src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Fri, 30 Aug 2013 07:31:47 +0200

author
brutisso
date
Fri, 30 Aug 2013 07:31:47 +0200
changeset 5646
84683e78e713
parent 5578
4c84d351cca9
child 5855
9b4d0569f2f4
permissions
-rw-r--r--

8019902: G1: Use the average heap size rather than the minimum heap size to calculate the region size
Reviewed-by: tonyp, tschatzl, sjohanss

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    33 #include "gc_implementation/g1/g1Log.hpp"
    34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/java.hpp"
    38 #include "runtime/mutexLocker.hpp"
    39 #include "utilities/debug.hpp"
    41 // Different defaults for different number of GC threads
    42 // They were chosen by running GCOld and SPECjbb on debris with different
    43 //   numbers of GC threads and choosing them based on the results
    45 // all the same
    46 static double rs_length_diff_defaults[] = {
    47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    48 };
    50 static double cost_per_card_ms_defaults[] = {
    51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    52 };
    54 // all the same
    55 static double young_cards_per_entry_ratio_defaults[] = {
    56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    57 };
    59 static double cost_per_entry_ms_defaults[] = {
    60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    61 };
    63 static double cost_per_byte_ms_defaults[] = {
    64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    65 };
    67 // these should be pretty consistent
    68 static double constant_other_time_ms_defaults[] = {
    69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    70 };
    73 static double young_other_cost_per_region_ms_defaults[] = {
    74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    75 };
    77 static double non_young_other_cost_per_region_ms_defaults[] = {
    78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    79 };
    81 G1CollectorPolicy::G1CollectorPolicy() :
    82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
    83                         ? ParallelGCThreads : 1),
    85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    86   _stop_world_start(0.0),
    88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    92   _prev_collection_pause_end_ms(0.0),
    93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
    94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   103   _non_young_other_cost_per_region_ms_seq(
   104                                          new TruncatedSeq(TruncatedSeqLength)),
   106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   109   _pause_time_target_ms((double) MaxGCPauseMillis),
   111   _gcs_are_young(true),
   113   _during_marking(false),
   114   _in_marking_window(false),
   115   _in_marking_window_im(false),
   117   _recent_prev_end_times_for_all_gcs_sec(
   118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   120   _recent_avg_pause_time_ratio(0.0),
   122   _initiate_conc_mark_if_possible(false),
   123   _during_initial_mark_pause(false),
   124   _last_young_gc(false),
   125   _last_gc_was_young(false),
   127   _eden_used_bytes_before_gc(0),
   128   _survivor_used_bytes_before_gc(0),
   129   _heap_used_bytes_before_gc(0),
   130   _metaspace_used_bytes_before_gc(0),
   131   _eden_capacity_bytes_before_gc(0),
   132   _heap_capacity_bytes_before_gc(0),
   134   _eden_cset_region_length(0),
   135   _survivor_cset_region_length(0),
   136   _old_cset_region_length(0),
   138   _collection_set(NULL),
   139   _collection_set_bytes_used_before(0),
   141   // Incremental CSet attributes
   142   _inc_cset_build_state(Inactive),
   143   _inc_cset_head(NULL),
   144   _inc_cset_tail(NULL),
   145   _inc_cset_bytes_used_before(0),
   146   _inc_cset_max_finger(NULL),
   147   _inc_cset_recorded_rs_lengths(0),
   148   _inc_cset_recorded_rs_lengths_diffs(0),
   149   _inc_cset_predicted_elapsed_time_ms(0.0),
   150   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   152 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   153 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   154 #endif // _MSC_VER
   156   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   157                                                  G1YoungSurvRateNumRegionsSummary)),
   158   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   159                                               G1YoungSurvRateNumRegionsSummary)),
   160   // add here any more surv rate groups
   161   _recorded_survivor_regions(0),
   162   _recorded_survivor_head(NULL),
   163   _recorded_survivor_tail(NULL),
   164   _survivors_age_table(true),
   166   _gc_overhead_perc(0.0) {
   168   // Set up the region size and associated fields. Given that the
   169   // policy is created before the heap, we have to set this up here,
   170   // so it's done as soon as possible.
   172   // It would have been natural to pass initial_heap_byte_size() and
   173   // max_heap_byte_size() to setup_heap_region_size() but those have
   174   // not been set up at this point since they should be aligned with
   175   // the region size. So, there is a circular dependency here. We base
   176   // the region size on the heap size, but the heap size should be
   177   // aligned with the region size. To get around this we use the
   178   // unaligned values for the heap.
   179   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
   180   HeapRegionRemSet::setup_remset_size();
   182   G1ErgoVerbose::initialize();
   183   if (PrintAdaptiveSizePolicy) {
   184     // Currently, we only use a single switch for all the heuristics.
   185     G1ErgoVerbose::set_enabled(true);
   186     // Given that we don't currently have a verboseness level
   187     // parameter, we'll hardcode this to high. This can be easily
   188     // changed in the future.
   189     G1ErgoVerbose::set_level(ErgoHigh);
   190   } else {
   191     G1ErgoVerbose::set_enabled(false);
   192   }
   194   // Verify PLAB sizes
   195   const size_t region_size = HeapRegion::GrainWords;
   196   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   197     char buffer[128];
   198     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   199                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   200     vm_exit_during_initialization(buffer);
   201   }
   203   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   204   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   206   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
   208   int index = MIN2(_parallel_gc_threads - 1, 7);
   210   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   211   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   212   _young_cards_per_entry_ratio_seq->add(
   213                                   young_cards_per_entry_ratio_defaults[index]);
   214   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   215   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   216   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   217   _young_other_cost_per_region_ms_seq->add(
   218                                young_other_cost_per_region_ms_defaults[index]);
   219   _non_young_other_cost_per_region_ms_seq->add(
   220                            non_young_other_cost_per_region_ms_defaults[index]);
   222   // Below, we might need to calculate the pause time target based on
   223   // the pause interval. When we do so we are going to give G1 maximum
   224   // flexibility and allow it to do pauses when it needs to. So, we'll
   225   // arrange that the pause interval to be pause time target + 1 to
   226   // ensure that a) the pause time target is maximized with respect to
   227   // the pause interval and b) we maintain the invariant that pause
   228   // time target < pause interval. If the user does not want this
   229   // maximum flexibility, they will have to set the pause interval
   230   // explicitly.
   232   // First make sure that, if either parameter is set, its value is
   233   // reasonable.
   234   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   235     if (MaxGCPauseMillis < 1) {
   236       vm_exit_during_initialization("MaxGCPauseMillis should be "
   237                                     "greater than 0");
   238     }
   239   }
   240   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   241     if (GCPauseIntervalMillis < 1) {
   242       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   243                                     "greater than 0");
   244     }
   245   }
   247   // Then, if the pause time target parameter was not set, set it to
   248   // the default value.
   249   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   250     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   251       // The default pause time target in G1 is 200ms
   252       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   253     } else {
   254       // We do not allow the pause interval to be set without the
   255       // pause time target
   256       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   257                                     "without setting MaxGCPauseMillis");
   258     }
   259   }
   261   // Then, if the interval parameter was not set, set it according to
   262   // the pause time target (this will also deal with the case when the
   263   // pause time target is the default value).
   264   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   265     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   266   }
   268   // Finally, make sure that the two parameters are consistent.
   269   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   270     char buffer[256];
   271     jio_snprintf(buffer, 256,
   272                  "MaxGCPauseMillis (%u) should be less than "
   273                  "GCPauseIntervalMillis (%u)",
   274                  MaxGCPauseMillis, GCPauseIntervalMillis);
   275     vm_exit_during_initialization(buffer);
   276   }
   278   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   279   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   280   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   282   uintx confidence_perc = G1ConfidencePercent;
   283   // Put an artificial ceiling on this so that it's not set to a silly value.
   284   if (confidence_perc > 100) {
   285     confidence_perc = 100;
   286     warning("G1ConfidencePercent is set to a value that is too large, "
   287             "it's been updated to %u", confidence_perc);
   288   }
   289   _sigma = (double) confidence_perc / 100.0;
   291   // start conservatively (around 50ms is about right)
   292   _concurrent_mark_remark_times_ms->add(0.05);
   293   _concurrent_mark_cleanup_times_ms->add(0.20);
   294   _tenuring_threshold = MaxTenuringThreshold;
   295   // _max_survivor_regions will be calculated by
   296   // update_young_list_target_length() during initialization.
   297   _max_survivor_regions = 0;
   299   assert(GCTimeRatio > 0,
   300          "we should have set it to a default value set_g1_gc_flags() "
   301          "if a user set it to 0");
   302   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   304   uintx reserve_perc = G1ReservePercent;
   305   // Put an artificial ceiling on this so that it's not set to a silly value.
   306   if (reserve_perc > 50) {
   307     reserve_perc = 50;
   308     warning("G1ReservePercent is set to a value that is too large, "
   309             "it's been updated to %u", reserve_perc);
   310   }
   311   _reserve_factor = (double) reserve_perc / 100.0;
   312   // This will be set when the heap is expanded
   313   // for the first time during initialization.
