , L5);
   171 REGISTER_DECLARATION(Register, Lscratch2        , L6);
   172 REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
   174 REGISTER_DECLARATION(Register, O5_savedSP       , O5);
   175 REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
   176                                                        // a copy SP, so in 64-bit it's a biased value.  The bias
   177                                                        // is added and removed as needed in the frame code.
   178 REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
   179 REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
   180 REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
   181 #endif /* CC_INTERP */
   183 // NOTE: Lscratch2 and LcpoolCache point to the same registers in
   184 //       the interpreter code. If Lscratch2 needs to be used for some
   185 //       purpose than LcpoolCache should be restore after that for
   186 //       the interpreter to work right
   187 // (These assignments must be compatible with L7_thread_cache; see above.)
   189 // Since Lbcp points into the middle of the method object,
   190 // it is temporarily converted into a "bcx" during GC.
   192 // Exception processing
   193 // These registers are passed into exception handlers.
   194 // All exception handlers require the exception object being thrown.
   195 // In addition, an nmethod's exception handler must be passed
   196 // the address of the call site within the nmethod, to allow
   197 // proper selection of the applicable catch block.
   198 // (Interpreter frames use their own bcp() for this purpose.)
   199 //
   200 // The Oissuing_pc value is not always needed.  When jumping to a
   201 // handler that is known to be interpreted, the Oissuing_pc value can be
   202 // omitted.  An actual catch block in compiled code receives (from its
   203 // nmethod's exception handler) the thrown exception in the Oexception,
   204 // but it doesn't need the Oissuing_pc.
   205 //
   206 // If an exception handler (either interpreted or compiled)
   207 // discovers there is no applicable catch block, it updates
   208 // the Oissuing_pc to the continuation PC of its own caller,
   209 // pops back to that caller's stack frame, and executes that
   210 // caller's exception handler.  Obviously, this process will
   211 // iterate until the control stack is popped back to a method
   212 // containing an applicable catch block.  A key invariant is
   213 // that the Oissuing_pc value is always a value local to
   214 // the method whose exception handler is currently executing.
   215 //
   216 // Note:  The issuing PC value is __not__ a raw return address (I7 value).
   217 // It is a "return pc", the address __following__ the call.
   218 // Raw return addresses are converted to issuing PCs by frame::pc(),
   219 // or by stubs.  Issuing PCs can be used directly with PC range tables.
   220 //
   221 REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
   222 REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
   225 // These must occur after the declarations above
   226 #ifndef DONT_USE_REGISTER_DEFINES
   228 #define Gthread             AS_REGISTER(Register, Gthread)
   229 #define Gmethod             AS_REGISTER(Register, Gmethod)
   230 #define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
   231 #define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
   232 #define Gargs               AS_REGISTER(Register, Gargs)
   233 #define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
   234 #define Gframe_size         AS_REGISTER(Register, Gframe_size)
   235 #define Gtemp               AS_REGISTER(Register, Gtemp)
   237 #ifdef CC_INTERP
   238 #define Lstate              AS_REGISTER(Register, Lstate)
   239 #define Lesp                AS_REGISTER(Register, Lesp)
   240 #define L1_scratch          AS_REGISTER(Register, L1_scratch)
   241 #define Lmirror             AS_REGISTER(Register, Lmirror)
   242 #define L2_scratch          AS_REGISTER(Register, L2_scratch)
   243 #define L3_scratch          AS_REGISTER(Register, L3_scratch)
   244 #define L4_scratch          AS_REGISTER(Register, L4_scratch)
   245 #define Lscratch            AS_REGISTER(Register, Lscratch)
   246 #define Lscratch2           AS_REGISTER(Register, Lscratch2)
   247 #define L7_scratch          AS_REGISTER(Register, L7_scratch)
   248 #define Ostate              AS_REGISTER(Register, Ostate)
   249 #else
   250 #define Lesp                AS_REGISTER(Register, Lesp)
   251 #define Lbcp                AS_REGISTER(Register, Lbcp)
   252 #define Lmethod             AS_REGISTER(Register, Lmethod)
   253 #define Llocals             AS_REGISTER(Register, Llocals)
   254 #define Lmonitors           AS_REGISTER(Register, Lmonitors)
   255 #define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
   256 #define Lscratch            AS_REGISTER(Register, Lscratch)
   257 #define Lscratch2           AS_REGISTER(Register, Lscratch2)
   258 #define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
   259 #endif /* ! CC_INTERP */
   261 #define Lentry_args         AS_REGISTER(Register, Lentry_args)
   262 #define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
   263 #define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
   264 #define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
   265 #define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
   266 #define IdispatchTables     AS_REGISTER(Register, IdispatchTables)
   268 #define Oexception          AS_REGISTER(Register, Oexception)
   269 #define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
   272 #endif
   274 // Address is an abstraction used to represent a memory location.
   275 //
   276 // Note: A register location is represented via a Register, not
   277 //       via an address for efficiency & simplicity reasons.
   279 class Address VALUE_OBJ_CLASS_SPEC {
   280  private:
   281   Register           _base;           // Base register.
   282   RegisterOrConstant _index_or_disp;  // Index register or constant displacement.
   283   RelocationHolder   _rspec;
   285  public:
   286   Address() : _base(noreg), _index_or_disp(noreg) {}
   288   Address(Register base, RegisterOrConstant index_or_disp)
   289     : _base(base),
   290       _index_or_disp(index_or_disp) {
   291   }
   293   Address(Register base, Register index)
   294     : _base(base),
   295       _index_or_disp(index) {
   296   }
   298   Address(Register base, int disp)
   299     : _base(base),
   300       _index_or_disp(disp) {
   301   }
   303 #ifdef ASSERT
   304   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   305   Address(Register base, ByteSize disp)
   306     : _base(base),
   307       _index_or_disp(in_bytes(disp)) {
   308   }
   309 #endif
   311   // accessors
   312   Register base()      const { return _base; }
   313   Register index()     const { return _index_or_disp.as_register(); }
   314   int      disp()      const { return _index_or_disp.as_constant(); }
   316   bool     has_index() const { return _index_or_disp.is_register(); }
   317   bool     has_disp()  const { return _index_or_disp.is_constant(); }
   319   const relocInfo::relocType rtype() { return _rspec.type(); }
   320   const RelocationHolder&    rspec() { return _rspec; }
   322   RelocationHolder rspec(int offset) const {
   323     return offset == 0 ? _rspec : _rspec.plus(offset);
   324   }
   326   inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
   328   Address plus_disp(int plusdisp) const {     // bump disp by a small amount
   329     assert(_index_or_disp.is_constant(), "must have a displacement");
   330     Address a(base(), disp() + plusdisp);
   331     return a;
   332   }
   334   Address after_save() const {
   335     Address a = (*this);
   336     a._base = a._base->after_save();
   337     return a;
   338   }
   340   Address after_restore() const {
   341     Address a = (*this);
   342     a._base = a._base->after_restore();
   343     return a;
   344   }
   346   // Convert the raw encoding form into the form expected by the
   347   // constructor for Address.
   348   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
   350   friend class Assembler;
   351 };
   354 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   355  private:
   356   address          _address;
   357   RelocationHolder _rspec;
   359   RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
   360     switch (rtype) {
   361     case relocInfo::external_word_type:
   362       return external_word_Relocation::spec(addr);
   363     case relocInfo::internal_word_type:
   364       return internal_word_Relocation::spec(addr);
   365 #ifdef _LP64
   366     case relocInfo::opt_virtual_call_type:
   367       return opt_virtual_call_Relocation::spec();
   368     case relocInfo::static_call_type:
   369       return static_call_Relocation::spec();
   370     case relocInfo::runtime_call_type:
   371       return runtime_call_Relocation::spec();
   372 #endif
   373     case relocInfo::none:
   374       return RelocationHolder();
   375     default:
   376       ShouldNotReachHere();
   377       return RelocationHolder();
   378     }
   379   }
   381  protected:
   382   // creation
   383   AddressLiteral() : _address(NULL), _rspec(NULL) {}
   385  public:
   386   AddressLiteral(address addr, RelocationHolder const& rspec)
   387     : _address(addr),
   388       _rspec(rspec) {}
   390   // Some constructors to avoid casting at the call site.
   391   AddressLiteral(jobject obj, RelocationHolder const& rspec)
   392     : _address((address) obj),
   393       _rspec(rspec) {}
   395   AddressLiteral(intptr_t value, RelocationHolder const& rspec)
   396     : _address((address) value),
   397       _rspec(rspec) {}
   399   AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
   400     : _address((address) addr),
   401     _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   403   // Some constructors to avoid casting at the call site.
   404   AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
   405     : _address((address) addr),
   406     _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   408   AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
   409     : _address((address) addr),
   410       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   412   AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
   413     : _address((address) addr),
   414       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   416   AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
   417     : _address((address) addr),
   418       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   420   AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
   421     : _address((address) addr),
   422       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   424   AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
   425     : _address((address) addr),
   426       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   428 #ifdef _LP64
   429   // 32-bit complains about a multiple declaration for int*.
