src/share/vm/gc_implementation/g1/concurrentMark.hpp

Tue, 14 Jun 2011 10:33:43 -0400

author
tonyp
date
Tue, 14 Jun 2011 10:33:43 -0400
changeset 2968
842b840e67db
parent 2910
69293e516993
child 2969
6747fd0512e0
permissions
-rw-r--r--

7046558: G1: concurrent marking optimizations
Summary: Some optimizations to improve the concurrent marking phase: specialize the main oop closure, make sure a few methods in the fast path are properly inlined, a few more bits and pieces, and some cosmetic fixes.
Reviewed-by: stefank, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegionSets.hpp"
    29 #include "utilities/taskqueue.hpp"
    31 class G1CollectedHeap;
    32 class CMTask;
    33 typedef GenericTaskQueue<oop>            CMTaskQueue;
    34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
    36 // Closure used by CM during concurrent reference discovery
    37 // and reference processing (during remarking) to determine
    38 // if a particular object is alive. It is primarily used
    39 // to determine if referents of discovered reference objects
    40 // are alive. An instance is also embedded into the
    41 // reference processor as the _is_alive_non_header field
    42 class G1CMIsAliveClosure: public BoolObjectClosure {
    43   G1CollectedHeap* _g1;
    44  public:
    45   G1CMIsAliveClosure(G1CollectedHeap* g1) :
    46     _g1(g1)
    47   {}
    49   void do_object(oop obj) {
    50     ShouldNotCallThis();
    51   }
    52   bool do_object_b(oop obj);
    53 };
    55 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    56 // class, with one bit per (1<<_shifter) HeapWords.
    58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    59  protected:
    60   HeapWord* _bmStartWord;      // base address of range covered by map
    61   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    62   const int _shifter;          // map to char or bit
    63   VirtualSpace _virtual_space; // underlying the bit map
    64   BitMap    _bm;               // the bit map itself
    66  public:
    67   // constructor
    68   CMBitMapRO(ReservedSpace rs, int shifter);
    70   enum { do_yield = true };
    72   // inquiries
    73   HeapWord* startWord()   const { return _bmStartWord; }
    74   size_t    sizeInWords() const { return _bmWordSize;  }
    75   // the following is one past the last word in space
    76   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    78   // read marks
    80   bool isMarked(HeapWord* addr) const {
    81     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    82            "outside underlying space?");
    83     return _bm.at(heapWordToOffset(addr));
    84   }
    86   // iteration
    87   bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
    88   bool iterate(BitMapClosure* cl, MemRegion mr);
    90   // Return the address corresponding to the next marked bit at or after
    91   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    92   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    93   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    94                                      HeapWord* limit = NULL) const;
    95   // Return the address corresponding to the next unmarked bit at or after
    96   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    97   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    98   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    99                                        HeapWord* limit = NULL) const;
   101   // conversion utilities
   102   // XXX Fix these so that offsets are size_t's...
   103   HeapWord* offsetToHeapWord(size_t offset) const {
   104     return _bmStartWord + (offset << _shifter);
   105   }
   106   size_t heapWordToOffset(HeapWord* addr) const {
   107     return pointer_delta(addr, _bmStartWord) >> _shifter;
   108   }
   109   int heapWordDiffToOffsetDiff(size_t diff) const;
   110   HeapWord* nextWord(HeapWord* addr) {
   111     return offsetToHeapWord(heapWordToOffset(addr) + 1);
   112   }
   114   void mostly_disjoint_range_union(BitMap*   from_bitmap,
   115                                    size_t    from_start_index,
   116                                    HeapWord* to_start_word,
   117                                    size_t    word_num);
   119   // debugging
   120   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   121 };
   123 class CMBitMap : public CMBitMapRO {
   125  public:
   126   // constructor
   127   CMBitMap(ReservedSpace rs, int shifter) :
   128     CMBitMapRO(rs, shifter) {}
   130   // write marks
   131   void mark(HeapWord* addr) {
   132     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   133            "outside underlying space?");
   134     _bm.set_bit(heapWordToOffset(addr));
   135   }
   136   void clear(HeapWord* addr) {
   137     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   138            "outside underlying space?");
   139     _bm.clear_bit(heapWordToOffset(addr));
   140   }
   141   bool parMark(HeapWord* addr) {
   142     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   143            "outside underlying space?");
   144     return _bm.par_set_bit(heapWordToOffset(addr));
   145   }
   146   bool parClear(HeapWord* addr) {
   147     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   148            "outside underlying space?");
   149     return _bm.par_clear_bit(heapWordToOffset(addr));
   150   }
   151   void markRange(MemRegion mr);
   152   void clearAll();
   153   void clearRange(MemRegion mr);
   155   // Starting at the bit corresponding to "addr" (inclusive), find the next
   156   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   157   // the end of this run (stopping at "end_addr").  Return the MemRegion
   158   // covering from the start of the region corresponding to the first bit
   159   // of the run to the end of the region corresponding to the last bit of
   160   // the run.  If there is no "1" bit at or after "addr", return an empty
   161   // MemRegion.
   162   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   163 };
   165 // Represents a marking stack used by the CM collector.
   166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   168   ConcurrentMark* _cm;
   169   oop*   _base;      // bottom of stack
   170   jint   _index;     // one more than last occupied index
   171   jint   _capacity;  // max #elements
   172   jint   _oops_do_bound;  // Number of elements to include in next iteration.