   314   _reserve_regions = 0;
   316   initialize_all();
   317   _collectionSetChooser = new CollectionSetChooser();
   318   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   319 }
   321 void G1CollectorPolicy::initialize_flags() {
   322   set_min_alignment(HeapRegion::GrainBytes);
   323   size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
   324   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
   325   set_max_alignment(MAX3(card_table_alignment, min_alignment(), page_size));
   326   if (SurvivorRatio < 1) {
   327     vm_exit_during_initialization("Invalid survivor ratio specified");
   328   }
   329   CollectorPolicy::initialize_flags();
   330 }
   332 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
   333   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
   334   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
   335   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
   337   if (FLAG_IS_CMDLINE(NewRatio)) {
   338     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   339       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   340     } else {
   341       _sizer_kind = SizerNewRatio;
   342       _adaptive_size = false;
   343       return;
   344     }
   345   }
   347   if (FLAG_IS_CMDLINE(NewSize)) {
   348     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
   349                                      1U);
   350     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   351       _max_desired_young_length =
   352                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   353                                   1U);
   354       _sizer_kind = SizerMaxAndNewSize;
   355       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   356     } else {
   357       _sizer_kind = SizerNewSizeOnly;
   358     }
   359   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   360     _max_desired_young_length =
   361                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   362                                   1U);
   363     _sizer_kind = SizerMaxNewSizeOnly;
   364   }
   365 }
   367 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
   368   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
   369   return MAX2(1U, default_value);
   370 }
   372 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
   373   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
   374   return MAX2(1U, default_value);
   375 }
   377 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
   378   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
   380   switch (_sizer_kind) {
   381     case SizerDefaults:
   382       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   383       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   384       break;
   385     case SizerNewSizeOnly:
   386       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   387       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
   388       break;
   389     case SizerMaxNewSizeOnly:
   390       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   391       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
   392       break;
   393     case SizerMaxAndNewSize:
   394       // Do nothing. Values set on the command line, don't update them at runtime.
   395       break;
   396     case SizerNewRatio:
   397       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
   398       _max_desired_young_length = _min_desired_young_length;
   399       break;
   400     default:
   401       ShouldNotReachHere();
   402   }
   404   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   405 }
   407 void G1CollectorPolicy::init() {
   408   // Set aside an initial future to_space.
   409   _g1 = G1CollectedHeap::heap();
   411   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   413   initialize_gc_policy_counters();
   415   if (adaptive_young_list_length()) {
   416     _young_list_fixed_length = 0;
   417   } else {
   418     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   419   }
   420   _free_regions_at_end_of_collection = _g1->free_regions();
   421   update_young_list_target_length();
   423   // We may immediately start allocating regions and placing them on the
   424   // collection set list. Initialize the per-collection set info
   425   start_incremental_cset_building();
   426 }
   428 // Create the jstat counters for the policy.
   429 void G1CollectorPolicy::initialize_gc_policy_counters() {
   430   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   431 }
   433 bool G1CollectorPolicy::predict_will_fit(uint young_length,
   434                                          double base_time_ms,
   435                                          uint base_free_regions,
   436                                          double target_pause_time_ms) {
   437   if (young_length >= base_free_regions) {
   438     // end condition 1: not enough space for the young regions
   439     return false;
   440   }
   442   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
   443   size_t bytes_to_copy =
   444                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   445   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   446   double young_other_time_ms = predict_young_other_time_ms(young_length);
   447   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   448   if (pause_time_ms > target_pause_time_ms) {
   449     // end condition 2: prediction is over the target pause time
   450     return false;
   451   }
   453   size_t free_bytes =
   454                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
   455   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   456     // end condition 3: out-of-space (conservatively!)
   457     return false;
   458   }
   460   // success!
   461   return true;
   462 }
   464 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
   465   // re-calculate the necessary reserve
   466   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   467   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   468   // smaller than 1.0) we'll get 1.
   469   _reserve_regions = (uint) ceil(reserve_regions_d);
   471   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   472 }
   474 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
   475                                                        uint base_min_length) {
   476   uint desired_min_length = 0;
   477   if (adaptive_young_list_length()) {
   478     if (_alloc_rate_ms_seq->num() > 3) {
   479       double now_sec = os::elapsedTime();
   480       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   481       double alloc_rate_ms = predict_alloc_rate_ms();
   482       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
   483     } else {
   484       // otherwise we don't have enough info to make the prediction
   485     }
   486   }
   487   desired_min_length += base_min_length;
   488   // make sure we don't go below any user-defined minimum bound
   489   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   490 }
   492 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
   493   // Here, we might want to also take into account any additional
   494   // constraints (i.e., user-defined minimum bound). Currently, we
   495   // effectively don't set this bound.
   496   return _young_gen_sizer->max_desired_young_length();
   497 }
   499 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   500   if (rs_lengths == (size_t) -1) {
   501     // if it's set to the default value (-1), we should predict it;
   502     // otherwise, use the given value.
   503     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   504   }
   506   // Calculate the absolute and desired min bounds.
   508   // This is how many young regions we already have (currently: the survivors).
   509   uint base_min_length = recorded_survivor_regions();
   510   // This is the absolute minimum young length, which ensures that we
   511   // can allocate one eden region in the worst-case.
   512   uint absolute_min_length = base_min_length + 1;
   513   uint desired_min_length =
   514                      calculate_young_list_desired_min_length(base_min_length);
   515   if (desired_min_length < absolute_min_length) {
   516     desired_min_length = absolute_min_length;
   517   }
   519   // Calculate the absolute and desired max bounds.
   521   // We will try our best not to "eat" into the reserve.
   522   uint absolute_max_length = 0;
   523   if (_free_regions_at_end_of_collection > _reserve_regions) {
   524     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   525   }
   526   uint desired_max_length = calculate_young_list_desired_max_length();
   527   if (desired_max_length > absolute_max_length) {
   528     desired_max_length = absolute_max_length;
   529   }
   531   uint young_list_target_length = 0;
   532   if (adaptive_young_list_length()) {
   533     if (gcs_are_young()) {
   534       young_list_target_length =
   535                         calculate_young_list_target_length(rs_lengths,
   536                                                            base_min_length,
   537                                                            desired_min_length,
   538                                                            desired_max_length);
   539       _rs_lengths_prediction = rs_lengths;
   540     } else {
   541       // Don't calculate anything and let the code below bound it to
   542       // the desired_min_length, i.e., do the next GC as soon as
   543       // possible to maximize how many old regions we can add to it.
   544     }
   545   } else {
   546     // The user asked for a fixed young gen so we'll fix the young gen
   547     // whether the next GC is young or mixed.
   548     young_list_target_length = _young_list_fixed_length;
   549   }
   551   // Make sure we don't go over the desired max length, nor under the
   552   // desired min length. In case they clash, desired_min_length wins
   553   // which is why that test is second.
   554   if (young_list_target_length > desired_max_length) {
   555     young_list_target_length = desired_max_length;
   556   }
   557   if (young_list_target_length < desired_min_length) {
   558     young_list_target_length = desired_min_length;
   559   }
   561   assert(young_list_target_length > recorded_survivor_regions(),
   562          "we should be able to allocate at least one eden region");
   563   assert(young_list_target_length >= absolute_min_length, "post-condition");
   564   _young_list_target_length = young_list_target_length;
   566   update_max_gc_locker_expansion();
   567 }
   569 uint
   570 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   571                                                      uint base_min_length,
   572                                                      uint desired_min_length,
   573                                                      uint desired_max_length) {
   574   assert(adaptive_young_list_length(), "pre-condition");
   575   assert(gcs_are_young(), "only call this for young GCs");
   577   // In case some edge-condition makes the desired max length too small...
   578   if (desired_max_length <= desired_min_length) {
   579     return desired_min_length;
   580   }
   582   // We'll adjust min_young_length and max_young_length not to include
   583   // the already allocated young regions (i.e., so they reflect the
   584   // min and max eden regions we'll allocate). The base_min_length
   585   // will be reflected in the predictions by the
   586   // survivor_regions_evac_time prediction.
   587   assert(desired_min_length > base_min_length, "invariant");
   588   uint min_young_length = desired_min_length - base_min_length;
   589   assert(desired_max_length > base_min_length, "invariant");
   590   uint max_young_length = desired_max_length - base_min_length;
   592   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   593   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   594   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   595   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   596   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   597   double base_time_ms =
   598     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   599     survivor_regions_evac_time;
   600   uint available_free_regions = _free_regions_at_end_of_collection;
   601   uint base_free_regions = 0;
   602   if (available_free_regions > _reserve_regions) {
   603     base_free_regions = available_free_regions - _reserve_regions;
   604   }
   606   // Here, we will make sure that the shortest young length that
   607   // makes sense fits within the target pause time.
   609   if (predict_will_fit(min_young_length, base_time_ms,
   610                        base_free_regions, target_pause_time_ms)) {
   611     // The shortest young length will fit into the target pause time;
   612     // we'll now check whether the absolute maximum number of young
   613     // regions will fit in the target pause time. If not, we'll do
   614     // a binary search between min_young_length and max_young_length.