   430   AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
   431     : _address((address) addr),
   432       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   433 #endif
   435   AddressLiteral(oop addr, relocInfo::relocType rtype = relocInfo::none)
   436     : _address((address) addr),
   437       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   439   AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
   440     : _address((address) addr),
   441       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   443   AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
   444     : _address((address) addr),
   445       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   447   intptr_t value() const { return (intptr_t) _address; }
   448   int      low10() const;
   450   const relocInfo::relocType rtype() const { return _rspec.type(); }
   451   const RelocationHolder&    rspec() const { return _rspec; }
   453   RelocationHolder rspec(int offset) const {
   454     return offset == 0 ? _rspec : _rspec.plus(offset);
   455   }
   456 };
   459 inline Address RegisterImpl::address_in_saved_window() const {
   460    return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
   461 }
   465 // Argument is an abstraction used to represent an outgoing
   466 // actual argument or an incoming formal parameter, whether
   467 // it resides in memory or in a register, in a manner consistent
   468 // with the SPARC Application Binary Interface, or ABI.  This is
   469 // often referred to as the native or C calling convention.
   471 class Argument VALUE_OBJ_CLASS_SPEC {
   472  private:
   473   int _number;
   474   bool _is_in;
   476  public:
   477 #ifdef _LP64
   478   enum {
   479     n_register_parameters = 6,          // only 6 registers may contain integer parameters
   480     n_float_register_parameters = 16    // Can have up to 16 floating registers
   481   };
   482 #else
   483   enum {
   484     n_register_parameters = 6           // only 6 registers may contain integer parameters
   485   };
   486 #endif
   488   // creation
   489   Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
   491   int  number() const  { return _number;  }
   492   bool is_in()  const  { return _is_in;   }
   493   bool is_out() const  { return !is_in(); }
   495   Argument successor() const  { return Argument(number() + 1, is_in()); }
   496   Argument as_in()     const  { return Argument(number(), true ); }
   497   Argument as_out()    const  { return Argument(number(), false); }
   499   // locating register-based arguments:
   500   bool is_register() const { return _number < n_register_parameters; }
   502 #ifdef _LP64
   503   // locating Floating Point register-based arguments:
   504   bool is_float_register() const { return _number < n_float_register_parameters; }
   506   FloatRegister as_float_register() const {
   507     assert(is_float_register(), "must be a register argument");
   508     return as_FloatRegister(( number() *2 ) + 1);
   509   }
   510   FloatRegister as_double_register() const {
   511     assert(is_float_register(), "must be a register argument");
   512     return as_FloatRegister(( number() *2 ));
   513   }
   514 #endif
   516   Register as_register() const {
   517     assert(is_register(), "must be a register argument");
   518     return is_in() ? as_iRegister(number()) : as_oRegister(number());
   519   }
   521   // locating memory-based arguments
   522   Address as_address() const {
   523     assert(!is_register(), "must be a memory argument");
   524     return address_in_frame();
   525   }
   527   // When applied to a register-based argument, give the corresponding address
   528   // into the 6-word area "into which callee may store register arguments"
   529   // (This is a different place than the corresponding register-save area location.)
   530   Address address_in_frame() const;
   532   // debugging
   533   const char* name() const;
   535   friend class Assembler;
   536 };
   539 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
   540 // level; i.e., what you write
   541 // is what you get. The Assembler is generating code into a CodeBuffer.
   543 class Assembler : public AbstractAssembler  {
   544  protected:
   546   static void print_instruction(int inst);
   547   static int  patched_branch(int dest_pos, int inst, int inst_pos);
   548   static int  branch_destination(int inst, int pos);
   551   friend class AbstractAssembler;
   552   friend class AddressLiteral;
   554   // code patchers need various routines like inv_wdisp()
   555   friend class NativeInstruction;
   556   friend class NativeGeneralJump;
   557   friend class Relocation;
   558   friend class Label;
   560  public:
   561   // op carries format info; see page 62 & 267
   563   enum ops {
   564     call_op   = 1, // fmt 1
   565     branch_op = 0, // also sethi (fmt2)
   566     arith_op  = 2, // fmt 3, arith & misc
   567     ldst_op   = 3  // fmt 3, load/store
   568   };
   570   enum op2s {
   571     bpr_op2   = 3,
   572     fb_op2    = 6,
   573     fbp_op2   = 5,
   574     br_op2    = 2,
   575     bp_op2    = 1,
   576     cb_op2    = 7, // V8
   577     sethi_op2 = 4
   578   };
   580   enum op3s {
   581     // selected op3s
   582     add_op3      = 0x00,
   583     and_op3      = 0x01,
   584     or_op3       = 0x02,
   585     xor_op3      = 0x03,
   586     sub_op3      = 0x04,
   587     andn_op3     = 0x05,
   588     orn_op3      = 0x06,
   589     xnor_op3     = 0x07,
   590     addc_op3     = 0x08,
   591     mulx_op3     = 0x09,
   592     umul_op3     = 0x0a,
   593     smul_op3     = 0x0b,
   594     subc_op3     = 0x0c,
   595     udivx_op3    = 0x0d,
   596     udiv_op3     = 0x0e,
   597     sdiv_op3     = 0x0f,
   599     addcc_op3    = 0x10,
   600     andcc_op3    = 0x11,
   601     orcc_op3     = 0x12,
   602     xorcc_op3    = 0x13,
   603     subcc_op3    = 0x14,
   604     andncc_op3   = 0x15,
   605     orncc_op3    = 0x16,
   606     xnorcc_op3   = 0x17,
   607     addccc_op3   = 0x18,
   608     umulcc_op3   = 0x1a,
   609     smulcc_op3   = 0x1b,
   610     subccc_op3   = 0x1c,
   611     udivcc_op3   = 0x1e,
   612     sdivcc_op3   = 0x1f,
   614     taddcc_op3   = 0x20,
   615     tsubcc_op3   = 0x21,
   616     taddcctv_op3 = 0x22,
   617     tsubcctv_op3 = 0x23,
   618     mulscc_op3   = 0x24,
   619     sll_op3      = 0x25,
   620     sllx_op3     = 0x25,
   621     srl_op3      = 0x26,
   622     srlx_op3     = 0x26,
   623     sra_op3      = 0x27,
   624     srax_op3     = 0x27,
   625     rdreg_op3    = 0x28,
   626     membar_op3   = 0x28,
   628     flushw_op3   = 0x2b,
   629     movcc_op3    = 0x2c,
   630     sdivx_op3    = 0x2d,
   631     popc_op3     = 0x2e,
   632     movr_op3     = 0x2f,
   634     sir_op3      = 0x30,
   635     wrreg_op3    = 0x30,
   636     saved_op3    = 0x31,
   638     fpop1_op3    = 0x34,
   639     fpop2_op3    = 0x35,
   640     impdep1_op3  = 0x36,
   641     impdep2_op3  = 0x37,
   642     jmpl_op3     = 0x38,
   643     rett_op3     = 0x39,
   644     trap_op3     = 0x3a,
   645     flush_op3    = 0x3b,
   646     save_op3     = 0x3c,
   647     restore_op3  = 0x3d,
   648     done_op3     = 0x3e,
   649     retry_op3    = 0x3e,
   651     lduw_op3     = 0x00,
   652     ldub_op3     = 0x01,
   653     lduh_op3     = 0x02,
   654     ldd_op3      = 0x03,
   655     stw_op3      = 0x04,
   656     stb_op3      = 0x05,
   657     sth_op3      = 0x06,
   658     std_op3      = 0x07,
   659     ldsw_op3     = 0x08,
   660     ldsb_op3     = 0x09,
   661     ldsh_op3     = 0x0a,
   662     ldx_op3      = 0x0b,
   664     ldstub_op3   = 0x0d,
   665     stx_op3      = 0x0e,
   666     swap_op3     = 0x0f,
   668     stwa_op3     = 0x14,
   669     stxa_op3     = 0x1e,
   671     ldf_op3      = 0x20,
   672     ldfsr_op3    = 0x21,
   673     ldqf_op3     = 0x22,
   674     lddf_op3     = 0x23,
   675     stf_op3      = 0x24,
   676     stfsr_op3    = 0x25,
   677     stqf_op3     = 0x26,
   678     stdf_op3     = 0x27,
   680     prefetch_op3 = 0x2d,
   683     ldc_op3      = 0x30,
   684     ldcsr_op3    = 0x31,
   685     lddc_op3     = 0x33,
   686     stc_op3      = 0x34,
   687     stcsr_op3    = 0x35,
   688     stdcq_op3    = 0x36,
   689     stdc_op3     = 0x37,
   691     casa_op3     = 0x3c,
   692     casxa_op3    = 0x3e,
   694     alt_bit_op3  = 0x10,
   695      cc_bit_op3  = 0x10
   696   };
   698   enum opfs {
   699     // selected opfs
   700     fmovs_opf   = 0x01,
   701     fmovd_opf   = 0x02,
   703     fnegs_opf   = 0x05,
   704     fnegd_opf   = 0x06,
   706     fadds_opf   = 0x41,
   707     faddd_opf   = 0x42,
   708     fsubs_opf   = 0x45,
   709     fsubd_opf   = 0x46,
   711     fmuls_opf   = 0x49,
   712     fmuld_opf   = 0x4a,
   713     fdivs_opf   = 0x4d,
   714     fdivd_opf   = 0x4e,
   716     fcmps_opf   = 0x51,
   717     fcmpd_opf   = 0x52,
   719     fstox_opf   = 0x81,
   720     fdtox_opf   = 0x82,
   721     fxtos_opf   = 0x84,
   722     fxtod_opf   = 0x88,
   723     fitos_opf   = 0xc4,
   724     fdtos_opf   = 0xc6,
   725     fitod_opf   = 0xc8,
   726     fstod_opf   = 0xc9,
   727     fstoi_opf   = 0xd1,
   728     fdtoi_opf   = 0xd2
   729   };
   731   enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7  };
   733   enum Condition {
   734      // for FBfcc & FBPfcc instruction
   735     f_never                     = 0,
   736     f_notEqual                  = 1,
   737     f_notZero                   = 1,
   738     f_lessOrGreater             = 2,
   739     f_unorderedOrLess           = 3,
   740     f_less                      = 4,
   741     f_unorderedOrGreater        = 5,
   742     f_greater                   = 6,
   743     f_unordered                 = 7,
   744     f_always                    = 8,
   745     f_equal                     = 9,
   746     f_zero                      = 9,
   747     f_unorderedOrEqual          = 10,
   748     f_greaterOrEqual            = 11,
   749     f_unorderedOrGreaterOrEqual = 12,
   750     f_lessOrEqual               = 13,
   751     f_unorderedOrLessOrEqual    = 14,
   752     f_ordered                   = 15,
   754     // V8 coproc, pp 123 v8 manual
   756     cp_always  = 8,
   757     cp_never   = 0,
   758     cp_3       = 7,
   759     cp_2       = 6,
   760     cp_2or3    = 5,
   761     cp_1       = 4,
   762     cp_1or3    = 3,
   763     cp_1or2    = 2,
   764     cp_1or2or3 = 1,
   765     cp_0       = 9,
   766     cp_0or3    = 10,
   767     cp_0or2    = 11,
   768     cp_0or2or3 = 12,