   173   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
   175   bool   _overflow;
   176   DEBUG_ONLY(bool _drain_in_progress;)
   177   DEBUG_ONLY(bool _drain_in_progress_yields;)
   179  public:
   180   CMMarkStack(ConcurrentMark* cm);
   181   ~CMMarkStack();
   183   void allocate(size_t size);
   185   oop pop() {
   186     if (!isEmpty()) {
   187       return _base[--_index] ;
   188     }
   189     return NULL;
   190   }
   192   // If overflow happens, don't do the push, and record the overflow.
   193   // *Requires* that "ptr" is already marked.
   194   void push(oop ptr) {
   195     if (isFull()) {
   196       // Record overflow.
   197       _overflow = true;
   198       return;
   199     } else {
   200       _base[_index++] = ptr;
   201       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   202     }
   203   }
   204   // Non-block impl.  Note: concurrency is allowed only with other
   205   // "par_push" operations, not with "pop" or "drain".  We would need
   206   // parallel versions of them if such concurrency was desired.
   207   void par_push(oop ptr);
   209   // Pushes the first "n" elements of "ptr_arr" on the stack.
   210   // Non-block impl.  Note: concurrency is allowed only with other
   211   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   212   void par_adjoin_arr(oop* ptr_arr, int n);
   214   // Pushes the first "n" elements of "ptr_arr" on the stack.
   215   // Locking impl: concurrency is allowed only with
   216   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   217   // locking strategy.
   218   void par_push_arr(oop* ptr_arr, int n);
   220   // If returns false, the array was empty.  Otherwise, removes up to "max"
   221   // elements from the stack, and transfers them to "ptr_arr" in an
   222   // unspecified order.  The actual number transferred is given in "n" ("n
   223   // == 0" is deliberately redundant with the return value.)  Locking impl:
   224   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   225   // operations, which use the same locking strategy.
   226   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   228   // Drain the mark stack, applying the given closure to all fields of
   229   // objects on the stack.  (That is, continue until the stack is empty,
   230   // even if closure applications add entries to the stack.)  The "bm"
   231   // argument, if non-null, may be used to verify that only marked objects
   232   // are on the mark stack.  If "yield_after" is "true", then the
   233   // concurrent marker performing the drain offers to yield after
   234   // processing each object.  If a yield occurs, stops the drain operation
   235   // and returns false.  Otherwise, returns true.
   236   template<class OopClosureClass>
   237   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   239   bool isEmpty()    { return _index == 0; }
   240   bool isFull()     { return _index == _capacity; }
   241   int maxElems()    { return _capacity; }
   243   bool overflow() { return _overflow; }
   244   void clear_overflow() { _overflow = false; }
   246   int  size() { return _index; }
   248   void setEmpty()   { _index = 0; clear_overflow(); }
   250   // Record the current size; a subsequent "oops_do" will iterate only over
   251   // indices valid at the time of this call.
   252   void set_oops_do_bound(jint bound = -1) {
   253     if (bound == -1) {
   254       _oops_do_bound = _index;
   255     } else {
   256       _oops_do_bound = bound;
   257     }
   258   }
   259   jint oops_do_bound() { return _oops_do_bound; }
   260   // iterate over the oops in the mark stack, up to the bound recorded via
   261   // the call above.
   262   void oops_do(OopClosure* f);
   263 };
   265 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
   266   MemRegion* _base;
   267   jint _capacity;
   268   jint _index;
   269   jint _oops_do_bound;
   270   bool _overflow;
   271 public:
   272   CMRegionStack();
   273   ~CMRegionStack();
   274   void allocate(size_t size);
   276   // This is lock-free; assumes that it will only be called in parallel
   277   // with other "push" operations (no pops).
   278   void push_lock_free(MemRegion mr);
   280   // Lock-free; assumes that it will only be called in parallel
   281   // with other "pop" operations (no pushes).
   282   MemRegion pop_lock_free();
   284 #if 0
   285   // The routines that manipulate the region stack with a lock are
   286   // not currently used. They should be retained, however, as a
   287   // diagnostic aid.
   289   // These two are the implementations that use a lock. They can be
   290   // called concurrently with each other but they should not be called
   291   // concurrently with the lock-free versions (push() / pop()).
   292   void push_with_lock(MemRegion mr);
   293   MemRegion pop_with_lock();
   294 #endif
   296   bool isEmpty()    { return _index == 0; }
   297   bool isFull()     { return _index == _capacity; }
   299   bool overflow() { return _overflow; }
   300   void clear_overflow() { _overflow = false; }
   302   int  size() { return _index; }
   304   // It iterates over the entries in the region stack and it
   305   // invalidates (i.e. assigns MemRegion()) the ones that point to
   306   // regions in the collection set.
   307   bool invalidate_entries_into_cset();
   309   // This gives an upper bound up to which the iteration in
   310   // invalidate_entries_into_cset() will reach. This prevents
   311   // newly-added entries to be unnecessarily scanned.