   615     if (predict_will_fit(max_young_length, base_time_ms,
   616                          base_free_regions, target_pause_time_ms)) {
   617       // The maximum young length will fit into the target pause time.
   618       // We are done so set min young length to the maximum length (as
   619       // the result is assumed to be returned in min_young_length).
   620       min_young_length = max_young_length;
   621     } else {
   622       // The maximum possible number of young regions will not fit within
   623       // the target pause time so we'll search for the optimal
   624       // length. The loop invariants are:
   625       //
   626       // min_young_length < max_young_length
   627       // min_young_length is known to fit into the target pause time
   628       // max_young_length is known not to fit into the target pause time
   629       //
   630       // Going into the loop we know the above hold as we've just
   631       // checked them. Every time around the loop we check whether
   632       // the middle value between min_young_length and
   633       // max_young_length fits into the target pause time. If it
   634       // does, it becomes the new min. If it doesn't, it becomes
   635       // the new max. This way we maintain the loop invariants.
   637       assert(min_young_length < max_young_length, "invariant");
   638       uint diff = (max_young_length - min_young_length) / 2;
   639       while (diff > 0) {
   640         uint young_length = min_young_length + diff;
   641         if (predict_will_fit(young_length, base_time_ms,
   642                              base_free_regions, target_pause_time_ms)) {
   643           min_young_length = young_length;
   644         } else {
   645           max_young_length = young_length;
   646         }
   647         assert(min_young_length <  max_young_length, "invariant");
   648         diff = (max_young_length - min_young_length) / 2;
   649       }
   650       // The results is min_young_length which, according to the
   651       // loop invariants, should fit within the target pause time.
   653       // These are the post-conditions of the binary search above:
   654       assert(min_young_length < max_young_length,
   655              "otherwise we should have discovered that max_young_length "
   656              "fits into the pause target and not done the binary search");
   657       assert(predict_will_fit(min_young_length, base_time_ms,
   658                               base_free_regions, target_pause_time_ms),
   659              "min_young_length, the result of the binary search, should "
   660              "fit into the pause target");
   661       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   662                                base_free_regions, target_pause_time_ms),
   663              "min_young_length, the result of the binary search, should be "
   664              "optimal, so no larger length should fit into the pause target");
   665     }
   666   } else {
   667     // Even the minimum length doesn't fit into the pause time
   668     // target, return it as the result nevertheless.
   669   }
   670   return base_min_length + min_young_length;
   671 }
   673 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   674   double survivor_regions_evac_time = 0.0;
   675   for (HeapRegion * r = _recorded_survivor_head;
   676        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   677        r = r->get_next_young_region()) {
   678     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
   679   }
   680   return survivor_regions_evac_time;
   681 }
   683 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   684   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   686   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   687   if (rs_lengths > _rs_lengths_prediction) {
   688     // add 10% to avoid having to recalculate often
   689     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   690     update_young_list_target_length(rs_lengths_prediction);
   691   }
   692 }
   696 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   697                                                bool is_tlab,
   698                                                bool* gc_overhead_limit_was_exceeded) {
   699   guarantee(false, "Not using this policy feature yet.");
   700   return NULL;
   701 }
   703 // This method controls how a collector handles one or more
   704 // of its generations being fully allocated.
   705 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   706                                                        bool is_tlab) {
   707   guarantee(false, "Not using this policy feature yet.");
   708   return NULL;
   709 }
   712 #ifndef PRODUCT
   713 bool G1CollectorPolicy::verify_young_ages() {
   714   HeapRegion* head = _g1->young_list()->first_region();
   715   return
   716     verify_young_ages(head, _short_lived_surv_rate_group);
   717   // also call verify_young_ages on any additional surv rate groups
   718 }
   720 bool
   721 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   722                                      SurvRateGroup *surv_rate_group) {
   723   guarantee( surv_rate_group != NULL, "pre-condition" );
   725   const char* name = surv_rate_group->name();
   726   bool ret = true;
   727   int prev_age = -1;
   729   for (HeapRegion* curr = head;
   730        curr != NULL;
   731        curr = curr->get_next_young_region()) {
   732     SurvRateGroup* group = curr->surv_rate_group();
   733     if (group == NULL && !curr->is_survivor()) {
   734       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   735       ret = false;
   736     }
   738     if (surv_rate_group == group) {
   739       int age = curr->age_in_surv_rate_group();
   741       if (age < 0) {
   742         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   743         ret = false;
   744       }
   746       if (age <= prev_age) {
   747         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   748                                "(%d, %d)", name, age, prev_age);
   749         ret = false;
   750       }
   751       prev_age = age;
   752     }
   753   }
   755   return ret;
   756 }
   757 #endif // PRODUCT
   759 void G1CollectorPolicy::record_full_collection_start() {
   760   _full_collection_start_sec = os::elapsedTime();
   761   record_heap_size_info_at_start(true /* full */);
   762   // Release the future to-space so that it is available for compaction into.
   763   _g1->set_full_collection();
   764 }
   766 void G1CollectorPolicy::record_full_collection_end() {
   767   // Consider this like a collection pause for the purposes of allocation
   768   // since last pause.
   769   double end_sec = os::elapsedTime();
   770   double full_gc_time_sec = end_sec - _full_collection_start_sec;
   771   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   773   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
   775   update_recent_gc_times(end_sec, full_gc_time_ms);
   777   _g1->clear_full_collection();
   779   // "Nuke" the heuristics that control the young/mixed GC
   780   // transitions and make sure we start with young GCs after the Full GC.
   781   set_gcs_are_young(true);
   782   _last_young_gc = false;
   783   clear_initiate_conc_mark_if_possible();
   784   clear_during_initial_mark_pause();
   785   _in_marking_window = false;
   786   _in_marking_window_im = false;
   788   _short_lived_surv_rate_group->start_adding_regions();
   789   // also call this on any additional surv rate groups
   791   record_survivor_regions(0, NULL, NULL);
   793   _free_regions_at_end_of_collection = _g1->free_regions();
   794   // Reset survivors SurvRateGroup.
   795   _survivor_surv_rate_group->reset();
   796   update_young_list_target_length();
   797   _collectionSetChooser->clear();
   798 }
   800 void G1CollectorPolicy::record_stop_world_start() {
   801   _stop_world_start = os::elapsedTime();
   802 }
   804 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
   805   // We only need to do this here as the policy will only be applied
   806   // to the GC we're about to start. so, no point is calculating this
   807   // every time we calculate / recalculate the target young length.
   808   update_survivors_policy();
   810   assert(_g1->used() == _g1->recalculate_used(),
   811          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   812                  _g1->used(), _g1->recalculate_used()));
   814   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   815   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
   816   _stop_world_start = 0.0;
   818   record_heap_size_info_at_start(false /* full */);
   820   phase_times()->record_cur_collection_start_sec(start_time_sec);
   821   _pending_cards = _g1->pending_card_num();
   823   _collection_set_bytes_used_before = 0;
   824   _bytes_copied_during_gc = 0;
   826   _last_gc_was_young = false;
   828   // do that for any other surv rate groups
   829   _short_lived_surv_rate_group->stop_adding_regions();
   830   _survivors_age_table.clear();
   832   assert( verify_young_ages(), "region age verification" );
   833 }
   835 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   836                                                    mark_init_elapsed_time_ms) {
   837   _during_marking = true;
   838   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   839   clear_during_initial_mark_pause();
   840   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   841 }
   843 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   844   _mark_remark_start_sec = os::elapsedTime();
   845   _during_marking = false;
   846 }
   848 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   849   double end_time_sec = os::elapsedTime();
   850   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   851   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   852   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   853   _prev_collection_pause_end_ms += elapsed_time_ms;
   855   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   856 }
   858 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   859   _mark_cleanup_start_sec = os::elapsedTime();
   860 }
   862 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   863   _last_young_gc = true;
   864   _in_marking_window = false;
   865 }
   867 void G1CollectorPolicy::record_concurrent_pause() {
   868   if (_stop_world_start > 0.0) {
   869     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   870     _trace_gen0_time_data.record_yield_time(yield_ms);
   871   }
   872 }
   874 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
   875   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
   876     return false;
   877   }
   879   size_t marking_initiating_used_threshold =
   880     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
   881   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
   882   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
   884   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
   885     if (gcs_are_young() && !_last_young_gc) {
   886       ergo_verbose5(ErgoConcCycles,
   887         "request concurrent cycle initiation",
   888         ergo_format_reason("occupancy higher than threshold")
   889         ergo_format_byte("occupancy")
   890         ergo_format_byte("allocation request")
   891         ergo_format_byte_perc("threshold")
   892         ergo_format_str("source"),
   893         cur_used_bytes,
   894         alloc_byte_size,
   895         marking_initiating_used_threshold,
   896         (double) InitiatingHeapOccupancyPercent,
   897         source);
   898       return true;
   899     } else {
   900       ergo_verbose5(ErgoConcCycles,
   901         "do not request concurrent cycle initiation",
   902         ergo_format_reason("still doing mixed collections")
   903         ergo_format_byte("occupancy")
   904         ergo_format_byte("allocation request")
   905         ergo_format_byte_perc("threshold")
   906         ergo_format_str("source"),
   907         cur_used_bytes,
   908         alloc_byte_size,
   909         marking_initiating_used_threshold,
   910         (double) InitiatingHeapOccupancyPercent,
   911         source);
   912     }
   913   }
   915   return false;
   916 }
   918 // Anything below that is considered to be zero
   919 #define MIN_TIMER_GRANULARITY 0.0000001
   921 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
   922   double end_time_sec = os::elapsedTime();
   923   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
   924          "otherwise, the subtraction below does not make sense");
   925   size_t rs_size =
   926             _cur_collection_pause_used_regions_at_start - cset_region_length();
   927   size_t cur_used_bytes = _g1->used();
   928   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
   929   bool last_pause_included_initial_mark = false;
   930   bool update_stats = !_g1->evacuation_failed();
   932 #ifndef PRODUCT
   933   if (G1YoungSurvRateVerbose) {
   934     gclog_or_tty->print_cr("");
   935     _short_lived_surv_rate_group->print();
   936     // do that for any other surv rate groups too
   937   }
   938 #endif // PRODUCT
   940   last_pause_included_initial_mark = during_initial_mark_pause();
   941   if (last_pause_included_initial_mark) {
   942     record_concurrent_mark_init_end(0.0);
   943   } else if (need_to_start_conc_mark("end of GC")) {
   944     // Note: this might have already been set, if during the last
   945     // pause we decided to start a cycle but at the beginning of
   946     // this pause we decided to postpone it. That's OK.