   769     cp_0or1    = 13,
   770     cp_0or1or3 = 14,
   771     cp_0or1or2 = 15,
   774     // for integers
   776     never                 =  0,
   777     equal                 =  1,
   778     zero                  =  1,
   779     lessEqual             =  2,
   780     less                  =  3,
   781     lessEqualUnsigned     =  4,
   782     lessUnsigned          =  5,
   783     carrySet              =  5,
   784     negative              =  6,
   785     overflowSet           =  7,
   786     always                =  8,
   787     notEqual              =  9,
   788     notZero               =  9,
   789     greater               =  10,
   790     greaterEqual          =  11,
   791     greaterUnsigned       =  12,
   792     greaterEqualUnsigned  =  13,
   793     carryClear            =  13,
   794     positive              =  14,
   795     overflowClear         =  15
   796   };
   798   enum CC {
   799     icc  = 0,  xcc  = 2,
   800     // ptr_cc is the correct condition code for a pointer or intptr_t:
   801     ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
   802     fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
   803   };
   805   enum PrefetchFcn {
   806     severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
   807   };
   809  public:
   810   // Helper functions for groups of instructions
   812   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
   814   enum Membar_mask_bits { // page 184, v9
   815     StoreStore = 1 << 3,
   816     LoadStore  = 1 << 2,
   817     StoreLoad  = 1 << 1,
   818     LoadLoad   = 1 << 0,
   820     Sync       = 1 << 6,
   821     MemIssue   = 1 << 5,
   822     Lookaside  = 1 << 4
   823   };
   825   // test if x is within signed immediate range for nbits
   826   static bool is_simm(int x, int nbits) { return -( 1 << nbits-1 )  <= x   &&   x  <  ( 1 << nbits-1 ); }
   828   // test if -4096 <= x <= 4095
   829   static bool is_simm13(int x) { return is_simm(x, 13); }
   831   // test if label is in simm16 range in words (wdisp16).
   832   bool is_in_wdisp16_range(Label& L) {
   833     intptr_t d = intptr_t(pc()) - intptr_t(target(L));
   834     return is_simm(d, 18);
   835   }
   837   enum ASIs { // page 72, v9
   838     ASI_PRIMARY        = 0x80,
   839     ASI_PRIMARY_LITTLE = 0x88
   840     // add more from book as needed
   841   };
   843  protected:
   844   // helpers
   846   // x is supposed to fit in a field "nbits" wide
   847   // and be sign-extended. Check the range.
   849   static void assert_signed_range(intptr_t x, int nbits) {
   850     assert( nbits == 32
   851         ||  -(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1),
   852       "value out of range");
   853   }
   855   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
   856     assert( (x & 3) == 0, "not word aligned");
   857     assert_signed_range(x, nbits + 2);
   858   }
   860   static void assert_unsigned_const(int x, int nbits) {
   861     assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
   862   }
   864   // fields: note bits numbered from LSB = 0,
   865   //  fields known by inclusive bit range
   867   static int fmask(juint hi_bit, juint lo_bit) {
   868     assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
   869     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
   870   }
   872   // inverse of u_field
   874   static int inv_u_field(int x, int hi_bit, int lo_bit) {
   875     juint r = juint(x) >> lo_bit;
   876     r &= fmask( hi_bit, lo_bit);
   877     return int(r);
   878   }
   881   // signed version: extract from field and sign-extend
   883   static int inv_s_field(int x, int hi_bit, int lo_bit) {
   884     int sign_shift = 31 - hi_bit;
   885     return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
   886   }
   888   // given a field that ranges from hi_bit to lo_bit (inclusive,
   889   // LSB = 0), and an unsigned value for the field,
   890   // shift it into the field
   892 #ifdef ASSERT
   893   static int u_field(int x, int hi_bit, int lo_bit) {
   894     assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
   895             "value out of range");
   896     int r = x << lo_bit;
   897     assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
   898     return r;
   899   }
   900 #else
   901   // make sure this is inlined as it will reduce code size significantly
   902   #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
   903 #endif
   905   static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
   906   static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
   907   static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
   908   static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
   910   static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
   912   static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
   913   static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
   914   static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }
   916   static int op(       int         x)  { return  u_field(x,             31, 30); }
   917   static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
   918   static int fcn(      int         x)  { return  u_field(x,             29, 25); }
   919   static int op3(      int         x)  { return  u_field(x,             24, 19); }
   920   static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
   921   static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
   922   static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
   923   static int cond(     int         x)  { return  u_field(x,             28, 25); }
   924   static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
   925   static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
   926   static int op2(      int         x)  { return  u_field(x,             24, 22); }
   927   static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
   928   static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
   929   static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
   930   static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
   931   static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
   932   static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
   933   static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
   934   static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
   935   static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
   936   static int opf(      int         x)  { return  u_field(x,             13,  5); }
   938   static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
   939   static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }
   941   static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
   942   static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
   943   static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };
   945   // some float instructions use this encoding on the op3 field
   946   static int alt_op3(int op, FloatRegisterImpl::Width w) {
   947     int r;
   948     switch(w) {
   949      case FloatRegisterImpl::S: r = op + 0;  break;
   950      case FloatRegisterImpl::D: r = op + 3;  break;
   951      case FloatRegisterImpl::Q: r = op + 2;  break;
   952      default: ShouldNotReachHere(); break;
   953     }
   954     return op3(r);
   955   }
   958   // compute inverse of simm
   959   static int inv_simm(int x, int nbits) {
   960     return (int)(x << (32 - nbits)) >> (32 - nbits);
   961   }
   963   static int inv_simm13( int x ) { return inv_simm(x, 13); }
   965   // signed immediate, in low bits, nbits long
   966   static int simm(int x, int nbits) {
   967     assert_signed_range(x, nbits);
   968     return x  &  (( 1 << nbits ) - 1);
   969   }
   971   // compute inverse of wdisp16
   972   static intptr_t inv_wdisp16(int x, intptr_t pos) {
   973     int lo = x & (( 1 << 14 ) - 1);
   974     int hi = (x >> 20) & 3;
   975     if (hi >= 2) hi |= ~1;
   976     return (((hi << 14) | lo) << 2) + pos;
   977   }
   979   // word offset, 14 bits at LSend, 2 bits at B21, B20
   980   static int wdisp16(intptr_t x, intptr_t off) {
   981     intptr_t xx = x - off;
   982     assert_signed_word_disp_range(xx, 16);
   983     int r =  (xx >> 2) & ((1 << 14) - 1)
   984            |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
   985     assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
   986     return r;
   987   }
   990   // word displacement in low-order nbits bits
   992   static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
   993     int pre_sign_extend = x & (( 1 << nbits ) - 1);
   994     int r =  pre_sign_extend >= ( 1 << (nbits-1) )
   995        ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
   996        :   pre_sign_extend;
   997     return (r << 2) + pos;
   998   }
  1000   static int wdisp( intptr_t x, intptr_t off, int nbits ) {
  1001     intptr_t xx = x - off;
  1002     assert_signed_word_disp_range(xx, nbits);
  1003     int r =  (xx >> 2) & (( 1 << nbits ) - 1);
  1004     assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
  1005     return r;
  1009   // Extract the top 32 bits in a 64 bit word
  1010   static int32_t hi32( int64_t x ) {
  1011     int32_t r = int32_t( (uint64_t)x >> 32 );
  1012     return r;
  1015   // given a sethi instruction, extract the constant, left-justified
  1016   static int inv_hi22( int x ) {
  1017     return x << 10;
  1020   // create an imm22 field, given a 32-bit left-justified constant
  1021   static int hi22( int x ) {
  1022     int r = int( juint(x) >> 10 );
  1023     assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
  1024     return r;
  1027   // create a low10 __value__ (not a field) for a given a 32-bit constant
  1028   static int low10( int x ) {
  1029     return x & ((1 << 10) - 1);
  1032   // instruction only in v9
  1033   static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
  1035   // instruction only in v8
  1036   static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
  1038   // instruction deprecated in v9
  1039   static void v9_dep()  { } // do nothing for now
  1041   // some float instructions only exist for single prec. on v8
  1042   static void v8_s_only(FloatRegisterImpl::Width w)  { if (w != FloatRegisterImpl::S)  v9_only(); }
  1044   // v8 has no CC field
  1045   static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }
  1047  protected:
  1048   // Simple delay-slot scheme:
  1049   // In order to check the programmer, the assembler keeps track of deley slots.
  1050   // It forbids CTIs in delay slots (conservative, but should be OK).
  1051   // Also, when putting an instruction into a delay slot, you must say
  1052   // asm->delayed()->add(...), in order to check that you don't omit
  1053   // delay-slot instructions.
  1054   // To implement this, we use a simple FSA
  1056 #ifdef ASSERT
  1057   #define CHECK_DELAY
  1058 #endif
  1059 #ifdef CHECK_DELAY
  1060   enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
  1061 #endif
  1063  public:
  1064   // Tells assembler next instruction must NOT be in delay slot.
  1065   // Use at start of multinstruction macros.
  1066   void assert_not_delayed() {
  1067     // This is a separate overloading to avoid creation of string constants
  1068     // in non-asserted code--with some compilers this pollutes the object code.
  1069 #ifdef CHECK_DELAY
  1070     assert_not_delayed("next instruction should not be a delay slot");
  1071 #endif
  1073   void assert_not_delayed(const char* msg) {
  1074 #ifdef CHECK_DELAY
  1075     assert(delay_state == no_delay, msg);
  1076 #endif
  1079  protected:
  1080   // Delay slot helpers
  1081   // cti is called when emitting control-transfer instruction,
  1082   // BEFORE doing the emitting.
  1083   // Only effective when assertion-checking is enabled.
  1084   void cti() {
  1085 #ifdef CHECK_DELAY
  1086     assert_not_delayed("cti should not be in delay slot");
  1087 #endif
  1090   // called when emitting cti with a delay slot, AFTER emitting
  1091   void has_delay_slot() {
  1092 #ifdef CHECK_DELAY
  1093     assert_not_delayed("just checking");
  1094     delay_state = at_delay_slot;
  1095 #endif
  1098 public:
  1099   // Tells assembler you know that next instruction is delayed
  1100   Assembler* delayed() {
  1101 #ifdef CHECK_DELAY
  1102     assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
  1103     delay_state = filling_delay_slot;
  1104 #endif
  1105     return this;
  1108   void flush() {
  1109 #ifdef CHECK_DELAY
  1110     assert ( delay_state == no_delay, "ending code with a delay slot");
  1111 #endif
  1112     AbstractAssembler::flush();
  1115   inline void emit_long(int);  // shadows AbstractAssembler::emit_long
  1116   inline void emit_data(int x) { emit_long(x); }
  1117   inline void emit_data(int, RelocationHolder const&);
  1118   inline void emit_data(int, relocInfo::relocType rtype);
  1119   // helper for above fcns
  1120   inline void check_delay();
  1123  public:
  1124   // instructions, refer to page numbers in the SPARC Architecture Manual, V9
  1126   // pp 135 (addc was addx in v8)
  1128   inline void add(Register s1, Register s2, Register d );
  1129   inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
  1130   inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
  1131   inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
  1132   inline void add(const Address& a, Register d, int offset = 0);
  1134   void addcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1135   void addcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1136   void addc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
  1137   void addc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1138   void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1139   void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1141   // pp 136
  1143   inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
  1144   inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);
  1146  protected: // use MacroAssembler::br instead
  1148   // pp 138
  1150   inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
  1151   inline void fb( Condition c, bool a, Label& L );
  1153   // pp 141
  1155   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1156   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
  1158  public:
  1160   // pp 144
  1162   inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
  1163   inline void br( Condition c, bool a, Label& L );
  1165   // pp 146
  1167   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1168   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
  1170   // pp 121 (V8)
  1172   inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
  1173   inline void cb( Condition c, bool a, Label& L );
  1175   // pp 149
  1177   inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
  1178   inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
  1180   // pp 150
  1182   // These instructions compare the contents of s2 with the contents of
  1183   // memory at address in s1. If the values are equal, the contents of memory
  1184   // at address s1 is swapped with the data in d. If the values are not equal,
  1185   // the the contents of memory at s1 is loaded into d, without the swap.
  1187   void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
  1188   void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
  1190   // pp 152
  1192   void udiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
  1193   void udiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1194   void sdiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
  1195   void sdiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1196   void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
  1197   void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1198   void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
  1199   void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1201   // pp 155
  1203   void done()  { v9_only();  cti();  emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
  1204   void retry() { v9_only();  cti();  emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
  1206   // pp 156
  1208   void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
  1209   void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
  1211   // pp 157
  1213   void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
  1214   void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
  1216   // pp 159
  1218   void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
  1219   void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
  1221   // pp 160
  1223   void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
  1225   // pp 161
  1227   void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
  1228   void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }
  1230   // pp 162
  1232   void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
  1234   void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
  1236   // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
  1237   // on v8 to do negation of single, double and quad precision floats.
  1239   void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) |  opf(0x05) | fs2(sd, w)); }
  1241   void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
  1243   // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
  1244   // on v8 to do abs operation on single/double/quad precision floats.
  1246   void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
  1248   // pp 163
  1250   void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
  1251   void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
  1252   void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }
  1254   // pp 164
  1256   void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
  1258   // pp 165
  1260   inline void flush( Register s1, Register s2 );
  1261   inline void flush( Register s1, int simm13a);
  1263   // pp 167
  1265   void flushw() { v9_only();  emit_long( op(arith_op) | op3(flushw_op3) ); }
  1267   // pp 168
  1269   void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
  1270   // v8 unimp == illtrap(0)
  1272   // pp 169
  1274   void impdep1( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
  1275   void impdep2( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
  1277   // pp 149 (v8)
  1279   void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
  1280   void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
  1282   // pp 170
  1284   void jmpl( Register s1, Register s2, Register d );
  1285   void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1287   // 171
  1289   inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
  1290   inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
  1291   inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
  1293   inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
  1296   inline void ldfsr(  Register s1, Register s2 );
  1297   inline void ldfsr(  Register s1, int simm13a);
  1298   inline void ldxfsr( Register s1, Register s2 );
  1299   inline void ldxfsr( Register s1, int simm13a);
  1301   // pp 94 (v8)
  1303   inline void ldc(   Register s1, Register s2, int crd );
  1304   inline void ldc(   Register s1, int simm13a, int crd);
  1305   inline void lddc(  Register s1, Register s2, int crd );
  1306   inline void lddc(  Register s1, int simm13a, int crd);
  1307   inline void ldcsr( Register s1, Register s2, int crd );
  1308   inline void ldcsr( Register s1, int simm13a, int crd);
  1311   // 173
  1313   void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1314   void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1316   // pp 175, lduw is ld on v8
  1318   inline void ldsb(  Register s1, Register s2, Register d );
  1319   inline void ldsb(  Register s1, int simm13a, Register d);
  1320   inline void ldsh(  Register s1, Register s2, Register d );
  1321   inline void ldsh(  Register s1, int simm13a, Register d);
  1322   inline void ldsw(  Register s1, Register s2, Register d );
  1323   inline void ldsw(  Register s1, int simm13a, Register d);
  1324   inline void ldub(  Register s1, Register s2, Register d );
  1325   inline void ldub(  Register s1, int simm13a, Register d);
  1326   inline void lduh(  Register s1, Register s2, Register d );
  1327   inline void lduh(  Register s1, int simm13a, Register d);
  1328   inline void lduw(  Register s1, Register s2, Register d );
  1329   inline void lduw(  Register s1, int simm13a, Register d);
  1330   inline void ldx(   Register s1, Register s2, Register d );
  1331   inline void ldx(   Register s1, int simm13a, Register d);
  1332   inline void ld(    Register s1, Register s2, Register d );
  1333   inline void ld(    Register s1, int simm13a, Register d);
  1334   inline void ldd(   Register s1, Register s2, Register d );
  1335   inline void ldd(   Register s1, int simm13a, Register d);
  1337 #ifdef ASSERT
  1338   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
  1339   inline void ld(    Register s1, ByteSize simm13a, Register d);
  1340 #endif
  1342   inline void ldsb(const Address& a, Register d, int offset = 0);
  1343   inline void ldsh(const Address& a, Register d, int offset = 0);
  1344   inline void ldsw(const Address& a, Register d, int offset = 0);
  1345   inline void ldub(const Address& a, Register d, int offset = 0);
  1346   inline void lduh(const Address& a, Register d, int offset = 0);
  1347   inline void lduw(const Address& a, Register d, int offset = 0);
  1348   inline void ldx( const Address& a, Register d, int offset = 0);
  1349   inline void ld(  const Address& a, Register d, int offset = 0);
  1350   inline void ldd( const Address& a, Register d, int offset = 0);
  1352   inline void ldub(  Register s1, RegisterOrConstant s2, Register d );
  1353   inline void ldsb(  Register s1, RegisterOrConstant s2, Register d );
  1354   inline void lduh(  Register s1, RegisterOrConstant s2, Register d );
  1355   inline void ldsh(  Register s1, RegisterOrConstant s2, Register d );
  1356   inline void lduw(  Register s1, RegisterOrConstant s2, Register d );
  1357   inline void ldsw(  Register s1, RegisterOrConstant s2, Register d );
  1358   inline void ldx(   Register s1, RegisterOrConstant s2, Register d );
  1359   inline void ld(    Register s1, RegisterOrConstant s2, Register d );
  1360   inline void ldd(   Register s1, RegisterOrConstant s2, Register d );
  1362   // pp 177
  1364   void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1365   void ldsba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1366   void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1367   void ldsha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1368   void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1369   void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1370   void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1371   void lduba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1372   void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1373   void lduha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1374   void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1375   void lduwa(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1376   void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1377   void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1378   void ldda(   Register s1, Register s2, int ia, Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1379   void ldda(   Register s1, int simm13a,         Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1381   // pp 179
  1383   inline void ldstub(  Register s1, Register s2, Register d );
  1384   inline void ldstub(  Register s1, int simm13a, Register d);
  1386   // pp 180
  1388   void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1389   void ldstuba( Register s1, int simm13a,         Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1391   // pp 181
  1393   void and3(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | rs2(s2) ); }
  1394   void and3(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1395   void andcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1396   void andcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1397   void andn(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
  1398   void andn(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1399   void andn(    Register s1, RegisterOrConstant s2, Register d);
  1400   void andncc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1401   void andncc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1402   void or3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
  1403   void or3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1404   void orcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1405   void orcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1406   void orn(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
  1407   void orn(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1408   void orncc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1409   void orncc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1410   void xor3(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
  1411   void xor3(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1412   void xorcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1413   void xorcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1414   void xnor(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
  1415   void xnor(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1416   void xnorcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1417   void xnorcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1419   // pp 183
  1421   void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
  1423   // pp 185
  1425   void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
  1427   // pp 189
  1429   void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
  1431   // pp 191
  1433   void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
  1434   void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
  1436   // pp 195
  1438   void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
  1439   void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
  1441   // pp 196
  1443   void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
  1444   void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1445   void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
  1446   void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1447   void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
  1448   void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1450   // pp 197
  1452   void umul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
  1453   void umul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1454   void smul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
  1455   void smul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1456   void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1457   void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1458   void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1459   void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1461   // pp 199
  1463   void mulscc(   Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
  1464   void mulscc(   Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1466   // pp 201
  1468   void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
  1471   // pp 202
  1473   void popc( Register s,  Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
  1474   void popc( int simm13a, Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
  1476   // pp 203
  1478   void prefetch(   Register s1, Register s2,         PrefetchFcn f);
  1479   void prefetch(   Register s1, int simm13a,         PrefetchFcn f);
  1480   void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1481   void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1483   inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
  1485   // pp 208
  1487   // not implementing read privileged register
  1489   inline void rdy(    Register d) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
  1490   inline void rdccr(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
  1491   inline void rdasi(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
  1492   inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
  1493   inline void rdpc(   Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
  1494   inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
  1496   // pp 213
  1498   inline void rett( Register s1, Register s2);
  1499   inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
  1501   // pp 214
  1503   void save(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
  1504   void save(    Register s1, int simm13a, Register d ) {
  1505     // make sure frame is at least large enough for the register save area
  1506     assert(-simm13a >= 16 * wordSize, "frame too small");
  1507     emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
  1510   void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
  1511   void restore( Register s1,       int simm13a,      Register d      ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1513   // pp 216
  1515   void saved()    { v9_only();  emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
  1516   void restored() { v9_only();  emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
  1518   // pp 217
  1520   inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1521   // pp 218
  1523   void sll(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1524   void sll(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1525   void srl(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1526   void srl(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1527   void sra(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1528   void sra(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1530   void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1531   void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1532   void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1533   void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1534   void srax( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1535   void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1537   // pp 220
  1539   void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
  1541   // pp 221
  1543   void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
  1545   // pp 222
  1547   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
  1548   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
  1549   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
  1550   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
  1552   inline void stfsr(  Register s1, Register s2 );
  1553   inline void stfsr(  Register s1, int simm13a);
  1554   inline void stxfsr( Register s1, Register s2 );
  1555   inline void stxfsr( Register s1, int simm13a);
  1557   //  pp 224
  1559   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1560   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1562   // p 226
  1564   inline void stb(  Register d, Register s1, Register s2 );
  1565   inline void stb(  Register d, Register s1, int simm13a);
  1566   inline void sth(  Register d, Register s1, Register s2 );
  1567   inline void sth(  Register d, Register s1, int simm13a);
  1568   inline void stw(  Register d, Register s1, Register s2 );
  1569   inline void stw(  Register d, Register s1, int simm13a);
  1570   inline void st(   Register d, Register s1, Register s2 );
  1571   inline void st(   Register d, Register s1, int simm13a);
  1572   inline void stx(  Register d, Register s1, Register s2 );
  1573   inline void stx(  Register d, Register s1, int simm13a);
  1574   inline void std(  Register d, Register s1, Register s2 );
  1575   inline void std(  Register d, Register s1, int simm13a);
  1577 #ifdef ASSERT
  1578   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
  1579   inline void st(   Register d, Register s1, ByteSize simm13a);
  1580 #endif
  1582   inline void stb(  Register d, const Address& a, int offset = 0 );
  1583   inline void sth(  Register d, const Address& a, int offset = 0 );
  1584   inline void stw(  Register d, const Address& a, int offset = 0 );
  1585   inline void stx(  Register d, const Address& a, int offset = 0 );
  1586   inline void st(   Register d, const Address& a, int offset = 0 );
  1587   inline void std(  Register d, const Address& a, int offset = 0 );
  1589   inline void stb(  Register d, Register s1, RegisterOrConstant s2 );
  1590   inline void sth(  Register d, Register s1, RegisterOrConstant s2 );
  1591   inline void stw(  Register d, Register s1, RegisterOrConstant s2 );
  1592   inline void stx(  Register d, Register s1, RegisterOrConstant s2 );
  1593   inline void std(  Register d, Register s1, RegisterOrConstant s2 );
  1594   inline void st(   Register d, Register s1, RegisterOrConstant s2 );
  1596   // pp 177
  1598   void stba(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1599   void stba(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1600   void stha(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1601   void stha(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1602   void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1603   void stwa(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1604   void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1605   void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1606   void stda(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1607   void stda(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1609   // pp 97 (v8)
  1611   inline void stc(   int crd, Register s1, Register s2 );
  1612   inline void stc(   int crd, Register s1, int simm13a);
  1613   inline void stdc(  int crd, Register s1, Register s2 );
  1614   inline void stdc(  int crd, Register s1, int simm13a);
  1615   inline void stcsr( int crd, Register s1, Register s2 );
  1616   inline void stcsr( int crd, Register s1, int simm13a);
  1617   inline void stdcq( int crd, Register s1, Register s2 );
  1618   inline void stdcq( int crd, Register s1, int simm13a);
  1620   // pp 230
  1622   void sub(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
  1623   void sub(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1625   // Note: offset is added to s2.
  1626   inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
  1628   void subcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
  1629   void subcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1630   void subc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
  1631   void subc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1632   void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1633   void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1635   // pp 231
  1637   inline void swap( Register s1, Register s2, Register d );
  1638   inline void swap( Register s1, int simm13a, Register d);
  1639   inline void swap( Address& a,               Register d, int offset = 0 );
  1641   // pp 232
  1643   void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1644   void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1646   // pp 234, note op in book is wrong, see pp 268
  1648   void taddcc(    Register s1, Register s2, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1649   void taddcc(    Register s1, int simm13a, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1650   void taddcctv(  Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
  1651   void taddcctv(  Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1653   // pp 235
  1655   void tsubcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1656   void tsubcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1657   void tsubcctv(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
  1658   void tsubcctv(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1660   // pp 237
  1662   void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
  1663   void trap( Condition c, CC cc, Register s1, int trapa   ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
  1664   // simple uncond. trap
  1665   void trap( int trapa ) { trap( always, icc, G0, trapa ); }
  1667   // pp 239 omit write priv register for now
  1669   inline void wry(    Register d) { v9_dep();  emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
  1670   inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
  1671   inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
  1672                                                                            rs1(s) |
  1673                                                                            op3(wrreg_op3) |
  1674                                                                            u_field(2, 29, 25) |
  1675                                                                            u_field(1, 13, 13) |
  1676                                                                            simm(simm13a, 13)); }
  1677   inline void wrasi(  Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
  1678   inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
  1680   // For a given register condition, return the appropriate condition code
  1681   // Condition (the one you would use to get the same effect after "tst" on
  1682   // the target register.)