   312   void set_oops_do_bound() {
   313     _oops_do_bound = _index;
   314   }
   316   void setEmpty()   { _index = 0; clear_overflow(); }
   317 };
   319 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   320 private:
   321 #ifndef PRODUCT
   322   uintx _num_remaining;
   323   bool _force;
   324 #endif // !defined(PRODUCT)
   326 public:
   327   void init() PRODUCT_RETURN;
   328   void update() PRODUCT_RETURN;
   329   bool should_force() PRODUCT_RETURN_( return false; );
   330 };
   332 // this will enable a variety of different statistics per GC task
   333 #define _MARKING_STATS_       0
   334 // this will enable the higher verbose levels
   335 #define _MARKING_VERBOSE_     0
   337 #if _MARKING_STATS_
   338 #define statsOnly(statement)  \
   339 do {                          \
   340   statement ;                 \
   341 } while (0)
   342 #else // _MARKING_STATS_
   343 #define statsOnly(statement)  \
   344 do {                          \
   345 } while (0)
   346 #endif // _MARKING_STATS_
   348 typedef enum {
   349   no_verbose  = 0,   // verbose turned off
   350   stats_verbose,     // only prints stats at the end of marking
   351   low_verbose,       // low verbose, mostly per region and per major event
   352   medium_verbose,    // a bit more detailed than low
   353   high_verbose       // per object verbose
   354 } CMVerboseLevel;
   357 class ConcurrentMarkThread;
   359 class ConcurrentMark: public CHeapObj {
   360   friend class ConcurrentMarkThread;
   361   friend class CMTask;
   362   friend class CMBitMapClosure;
   363   friend class CSMarkOopClosure;
   364   friend class CMGlobalObjectClosure;
   365   friend class CMRemarkTask;
   366   friend class CMConcurrentMarkingTask;
   367   friend class G1ParNoteEndTask;
   368   friend class CalcLiveObjectsClosure;
   369   friend class G1RefProcTaskProxy;
   370   friend class G1RefProcTaskExecutor;
   371   friend class G1CMParKeepAliveAndDrainClosure;
   372   friend class G1CMParDrainMarkingStackClosure;
   374 protected:
   375   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   376   G1CollectedHeap*      _g1h;        // the heap.
   377   size_t                _parallel_marking_threads; // the number of marking
   378                                                    // threads we'll use
   379   double                _sleep_factor; // how much we have to sleep, with
   380                                        // respect to the work we just did, to
   381                                        // meet the marking overhead goal
   382   double                _marking_task_overhead; // marking target overhead for
   383                                                 // a single task
   385   // same as the two above, but for the cleanup task
   386   double                _cleanup_sleep_factor;
   387   double                _cleanup_task_overhead;
   389   FreeRegionList        _cleanup_list;
   391   // CMS marking support structures
   392   CMBitMap                _markBitMap1;
   393   CMBitMap                _markBitMap2;
   394   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   395   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   396   bool                    _at_least_one_mark_complete;
   398   BitMap                  _region_bm;
   399   BitMap                  _card_bm;
   401   // Heap bounds
   402   HeapWord*               _heap_start;
   403   HeapWord*               _heap_end;
   405   // For gray objects
   406   CMMarkStack             _markStack; // Grey objects behind global finger.
   407   CMRegionStack           _regionStack; // Grey regions behind global finger.
   408   HeapWord* volatile      _finger;  // the global finger, region aligned,
   409                                     // always points to the end of the
   410                                     // last claimed region
   412   // marking tasks
   413   size_t                  _max_task_num; // maximum task number
   414   size_t                  _active_tasks; // task num currently active
   415   CMTask**                _tasks;        // task queue array (max_task_num len)
   416   CMTaskQueueSet*         _task_queues;  // task queue set
   417   ParallelTaskTerminator  _terminator;   // for termination
   419   // Two sync barriers that are used to synchronise tasks when an
   420   // overflow occurs. The algorithm is the following. All tasks enter
   421   // the first one to ensure that they have all stopped manipulating
   422   // the global data structures. After they exit it, they re-initialise
   423   // their data structures and task 0 re-initialises the global data
   424   // structures. Then, they enter the second sync barrier. This
   425   // ensure, that no task starts doing work before all data
   426   // structures (local and global) have been re-initialised. When they
   427   // exit it, they are free to start working again.
   428   WorkGangBarrierSync     _first_overflow_barrier_sync;
   429   WorkGangBarrierSync     _second_overflow_barrier_sync;
   432   // this is set by any task, when an overflow on the global data
   433   // structures is detected.
   434   volatile bool           _has_overflown;
   435   // true: marking is concurrent, false: we're in remark
   436   volatile bool           _concurrent;
   437   // set at the end of a Full GC so that marking aborts
   438   volatile bool           _has_aborted;
   440   // used when remark aborts due to an overflow to indicate that
   441   // another concurrent marking phase should start
   442   volatile bool           _restart_for_overflow;
   444   // This is true from the very start of concurrent marking until the
   445   // point when all the tasks complete their work. It is really used
   446   // to determine the points between the end of concurrent marking and
   447   // time of remark.
   448   volatile bool           _concurrent_marking_in_progress;
   450   // verbose level
   451   CMVerboseLevel          _verbose_level;
   453   // These two fields are used to implement the optimisation that
   454   // avoids pushing objects on the global/region stack if there are
   455   // no collection set regions above the lowest finger.
   457   // This is the lowest finger (among the global and local fingers),
   458   // which is calculated before a new collection set is chosen.
   459   HeapWord* _min_finger;
   460   // If this flag is true, objects/regions that are marked below the
   461   // finger should be pushed on the stack(s). If this is flag is
   462   // false, it is safe not to push them on the stack(s).
   463   bool      _should_gray_objects;
   465   // All of these times are in ms.
   466   NumberSeq _init_times;
   467   NumberSeq _remark_times;
   468   NumberSeq   _remark_mark_times;
   469   NumberSeq   _remark_weak_ref_times;
   470   NumberSeq _cleanup_times;
   471   double    _total_counting_time;
   472   double    _total_rs_scrub_time;
   474   double*   _accum_task_vtime;   // accumulated task vtime
   476   WorkGang* _parallel_workers;
   478   ForceOverflowSettings _force_overflow_conc;
   479   ForceOverflowSettings _force_overflow_stw;
   481   void weakRefsWork(bool clear_all_soft_refs);
   483   void swapMarkBitMaps();
   485   // It resets the global marking data structures, as well as the
   486   // task local ones; should be called during initial mark.