   947     set_initiate_conc_mark_if_possible();
   948   }
   950   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
   951                           end_time_sec, false);
   953   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
   954   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
   956   if (update_stats) {
   957     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
   958     // this is where we update the allocation rate of the application
   959     double app_time_ms =
   960       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
   961     if (app_time_ms < MIN_TIMER_GRANULARITY) {
   962       // This usually happens due to the timer not having the required
   963       // granularity. Some Linuxes are the usual culprits.
   964       // We'll just set it to something (arbitrarily) small.
   965       app_time_ms = 1.0;
   966     }
   967     // We maintain the invariant that all objects allocated by mutator
   968     // threads will be allocated out of eden regions. So, we can use
   969     // the eden region number allocated since the previous GC to
   970     // calculate the application's allocate rate. The only exception
   971     // to that is humongous objects that are allocated separately. But
   972     // given that humongous object allocations do not really affect
   973     // either the pause's duration nor when the next pause will take
   974     // place we can safely ignore them here.
   975     uint regions_allocated = eden_cset_region_length();
   976     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
   977     _alloc_rate_ms_seq->add(alloc_rate_ms);
   979     double interval_ms =
   980       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
   981     update_recent_gc_times(end_time_sec, pause_time_ms);
   982     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
   983     if (recent_avg_pause_time_ratio() < 0.0 ||
   984         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
   985 #ifndef PRODUCT
   986       // Dump info to allow post-facto debugging
   987       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
   988       gclog_or_tty->print_cr("-------------------------------------------");
   989       gclog_or_tty->print_cr("Recent GC Times (ms):");
   990       _recent_gc_times_ms->dump();
   991       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
   992       _recent_prev_end_times_for_all_gcs_sec->dump();
   993       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
   994                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
   995       // In debug mode, terminate the JVM if the user wants to debug at this point.
   996       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
   997 #endif  // !PRODUCT
   998       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
   999       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1000       if (_recent_avg_pause_time_ratio < 0.0) {
  1001         _recent_avg_pause_time_ratio = 0.0;
  1002       } else {
  1003         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1004         _recent_avg_pause_time_ratio = 1.0;
  1009   bool new_in_marking_window = _in_marking_window;
  1010   bool new_in_marking_window_im = false;
  1011   if (during_initial_mark_pause()) {
  1012     new_in_marking_window = true;
  1013     new_in_marking_window_im = true;
  1016   if (_last_young_gc) {
  1017     // This is supposed to to be the "last young GC" before we start
  1018     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
  1020     if (!last_pause_included_initial_mark) {
  1021       if (next_gc_should_be_mixed("start mixed GCs",
  1022                                   "do not start mixed GCs")) {
  1023         set_gcs_are_young(false);
  1025     } else {
  1026       ergo_verbose0(ErgoMixedGCs,
  1027                     "do not start mixed GCs",
  1028                     ergo_format_reason("concurrent cycle is about to start"));
  1030     _last_young_gc = false;
  1033   if (!_last_gc_was_young) {
  1034     // This is a mixed GC. Here we decide whether to continue doing
  1035     // mixed GCs or not.
  1037     if (!next_gc_should_be_mixed("continue mixed GCs",
  1038                                  "do not continue mixed GCs")) {
  1039       set_gcs_are_young(true);
  1043   _short_lived_surv_rate_group->start_adding_regions();
  1044   // do that for any other surv rate groupsx
  1046   if (update_stats) {
  1047     double cost_per_card_ms = 0.0;
  1048     if (_pending_cards > 0) {
  1049       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
  1050       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1053     size_t cards_scanned = _g1->cards_scanned();
  1055     double cost_per_entry_ms = 0.0;
  1056     if (cards_scanned > 10) {
  1057       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
  1058       if (_last_gc_was_young) {
  1059         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1060       } else {
  1061         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1065     if (_max_rs_lengths > 0) {
  1066       double cards_per_entry_ratio =
  1067         (double) cards_scanned / (double) _max_rs_lengths;
  1068       if (_last_gc_was_young) {
  1069         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1070       } else {
  1071         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1075     // This is defensive. For a while _max_rs_lengths could get
  1076     // smaller than _recorded_rs_lengths which was causing
  1077     // rs_length_diff to get very large and mess up the RSet length
  1078     // predictions. The reason was unsafe concurrent updates to the
  1079     // _inc_cset_recorded_rs_lengths field which the code below guards
  1080     // against (see CR 7118202). This bug has now been fixed (see CR
  1081     // 7119027). However, I'm still worried that
  1082     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1083     // inaccurate. The concurrent refinement thread calculates an
  1084     // RSet's length concurrently with other CR threads updating it
  1085     // which might cause it to calculate the length incorrectly (if,
  1086     // say, it's in mid-coarsening). So I'll leave in the defensive
  1087     // conditional below just in case.