  1683   Assembler::Condition reg_cond_to_cc_cond(RCondition in);
  1686   // Creation
  1687   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
  1688 #ifdef CHECK_DELAY
  1689     delay_state = no_delay;
  1690 #endif
  1693   // Testing
  1694 #ifndef PRODUCT
  1695   void test_v9();
  1696   void test_v8_onlys();
  1697 #endif
  1698 };
  1701 class RegistersForDebugging : public StackObj {
  1702  public:
  1703   intptr_t i[8], l[8], o[8], g[8];
  1704   float    f[32];
  1705   double   d[32];
  1707   void print(outputStream* s);
  1709   static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
  1710   static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
  1711   static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
  1712   static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
  1713   static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
  1714   static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
  1716   // gen asm code to save regs
  1717   static void save_registers(MacroAssembler* a);
  1719   // restore global registers in case C code disturbed them
  1720   static void restore_registers(MacroAssembler* a, Register r);
  1723 };
  1726 // MacroAssembler extends Assembler by a few frequently used macros.
  1727 //
  1728 // Most of the standard SPARC synthetic ops are defined here.
  1729 // Instructions for which a 'better' code sequence exists depending
  1730 // on arguments should also go in here.
  1732 #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
  1733 #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
  1734 #define JUMP(a, temp, off)     jump(a, temp, off, __FILE__, __LINE__)
  1735 #define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
  1738 class MacroAssembler: public Assembler {
  1739  protected:
  1740   // Support for VM calls
  1741   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1742   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1743   // additional registers when doing a VM call).
  1744 #ifdef CC_INTERP
  1745   #define VIRTUAL
  1746 #else
  1747   #define VIRTUAL virtual
  1748 #endif
  1750   VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
  1752   //
  1753   // It is imperative that all calls into the VM are handled via the call_VM macros.
  1754   // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1755   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1756   //
  1757   // This is the base routine called by the different versions of call_VM. The interpreter
  1758   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1759   // additional registers when doing a VM call).
  1760   //
  1761   // A non-volatile java_thread_cache register should be specified so
  1762   // that the G2_thread value can be preserved across the call.
  1763   // (If java_thread_cache is noreg, then a slow get_thread call
  1764   // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
  1765   // thread.
  1766   //
  1767   // If no last_java_sp is specified (noreg) than SP will be used instead.
  1769   virtual void call_VM_base(
  1770     Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
  1771     Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
  1772     Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
  1773     address         entry_point,            // the entry point
  1774     int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
  1775     bool            check_exception=true    // flag which indicates if exception should be checked
  1776   );
  1778   // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1779   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1780   // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
  1781   virtual void check_and_handle_popframe(Register scratch_reg);
  1782   virtual void check_and_handle_earlyret(Register scratch_reg);
  1784  public:
  1785   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1787   // Support for NULL-checks
  1788   //
  1789   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1790   // If the accessed location is M[reg + offset] and the offset is known, provide the
  1791   // offset.  No explicit code generation is needed if the offset is within a certain
  1792   // range (0 <= offset <= page_size).
  1793   //
  1794   // %%%%%% Currently not done for SPARC
  1796   void null_check(Register reg, int offset = -1);
  1797   static bool needs_explicit_null_check(intptr_t offset);
  1799   // support for delayed instructions
  1800   MacroAssembler* delayed() { Assembler::delayed();  return this; }
  1802   // branches that use right instruction for v8 vs. v9
  1803   inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1804   inline void br( Condition c, bool a, Predict p, Label& L );
  1806   inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1807   inline void fb( Condition c, bool a, Predict p, Label& L );
  1809   // compares register with zero and branches (V9 and V8 instructions)
  1810   void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
  1811   // Compares a pointer register with zero and branches on (not)null.
  1812   // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  1813   void br_null   ( Register s1, bool a, Predict p, Label& L );
  1814   void br_notnull( Register s1, bool a, Predict p, Label& L );
  1816   // These versions will do the most efficient thing on v8 and v9.  Perhaps
  1817   // this is what the routine above was meant to do, but it didn't (and
  1818   // didn't cover both target address kinds.)
  1819   void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
  1820   void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, Label& L);
  1822   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1823   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
  1825   // Branch that tests xcc in LP64 and icc in !LP64
  1826   inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1827   inline void brx( Condition c, bool a, Predict p, Label& L );
  1829   // unconditional short branch
  1830   inline void ba( bool a, Label& L );
  1832   // Branch that tests fp condition codes
  1833   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1834   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
  1836   // get PC the best way
  1837   inline int get_pc( Register d );
  1839   // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
  1840   inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
  1841   inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
  1843   inline void jmp( Register s1, Register s2 );
  1844   inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
  1846   inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
  1847   inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
  1848   inline void callr( Register s1, Register s2 );
  1849   inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
  1851   // Emits nothing on V8
  1852   inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
  1853   inline void iprefetch( Label& L);
  1855   inline void tst( Register s ) { orcc( G0, s, G0 ); }
  1857 #ifdef PRODUCT
  1858   inline void ret(  bool trace = TraceJumps )   { if (trace) {
  1859                                                     mov(I7, O7); // traceable register
  1860                                                     JMP(O7, 2 * BytesPerInstWord);
  1861                                                   } else {
  1862                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
  1866   inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
  1867                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
  1868 #else
  1869   void ret(  bool trace = TraceJumps );
  1870   void retl( bool trace = TraceJumps );
  1871 #endif /* PRODUCT */
  1873   // Required platform-specific helpers for Label::patch_instructions.
  1874   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1875   void pd_patch_instruction(address branch, address target);
  1876 #ifndef PRODUCT
  1877   static void pd_print_patched_instruction(address branch);
  1878 #endif
  1880   // sethi Macro handles optimizations and relocations
  1881 private:
  1882   void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
  1883 public:
  1884   void sethi(const AddressLiteral& addrlit, Register d);
  1885   void patchable_sethi(const AddressLiteral& addrlit, Register d);
  1887   // compute the number of instructions for a sethi/set
  1888   static int  insts_for_sethi( address a, bool worst_case = false );
  1889   static int  worst_case_insts_for_set();
  1891   // set may be either setsw or setuw (high 32 bits may be zero or sign)
  1892 private:
  1893   void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
  1894   static int insts_for_internal_set(intptr_t value);
  1895 public:
  1896   void set(const AddressLiteral& addrlit, Register d);
  1897   void set(intptr_t value, Register d);
  1898   void set(address addr, Register d, RelocationHolder const& rspec);
  1899   static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
  1901   void patchable_set(const AddressLiteral& addrlit, Register d);
  1902   void patchable_set(intptr_t value, Register d);
  1903   void set64(jlong value, Register d, Register tmp);
  1904   static int insts_for_set64(jlong value);
  1906   // sign-extend 32 to 64
  1907   inline void signx( Register s, Register d ) { sra( s, G0, d); }
  1908   inline void signx( Register d )             { sra( d, G0, d); }
  1910   inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
  1911   inline void not1( Register d )             { xnor( d, G0, d ); }
  1913   inline void neg( Register s, Register d ) { sub( G0, s, d ); }
  1914   inline void neg( Register d )             { sub( G0, d, d ); }
  1916   inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
  1917   inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
  1918   // Functions for isolating 64 bit atomic swaps for LP64
  1919   // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
  1920   inline void cas_ptr(  Register s1, Register s2, Register d) {
  1921 #ifdef _LP64
  1922     casx( s1, s2, d );
  1923 #else
  1924     cas( s1, s2, d );
  1925 #endif
  1928   // Functions for isolating 64 bit shifts for LP64
  1929   inline void sll_ptr( Register s1, Register s2, Register d );
  1930   inline void sll_ptr( Register s1, int imm6a,   Register d );
  1931   inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
  1932   inline void srl_ptr( Register s1, Register s2, Register d );
  1933   inline void srl_ptr( Register s1, int imm6a,   Register d );
  1935   // little-endian
  1936   inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
  1937   inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
  1939   inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
  1940   inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }
  1942   inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
  1943   inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }
  1945   inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
  1946   inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }
  1948   inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
  1949   inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }
  1951   inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
  1952   inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }
  1954   inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
  1955   inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }
  1957   inline void clr( Register d ) { or3( G0, G0, d ); }
  1959   inline void clrb( Register s1, Register s2);
  1960   inline void clrh( Register s1, Register s2);
  1961   inline void clr(  Register s1, Register s2);
  1962   inline void clrx( Register s1, Register s2);
  1964   inline void clrb( Register s1, int simm13a);
  1965   inline void clrh( Register s1, int simm13a);
  1966   inline void clr(  Register s1, int simm13a);
  1967   inline void clrx( Register s1, int simm13a);
  1969   // copy & clear upper word
  1970   inline void clruw( Register s, Register d ) { srl( s, G0, d); }
  1971   // clear upper word
  1972   inline void clruwu( Register d ) { srl( d, G0, d); }
  1974   // membar psuedo instruction.  takes into account target memory model.
  1975   inline void membar( Assembler::Membar_mask_bits const7a );
  1977   // returns if membar generates anything.
  1978   inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
  1980   // mov pseudo instructions
  1981   inline void mov( Register s,  Register d) {
  1982     if ( s != d )    or3( G0, s, d);
  1983     else             assert_not_delayed();  // Put something useful in the delay slot!