   487   void reset();
   488   // It resets all the marking data structures.
   489   void clear_marking_state(bool clear_overflow = true);
   491   // It should be called to indicate which phase we're in (concurrent
   492   // mark or remark) and how many threads are currently active.
   493   void set_phase(size_t active_tasks, bool concurrent);
   494   // We do this after we're done with marking so that the marking data
   495   // structures are initialised to a sensible and predictable state.
   496   void set_non_marking_state();
   498   // prints all gathered CM-related statistics
   499   void print_stats();
   501   bool cleanup_list_is_empty() {
   502     return _cleanup_list.is_empty();
   503   }
   505   // accessor methods
   506   size_t parallel_marking_threads() { return _parallel_marking_threads; }
   507   double sleep_factor()             { return _sleep_factor; }
   508   double marking_task_overhead()    { return _marking_task_overhead;}
   509   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
   510   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
   512   HeapWord*               finger()        { return _finger;   }
   513   bool                    concurrent()    { return _concurrent; }
   514   size_t                  active_tasks()  { return _active_tasks; }
   515   ParallelTaskTerminator* terminator()    { return &_terminator; }
   517   // It claims the next available region to be scanned by a marking
   518   // task. It might return NULL if the next region is empty or we have
   519   // run out of regions. In the latter case, out_of_regions()
   520   // determines whether we've really run out of regions or the task
   521   // should call claim_region() again.  This might seem a bit
   522   // awkward. Originally, the code was written so that claim_region()
   523   // either successfully returned with a non-empty region or there
   524   // were no more regions to be claimed. The problem with this was
   525   // that, in certain circumstances, it iterated over large chunks of
   526   // the heap finding only empty regions and, while it was working, it
   527   // was preventing the calling task to call its regular clock
   528   // method. So, this way, each task will spend very little time in
   529   // claim_region() and is allowed to call the regular clock method
   530   // frequently.
   531   HeapRegion* claim_region(int task);
   533   // It determines whether we've run out of regions to scan.
   534   bool        out_of_regions() { return _finger == _heap_end; }
   536   // Returns the task with the given id
   537   CMTask* task(int id) {
   538     assert(0 <= id && id < (int) _active_tasks,
   539            "task id not within active bounds");
   540     return _tasks[id];
   541   }
   543   // Returns the task queue with the given id
   544   CMTaskQueue* task_queue(int id) {
   545     assert(0 <= id && id < (int) _active_tasks,
   546            "task queue id not within active bounds");
   547     return (CMTaskQueue*) _task_queues->queue(id);
   548   }
   550   // Returns the task queue set
   551   CMTaskQueueSet* task_queues()  { return _task_queues; }
   553   // Access / manipulation of the overflow flag which is set to
   554   // indicate that the global stack or region stack has overflown
   555   bool has_overflown()           { return _has_overflown; }
   556   void set_has_overflown()       { _has_overflown = true; }
   557   void clear_has_overflown()     { _has_overflown = false; }
   559   bool has_aborted()             { return _has_aborted; }
   560   bool restart_for_overflow()    { return _restart_for_overflow; }
   562   // Methods to enter the two overflow sync barriers
   563   void enter_first_sync_barrier(int task_num);
   564   void enter_second_sync_barrier(int task_num);
   566   ForceOverflowSettings* force_overflow_conc() {
   567     return &_force_overflow_conc;
   568   }
   570   ForceOverflowSettings* force_overflow_stw() {
   571     return &_force_overflow_stw;
   572   }
   574   ForceOverflowSettings* force_overflow() {
   575     if (concurrent()) {
   576       return force_overflow_conc();
   577     } else {
   578       return force_overflow_stw();
   579     }
   580   }
   582 public:
   583   // Manipulation of the global mark stack.
   584   // Notice that the first mark_stack_push is CAS-based, whereas the
   585   // two below are Mutex-based. This is OK since the first one is only
   586   // called during evacuation pauses and doesn't compete with the
   587   // other two (which are called by the marking tasks during
   588   // concurrent marking or remark).
   589   bool mark_stack_push(oop p) {
   590     _markStack.par_push(p);
   591     if (_markStack.overflow()) {
   592       set_has_overflown();
   593       return false;
   594     }
   595     return true;
   596   }
   597   bool mark_stack_push(oop* arr, int n) {
   598     _markStack.par_push_arr(arr, n);
   599     if (_markStack.overflow()) {
   600       set_has_overflown();
   601       return false;
   602     }
   603     return true;
   604   }
   605   void mark_stack_pop(oop* arr, int max, int* n) {
   606     _markStack.par_pop_arr(arr, max, n);
   607   }
   608   size_t mark_stack_size()              { return _markStack.size(); }
   609   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   610   bool mark_stack_overflow()            { return _markStack.overflow(); }
   611   bool mark_stack_empty()               { return _markStack.isEmpty(); }
   613   // (Lock-free) Manipulation of the region stack
   614   bool region_stack_push_lock_free(MemRegion mr) {
   615     // Currently we only call the lock-free version during evacuation
   616     // pauses.
   617     assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
   619     _regionStack.push_lock_free(mr);
   620     if (_regionStack.overflow()) {
   621       set_has_overflown();
   622       return false;
   623     }
   624     return true;
   625   }
   627   // Lock-free version of region-stack pop. Should only be
   628   // called in tandem with other lock-free pops.
   629   MemRegion region_stack_pop_lock_free() {
   630     return _regionStack.pop_lock_free();
   631   }
   633 #if 0
   634   // The routines that manipulate the region stack with a lock are
   635   // not currently used. They should be retained, however, as a
   636   // diagnostic aid.