  1088     size_t rs_length_diff = 0;
  1089     if (_max_rs_lengths > _recorded_rs_lengths) {
  1090       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1092     _rs_length_diff_seq->add((double) rs_length_diff);
  1094     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
  1095     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
  1096     double cost_per_byte_ms = 0.0;
  1098     if (copied_bytes > 0) {
  1099       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
  1100       if (_in_marking_window) {
  1101         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1102       } else {
  1103         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1107     double all_other_time_ms = pause_time_ms -
  1108       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
  1109       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
  1111     double young_other_time_ms = 0.0;
  1112     if (young_cset_region_length() > 0) {
  1113       young_other_time_ms =
  1114         phase_times()->young_cset_choice_time_ms() +
  1115         phase_times()->young_free_cset_time_ms();
  1116       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1117                                           (double) young_cset_region_length());
  1119     double non_young_other_time_ms = 0.0;
  1120     if (old_cset_region_length() > 0) {
  1121       non_young_other_time_ms =
  1122         phase_times()->non_young_cset_choice_time_ms() +
  1123         phase_times()->non_young_free_cset_time_ms();
  1125       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1126                                             (double) old_cset_region_length());
  1129     double constant_other_time_ms = all_other_time_ms -
  1130       (young_other_time_ms + non_young_other_time_ms);
  1131     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1133     double survival_ratio = 0.0;
  1134     if (_collection_set_bytes_used_before > 0) {
  1135       survival_ratio = (double) _bytes_copied_during_gc /
  1136                                    (double) _collection_set_bytes_used_before;
  1139     _pending_cards_seq->add((double) _pending_cards);
  1140     _rs_lengths_seq->add((double) _max_rs_lengths);
  1143   _in_marking_window = new_in_marking_window;
  1144   _in_marking_window_im = new_in_marking_window_im;
  1145   _free_regions_at_end_of_collection = _g1->free_regions();
  1146   update_young_list_target_length();
  1148   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1149   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1150   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
  1151                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
  1153   _collectionSetChooser->verify();
  1156 #define EXT_SIZE_FORMAT "%.1f%s"
  1157 #define EXT_SIZE_PARAMS(bytes)                                  \
  1158   byte_size_in_proper_unit((double)(bytes)),                    \
  1159   proper_unit_for_byte_size((bytes))
  1161 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
  1162   YoungList* young_list = _g1->young_list();
  1163   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
  1164   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
  1165   _heap_capacity_bytes_before_gc = _g1->capacity();
  1166   _heap_used_bytes_before_gc = _g1->used();
  1167   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  1169   _eden_capacity_bytes_before_gc =
  1170          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
  1172   if (full) {
  1173     _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
  1177 void G1CollectorPolicy::print_heap_transition() {
  1178   _g1->print_size_transition(gclog_or_tty,
  1179                              _heap_used_bytes_before_gc,
  1180                              _g1->used(),
  1181                              _g1->capacity());
  1184 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
  1185   YoungList* young_list = _g1->young_list();
  1187   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
  1188   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
  1189   size_t heap_used_bytes_after_gc = _g1->used();
  1191   size_t heap_capacity_bytes_after_gc = _g1->capacity();
  1192   size_t eden_capacity_bytes_after_gc =
  1193     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
  1195   gclog_or_tty->print(
  1196     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1197     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1198     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1199     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1200     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
  1201     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
  1202     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
  1203     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
  1204     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
  1205     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
  1206     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
  1207     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
  1208     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
  1209     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
  1211   if (full) {
  1212     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
  1215   gclog_or_tty->cr();
  1218 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1219                                                      double update_rs_processed_buffers,
  1220                                                      double goal_ms) {
  1221   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1222   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1224   if (G1UseAdaptiveConcRefinement) {
  1225     const int k_gy = 3, k_gr = 6;
  1226     const double inc_k = 1.1, dec_k = 0.9;
  1228     int g = cg1r->green_zone();
  1229     if (update_rs_time > goal_ms) {
  1230       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1231     } else {
  1232       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1233         g = (int)MAX2(g * inc_k, g + 1.0);
  1236     // Change the refinement threads params
  1237     cg1r->set_green_zone(g);
  1238     cg1r->set_yellow_zone(g * k_gy);
  1239     cg1r->set_red_zone(g * k_gr);
  1240     cg1r->reinitialize_threads();
  1242     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1243     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1244                                     cg1r->yellow_zone());
  1245     // Change the barrier params
  1246     dcqs.set_process_completed_threshold(processing_threshold);
  1247     dcqs.set_max_completed_queue(cg1r->red_zone());
  1250   int curr_queue_size = dcqs.completed_buffers_num();
  1251   if (curr_queue_size >= cg1r->yellow_zone()) {
  1252     dcqs.set_completed_queue_padding(curr_queue_size);
  1253   } else {
  1254     dcqs.set_completed_queue_padding(0);
  1256   dcqs.notify_if_necessary();
  1259 double
  1260 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1261                                                 size_t scanned_cards) {
  1262   return
  1263     predict_rs_update_time_ms(pending_cards) +
  1264     predict_rs_scan_time_ms(scanned_cards) +
  1265     predict_constant_other_time_ms();
  1268 double
  1269 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1270   size_t rs_length = predict_rs_length_diff();
  1271   size_t card_num;
  1272   if (gcs_are_young()) {
  1273     card_num = predict_young_card_num(rs_length);
  1274   } else {
  1275     card_num = predict_non_young_card_num(rs_length);
  1277   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1280 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1281   size_t bytes_to_copy;
  1282   if (hr->is_marked())
  1283     bytes_to_copy = hr->max_live_bytes();
  1284   else {
  1285     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
  1286     int age = hr->age_in_surv_rate_group();
  1287     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1288     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1290   return bytes_to_copy;
  1293 double
  1294 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1295                                                   bool for_young_gc) {
  1296   size_t rs_length = hr->rem_set()->occupied();
  1297   size_t card_num;
  1299   // Predicting the number of cards is based on which type of GC
  1300   // we're predicting for.
  1301   if (for_young_gc) {
  1302     card_num = predict_young_card_num(rs_length);
  1303   } else {
  1304     card_num = predict_non_young_card_num(rs_length);
  1306   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1308   double region_elapsed_time_ms =
  1309     predict_rs_scan_time_ms(card_num) +
  1310     predict_object_copy_time_ms(bytes_to_copy);
  1312   // The prediction of the "other" time for this region is based
  1313   // upon the region type and NOT the GC type.
  1314   if (hr->is_young()) {
  1315     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1316   } else {
  1317     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1319   return region_elapsed_time_ms;
  1322 void
  1323 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
  1324                                             uint survivor_cset_region_length) {
  1325   _eden_cset_region_length     = eden_cset_region_length;
  1326   _survivor_cset_region_length = survivor_cset_region_length;
  1327   _old_cset_region_length      = 0;
  1330 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1331   _recorded_rs_lengths = rs_lengths;
  1334 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1335                                                double elapsed_ms) {
  1336   _recent_gc_times_ms->add(elapsed_ms);
  1337   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1338   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1341 size_t G1CollectorPolicy::expansion_amount() {
  1342   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1343   double threshold = _gc_overhead_perc;
  1344   if (recent_gc_overhead > threshold) {
  1345     // We will double the existing space, or take
  1346     // G1ExpandByPercentOfAvailable % of the available expansion
  1347     // space, whichever is smaller, bounded below by a minimum
  1348     // expansion (unless that's all that's left.)
  1349     const size_t min_expand_bytes = 1*M;
  1350     size_t reserved_bytes = _g1->max_capacity();
  1351     size_t committed_bytes = _g1->capacity();
  1352     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1353     size_t expand_bytes;
  1354     size_t expand_bytes_via_pct =
  1355       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1356     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1357     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1358     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1360     ergo_verbose5(ErgoHeapSizing,
  1361                   "attempt heap expansion",
  1362                   ergo_format_reason("recent GC overhead higher than "
  1363                                      "threshold after GC")
  1364                   ergo_format_perc("recent GC overhead")
  1365                   ergo_format_perc("threshold")
  1366                   ergo_format_byte("uncommitted")
  1367                   ergo_format_byte_perc("calculated expansion amount"),
  1368                   recent_gc_overhead, threshold,
  1369                   uncommitted_bytes,
  1370                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1372     return expand_bytes;
  1373   } else {
  1374     return 0;
  1378 void G1CollectorPolicy::print_tracing_info() const {
  1379   _trace_gen0_time_data.print();
  1380   _trace_gen1_time_data.print();
  1383 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  1384 #ifndef PRODUCT
  1385   _short_lived_surv_rate_group->print_surv_rate_summary();
  1386   // add this call for any other surv rate groups
  1387 #endif // PRODUCT
  1390 uint G1CollectorPolicy::max_regions(int purpose) {
  1391   switch (purpose) {
  1392     case GCAllocForSurvived:
  1393       return _max_survivor_regions;
  1394     case GCAllocForTenured:
  1395       return REGIONS_UNLIMITED;
  1396     default:
  1397       ShouldNotReachHere();
  1398       return REGIONS_UNLIMITED;
  1399   };
  1402 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  1403   uint expansion_region_num = 0;
  1404   if (GCLockerEdenExpansionPercent > 0) {
  1405     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  1406     double expansion_region_num_d = perc * (double) _young_list_target_length;
  1407     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  1408     // less than 1.0) we'll get 1.
  1409     expansion_region_num = (uint) ceil(expansion_region_num_d);
  1410   } else {
  1411     assert(expansion_region_num == 0, "sanity");
  1413   _young_list_max_length = _young_list_target_length + expansion_region_num;
  1414   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  1417 // Calculates survivor space parameters.
  1418 void G1CollectorPolicy::update_survivors_policy() {
  1419   double max_survivor_regions_d =
  1420                  (double) _young_list_target_length / (double) SurvivorRatio;
  1421   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  1422   // smaller than 1.0) we'll get 1.
  1423   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
  1425   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  1426         HeapRegion::GrainWords * _max_survivor_regions);
  1429 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  1430                                                      GCCause::Cause gc_cause) {
  1431   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1432   if (!during_cycle) {
  1433     ergo_verbose1(ErgoConcCycles,
  1434                   "request concurrent cycle initiation",
  1435                   ergo_format_reason("requested by GC cause")
  1436                   ergo_format_str("GC cause"),
  1437                   GCCause::to_string(gc_cause));
  1438     set_initiate_conc_mark_if_possible();
  1439     return true;
  1440   } else {
  1441     ergo_verbose1(ErgoConcCycles,
  1442                   "do not request concurrent cycle initiation",
  1443                   ergo_format_reason("concurrent cycle already in progress")
  1444                   ergo_format_str("GC cause"),
  1445                   GCCause::to_string(gc_cause));
  1446     return false;
  1450 void
  1451 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  1452   // We are about to decide on whether this pause will be an
  1453   // initial-mark pause.
  1455   // First, during_initial_mark_pause() should not be already set. We
  1456   // will set it here if we have to. However, it should be cleared by
  1457   // the end of the pause (it's only set for the duration of an
  1458   // initial-mark pause).
  1459   assert(!during_initial_mark_pause(), "pre-condition");
  1461   if (initiate_conc_mark_if_possible()) {
  1462     // We had noticed on a previous pause that the heap occupancy has
  1463     // gone over the initiating threshold and we should start a
  1464     // concurrent marking cycle. So we might initiate one.