  1986   inline void mov_or_nop( Register s,  Register d) {
  1987     if ( s != d )    or3( G0, s, d);
  1988     else             nop();
  1991   inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
  1993   // address pseudos: make these names unlike instruction names to avoid confusion
  1994   inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
  1995   inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
  1996   inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
  1997   inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
  1998   inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
  1999   inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
  2000   inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
  2001   inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
  2003   // ring buffer traceable jumps
  2005   void jmp2( Register r1, Register r2, const char* file, int line );
  2006   void jmp ( Register r1, int offset,  const char* file, int line );
  2008   void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
  2009   void jump (const AddressLiteral& addrlit, Register temp,             int offset, const char* file, int line);
  2012   // argument pseudos:
  2014   inline void load_argument( Argument& a, Register  d );
  2015   inline void store_argument( Register s, Argument& a );
  2016   inline void store_ptr_argument( Register s, Argument& a );
  2017   inline void store_float_argument( FloatRegister s, Argument& a );
  2018   inline void store_double_argument( FloatRegister s, Argument& a );
  2019   inline void store_long_argument( Register s, Argument& a );
  2021   // handy macros:
  2023   inline void round_to( Register r, int modulus ) {
  2024     assert_not_delayed();
  2025     inc( r, modulus - 1 );
  2026     and3( r, -modulus, r );
  2029   // --------------------------------------------------
  2031   // Functions for isolating 64 bit loads for LP64
  2032   // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
  2033   // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
  2034   inline void ld_ptr(Register s1, Register s2, Register d);
  2035   inline void ld_ptr(Register s1, int simm13a, Register d);
  2036   inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
  2037   inline void ld_ptr(const Address& a, Register d, int offset = 0);
  2038   inline void st_ptr(Register d, Register s1, Register s2);
  2039   inline void st_ptr(Register d, Register s1, int simm13a);
  2040   inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
  2041   inline void st_ptr(Register d, const Address& a, int offset = 0);
  2043 #ifdef ASSERT
  2044   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
  2045   inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
  2046   inline void st_ptr(Register d, Register s1, ByteSize simm13a);
  2047 #endif
  2049   // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
  2050   // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
  2051   inline void ld_long(Register s1, Register s2, Register d);
  2052   inline void ld_long(Register s1, int simm13a, Register d);
  2053   inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
  2054   inline void ld_long(const Address& a, Register d, int offset = 0);
  2055   inline void st_long(Register d, Register s1, Register s2);
  2056   inline void st_long(Register d, Register s1, int simm13a);
  2057   inline void st_long(Register d, Register s1, RegisterOrConstant s2);
  2058   inline void st_long(Register d, const Address& a, int offset = 0);
  2060   // Helpers for address formation.
  2061   // - They emit only a move if s2 is a constant zero.
  2062   // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
  2063   // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
  2064   RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
  2065   RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
  2066   RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
  2068   RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
  2069     if (is_simm13(src.constant_or_zero()))
  2070       return src;               // register or short constant
  2071     guarantee(temp != noreg, "constant offset overflow");
  2072     set(src.as_constant(), temp);
  2073     return temp;
  2076   // --------------------------------------------------
  2078  public:
  2079   // traps as per trap.h (SPARC ABI?)
  2081   void breakpoint_trap();
  2082   void breakpoint_trap(Condition c, CC cc = icc);
  2083   void flush_windows_trap();
  2084   void clean_windows_trap();
  2085   void get_psr_trap();
  2086   void set_psr_trap();
  2088   // V8/V9 flush_windows
  2089   void flush_windows();
  2091   // Support for serializing memory accesses between threads
  2092   void serialize_memory(Register thread, Register tmp1, Register tmp2);
  2094   // Stack frame creation/removal
  2095   void enter();
  2096   void leave();
  2098   // V8/V9 integer multiply
  2099   void mult(Register s1, Register s2, Register d);
  2100   void mult(Register s1, int simm13a, Register d);
  2102   // V8/V9 read and write of condition codes.
  2103   void read_ccr(Register d);
  2104   void write_ccr(Register s);
  2106   // Manipulation of C++ bools
  2107   // These are idioms to flag the need for care with accessing bools but on
  2108   // this platform we assume byte size
  2110   inline void stbool(Register d, const Address& a) { stb(d, a); }
  2111   inline void ldbool(const Address& a, Register d) { ldsb(a, d); }
  2112   inline void tstbool( Register s ) { tst(s); }
  2113   inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
  2115   // klass oop manipulations if compressed
  2116   void load_klass(Register src_oop, Register klass);
  2117   void store_klass(Register klass, Register dst_oop);
  2118   void store_klass_gap(Register s, Register dst_oop);
  2120    // oop manipulations
  2121   void load_heap_oop(const Address& s, Register d);
  2122   void load_heap_oop(Register s1, Register s2, Register d);
  2123   void load_heap_oop(Register s1, int simm13a, Register d);
  2124   void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
  2125   void store_heap_oop(Register d, Register s1, Register s2);
  2126   void store_heap_oop(Register d, Register s1, int simm13a);
  2127   void store_heap_oop(Register d, const Address& a, int offset = 0);
  2129   void encode_heap_oop(Register src, Register dst);
  2130   void encode_heap_oop(Register r) {
  2131     encode_heap_oop(r, r);
  2133   void decode_heap_oop(Register src, Register dst);
  2134   void decode_heap_oop(Register r) {
  2135     decode_heap_oop(r, r);
  2137   void encode_heap_oop_not_null(Register r);
  2138   void decode_heap_oop_not_null(Register r);
  2139   void encode_heap_oop_not_null(Register src, Register dst);
  2140   void decode_heap_oop_not_null(Register src, Register dst);
  2142   // Support for managing the JavaThread pointer (i.e.; the reference to
  2143   // thread-local information).
  2144   void get_thread();                                // load G2_thread
  2145   void verify_thread();                             // verify G2_thread contents
  2146   void save_thread   (const Register threache); // save to cache
  2147   void restore_thread(const Register thread_cache); // restore from cache
  2149   // Support for last Java frame (but use call_VM instead where possible)
  2150   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
  2151   void reset_last_Java_frame(void);
  2153   // Call into the VM.
  2154   // Passes the thread pointer (in O0) as a prepended argument.
  2155   // Makes sure oop return values are visible to the GC.
  2156   void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  2157   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
  2158   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  2159   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  2161   // these overloadings are not presently used on SPARC:
  2162   void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  2163   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
  2164   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  2165   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  2167   void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
  2168   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
  2169   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
  2170   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
  2172   void get_vm_result  (Register oop_result);
  2173   void get_vm_result_2(Register oop_result);
  2175   // vm result is currently getting hijacked to for oop preservation
  2176   void set_vm_result(Register oop_result);
  2178   // if call_VM_base was called with check_exceptions=false, then call
  2179   // check_and_forward_exception to handle exceptions when it is safe
  2180   void check_and_forward_exception(Register scratch_reg);
  2182  private:
  2183   // For V8
  2184   void read_ccr_trap(Register ccr_save);
  2185   void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
  2187 #ifdef ASSERT
  2188   // For V8 debugging.  Uses V8 instruction sequence and checks
  2189   // result with V9 insturctions rdccr and wrccr.
  2190   // Uses Gscatch and Gscatch2
  2191   void read_ccr_v8_assert(Register ccr_save);
  2192   void write_ccr_v8_assert(Register ccr_save);
  2193 #endif // ASSERT
  2195  public:
  2197   // Write to card table for - register is destroyed afterwards.
  2198   void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
  2200   void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
  2202 #ifndef SERIALGC
  2203   // Array store and offset
  2204   void g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs);
  2206   void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
  2208   // May do filtering, depending on the boolean arguments.
  2209   void g1_card_table_write(jbyte* byte_map_base,
  2210                            Register tmp, Register obj, Register new_val,
  2211                            bool region_filter, bool null_filter);
  2212 #endif // SERIALGC
  2214   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  2215   void push_fTOS();
  2217   // pops double TOS element from CPU stack and pushes on FPU stack
  2218   void pop_fTOS();
  2220   void empty_FPU_stack();
  2222   void push_IU_state();
  2223   void pop_IU_state();
  2225   void push_FPU_state();
  2226   void pop_FPU_state();
  2228   void push_CPU_state();
  2229   void pop_CPU_state();
  2231   // if heap base register is used - reinit it with the correct value
  2232   void reinit_heapbase();
  2234   // Debugging
  2235   void _verify_oop(Register reg, const char * msg, const char * file, int line);
  2236   void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
  2238 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
  2239 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
  2241         // only if +VerifyOops
  2242   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  2243         // only if +VerifyFPU
  2244   void stop(const char* msg);                          // prints msg, dumps registers and stops execution
  2245   void warn(const char* msg);                          // prints msg, but don't stop
  2246   void untested(const char* what = "");
  2247   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
  2248   void should_not_reach_here()                   { stop("should not reach here"); }
  2249   void print_CPU_state();
  2251   // oops in code
  2252   AddressLiteral allocate_oop_address(jobject obj);                          // allocate_index
  2253   AddressLiteral constant_oop_address(jobject obj);                          // find_index
  2254   inline void    set_oop             (jobject obj, Register d);              // uses allocate_oop_address
  2255   inline void    set_oop_constant    (jobject obj, Register d);              // uses constant_oop_address
  2256   inline void    set_oop             (const AddressLiteral& obj_addr, Register d); // same as load_address
  2258   void set_narrow_oop( jobject obj, Register d );
  2260   // nop padding
  2261   void align(int modulus);
  2263   // declare a safepoint
  2264   void safepoint();
  2266   // factor out part of stop into subroutine to save space
  2267   void stop_subroutine();
  2268   // factor out part of verify_oop into subroutine to save space
  2269   void verify_oop_subroutine();
  2271   // side-door communication with signalHandler in os_solaris.cpp
  2272   static address _verify_oop_implicit_branch[3];
  2274 #ifndef PRODUCT
  2275   static void test();
  2276 #endif
  2278   // convert an incoming arglist to varargs format; put the pointer in d
  2279   void set_varargs( Argument a, Register d );
  2281   int total_frame_size_in_bytes(int extraWords);
  2283   // used when extraWords known statically
  2284   void save_frame(int extraWords);
  2285   void save_frame_c1(int size_in_bytes);
  2286   // make a frame, and simultaneously pass up one or two register value
  2287   // into the new register window
  2288   void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
  2290   // give no. (outgoing) params, calc # of words will need on frame
  2291   void calc_mem_param_words(Register Rparam_words, Register Rresult);
  2293   // used to calculate frame size dynamically
  2294   // result is in bytes and must be negated for save inst
  2295   void calc_frame_size(Register extraWords, Register resultReg);
  2297   // calc and also save
  2298   void calc_frame_size_and_save(Register extraWords, Register resultReg);
  2300   static void debug(char* msg, RegistersForDebugging* outWindow);
  2302   // implementations of bytecodes used by both interpreter and compiler
  2304   void lcmp( Register Ra_hi, Register Ra_low,
  2305              Register Rb_hi, Register Rb_low,
  2306              Register Rresult);
  2308   void lneg( Register Rhi, Register Rlow );
  2310   void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
  2311               Register Rout_high, Register Rout_low, Register Rtemp );
  2313   void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
  2314               Register Rout_high, Register Rout_low, Register Rtemp );
  2316   void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
  2317               Register Rout_high, Register Rout_low, Register Rtemp );
  2319 #ifdef _LP64
  2320   void lcmp( Register Ra, Register Rb, Register Rresult);
  2321 #endif
  2323   // Loading values by size and signed-ness
  2324   void load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed);
  2326   void float_cmp( bool is_float, int unordered_result,
  2327                   FloatRegister Fa, FloatRegister Fb,
  2328                   Register Rresult);
  2330   void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  2331   void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
  2332   void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  2333   void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  2335   void save_all_globals_into_locals();
  2336   void restore_globals_from_locals();
  2338   void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
  2339     address lock_addr=0, bool use_call_vm=false);
  2340   void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
  2341     address lock_addr=0, bool use_call_vm=false);
  2342   void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
  2344   // These set the icc condition code to equal if the lock succeeded
  2345   // and notEqual if it failed and requires a slow case
  2346   void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
  2347                             Register Rscratch,
  2348                             BiasedLockingCounters* counters = NULL,
  2349                             bool try_bias = UseBiasedLocking);
  2350   void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
  2351                               Register Rscratch,
  2352                               bool try_bias = UseBiasedLocking);
  2354   // Biased locking support
  2355   // Upon entry, lock_reg must point to the lock record on the stack,
  2356   // obj_reg must contain the target object, and mark_reg must contain
  2357   // the target object's header.
  2358   // Destroys mark_reg if an attempt is made to bias an anonymously
  2359   // biased lock. In this case a failure will go either to the slow
  2360   // case or fall through with the notEqual condition code set with
  2361   // the expectation that the slow case in the runtime will be called.
  2362   // In the fall-through case where the CAS-based lock is done,
  2363   // mark_reg is not destroyed.
  2364   void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
  2365                             Label& done, Label* slow_case = NULL,
  2366                             BiasedLockingCounters* counters = NULL);
  2367   // Upon entry, the base register of mark_addr must contain the oop.
  2368   // Destroys temp_reg.
  2370   // If allow_delay_slot_filling is set to true, the next instruction
  2371   // emitted after this one will go in an annulled delay slot if the
  2372   // biased locking exit case failed.
  2373   void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
  2375   // allocation
  2376   void eden_allocate(
  2377     Register obj,                      // result: pointer to object after successful allocation
  2378     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  2379     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  2380     Register t1,                       // temp register
  2381     Register t2,                       // temp register
  2382     Label&   slow_case                 // continuation point if fast allocation fails
  2383   );
  2384   void tlab_allocate(
  2385     Register obj,                      // result: pointer to object after successful allocation
  2386     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  2387     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  2388     Register t1,                       // temp register
  2389     Label&   slow_case                 // continuation point if fast allocation fails
  2390   );
  2391   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
  2392   void incr_allocated_bytes(Register var_size_in_bytes, int con_size_in_bytes, Register t1);
  2394   // interface method calling
  2395   void lookup_interface_method(Register recv_klass,
  2396                                Register intf_klass,
  2397                                RegisterOrConstant itable_index,
  2398                                Register method_result,
  2399                                Register temp_reg, Register temp2_reg,
  2400                                Label& no_such_interface);
  2402   // Test sub_klass against super_klass, with fast and slow paths.
  2404   // The fast path produces a tri-state answer: yes / no / maybe-slow.
  2405   // One of the three labels can be NULL, meaning take the fall-through.
  2406   // If super_check_offset is -1, the value is loaded up from super_klass.
  2407   // No registers are killed, except temp_reg and temp2_reg.
  2408   // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
  2409   void check_klass_subtype_fast_path(Register sub_klass,
  2410                                      Register super_klass,
  2411                                      Register temp_reg,
  2412                                      Register temp2_reg,
  2413                                      Label* L_success,
  2414                                      Label* L_failure,
  2415                                      Label* L_slow_path,
  2416                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1),
  2417                 Register instanceof_hack = noreg);
  2419   // The rest of the type check; must be wired to a corresponding fast path.
  2420   // It does not repeat the fast path logic, so don't use it standalone.
  2421   // The temp_reg can be noreg, if no temps are available.
  2422   // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
  2423   // Updates the sub's secondary super cache as necessary.
  2424   void check_klass_subtype_slow_path(Register sub_klass,
  2425                                      Register super_klass,
  2426                                      Register temp_reg,
  2427                                      Register temp2_reg,
  2428                                      Register temp3_reg,
  2429                                      Register temp4_reg,
  2430                                      Label* L_success,
  2431                                      Label* L_failure);
  2433   // Simplified, combined version, good for typical uses.
  2434   // Falls through on failure.
  2435   void check_klass_subtype(Register sub_klass,
  2436                            Register super_klass,
  2437                            Register temp_reg,
  2438                            Register temp2_reg,
  2439                            Label& L_success);
  2441   // method handles (JSR 292)
  2442   void check_method_handle_type(Register mtype_reg, Register mh_reg,
  2443                                 Register temp_reg,
  2444                                 Label& wrong_method_type);
  2445   void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  2446                                   Register temp_reg);
  2447   void jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop = true);
  2448   // offset relative to Gargs of argument at tos[arg_slot].
  2449   // (arg_slot == 0 means the last argument, not the first).
  2450   RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
  2451                                      int extra_slot_offset = 0);
  2452   // Address of Gargs and argument_offset.
  2453   Address            argument_address(RegisterOrConstant arg_slot,
  2454                                       int extra_slot_offset = 0);
  2456   // Stack overflow checking
  2458   // Note: this clobbers G3_scratch
  2459   void bang_stack_with_offset(int offset) {
  2460     // stack grows down, caller passes positive offset
  2461     assert(offset > 0, "must bang with negative offset");
  2462     set((-offset)+STACK_BIAS, G3_scratch);
  2463     st(G0, SP, G3_scratch);
  2466   // Writes to stack successive pages until offset reached to check for
  2467   // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
  2468   void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
  2470   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
  2472   void verify_tlab();
  2474   Condition negate_condition(Condition cond);
  2476   // Helper functions for statistics gathering.
  2477   // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
  2478   void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
  2479   // Unconditional increment.
  2480   void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
  2481   void inc_counter(int*    counter_addr, Register Rtmp1, Register Rtmp2);
  2483   // Compare char[] arrays aligned to 4 bytes.
  2484   void char_arrays_equals(Register ary1, Register ary2,
  2485                           Register limit, Register result,
  2486                           Register chr1, Register chr2, Label& Ldone);
  2488 #undef VIRTUAL
  2490 };
  2492 /**
  2493  * class SkipIfEqual:
  2495  * Instantiating this class will result in assembly code being output that will
  2496  * jump around any code emitted between the creation of the instance and it's
  2497  * automatic destruction at the end of a scope block, depending on the value of
  2498  * the flag passed to the constructor, which will be checked at run-time.
  2499  */
  2500 class SkipIfEqual : public StackObj {
  2501  private:
  2502   MacroAssembler* _masm;
  2503   Label _label;
  2505  public:
  2506    // 'temp' is a temp register that this object can use (and trash)
  2507    SkipIfEqual(MacroAssembler*, Register temp,
  2508                const bool* flag_addr, Assembler::Condition condition);
  2509    ~SkipIfEqual();
  2510 };
  2512 #ifdef ASSERT
  2513 // On RISC, there's no benefit to verifying instruction boundaries.
  2514 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
  2515 #endif
  2517 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP

mercurial