   638   bool region_stack_push_with_lock(MemRegion mr) {
   639     // Currently we only call the lock-based version during either
   640     // concurrent marking or remark.
   641     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   642            "if we are at a safepoint it should be the remark safepoint");
   644     _regionStack.push_with_lock(mr);
   645     if (_regionStack.overflow()) {
   646       set_has_overflown();
   647       return false;
   648     }
   649     return true;
   650   }
   652   MemRegion region_stack_pop_with_lock() {
   653     // Currently we only call the lock-based version during either
   654     // concurrent marking or remark.
   655     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   656            "if we are at a safepoint it should be the remark safepoint");
   658     return _regionStack.pop_with_lock();
   659   }
   660 #endif
   662   int region_stack_size()               { return _regionStack.size(); }
   663   bool region_stack_overflow()          { return _regionStack.overflow(); }
   664   bool region_stack_empty()             { return _regionStack.isEmpty(); }
   666   // Iterate over any regions that were aborted while draining the
   667   // region stack (any such regions are saved in the corresponding
   668   // CMTask) and invalidate (i.e. assign to the empty MemRegion())
   669   // any regions that point into the collection set.
   670   bool invalidate_aborted_regions_in_cset();
   672   // Returns true if there are any aborted memory regions.
   673   bool has_aborted_regions();
   675   bool concurrent_marking_in_progress() {
   676     return _concurrent_marking_in_progress;
   677   }
   678   void set_concurrent_marking_in_progress() {
   679     _concurrent_marking_in_progress = true;
   680   }
   681   void clear_concurrent_marking_in_progress() {
   682     _concurrent_marking_in_progress = false;
   683   }
   685   void update_accum_task_vtime(int i, double vtime) {
   686     _accum_task_vtime[i] += vtime;
   687   }
   689   double all_task_accum_vtime() {
   690     double ret = 0.0;
   691     for (int i = 0; i < (int)_max_task_num; ++i)
   692       ret += _accum_task_vtime[i];
   693     return ret;
   694   }
   696   // Attempts to steal an object from the task queues of other tasks
   697   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
   698     return _task_queues->steal(task_num, hash_seed, obj);
   699   }
   701   // It grays an object by first marking it. Then, if it's behind the
   702   // global finger, it also pushes it on the global stack.
   703   void deal_with_reference(oop obj);
   705   ConcurrentMark(ReservedSpace rs, int max_regions);
   706   ~ConcurrentMark();
   707   ConcurrentMarkThread* cmThread() { return _cmThread; }
   709   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   710   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   712   // The following three are interaction between CM and
   713   // G1CollectedHeap
   715   // This notifies CM that a root during initial-mark needs to be
   716   // grayed and it's MT-safe. Currently, we just mark it. But, in the
   717   // future, we can experiment with pushing it on the stack and we can
   718   // do this without changing G1CollectedHeap.
   719   void grayRoot(oop p);
   720   // It's used during evacuation pauses to gray a region, if
   721   // necessary, and it's MT-safe. It assumes that the caller has
   722   // marked any objects on that region. If _should_gray_objects is
   723   // true and we're still doing concurrent marking, the region is
   724   // pushed on the region stack, if it is located below the global
   725   // finger, otherwise we do nothing.
   726   void grayRegionIfNecessary(MemRegion mr);
   727   // It's used during evacuation pauses to mark and, if necessary,
   728   // gray a single object and it's MT-safe. It assumes the caller did
   729   // not mark the object. If _should_gray_objects is true and we're
   730   // still doing concurrent marking, the objects is pushed on the
   731   // global stack, if it is located below the global finger, otherwise
   732   // we do nothing.
   733   void markAndGrayObjectIfNecessary(oop p);
   735   // It iterates over the heap and for each object it comes across it
   736   // will dump the contents of its reference fields, as well as
   737   // liveness information for the object and its referents. The dump
   738   // will be written to a file with the following name:
   739   // G1PrintReachableBaseFile + "." + str. use_prev_marking decides
   740   // whether the prev (use_prev_marking == true) or next
   741   // (use_prev_marking == false) marking information will be used to
   742   // determine the liveness of each object / referent. If all is true,
   743   // all objects in the heap will be dumped, otherwise only the live
   744   // ones. In the dump the following symbols / abbreviations are used:
   745   //   M : an explicitly live object (its bitmap bit is set)
   746   //   > : an implicitly live object (over tams)
   747   //   O : an object outside the G1 heap (typically: in the perm gen)
   748   //   NOT : a reference field whose referent is not live
   749   //   AND MARKED : indicates that an object is both explicitly and
   750   //   implicitly live (it should be one or the other, not both)
   751   void print_reachable(const char* str,
   752                        bool use_prev_marking, bool all) PRODUCT_RETURN;
   754   // Clear the next marking bitmap (will be called concurrently).
   755   void clearNextBitmap();
   757   // main CMS steps and related support
   758   void checkpointRootsInitial();
   760   // These two do the work that needs to be done before and after the
   761   // initial root checkpoint. Since this checkpoint can be done at two
   762   // different points (i.e. an explicit pause or piggy-backed on a
   763   // young collection), then it's nice to be able to easily share the
   764   // pre/post code. It might be the case that we can put everything in
   765   // the post method. TP
   766   void checkpointRootsInitialPre();
   767   void checkpointRootsInitialPost();
   769   // Do concurrent phase of marking, to a tentative transitive closure.
   770   void markFromRoots();
   772   // Process all unprocessed SATB buffers. It is called at the
   773   // beginning of an evacuation pause.