  1466     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1467     if (!during_cycle) {
  1468       // The concurrent marking thread is not "during a cycle", i.e.,
  1469       // it has completed the last one. So we can go ahead and
  1470       // initiate a new cycle.
  1472       set_during_initial_mark_pause();
  1473       // We do not allow mixed GCs during marking.
  1474       if (!gcs_are_young()) {
  1475         set_gcs_are_young(true);
  1476         ergo_verbose0(ErgoMixedGCs,
  1477                       "end mixed GCs",
  1478                       ergo_format_reason("concurrent cycle is about to start"));
  1481       // And we can now clear initiate_conc_mark_if_possible() as
  1482       // we've already acted on it.
  1483       clear_initiate_conc_mark_if_possible();
  1485       ergo_verbose0(ErgoConcCycles,
  1486                   "initiate concurrent cycle",
  1487                   ergo_format_reason("concurrent cycle initiation requested"));
  1488     } else {
  1489       // The concurrent marking thread is still finishing up the
  1490       // previous cycle. If we start one right now the two cycles
  1491       // overlap. In particular, the concurrent marking thread might
  1492       // be in the process of clearing the next marking bitmap (which
  1493       // we will use for the next cycle if we start one). Starting a
  1494       // cycle now will be bad given that parts of the marking
  1495       // information might get cleared by the marking thread. And we
  1496       // cannot wait for the marking thread to finish the cycle as it
  1497       // periodically yields while clearing the next marking bitmap
  1498       // and, if it's in a yield point, it's waiting for us to
  1499       // finish. So, at this point we will not start a cycle and we'll
  1500       // let the concurrent marking thread complete the last one.
  1501       ergo_verbose0(ErgoConcCycles,
  1502                     "do not initiate concurrent cycle",
  1503                     ergo_format_reason("concurrent cycle already in progress"));
  1508 class KnownGarbageClosure: public HeapRegionClosure {
  1509   G1CollectedHeap* _g1h;
  1510   CollectionSetChooser* _hrSorted;
  1512 public:
  1513   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  1514     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
  1516   bool doHeapRegion(HeapRegion* r) {
  1517     // We only include humongous regions in collection
  1518     // sets when concurrent mark shows that their contained object is
  1519     // unreachable.
  1521     // Do we have any marking information for this region?
  1522     if (r->is_marked()) {
  1523       // We will skip any region that's currently used as an old GC
  1524       // alloc region (we should not consider those for collection
  1525       // before we fill them up).
  1526       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1527         _hrSorted->add_region(r);
  1530     return false;
  1532 };
  1534 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  1535   G1CollectedHeap* _g1h;
  1536   CSetChooserParUpdater _cset_updater;
  1538 public:
  1539   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  1540                            uint chunk_size) :
  1541     _g1h(G1CollectedHeap::heap()),
  1542     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
  1544   bool doHeapRegion(HeapRegion* r) {
  1545     // Do we have any marking information for this region?
  1546     if (r->is_marked()) {
  1547       // We will skip any region that's currently used as an old GC
  1548       // alloc region (we should not consider those for collection
  1549       // before we fill them up).
  1550       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1551         _cset_updater.add_region(r);
  1554     return false;
  1556 };
  1558 class ParKnownGarbageTask: public AbstractGangTask {
  1559   CollectionSetChooser* _hrSorted;
  1560   uint _chunk_size;
  1561   G1CollectedHeap* _g1;
  1562 public:
  1563   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
  1564     AbstractGangTask("ParKnownGarbageTask"),
  1565     _hrSorted(hrSorted), _chunk_size(chunk_size),
  1566     _g1(G1CollectedHeap::heap()) { }
  1568   void work(uint worker_id) {
  1569     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
  1571     // Back to zero for the claim value.
  1572     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  1573                                          _g1->workers()->active_workers(),
  1574                                          HeapRegion::InitialClaimValue);
  1576 };
  1578 void
  1579 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  1580   _collectionSetChooser->clear();
  1582   uint region_num = _g1->n_regions();
  1583   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1584     const uint OverpartitionFactor = 4;
  1585     uint WorkUnit;
  1586     // The use of MinChunkSize = 8 in the original code
  1587     // causes some assertion failures when the total number of
  1588     // region is less than 8.  The code here tries to fix that.
  1589     // Should the original code also be fixed?
  1590     if (no_of_gc_threads > 0) {
  1591       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
  1592       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
  1593                       MinWorkUnit);
  1594     } else {
  1595       assert(no_of_gc_threads > 0,
  1596         "The active gc workers should be greater than 0");
  1597       // In a product build do something reasonable to avoid a crash.
  1598       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
  1599       WorkUnit =
  1600         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
  1601              MinWorkUnit);
  1603     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
  1604                                                            WorkUnit);
  1605     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  1606                                             (int) WorkUnit);
  1607     _g1->workers()->run_task(&parKnownGarbageTask);
  1609     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  1610            "sanity check");
  1611   } else {
  1612     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  1613     _g1->heap_region_iterate(&knownGarbagecl);
  1616   _collectionSetChooser->sort_regions();
  1618   double end_sec = os::elapsedTime();
  1619   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  1620   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  1621   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1622   _prev_collection_pause_end_ms += elapsed_time_ms;
  1623   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  1626 // Add the heap region at the head of the non-incremental collection set
  1627 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  1628   assert(_inc_cset_build_state == Active, "Precondition");
  1629   assert(!hr->is_young(), "non-incremental add of young region");
  1631   assert(!hr->in_collection_set(), "should not already be in the CSet");
  1632   hr->set_in_collection_set(true);
  1633   hr->set_next_in_collection_set(_collection_set);
  1634   _collection_set = hr;
  1635   _collection_set_bytes_used_before += hr->used();
  1636   _g1->register_region_with_in_cset_fast_test(hr);
  1637   size_t rs_length = hr->rem_set()->occupied();
  1638   _recorded_rs_lengths += rs_length;
  1639   _old_cset_region_length += 1;
  1642 // Initialize the per-collection-set information
  1643 void G1CollectorPolicy::start_incremental_cset_building() {
  1644   assert(_inc_cset_build_state == Inactive, "Precondition");
  1646   _inc_cset_head = NULL;
  1647   _inc_cset_tail = NULL;
  1648   _inc_cset_bytes_used_before = 0;
  1650   _inc_cset_max_finger = 0;
  1651   _inc_cset_recorded_rs_lengths = 0;
  1652   _inc_cset_recorded_rs_lengths_diffs = 0;
  1653   _inc_cset_predicted_elapsed_time_ms = 0.0;
  1654   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1655   _inc_cset_build_state = Active;
  1658 void G1CollectorPolicy::finalize_incremental_cset_building() {
  1659   assert(_inc_cset_build_state == Active, "Precondition");
  1660   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  1662   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  1663   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  1664   // that adds a new region to the CSet. Further updates by the
  1665   // concurrent refinement thread that samples the young RSet lengths
  1666   // are accumulated in the *_diffs fields. Here we add the diffs to
  1667   // the "main" fields.
  1669   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  1670     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  1671   } else {
  1672     // This is defensive. The diff should in theory be always positive
  1673     // as RSets can only grow between GCs. However, given that we
  1674     // sample their size concurrently with other threads updating them
  1675     // it's possible that we might get the wrong size back, which
  1676     // could make the calculations somewhat inaccurate.
  1677     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  1678     if (_inc_cset_recorded_rs_lengths >= diffs) {
  1679       _inc_cset_recorded_rs_lengths -= diffs;
  1680     } else {
  1681       _inc_cset_recorded_rs_lengths = 0;
  1684   _inc_cset_predicted_elapsed_time_ms +=
  1685                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  1687   _inc_cset_recorded_rs_lengths_diffs = 0;
  1688   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1691 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  1692   // This routine is used when:
  1693   // * adding survivor regions to the incremental cset at the end of an
  1694   //   evacuation pause,
  1695   // * adding the current allocation region to the incremental cset
  1696   //   when it is retired, and
  1697   // * updating existing policy information for a region in the
  1698   //   incremental cset via young list RSet sampling.
  1699   // Therefore this routine may be called at a safepoint by the
  1700   // VM thread, or in-between safepoints by mutator threads (when
  1701   // retiring the current allocation region) or a concurrent
  1702   // refine thread (RSet sampling).
  1704   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1705   size_t used_bytes = hr->used();
  1706   _inc_cset_recorded_rs_lengths += rs_length;
  1707   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  1708   _inc_cset_bytes_used_before += used_bytes;
  1710   // Cache the values we have added to the aggregated informtion
  1711   // in the heap region in case we have to remove this region from
  1712   // the incremental collection set, or it is updated by the
  1713   // rset sampling code
  1714   hr->set_recorded_rs_length(rs_length);
  1715   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  1718 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  1719                                                      size_t new_rs_length) {
  1720   // Update the CSet information that is dependent on the new RS length
  1721   assert(hr->is_young(), "Precondition");
  1722   assert(!SafepointSynchronize::is_at_safepoint(),
  1723                                                "should not be at a safepoint");
  1725   // We could have updated _inc_cset_recorded_rs_lengths and
  1726   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  1727   // that atomically, as this code is executed by a concurrent
  1728   // refinement thread, potentially concurrently with a mutator thread
  1729   // allocating a new region and also updating the same fields. To
  1730   // avoid the atomic operations we accumulate these updates on two
  1731   // separate fields (*_diffs) and we'll just add them to the "main"
  1732   // fields at the start of a GC.