   774   void drainAllSATBBuffers();
   776   void checkpointRootsFinal(bool clear_all_soft_refs);
   777   void checkpointRootsFinalWork();
   778   void calcDesiredRegions();
   779   void cleanup();
   780   void completeCleanup();
   782   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   783   // this carefully!
   784   void markPrev(oop p);
   785   void clear(oop p);
   786   // Clears marks for all objects in the given range, for both prev and
   787   // next bitmaps.  NB: the previous bitmap is usually read-only, so use
   788   // this carefully!
   789   void clearRangeBothMaps(MemRegion mr);
   791   // Record the current top of the mark and region stacks; a
   792   // subsequent oops_do() on the mark stack and
   793   // invalidate_entries_into_cset() on the region stack will iterate
   794   // only over indices valid at the time of this call.
   795   void set_oops_do_bound() {
   796     _markStack.set_oops_do_bound();
   797     _regionStack.set_oops_do_bound();
   798   }
   799   // Iterate over the oops in the mark stack and all local queues. It
   800   // also calls invalidate_entries_into_cset() on the region stack.
   801   void oops_do(OopClosure* f);
   802   // It is called at the end of an evacuation pause during marking so
   803   // that CM is notified of where the new end of the heap is. It
   804   // doesn't do anything if concurrent_marking_in_progress() is false,
   805   // unless the force parameter is true.
   806   void update_g1_committed(bool force = false);
   808   void complete_marking_in_collection_set();
   810   // It indicates that a new collection set is being chosen.
   811   void newCSet();
   813   // It registers a collection set heap region with CM. This is used
   814   // to determine whether any heap regions are located above the finger.
   815   void registerCSetRegion(HeapRegion* hr);
   817   // Resets the region fields of any active CMTask whose region fields
   818   // are in the collection set (i.e. the region currently claimed by
   819   // the CMTask will be evacuated and may be used, subsequently, as
   820   // an alloc region). When this happens the region fields in the CMTask
   821   // are stale and, hence, should be cleared causing the worker thread
   822   // to claim a new region.
   823   void reset_active_task_region_fields_in_cset();
   825   // Registers the maximum region-end associated with a set of
   826   // regions with CM. Again this is used to determine whether any
   827   // heap regions are located above the finger.
   828   void register_collection_set_finger(HeapWord* max_finger) {
   829     // max_finger is the highest heap region end of the regions currently
   830     // contained in the collection set. If this value is larger than
   831     // _min_finger then we need to gray objects.
   832     // This routine is like registerCSetRegion but for an entire
   833     // collection of regions.
   834     if (max_finger > _min_finger)
   835       _should_gray_objects = true;
   836   }
   838   // Returns "true" if at least one mark has been completed.
   839   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
   841   bool isMarked(oop p) const {
   842     assert(p != NULL && p->is_oop(), "expected an oop");
   843     HeapWord* addr = (HeapWord*)p;
   844     assert(addr >= _nextMarkBitMap->startWord() ||
   845            addr < _nextMarkBitMap->endWord(), "in a region");
   847     return _nextMarkBitMap->isMarked(addr);
   848   }
   850   inline bool not_yet_marked(oop p) const;
   852   // XXX Debug code
   853   bool containing_card_is_marked(void* p);
   854   bool containing_cards_are_marked(void* start, void* last);
   856   bool isPrevMarked(oop p) const {
   857     assert(p != NULL && p->is_oop(), "expected an oop");
   858     HeapWord* addr = (HeapWord*)p;
   859     assert(addr >= _prevMarkBitMap->startWord() ||
   860            addr < _prevMarkBitMap->endWord(), "in a region");
   862     return _prevMarkBitMap->isMarked(addr);
   863   }
   865   inline bool do_yield_check(int worker_i = 0);
   866   inline bool should_yield();
   868   // Called to abort the marking cycle after a Full GC takes palce.
   869   void abort();
   871   // This prints the global/local fingers. It is used for debugging.
   872   NOT_PRODUCT(void print_finger();)
   874   void print_summary_info();
   876   void print_worker_threads_on(outputStream* st) const;
   878   // The following indicate whether a given verbose level has been
   879   // set. Notice that anything above stats is conditional to
   880   // _MARKING_VERBOSE_ having been set to 1
   881   bool verbose_stats()
   882     { return _verbose_level >= stats_verbose; }
   883   bool verbose_low()
   884     { return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
   885   bool verbose_medium()
   886     { return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
   887   bool verbose_high()
   888     { return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
   889 };
   891 // A class representing a marking task.
   892 class CMTask : public TerminatorTerminator {
   893 private:
   894   enum PrivateConstants {
   895     // the regular clock call is called once the scanned words reaches
   896     // this limit
   897     words_scanned_period          = 12*1024,
   898     // the regular clock call is called once the number of visited
   899     // references reaches this limit
   900     refs_reached_period           = 384,
   901     // initial value for the hash seed, used in the work stealing code
   902     init_hash_seed                = 17,
   903     // how many entries will be transferred between global stack and
   904     // local queues
   905     global_stack_transfer_size    = 16
   906   };
   908   int                         _task_id;
   909   G1CollectedHeap*            _g1h;
   910   ConcurrentMark*             _cm;
   911   CMBitMap*                   _nextMarkBitMap;
   912   // the task queue of this task
   913   CMTaskQueue*                _task_queue;
   914 private:
   915   // the task queue set---needed for stealing
   916   CMTaskQueueSet*             _task_queues;
   917   // indicates whether the task has been claimed---this is only  for
   918   // debugging purposes
   919   bool                        _claimed;
   921   // number of calls to this task
   922   int                         _calls;
   924   // when the virtual timer reaches this time, the marking step should
   925   // exit
   926   double                      _time_target_ms;
   927   // the start time of the current marking step
   928   double                      _start_time_ms;
   930   // the oop closure used for iterations over oops
   931   G1CMOopClosure*             _cm_oop_closure;
   933   // the region this task is scanning, NULL if we're not scanning any
   934   HeapRegion*                 _curr_region;
   935   // the local finger of this task, NULL if we're not scanning a region
   936   HeapWord*                   _finger;
   937   // limit of the region this task is scanning, NULL if we're not scanning one
   938   HeapWord*                   _region_limit;
   940   // This is used only when we scan regions popped from the region
   941   // stack. It records what the last object on such a region we
   942   // scanned was. It is used to ensure that, if we abort region
   943   // iteration, we do not rescan the first part of the region. This
   944   // should be NULL when we're not scanning a region from the region
   945   // stack.
   946   HeapWord*                   _region_finger;
   948   // If we abort while scanning a region we record the remaining
   949   // unscanned portion and check this field when marking restarts.
   950   // This avoids having to push on the region stack while other
   951   // marking threads may still be popping regions.
   952   // If we were to push the unscanned portion directly to the
   953   // region stack then we would need to using locking versions
   954   // of the push and pop operations.
   955   MemRegion                   _aborted_region;
   957   // the number of words this task has scanned
   958   size_t                      _words_scanned;
   959   // When _words_scanned reaches this limit, the regular clock is
   960   // called. Notice that this might be decreased under certain
   961   // circumstances (i.e. when we believe that we did an expensive
   962   // operation).
   963   size_t                      _words_scanned_limit;
   964   // the initial value of _words_scanned_limit (i.e. what it was
   965   // before it was decreased).
   966   size_t                      _real_words_scanned_limit;
   968   // the number of references this task has visited
   969   size_t                      _refs_reached;
   970   // When _refs_reached reaches this limit, the regular clock is
   971   // called. Notice this this might be decreased under certain
   972   // circumstances (i.e. when we believe that we did an expensive
   973   // operation).
   974   size_t                      _refs_reached_limit;
   975   // the initial value of _refs_reached_limit (i.e. what it was before
   976   // it was decreased).
   977   size_t                      _real_refs_reached_limit;
   979   // used by the work stealing stuff
   980   int                         _hash_seed;
   981   // if this is true, then the task has aborted for some reason
   982   bool                        _has_aborted;
   983   // set when the task aborts because it has met its time quota
   984   bool                        _has_timed_out;
   985   // true when we're draining SATB buffers; this avoids the task
   986   // aborting due to SATB buffers being available (as we're already
   987   // dealing with them)
   988   bool                        _draining_satb_buffers;
   990   // number sequence of past step times
   991   NumberSeq                   _step_times_ms;
   992   // elapsed time of this task
   993   double                      _elapsed_time_ms;
   994   // termination time of this task
   995   double                      _termination_time_ms;
   996   // when this task got into the termination protocol
   997   double                      _termination_start_time_ms;
   999   // true when the task is during a concurrent phase, false when it is
  1000   // in the remark phase (so, in the latter case, we do not have to
  1001   // check all the things that we have to check during the concurrent
  1002   // phase, i.e. SATB buffer availability...)
  1003   bool                        _concurrent;
  1005   TruncatedSeq                _marking_step_diffs_ms;
  1007   // LOTS of statistics related with this task
  1008 #if _MARKING_STATS_
  1009   NumberSeq                   _all_clock_intervals_ms;
  1010   double                      _interval_start_time_ms;
  1012   int                         _aborted;
  1013   int                         _aborted_overflow;
  1014   int                         _aborted_cm_aborted;
  1015   int                         _aborted_yield;
  1016   int                         _aborted_timed_out;
  1017   int                         _aborted_satb;
  1018   int                         _aborted_termination;
  1020   int                         _steal_attempts;
  1021   int                         _steals;
  1023   int                         _clock_due_to_marking;
  1024   int                         _clock_due_to_scanning;
  1026   int                         _local_pushes;
  1027   int                         _local_pops;
  1028   int                         _local_max_size;
  1029   int                         _objs_scanned;
  1031   int                         _global_pushes;
  1032   int                         _global_pops;
  1033   int                         _global_max_size;
  1035   int                         _global_transfers_to;
  1036   int                         _global_transfers_from;
  1038   int                         _region_stack_pops;
  1040   int                         _regions_claimed;
  1041   int                         _objs_found_on_bitmap;
  1043   int                         _satb_buffers_processed;
  1044 #endif // _MARKING_STATS_
  1046   // it updates the local fields after this task has claimed
  1047   // a new region to scan
  1048   void setup_for_region(HeapRegion* hr);
  1049   // it brings up-to-date the limit of the region
  1050   void update_region_limit();
  1052   // called when either the words scanned or the refs visited limit
  1053   // has been reached
  1054   void reached_limit();
  1055   // recalculates the words scanned and refs visited limits
  1056   void recalculate_limits();
  1057   // decreases the words scanned and refs visited limits when we reach
  1058   // an expensive operation
  1059   void decrease_limits();
  1060   // it checks whether the words scanned or refs visited reached their
  1061   // respective limit and calls reached_limit() if they have
  1062   void check_limits() {
  1063     if (_words_scanned >= _words_scanned_limit ||
  1064         _refs_reached >= _refs_reached_limit)
  1065       reached_limit();
  1067   // this is supposed to be called regularly during a marking step as
  1068   // it checks a bunch of conditions that might cause the marking step
  1069   // to abort
  1070   void regular_clock_call();
  1071   bool concurrent() { return _concurrent; }
  1073 public:
  1074   // It resets the task; it should be called right at the beginning of
  1075   // a marking phase.