  1734   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  1735   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  1736   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  1738   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  1739   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1740   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  1741   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  1743   hr->set_recorded_rs_length(new_rs_length);
  1744   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  1747 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  1748   assert(hr->is_young(), "invariant");
  1749   assert(hr->young_index_in_cset() > -1, "should have already been set");
  1750   assert(_inc_cset_build_state == Active, "Precondition");
  1752   // We need to clear and set the cached recorded/cached collection set
  1753   // information in the heap region here (before the region gets added
  1754   // to the collection set). An individual heap region's cached values
  1755   // are calculated, aggregated with the policy collection set info,
  1756   // and cached in the heap region here (initially) and (subsequently)
  1757   // by the Young List sampling code.
  1759   size_t rs_length = hr->rem_set()->occupied();
  1760   add_to_incremental_cset_info(hr, rs_length);
  1762   HeapWord* hr_end = hr->end();
  1763   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  1765   assert(!hr->in_collection_set(), "invariant");
  1766   hr->set_in_collection_set(true);
  1767   assert( hr->next_in_collection_set() == NULL, "invariant");
  1769   _g1->register_region_with_in_cset_fast_test(hr);
  1772 // Add the region at the RHS of the incremental cset
  1773 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  1774   // We should only ever be appending survivors at the end of a pause
  1775   assert( hr->is_survivor(), "Logic");
  1777   // Do the 'common' stuff
  1778   add_region_to_incremental_cset_common(hr);
  1780   // Now add the region at the right hand side
  1781   if (_inc_cset_tail == NULL) {
  1782     assert(_inc_cset_head == NULL, "invariant");
  1783     _inc_cset_head = hr;
  1784   } else {
  1785     _inc_cset_tail->set_next_in_collection_set(hr);
  1787   _inc_cset_tail = hr;
  1790 // Add the region to the LHS of the incremental cset
  1791 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  1792   // Survivors should be added to the RHS at the end of a pause
  1793   assert(!hr->is_survivor(), "Logic");
  1795   // Do the 'common' stuff
  1796   add_region_to_incremental_cset_common(hr);
  1798   // Add the region at the left hand side
  1799   hr->set_next_in_collection_set(_inc_cset_head);
  1800   if (_inc_cset_head == NULL) {
  1801     assert(_inc_cset_tail == NULL, "Invariant");
  1802     _inc_cset_tail = hr;
  1804   _inc_cset_head = hr;
  1807 #ifndef PRODUCT
  1808 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  1809   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  1811   st->print_cr("\nCollection_set:");
  1812   HeapRegion* csr = list_head;
  1813   while (csr != NULL) {
  1814     HeapRegion* next = csr->next_in_collection_set();
  1815     assert(csr->in_collection_set(), "bad CS");
  1816     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
  1817                  HR_FORMAT_PARAMS(csr),
  1818                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
  1819                  csr->age_in_surv_rate_group_cond());
  1820     csr = next;
  1823 #endif // !PRODUCT
  1825 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  1826   // Returns the given amount of reclaimable bytes (that represents
  1827   // the amount of reclaimable space still to be collected) as a
  1828   // percentage of the current heap capacity.
  1829   size_t capacity_bytes = _g1->capacity();
  1830   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
  1833 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
  1834                                                 const char* false_action_str) {
  1835   CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1836   if (cset_chooser->is_empty()) {
  1837     ergo_verbose0(ErgoMixedGCs,
  1838                   false_action_str,
  1839                   ergo_format_reason("candidate old regions not available"));
  1840     return false;
  1843   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
  1844   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  1845   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  1846   double threshold = (double) G1HeapWastePercent;
  1847   if (reclaimable_perc <= threshold) {
  1848     ergo_verbose4(ErgoMixedGCs,
  1849               false_action_str,
  1850               ergo_format_reason("reclaimable percentage not over threshold")
  1851               ergo_format_region("candidate old regions")
  1852               ergo_format_byte_perc("reclaimable")
  1853               ergo_format_perc("threshold"),
  1854               cset_chooser->remaining_regions(),
  1855               reclaimable_bytes,
  1856               reclaimable_perc, threshold);
  1857     return false;
  1860   ergo_verbose4(ErgoMixedGCs,
  1861                 true_action_str,
  1862                 ergo_format_reason("candidate old regions available")
  1863                 ergo_format_region("candidate old regions")
  1864                 ergo_format_byte_perc("reclaimable")
  1865                 ergo_format_perc("threshold"),
  1866                 cset_chooser->remaining_regions(),
  1867                 reclaimable_bytes,
  1868                 reclaimable_perc, threshold);
  1869   return true;
  1872 uint G1CollectorPolicy::calc_min_old_cset_length() {
  1873   // The min old CSet region bound is based on the maximum desired
  1874   // number of mixed GCs after a cycle. I.e., even if some old regions
  1875   // look expensive, we should add them to the CSet anyway to make
  1876   // sure we go through the available old regions in no more than the
  1877   // maximum desired number of mixed GCs.
  1878   //
  1879   // The calculation is based on the number of marked regions we added
  1880   // to the CSet chooser in the first place, not how many remain, so
  1881   // that the result is the same during all mixed GCs that follow a cycle.
  1883   const size_t region_num = (size_t) _collectionSetChooser->length();
  1884   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  1885   size_t result = region_num / gc_num;
  1886   // emulate ceiling
  1887   if (result * gc_num < region_num) {
  1888     result += 1;
  1890   return (uint) result;
  1893 uint G1CollectorPolicy::calc_max_old_cset_length() {
  1894   // The max old CSet region bound is based on the threshold expressed
  1895   // as a percentage of the heap size. I.e., it should bound the
  1896   // number of old regions added to the CSet irrespective of how many
  1897   // of them are available.
  1899   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1900   const size_t region_num = g1h->n_regions();
  1901   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  1902   size_t result = region_num * perc / 100;
  1903   // emulate ceiling
  1904   if (100 * result < region_num * perc) {
  1905     result += 1;
  1907   return (uint) result;
  1911 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
  1912   double young_start_time_sec = os::elapsedTime();
  1914   YoungList* young_list = _g1->young_list();
  1915   finalize_incremental_cset_building();
  1917   guarantee(target_pause_time_ms > 0.0,
  1918             err_msg("target_pause_time_ms = %1.6lf should be positive",
  1919                     target_pause_time_ms));
  1920   guarantee(_collection_set == NULL, "Precondition");
  1922   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  1923   double predicted_pause_time_ms = base_time_ms;
  1924   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
  1926   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
  1927                 "start choosing CSet",
  1928                 ergo_format_size("_pending_cards")
  1929                 ergo_format_ms("predicted base time")
  1930                 ergo_format_ms("remaining time")
  1931                 ergo_format_ms("target pause time"),
  1932                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
  1934   _last_gc_was_young = gcs_are_young() ? true : false;
  1936   if (_last_gc_was_young) {
  1937     _trace_gen0_time_data.increment_young_collection_count();
  1938   } else {
  1939     _trace_gen0_time_data.increment_mixed_collection_count();
  1942   // The young list is laid with the survivor regions from the previous
  1943   // pause are appended to the RHS of the young list, i.e.
  1944   //   [Newly Young Regions ++ Survivors from last pause].
  1946   uint survivor_region_length = young_list->survivor_length();
  1947   uint eden_region_length = young_list->length() - survivor_region_length;
  1948   init_cset_region_lengths(eden_region_length, survivor_region_length);
  1950   HeapRegion* hr = young_list->first_survivor_region();
  1951   while (hr != NULL) {
  1952     assert(hr->is_survivor(), "badly formed young list");
  1953     hr->set_young();
  1954     hr = hr->get_next_young_region();
  1957   // Clear the fields that point to the survivor list - they are all young now.
  1958   young_list->clear_survivors();
  1960   _collection_set = _inc_cset_head;
  1961   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  1962   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
  1963   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  1965   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  1966                 "add young regions to CSet",
  1967                 ergo_format_region("eden")
  1968                 ergo_format_region("survivors")
  1969                 ergo_format_ms("predicted young region time"),
  1970                 eden_region_length, survivor_region_length,
  1971                 _inc_cset_predicted_elapsed_time_ms);
  1973   // The number of recorded young regions is the incremental
  1974   // collection set's current size
  1975   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  1977   double young_end_time_sec = os::elapsedTime();
  1978   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
  1980   // Set the start of the non-young choice time.
  1981   double non_young_start_time_sec = young_end_time_sec;
  1983   if (!gcs_are_young()) {
  1984     CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1985     cset_chooser->verify();
  1986     const uint min_old_cset_length = calc_min_old_cset_length();
  1987     const uint max_old_cset_length = calc_max_old_cset_length();
  1989     uint expensive_region_num = 0;
  1990     bool check_time_remaining = adaptive_young_list_length();
  1992     HeapRegion* hr = cset_chooser->peek();
  1993     while (hr != NULL) {
  1994       if (old_cset_region_length() >= max_old_cset_length) {
  1995         // Added maximum number of old regions to the CSet.
  1996         ergo_verbose2(ErgoCSetConstruction,
  1997                       "finish adding old regions to CSet",
  1998                       ergo_format_reason("old CSet region num reached max")
  1999                       ergo_format_region("old")
  2000                       ergo_format_region("max"),
  2001                       old_cset_region_length(), max_old_cset_length);
  2002         break;
  2006       // Stop adding regions if the remaining reclaimable space is
  2007       // not above G1HeapWastePercent.
  2008       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  2009       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  2010       double threshold = (double) G1HeapWastePercent;
  2011       if (reclaimable_perc <= threshold) {
  2012         // We've added enough old regions that the amount of uncollected
  2013         // reclaimable space is at or below the waste threshold. Stop
  2014         // adding old regions to the CSet.
  2015         ergo_verbose5(ErgoCSetConstruction,
  2016                       "finish adding old regions to CSet",
  2017                       ergo_format_reason("reclaimable percentage not over threshold")
  2018                       ergo_format_region("old")
  2019                       ergo_format_region("max")
  2020                       ergo_format_byte_perc("reclaimable")
  2021                       ergo_format_perc("threshold"),
  2022                       old_cset_region_length(),
  2023                       max_old_cset_length,
  2024                       reclaimable_bytes,
  2025                       reclaimable_perc, threshold);
  2026         break;
  2029       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  2030       if (check_time_remaining) {
  2031         if (predicted_time_ms > time_remaining_ms) {
  2032           // Too expensive for the current CSet.
  2034           if (old_cset_region_length() >= min_old_cset_length) {
  2035             // We have added the minimum number of old regions to the CSet,
  2036             // we are done with this CSet.
  2037             ergo_verbose4(ErgoCSetConstruction,
  2038                           "finish adding old regions to CSet",
  2039                           ergo_format_reason("predicted time is too high")
  2040                           ergo_format_ms("predicted time")
  2041                           ergo_format_ms("remaining time")
  2042                           ergo_format_region("old")
  2043                           ergo_format_region("min"),
  2044                           predicted_time_ms, time_remaining_ms,
  2045                           old_cset_region_length(), min_old_cset_length);
  2046             break;
  2049           // We'll add it anyway given that we haven't reached the
  2050           // minimum number of old regions.
  2051           expensive_region_num += 1;
  2053       } else {
  2054         if (old_cset_region_length() >= min_old_cset_length) {
  2055           // In the non-auto-tuning case, we'll finish adding regions
  2056           // to the CSet if we reach the minimum.
  2057           ergo_verbose2(ErgoCSetConstruction,
  2058                         "finish adding old regions to CSet",
  2059                         ergo_format_reason("old CSet region num reached min")
  2060                         ergo_format_region("old")
  2061                         ergo_format_region("min"),
  2062                         old_cset_region_length(), min_old_cset_length);
  2063           break;
  2067       // We will add this region to the CSet.
  2068       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
  2069       predicted_pause_time_ms += predicted_time_ms;
  2070       cset_chooser->remove_and_move_to_next(hr);
  2071       _g1->old_set_remove(hr);
  2072       add_old_region_to_cset(hr);
  2074       hr = cset_chooser->peek();
  2076     if (hr == NULL) {
  2077       ergo_verbose0(ErgoCSetConstruction,
  2078                     "finish adding old regions to CSet",
  2079                     ergo_format_reason("candidate old regions not available"));
  2082     if (expensive_region_num > 0) {
  2083       // We print the information once here at the end, predicated on
  2084       // whether we added any apparently expensive regions or not, to
  2085       // avoid generating output per region.
  2086       ergo_verbose4(ErgoCSetConstruction,
  2087                     "added expensive regions to CSet",
  2088                     ergo_format_reason("old CSet region num not reached min")
  2089                     ergo_format_region("old")
  2090                     ergo_format_region("expensive")
  2091                     ergo_format_region("min")
  2092                     ergo_format_ms("remaining time"),
  2093                     old_cset_region_length(),
  2094                     expensive_region_num,
  2095                     min_old_cset_length,
  2096                     time_remaining_ms);
  2099     cset_chooser->verify();
  2102   stop_incremental_cset_building();
  2104   ergo_verbose5(ErgoCSetConstruction,
  2105                 "finish choosing CSet",
  2106                 ergo_format_region("eden")
  2107                 ergo_format_region("survivors")
  2108                 ergo_format_region("old")
  2109                 ergo_format_ms("predicted pause time")
  2110                 ergo_format_ms("target pause time"),
  2111                 eden_region_length, survivor_region_length,
  2112                 old_cset_region_length(),
  2113                 predicted_pause_time_ms, target_pause_time_ms);
  2115   double non_young_end_time_sec = os::elapsedTime();
  2116   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
  2117   evacuation_info.set_collectionset_regions(cset_region_length());
  2120 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  2121   if(TraceGen0Time) {
  2122     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  2126 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  2127   if(TraceGen0Time) {
  2128     _all_yield_times_ms.add(yield_time_ms);
  2132 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
  2133   if(TraceGen0Time) {
  2134     _total.add(pause_time_ms);
  2135     _other.add(pause_time_ms - phase_times->accounted_time_ms());
  2136     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
  2137     _parallel.add(phase_times->cur_collection_par_time_ms());
  2138     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
  2139     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
  2140     _update_rs.add(phase_times->average_last_update_rs_time());
  2141     _scan_rs.add(phase_times->average_last_scan_rs_time());
  2142     _obj_copy.add(phase_times->average_last_obj_copy_time());
  2143     _termination.add(phase_times->average_last_termination_time());
  2145     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
  2146       phase_times->average_last_satb_filtering_times_ms() +
  2147       phase_times->average_last_update_rs_time() +
  2148       phase_times->average_last_scan_rs_time() +
  2149       phase_times->average_last_obj_copy_time() +
  2150       + phase_times->average_last_termination_time();
  2152     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
  2153     _parallel_other.add(parallel_other_time);
  2154     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
  2158 void TraceGen0TimeData::increment_young_collection_count() {
  2159   if(TraceGen0Time) {
  2160     ++_young_pause_num;
  2164 void TraceGen0TimeData::increment_mixed_collection_count() {
  2165   if(TraceGen0Time) {
  2166     ++_mixed_pause_num;
  2170 void TraceGen0TimeData::print_summary(const char* str,
  2171                                       const NumberSeq* seq) const {
  2172   double sum = seq->sum();
  2173   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
  2174                 str, sum / 1000.0, seq->avg());
  2177 void TraceGen0TimeData::print_summary_sd(const char* str,
  2178                                          const NumberSeq* seq) const {
  2179   print_summary(str, seq);
  2180   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2181                 "(num", seq->num(), seq->sd(), seq->maximum());
  2184 void TraceGen0TimeData::print() const {
  2185   if (!TraceGen0Time) {
  2186     return;
  2189   gclog_or_tty->print_cr("ALL PAUSES");
  2190   print_summary_sd("   Total", &_total);
  2191   gclog_or_tty->print_cr("");
  2192   gclog_or_tty->print_cr("");
  2193   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  2194   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  2195   gclog_or_tty->print_cr("");
  2197   gclog_or_tty->print_cr("EVACUATION PAUSES");
  2199   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
  2200     gclog_or_tty->print_cr("none");
  2201   } else {
  2202     print_summary_sd("   Evacuation Pauses", &_total);
  2203     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
  2204     print_summary("      Parallel Time", &_parallel);
  2205     print_summary("         Ext Root Scanning", &_ext_root_scan);
  2206     print_summary("         SATB Filtering", &_satb_filtering);
  2207     print_summary("         Update RS", &_update_rs);
  2208     print_summary("         Scan RS", &_scan_rs);
  2209     print_summary("         Object Copy", &_obj_copy);
  2210     print_summary("         Termination", &_termination);
  2211     print_summary("         Parallel Other", &_parallel_other);
  2212     print_summary("      Clear CT", &_clear_ct);
  2213     print_summary("      Other", &_other);
  2215   gclog_or_tty->print_cr("");
  2217   gclog_or_tty->print_cr("MISC");
  2218   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  2219   print_summary_sd("   Yields", &_all_yield_times_ms);
  2222 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  2223   if (TraceGen1Time) {
  2224     _all_full_gc_times.add(full_gc_time_ms);
  2228 void TraceGen1TimeData::print() const {
  2229   if (!TraceGen1Time) {
  2230     return;
  2233   if (_all_full_gc_times.num() > 0) {
  2234     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2235       _all_full_gc_times.num(),
  2236       _all_full_gc_times.sum() / 1000.0);
  2237     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
  2238     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2239       _all_full_gc_times.sd(),
  2240       _all_full_gc_times.maximum());

mercurial