  1076   void reset(CMBitMap* _nextMarkBitMap);
  1077   // it clears all the fields that correspond to a claimed region.
  1078   void clear_region_fields();
  1080   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1082   // The main method of this class which performs a marking step
  1083   // trying not to exceed the given duration. However, it might exit
  1084   // prematurely, according to some conditions (i.e. SATB buffers are
  1085   // available for processing).
  1086   void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
  1088   // These two calls start and stop the timer
  1089   void record_start_time() {
  1090     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1092   void record_end_time() {
  1093     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1096   // returns the task ID
  1097   int task_id() { return _task_id; }
  1099   // From TerminatorTerminator. It determines whether this task should
  1100   // exit the termination protocol after it's entered it.
  1101   virtual bool should_exit_termination();
  1103   // Resets the local region fields after a task has finished scanning a
  1104   // region; or when they have become stale as a result of the region
  1105   // being evacuated.
  1106   void giveup_current_region();
  1108   HeapWord* finger()            { return _finger; }
  1110   bool has_aborted()            { return _has_aborted; }
  1111   void set_has_aborted()        { _has_aborted = true; }
  1112   void clear_has_aborted()      { _has_aborted = false; }
  1113   bool has_timed_out()          { return _has_timed_out; }
  1114   bool claimed()                { return _claimed; }
  1116   // Support routines for the partially scanned region that may be
  1117   // recorded as a result of aborting while draining the CMRegionStack
  1118   MemRegion aborted_region()    { return _aborted_region; }
  1119   void set_aborted_region(MemRegion mr)
  1120                                 { _aborted_region = mr; }
  1122   // Clears any recorded partially scanned region
  1123   void clear_aborted_region()   { set_aborted_region(MemRegion()); }
  1125   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1127   // It grays the object by marking it and, if necessary, pushing it
  1128   // on the local queue
  1129   inline void deal_with_reference(oop obj);
  1131   // It scans an object and visits its children.
  1132   void scan_object(oop obj);
  1134   // It pushes an object on the local queue.
  1135   inline void push(oop obj);
  1137   // These two move entries to/from the global stack.
  1138   void move_entries_to_global_stack();
  1139   void get_entries_from_global_stack();
  1141   // It pops and scans objects from the local queue. If partially is
  1142   // true, then it stops when the queue size is of a given limit. If
  1143   // partially is false, then it stops when the queue is empty.
  1144   void drain_local_queue(bool partially);
  1145   // It moves entries from the global stack to the local queue and
  1146   // drains the local queue. If partially is true, then it stops when
  1147   // both the global stack and the local queue reach a given size. If
  1148   // partially if false, it tries to empty them totally.
  1149   void drain_global_stack(bool partially);
  1150   // It keeps picking SATB buffers and processing them until no SATB
  1151   // buffers are available.
  1152   void drain_satb_buffers();
  1153   // It keeps popping regions from the region stack and processing
  1154   // them until the region stack is empty.
  1155   void drain_region_stack(BitMapClosure* closure);
  1157   // moves the local finger to a new location
  1158   inline void move_finger_to(HeapWord* new_finger) {
  1159     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1160     _finger = new_finger;
  1163   // moves the region finger to a new location
  1164   inline void move_region_finger_to(HeapWord* new_finger) {
  1165     assert(new_finger < _cm->finger(), "invariant");
  1166     _region_finger = new_finger;
  1169   CMTask(int task_num, ConcurrentMark *cm,
  1170          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1172   // it prints statistics associated with this task
  1173   void print_stats();
  1175 #if _MARKING_STATS_
  1176   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1177 #endif // _MARKING_STATS_
  1178 };
  1180 // Class that's used to to print out per-region liveness
  1181 // information. It's currently used at the end of marking and also
  1182 // after we sort the old regions at the end of the cleanup operation.
  1183 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1184 private:
  1185   outputStream* _out;
  1187   // Accumulators for these values.
  1188   size_t _total_used_bytes;
  1189   size_t _total_capacity_bytes;
  1190   size_t _total_prev_live_bytes;
  1191   size_t _total_next_live_bytes;
  1193   // These are set up when we come across a "stars humongous" region
  1194   // (as this is where most of this information is stored, not in the
  1195   // subsequent "continues humongous" regions). After that, for every
  1196   // region in a given humongous region series we deduce the right
  1197   // values for it by simply subtracting the appropriate amount from
  1198   // these fields. All these values should reach 0 after we've visited
  1199   // the last region in the series.
  1200   size_t _hum_used_bytes;
  1201   size_t _hum_capacity_bytes;
  1202   size_t _hum_prev_live_bytes;
  1203   size_t _hum_next_live_bytes;
  1205   static double perc(size_t val, size_t total) {
  1206     if (total == 0) {
  1207       return 0.0;
  1208     } else {
  1209       return 100.0 * ((double) val / (double) total);
  1213   static double bytes_to_mb(size_t val) {
  1214     return (double) val / (double) M;
  1217   // See the .cpp file.
  1218   size_t get_hum_bytes(size_t* hum_bytes);
  1219   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1220                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1222 public:
  1223   // The header and footer are printed in the constructor and
  1224   // destructor respectively.
  1225   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1226   virtual bool doHeapRegion(HeapRegion* r);
  1227   ~G1PrintRegionLivenessInfoClosure();
  1228 };
  1230 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial