src/share/vm/memory/referenceProcessor.cpp

Mon, 08 Apr 2013 07:49:28 +0200

author
brutisso
date
Mon, 08 Apr 2013 07:49:28 +0200
changeset 4901
83f27710f5f7
parent 4047
aed758eda82a
child 5159
001ec9515f84
permissions
-rw-r--r--

7197666: java -d64 -version core dumps in a box with lots of memory
Summary: Allow task queues to be mmapped instead of malloced on Solaris
Reviewed-by: coleenp, jmasa, johnc, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "gc_interface/collectedHeap.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "memory/referencePolicy.hpp"
    31 #include "memory/referenceProcessor.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/java.hpp"
    34 #include "runtime/jniHandles.hpp"
    36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    38 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
    39 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
    41 void referenceProcessor_init() {
    42   ReferenceProcessor::init_statics();
    43 }
    45 void ReferenceProcessor::init_statics() {
    46   // We need a monotonically non-deccreasing time in ms but
    47   // os::javaTimeMillis() does not guarantee monotonicity.
    48   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
    50   // Initialize the soft ref timestamp clock.
    51   _soft_ref_timestamp_clock = now;
    52   // Also update the soft ref clock in j.l.r.SoftReference
    53   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
    55   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    56   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    57                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    58   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    59     vm_exit_during_initialization("Could not allocate reference policy object");
    60   }
    61   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
    62             RefDiscoveryPolicy == ReferentBasedDiscovery,
    63             "Unrecongnized RefDiscoveryPolicy");
    64   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
    65 }
    67 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
    68 #ifdef ASSERT
    69   // Verify that we're not currently discovering refs
    70   assert(!verify_disabled || !_discovering_refs, "nested call?");
    72   if (check_no_refs) {
    73     // Verify that the discovered lists are empty
    74     verify_no_references_recorded();
    75   }
    76 #endif // ASSERT
    78   // Someone could have modified the value of the static
    79   // field in the j.l.r.SoftReference class that holds the
    80   // soft reference timestamp clock using reflection or
    81   // Unsafe between GCs. Unconditionally update the static
    82   // field in ReferenceProcessor here so that we use the new
    83   // value during reference discovery.
    85   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
    86   _discovering_refs = true;
    87 }
    89 ReferenceProcessor::ReferenceProcessor(MemRegion span,
    90                                        bool      mt_processing,
    91                                        uint      mt_processing_degree,
    92                                        bool      mt_discovery,
    93                                        uint      mt_discovery_degree,
    94                                        bool      atomic_discovery,
    95                                        BoolObjectClosure* is_alive_non_header,
    96                                        bool      discovered_list_needs_barrier)  :
    97   _discovering_refs(false),
    98   _enqueuing_is_done(false),
    99   _is_alive_non_header(is_alive_non_header),
   100   _discovered_list_needs_barrier(discovered_list_needs_barrier),
   101   _bs(NULL),
   102   _processing_is_mt(mt_processing),
   103   _next_id(0)
   104 {
   105   _span = span;
   106   _discovery_is_atomic = atomic_discovery;
   107   _discovery_is_mt     = mt_discovery;
   108   _num_q               = MAX2(1U, mt_processing_degree);
   109   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
   110   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
   111             _max_num_q * number_of_subclasses_of_ref(), mtGC);
   113   if (_discovered_refs == NULL) {
   114     vm_exit_during_initialization("Could not allocated RefProc Array");
   115   }
   116   _discoveredSoftRefs    = &_discovered_refs[0];
   117   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
   118   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
   119   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
   121   // Initialize all entries to NULL
   122   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   123     _discovered_refs[i].set_head(NULL);
   124     _discovered_refs[i].set_length(0);
   125   }
   127   // If we do barriers, cache a copy of the barrier set.
   128   if (discovered_list_needs_barrier) {
   129     _bs = Universe::heap()->barrier_set();
   130   }
   131   setup_policy(false /* default soft ref policy */);
   132 }
   134 #ifndef PRODUCT
   135 void ReferenceProcessor::verify_no_references_recorded() {
   136   guarantee(!_discovering_refs, "Discovering refs?");
   137   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   138     guarantee(_discovered_refs[i].is_empty(),
   139               "Found non-empty discovered list");
   140   }
   141 }
   142 #endif
   144 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   145   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   146     if (UseCompressedOops) {
   147       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
   148     } else {
   149       f->do_oop((oop*)_discovered_refs[i].adr_head());
   150     }
   151   }
   152 }
   154 void ReferenceProcessor::update_soft_ref_master_clock() {
   155   // Update (advance) the soft ref master clock field. This must be done
   156   // after processing the soft ref list.
   158   // We need a monotonically non-deccreasing time in ms but
   159   // os::javaTimeMillis() does not guarantee monotonicity.
   160   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   161   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
   162   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
   164   NOT_PRODUCT(
   165   if (now < _soft_ref_timestamp_clock) {
   166     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
   167             _soft_ref_timestamp_clock, now);
   168   }
   169   )
   170   // The values of now and _soft_ref_timestamp_clock are set using
   171   // javaTimeNanos(), which is guaranteed to be monotonically
   172   // non-decreasing provided the underlying platform provides such
   173   // a time source (and it is bug free).
   174   // In product mode, however, protect ourselves from non-monotonicty.
   175   if (now > _soft_ref_timestamp_clock) {
   176     _soft_ref_timestamp_clock = now;
   177     java_lang_ref_SoftReference::set_clock(now);
   178   }
   179   // Else leave clock stalled at its old value until time progresses
   180   // past clock value.
   181 }
   183 void ReferenceProcessor::process_discovered_references(
   184   BoolObjectClosure*           is_alive,
   185   OopClosure*                  keep_alive,
   186   VoidClosure*                 complete_gc,
   187   AbstractRefProcTaskExecutor* task_executor) {
   188   NOT_PRODUCT(verify_ok_to_handle_reflists());
   190   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   191   // Stop treating discovered references specially.
   192   disable_discovery();
   194   // If discovery was concurrent, someone could have modified
   195   // the value of the static field in the j.l.r.SoftReference
   196   // class that holds the soft reference timestamp clock using
   197   // reflection or Unsafe between when discovery was enabled and
   198   // now. Unconditionally update the static field in ReferenceProcessor
   199   // here so that we use the new value during processing of the
   200   // discovered soft refs.
   202   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
   204   bool trace_time = PrintGCDetails && PrintReferenceGC;
   205   // Soft references
   206   {
   207     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
   208     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   209                                is_alive, keep_alive, complete_gc, task_executor);
   210   }
   212   update_soft_ref_master_clock();
   214   // Weak references
   215   {
   216     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
   217     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   218                                is_alive, keep_alive, complete_gc, task_executor);
   219   }
   221   // Final references
   222   {
   223     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
   224     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   225                                is_alive, keep_alive, complete_gc, task_executor);
   226   }
   228   // Phantom references
   229   {
   230     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
   231     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   232                                is_alive, keep_alive, complete_gc, task_executor);
   233   }
   235   // Weak global JNI references. It would make more sense (semantically) to
   236   // traverse these simultaneously with the regular weak references above, but
   237   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   238   // thus use JNI weak references to circumvent the phantom references and
   239   // resurrect a "post-mortem" object.
   240   {
   241     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
   242     if (task_executor != NULL) {
   243       task_executor->set_single_threaded_mode();
   244     }
   245     process_phaseJNI(is_alive, keep_alive, complete_gc);
   246   }
   247 }
   249 #ifndef PRODUCT
   250 // Calculate the number of jni handles.
   251 uint ReferenceProcessor::count_jni_refs() {
   252   class AlwaysAliveClosure: public BoolObjectClosure {
   253   public:
   254     virtual bool do_object_b(oop obj) { return true; }
   255     virtual void do_object(oop obj) { assert(false, "Don't call"); }
   256   };
   258   class CountHandleClosure: public OopClosure {
   259   private:
   260     int _count;
   261   public:
   262     CountHandleClosure(): _count(0) {}
   263     void do_oop(oop* unused)       { _count++; }
   264     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   265     int count() { return _count; }
   266   };
   267   CountHandleClosure global_handle_count;
   268   AlwaysAliveClosure always_alive;
   269   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   270   return global_handle_count.count();
   271 }
   272 #endif
   274 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   275                                           OopClosure*        keep_alive,
   276                                           VoidClosure*       complete_gc) {
   277 #ifndef PRODUCT
   278   if (PrintGCDetails && PrintReferenceGC) {
   279     unsigned int count = count_jni_refs();
   280     gclog_or_tty->print(", %u refs", count);
   281   }
   282 #endif
   283   JNIHandles::weak_oops_do(is_alive, keep_alive);
   284   complete_gc->do_void();
   285 }
   288 template <class T>
   289 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   290                                    AbstractRefProcTaskExecutor* task_executor) {
   292   // Remember old value of pending references list
   293   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   294   T old_pending_list_value = *pending_list_addr;
   296   // Enqueue references that are not made active again, and
   297   // clear the decks for the next collection (cycle).
   298   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   299   // Do the oop-check on pending_list_addr missed in
   300   // enqueue_discovered_reflist. We should probably
   301   // do a raw oop_check so that future such idempotent
   302   // oop_stores relying on the oop-check side-effect
   303   // may be elided automatically and safely without
   304   // affecting correctness.
   305   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   307   // Stop treating discovered references specially.
   308   ref->disable_discovery();
   310   // Return true if new pending references were added
   311   return old_pending_list_value != *pending_list_addr;
   312 }
   314 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   315   NOT_PRODUCT(verify_ok_to_handle_reflists());
   316   if (UseCompressedOops) {
   317     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   318   } else {
   319     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   320   }
   321 }
   323 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   324                                                     HeapWord* pending_list_addr) {
   325   // Given a list of refs linked through the "discovered" field
   326   // (java.lang.ref.Reference.discovered), self-loop their "next" field
   327   // thus distinguishing them from active References, then
   328   // prepend them to the pending list.
   329   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
   330   // the "next" field is used to chain the pending list, not the discovered
   331   // field.
   333   if (TraceReferenceGC && PrintGCDetails) {
   334     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   335                            INTPTR_FORMAT, (address)refs_list.head());
   336   }
   338   oop obj = NULL;
   339   oop next_d = refs_list.head();
   340   if (pending_list_uses_discovered_field()) { // New behaviour
   341     // Walk down the list, self-looping the next field
   342     // so that the References are not considered active.
   343     while (obj != next_d) {
   344       obj = next_d;
   345       assert(obj->is_instanceRef(), "should be reference object");
   346       next_d = java_lang_ref_Reference::discovered(obj);
   347       if (TraceReferenceGC && PrintGCDetails) {
   348         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   349                                obj, next_d);
   350       }
   351       assert(java_lang_ref_Reference::next(obj) == NULL,
   352              "Reference not active; should not be discovered");
   353       // Self-loop next, so as to make Ref not active.
   354       java_lang_ref_Reference::set_next(obj, obj);
   355       if (next_d == obj) {  // obj is last
   356         // Swap refs_list into pendling_list_addr and
   357         // set obj's discovered to what we read from pending_list_addr.
   358         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   359         // Need oop_check on pending_list_addr above;
   360         // see special oop-check code at the end of
   361         // enqueue_discovered_reflists() further below.
   362         java_lang_ref_Reference::set_discovered(obj, old); // old may be NULL
   363       }
   364     }
   365   } else { // Old behaviour
   366     // Walk down the list, copying the discovered field into
   367     // the next field and clearing the discovered field.
   368     while (obj != next_d) {
   369       obj = next_d;
   370       assert(obj->is_instanceRef(), "should be reference object");
   371       next_d = java_lang_ref_Reference::discovered(obj);
   372       if (TraceReferenceGC && PrintGCDetails) {
   373         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   374                                obj, next_d);
   375       }
   376       assert(java_lang_ref_Reference::next(obj) == NULL,
   377              "The reference should not be enqueued");
   378       if (next_d == obj) {  // obj is last
   379         // Swap refs_list into pendling_list_addr and
   380         // set obj's next to what we read from pending_list_addr.
   381         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   382         // Need oop_check on pending_list_addr above;
   383         // see special oop-check code at the end of
   384         // enqueue_discovered_reflists() further below.
   385         if (old == NULL) {
   386           // obj should be made to point to itself, since
   387           // pending list was empty.
   388           java_lang_ref_Reference::set_next(obj, obj);
   389         } else {
   390           java_lang_ref_Reference::set_next(obj, old);
   391         }
   392       } else {
   393         java_lang_ref_Reference::set_next(obj, next_d);
   394       }
   395       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   396     }
   397   }
   398 }
   400 // Parallel enqueue task
   401 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   402 public:
   403   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   404                      DiscoveredList      discovered_refs[],
   405                      HeapWord*           pending_list_addr,
   406                      int                 n_queues)
   407     : EnqueueTask(ref_processor, discovered_refs,
   408                   pending_list_addr, n_queues)
   409   { }
   411   virtual void work(unsigned int work_id) {
   412     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
   413     // Simplest first cut: static partitioning.
   414     int index = work_id;
   415     // The increment on "index" must correspond to the maximum number of queues
   416     // (n_queues) with which that ReferenceProcessor was created.  That
   417     // is because of the "clever" way the discovered references lists were
   418     // allocated and are indexed into.
   419     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
   420     for (int j = 0;
   421          j < ReferenceProcessor::number_of_subclasses_of_ref();
   422          j++, index += _n_queues) {
   423       _ref_processor.enqueue_discovered_reflist(
   424         _refs_lists[index], _pending_list_addr);
   425       _refs_lists[index].set_head(NULL);
   426       _refs_lists[index].set_length(0);
   427     }
   428   }
   429 };
   431 // Enqueue references that are not made active again
   432 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   433   AbstractRefProcTaskExecutor* task_executor) {
   434   if (_processing_is_mt && task_executor != NULL) {
   435     // Parallel code
   436     RefProcEnqueueTask tsk(*this, _discovered_refs,
   437                            pending_list_addr, _max_num_q);
   438     task_executor->execute(tsk);
   439   } else {
   440     // Serial code: call the parent class's implementation
   441     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   442       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
   443       _discovered_refs[i].set_head(NULL);
   444       _discovered_refs[i].set_length(0);
   445     }
   446   }
   447 }
   449 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   450   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   451   oop discovered = java_lang_ref_Reference::discovered(_ref);
   452   assert(_discovered_addr && discovered->is_oop_or_null(),
   453          "discovered field is bad");
   454   _next = discovered;
   455   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   456   _referent = java_lang_ref_Reference::referent(_ref);
   457   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   458          "Wrong oop found in java.lang.Reference object");
   459   assert(allow_null_referent ?
   460              _referent->is_oop_or_null()
   461            : _referent->is_oop(),
   462          "bad referent");
   463 }
   465 void DiscoveredListIterator::remove() {
   466   assert(_ref->is_oop(), "Dropping a bad reference");
   467   oop_store_raw(_discovered_addr, NULL);
   469   // First _prev_next ref actually points into DiscoveredList (gross).
   470   oop new_next;
   471   if (_next == _ref) {
   472     // At the end of the list, we should make _prev point to itself.
   473     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
   474     // and _prev will be NULL.
   475     new_next = _prev;
   476   } else {
   477     new_next = _next;
   478   }
   480   if (UseCompressedOops) {
   481     // Remove Reference object from list.
   482     oopDesc::encode_store_heap_oop((narrowOop*)_prev_next, new_next);
   483   } else {
   484     // Remove Reference object from list.
   485     oopDesc::store_heap_oop((oop*)_prev_next, new_next);
   486   }
   487   NOT_PRODUCT(_removed++);
   488   _refs_list.dec_length(1);
   489 }
   491 // Make the Reference object active again.
   492 void DiscoveredListIterator::make_active() {
   493   // For G1 we don't want to use set_next - it
   494   // will dirty the card for the next field of
   495   // the reference object and will fail
   496   // CT verification.
   497   if (UseG1GC) {
   498     BarrierSet* bs = oopDesc::bs();
   499     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
   501     if (UseCompressedOops) {
   502       bs->write_ref_field_pre((narrowOop*)next_addr, NULL);
   503     } else {
   504       bs->write_ref_field_pre((oop*)next_addr, NULL);
   505     }
   506     java_lang_ref_Reference::set_next_raw(_ref, NULL);
   507   } else {
   508     java_lang_ref_Reference::set_next(_ref, NULL);
   509   }
   510 }
   512 void DiscoveredListIterator::clear_referent() {
   513   oop_store_raw(_referent_addr, NULL);
   514 }
   516 // NOTE: process_phase*() are largely similar, and at a high level
   517 // merely iterate over the extant list applying a predicate to
   518 // each of its elements and possibly removing that element from the
   519 // list and applying some further closures to that element.
   520 // We should consider the possibility of replacing these
   521 // process_phase*() methods by abstracting them into
   522 // a single general iterator invocation that receives appropriate
   523 // closures that accomplish this work.
   525 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   526 // referents are not alive, but that should be kept alive for policy reasons.
   527 // Keep alive the transitive closure of all such referents.
   528 void
   529 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   530                                    ReferencePolicy*   policy,
   531                                    BoolObjectClosure* is_alive,
   532                                    OopClosure*        keep_alive,
   533                                    VoidClosure*       complete_gc) {
   534   assert(policy != NULL, "Must have a non-NULL policy");
   535   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   536   // Decide which softly reachable refs should be kept alive.
   537   while (iter.has_next()) {
   538     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   539     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   540     if (referent_is_dead &&
   541         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
   542       if (TraceReferenceGC) {
   543         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   544                                iter.obj(), iter.obj()->klass()->internal_name());
   545       }
   546       // Remove Reference object from list
   547       iter.remove();
   548       // Make the Reference object active again
   549       iter.make_active();
   550       // keep the referent around
   551       iter.make_referent_alive();
   552       iter.move_to_next();
   553     } else {
   554       iter.next();
   555     }
   556   }
   557   // Close the reachable set
   558   complete_gc->do_void();
   559   NOT_PRODUCT(
   560     if (PrintGCDetails && TraceReferenceGC) {
   561       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
   562         "discovered Refs by policy, from list " INTPTR_FORMAT,
   563         iter.removed(), iter.processed(), (address)refs_list.head());
   564     }
   565   )
   566 }
   568 // Traverse the list and remove any Refs that are not active, or
   569 // whose referents are either alive or NULL.
   570 void
   571 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   572                              BoolObjectClosure* is_alive,
   573                              OopClosure*        keep_alive) {
   574   assert(discovery_is_atomic(), "Error");
   575   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   576   while (iter.has_next()) {
   577     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   578     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   579     assert(next == NULL, "Should not discover inactive Reference");
   580     if (iter.is_referent_alive()) {
   581       if (TraceReferenceGC) {
   582         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   583                                iter.obj(), iter.obj()->klass()->internal_name());
   584       }
   585       // The referent is reachable after all.
   586       // Remove Reference object from list.
   587       iter.remove();
   588       // Update the referent pointer as necessary: Note that this
   589       // should not entail any recursive marking because the
   590       // referent must already have been traversed.
   591       iter.make_referent_alive();
   592       iter.move_to_next();
   593     } else {
   594       iter.next();
   595     }
   596   }
   597   NOT_PRODUCT(
   598     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   599       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   600         "Refs in discovered list " INTPTR_FORMAT,
   601         iter.removed(), iter.processed(), (address)refs_list.head());
   602     }
   603   )
   604 }
   606 void
   607 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   608                                                   BoolObjectClosure* is_alive,
   609                                                   OopClosure*        keep_alive,
   610                                                   VoidClosure*       complete_gc) {
   611   assert(!discovery_is_atomic(), "Error");
   612   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   613   while (iter.has_next()) {
   614     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   615     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   616     oop next = java_lang_ref_Reference::next(iter.obj());
   617     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   618          next != NULL)) {
   619       assert(next->is_oop_or_null(), "bad next field");
   620       // Remove Reference object from list
   621       iter.remove();
   622       // Trace the cohorts
   623       iter.make_referent_alive();
   624       if (UseCompressedOops) {
   625         keep_alive->do_oop((narrowOop*)next_addr);
   626       } else {
   627         keep_alive->do_oop((oop*)next_addr);
   628       }
   629       iter.move_to_next();
   630     } else {
   631       iter.next();
   632     }
   633   }
   634   // Now close the newly reachable set
   635   complete_gc->do_void();
   636   NOT_PRODUCT(
   637     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   638       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   639         "Refs in discovered list " INTPTR_FORMAT,
   640         iter.removed(), iter.processed(), (address)refs_list.head());
   641     }
   642   )
   643 }
   645 // Traverse the list and process the referents, by either
   646 // clearing them or keeping them (and their reachable
   647 // closure) alive.
   648 void
   649 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   650                                    bool               clear_referent,
   651                                    BoolObjectClosure* is_alive,
   652                                    OopClosure*        keep_alive,
   653                                    VoidClosure*       complete_gc) {
   654   ResourceMark rm;
   655   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   656   while (iter.has_next()) {
   657     iter.update_discovered();
   658     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   659     if (clear_referent) {
   660       // NULL out referent pointer
   661       iter.clear_referent();
   662     } else {
   663       // keep the referent around
   664       iter.make_referent_alive();
   665     }
   666     if (TraceReferenceGC) {
   667       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   668                              clear_referent ? "cleared " : "",
   669                              iter.obj(), iter.obj()->klass()->internal_name());
   670     }
   671     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   672     iter.next();
   673   }
   674   // Remember to update the next pointer of the last ref.
   675   iter.update_discovered();
   676   // Close the reachable set
   677   complete_gc->do_void();
   678 }
   680 void
   681 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
   682   oop obj = NULL;
   683   oop next = refs_list.head();
   684   while (next != obj) {
   685     obj = next;
   686     next = java_lang_ref_Reference::discovered(obj);
   687     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   688   }
   689   refs_list.set_head(NULL);
   690   refs_list.set_length(0);
   691 }
   693 void
   694 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   695   clear_discovered_references(refs_list);
   696 }
   698 void ReferenceProcessor::abandon_partial_discovery() {
   699   // loop over the lists
   700   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   701     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   702       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
   703     }
   704     abandon_partial_discovered_list(_discovered_refs[i]);
   705   }
   706 }
   708 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   709 public:
   710   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   711                     DiscoveredList      refs_lists[],
   712                     ReferencePolicy*    policy,
   713                     bool                marks_oops_alive)
   714     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   715       _policy(policy)
   716   { }
   717   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   718                     OopClosure& keep_alive,
   719                     VoidClosure& complete_gc)
   720   {
   721     Thread* thr = Thread::current();
   722     int refs_list_index = ((WorkerThread*)thr)->id();
   723     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
   724                                   &is_alive, &keep_alive, &complete_gc);
   725   }
   726 private:
   727   ReferencePolicy* _policy;
   728 };
   730 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   731 public:
   732   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   733                     DiscoveredList      refs_lists[],
   734                     bool                marks_oops_alive)
   735     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   736   { }
   737   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   738                     OopClosure& keep_alive,
   739                     VoidClosure& complete_gc)
   740   {
   741     _ref_processor.process_phase2(_refs_lists[i],
   742                                   &is_alive, &keep_alive, &complete_gc);
   743   }
   744 };
   746 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   747 public:
   748   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   749                     DiscoveredList      refs_lists[],
   750                     bool                clear_referent,
   751                     bool                marks_oops_alive)
   752     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   753       _clear_referent(clear_referent)
   754   { }
   755   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   756                     OopClosure& keep_alive,
   757                     VoidClosure& complete_gc)
   758   {
   759     // Don't use "refs_list_index" calculated in this way because
   760     // balance_queues() has moved the Ref's into the first n queues.
   761     // Thread* thr = Thread::current();
   762     // int refs_list_index = ((WorkerThread*)thr)->id();
   763     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
   764     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   765                                   &is_alive, &keep_alive, &complete_gc);
   766   }
   767 private:
   768   bool _clear_referent;
   769 };
   771 void ReferenceProcessor::set_discovered(oop ref, oop value) {
   772   if (_discovered_list_needs_barrier) {
   773     java_lang_ref_Reference::set_discovered(ref, value);
   774   } else {
   775     java_lang_ref_Reference::set_discovered_raw(ref, value);
   776   }
   777 }
   779 // Balances reference queues.
   780 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
   781 // queues[0, 1, ..., _num_q-1] because only the first _num_q
   782 // corresponding to the active workers will be processed.
   783 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   784 {
   785   // calculate total length
   786   size_t total_refs = 0;
   787   if (TraceReferenceGC && PrintGCDetails) {
   788     gclog_or_tty->print_cr("\nBalance ref_lists ");
   789   }
   791   for (uint i = 0; i < _max_num_q; ++i) {
   792     total_refs += ref_lists[i].length();
   793     if (TraceReferenceGC && PrintGCDetails) {
   794       gclog_or_tty->print("%d ", ref_lists[i].length());
   795     }
   796   }
   797   if (TraceReferenceGC && PrintGCDetails) {
   798     gclog_or_tty->print_cr(" = %d", total_refs);
   799   }
   800   size_t avg_refs = total_refs / _num_q + 1;
   801   uint to_idx = 0;
   802   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
   803     bool move_all = false;
   804     if (from_idx >= _num_q) {
   805       move_all = ref_lists[from_idx].length() > 0;
   806     }
   807     while ((ref_lists[from_idx].length() > avg_refs) ||
   808            move_all) {
   809       assert(to_idx < _num_q, "Sanity Check!");
   810       if (ref_lists[to_idx].length() < avg_refs) {
   811         // move superfluous refs
   812         size_t refs_to_move;
   813         // Move all the Ref's if the from queue will not be processed.
   814         if (move_all) {
   815           refs_to_move = MIN2(ref_lists[from_idx].length(),
   816                               avg_refs - ref_lists[to_idx].length());
   817         } else {
   818           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
   819                               avg_refs - ref_lists[to_idx].length());
   820         }
   822         assert(refs_to_move > 0, "otherwise the code below will fail");
   824         oop move_head = ref_lists[from_idx].head();
   825         oop move_tail = move_head;
   826         oop new_head  = move_head;
   827         // find an element to split the list on
   828         for (size_t j = 0; j < refs_to_move; ++j) {
   829           move_tail = new_head;
   830           new_head = java_lang_ref_Reference::discovered(new_head);
   831         }
   833         // Add the chain to the to list.
   834         if (ref_lists[to_idx].head() == NULL) {
   835           // to list is empty. Make a loop at the end.
   836           set_discovered(move_tail, move_tail);
   837         } else {
   838           set_discovered(move_tail, ref_lists[to_idx].head());
   839         }
   840         ref_lists[to_idx].set_head(move_head);
   841         ref_lists[to_idx].inc_length(refs_to_move);
   843         // Remove the chain from the from list.
   844         if (move_tail == new_head) {
   845           // We found the end of the from list.
   846           ref_lists[from_idx].set_head(NULL);
   847         } else {
   848           ref_lists[from_idx].set_head(new_head);
   849         }
   850         ref_lists[from_idx].dec_length(refs_to_move);
   851         if (ref_lists[from_idx].length() == 0) {
   852           break;
   853         }
   854       } else {
   855         to_idx = (to_idx + 1) % _num_q;
   856       }
   857     }
   858   }
   859 #ifdef ASSERT
   860   size_t balanced_total_refs = 0;
   861   for (uint i = 0; i < _max_num_q; ++i) {
   862     balanced_total_refs += ref_lists[i].length();
   863     if (TraceReferenceGC && PrintGCDetails) {
   864       gclog_or_tty->print("%d ", ref_lists[i].length());
   865     }
   866   }
   867   if (TraceReferenceGC && PrintGCDetails) {
   868     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
   869     gclog_or_tty->flush();
   870   }
   871   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
   872 #endif
   873 }
   875 void ReferenceProcessor::balance_all_queues() {
   876   balance_queues(_discoveredSoftRefs);
   877   balance_queues(_discoveredWeakRefs);
   878   balance_queues(_discoveredFinalRefs);
   879   balance_queues(_discoveredPhantomRefs);
   880 }
   882 void
   883 ReferenceProcessor::process_discovered_reflist(
   884   DiscoveredList               refs_lists[],
   885   ReferencePolicy*             policy,
   886   bool                         clear_referent,
   887   BoolObjectClosure*           is_alive,
   888   OopClosure*                  keep_alive,
   889   VoidClosure*                 complete_gc,
   890   AbstractRefProcTaskExecutor* task_executor)
   891 {
   892   bool mt_processing = task_executor != NULL && _processing_is_mt;
   893   // If discovery used MT and a dynamic number of GC threads, then
   894   // the queues must be balanced for correctness if fewer than the
   895   // maximum number of queues were used.  The number of queue used
   896   // during discovery may be different than the number to be used
   897   // for processing so don't depend of _num_q < _max_num_q as part
   898   // of the test.
   899   bool must_balance = _discovery_is_mt;
   901   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
   902       must_balance) {
   903     balance_queues(refs_lists);
   904   }
   905   if (PrintReferenceGC && PrintGCDetails) {
   906     size_t total = 0;
   907     for (uint i = 0; i < _max_num_q; ++i) {
   908       total += refs_lists[i].length();
   909     }
   910     gclog_or_tty->print(", %u refs", total);
   911   }
   913   // Phase 1 (soft refs only):
   914   // . Traverse the list and remove any SoftReferences whose
   915   //   referents are not alive, but that should be kept alive for
   916   //   policy reasons. Keep alive the transitive closure of all
   917   //   such referents.
   918   if (policy != NULL) {
   919     if (mt_processing) {
   920       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   921       task_executor->execute(phase1);
   922     } else {
   923       for (uint i = 0; i < _max_num_q; i++) {
   924         process_phase1(refs_lists[i], policy,
   925                        is_alive, keep_alive, complete_gc);
   926       }
   927     }
   928   } else { // policy == NULL
   929     assert(refs_lists != _discoveredSoftRefs,
   930            "Policy must be specified for soft references.");
   931   }
   933   // Phase 2:
   934   // . Traverse the list and remove any refs whose referents are alive.
   935   if (mt_processing) {
   936     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   937     task_executor->execute(phase2);
   938   } else {
   939     for (uint i = 0; i < _max_num_q; i++) {
   940       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   941     }
   942   }
   944   // Phase 3:
   945   // . Traverse the list and process referents as appropriate.
   946   if (mt_processing) {
   947     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   948     task_executor->execute(phase3);
   949   } else {
   950     for (uint i = 0; i < _max_num_q; i++) {
   951       process_phase3(refs_lists[i], clear_referent,
   952                      is_alive, keep_alive, complete_gc);
   953     }
   954   }
   955 }
   957 void ReferenceProcessor::clean_up_discovered_references() {
   958   // loop over the lists
   959   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   960     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   961       gclog_or_tty->print_cr(
   962         "\nScrubbing %s discovered list of Null referents",
   963         list_name(i));
   964     }
   965     clean_up_discovered_reflist(_discovered_refs[i]);
   966   }
   967 }
   969 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   970   assert(!discovery_is_atomic(), "Else why call this method?");
   971   DiscoveredListIterator iter(refs_list, NULL, NULL);
   972   while (iter.has_next()) {
   973     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   974     oop next = java_lang_ref_Reference::next(iter.obj());
   975     assert(next->is_oop_or_null(), "bad next field");
   976     // If referent has been cleared or Reference is not active,
   977     // drop it.
   978     if (iter.referent() == NULL || next != NULL) {
   979       debug_only(
   980         if (PrintGCDetails && TraceReferenceGC) {
   981           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
   982             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
   983             " and referent: " INTPTR_FORMAT,
   984             iter.obj(), next, iter.referent());
   985         }
   986       )
   987       // Remove Reference object from list
   988       iter.remove();
   989       iter.move_to_next();
   990     } else {
   991       iter.next();
   992     }
   993   }
   994   NOT_PRODUCT(
   995     if (PrintGCDetails && TraceReferenceGC) {
   996       gclog_or_tty->print(
   997         " Removed %d Refs with NULL referents out of %d discovered Refs",
   998         iter.removed(), iter.processed());
   999     }
  1003 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
  1004   uint id = 0;
  1005   // Determine the queue index to use for this object.
  1006   if (_discovery_is_mt) {
  1007     // During a multi-threaded discovery phase,
  1008     // each thread saves to its "own" list.
  1009     Thread* thr = Thread::current();
  1010     id = thr->as_Worker_thread()->id();
  1011   } else {
  1012     // single-threaded discovery, we save in round-robin
  1013     // fashion to each of the lists.
  1014     if (_processing_is_mt) {
  1015       id = next_id();
  1018   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
  1020   // Get the discovered queue to which we will add
  1021   DiscoveredList* list = NULL;
  1022   switch (rt) {
  1023     case REF_OTHER:
  1024       // Unknown reference type, no special treatment
  1025       break;
  1026     case REF_SOFT:
  1027       list = &_discoveredSoftRefs[id];
  1028       break;
  1029     case REF_WEAK:
  1030       list = &_discoveredWeakRefs[id];
  1031       break;
  1032     case REF_FINAL:
  1033       list = &_discoveredFinalRefs[id];
  1034       break;
  1035     case REF_PHANTOM:
  1036       list = &_discoveredPhantomRefs[id];
  1037       break;
  1038     case REF_NONE:
  1039       // we should not reach here if we are an InstanceRefKlass
  1040     default:
  1041       ShouldNotReachHere();
  1043   if (TraceReferenceGC && PrintGCDetails) {
  1044     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
  1046   return list;
  1049 inline void
  1050 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1051                                               oop             obj,
  1052                                               HeapWord*       discovered_addr) {
  1053   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1054   // First we must make sure this object is only enqueued once. CAS in a non null
  1055   // discovered_addr.
  1056   oop current_head = refs_list.head();
  1057   // The last ref must have its discovered field pointing to itself.
  1058   oop next_discovered = (current_head != NULL) ? current_head : obj;
  1060   // Note: In the case of G1, this specific pre-barrier is strictly
  1061   // not necessary because the only case we are interested in
  1062   // here is when *discovered_addr is NULL (see the CAS further below),
  1063   // so this will expand to nothing. As a result, we have manually
  1064   // elided this out for G1, but left in the test for some future
  1065   // collector that might have need for a pre-barrier here, e.g.:-
  1066   // _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
  1067   assert(!_discovered_list_needs_barrier || UseG1GC,
  1068          "Need to check non-G1 collector: "
  1069          "may need a pre-write-barrier for CAS from NULL below");
  1070   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
  1071                                                     NULL);
  1072   if (retest == NULL) {
  1073     // This thread just won the right to enqueue the object.
  1074     // We have separate lists for enqueueing, so no synchronization
  1075     // is necessary.
  1076     refs_list.set_head(obj);
  1077     refs_list.inc_length(1);
  1078     if (_discovered_list_needs_barrier) {
  1079       _bs->write_ref_field((void*)discovered_addr, next_discovered);
  1082     if (TraceReferenceGC) {
  1083       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
  1084                              obj, obj->klass()->internal_name());
  1086   } else {
  1087     // If retest was non NULL, another thread beat us to it:
  1088     // The reference has already been discovered...
  1089     if (TraceReferenceGC) {
  1090       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1091                              obj, obj->klass()->internal_name());
  1096 #ifndef PRODUCT
  1097 // Non-atomic (i.e. concurrent) discovery might allow us
  1098 // to observe j.l.References with NULL referents, being those
  1099 // cleared concurrently by mutators during (or after) discovery.
  1100 void ReferenceProcessor::verify_referent(oop obj) {
  1101   bool da = discovery_is_atomic();
  1102   oop referent = java_lang_ref_Reference::referent(obj);
  1103   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
  1104          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
  1105                  INTPTR_FORMAT " during %satomic discovery ",
  1106                  (intptr_t)referent, (intptr_t)obj, da ? "" : "non-"));
  1108 #endif
  1110 // We mention two of several possible choices here:
  1111 // #0: if the reference object is not in the "originating generation"
  1112 //     (or part of the heap being collected, indicated by our "span"
  1113 //     we don't treat it specially (i.e. we scan it as we would
  1114 //     a normal oop, treating its references as strong references).
  1115 //     This means that references can't be discovered unless their
  1116 //     referent is also in the same span. This is the simplest,
  1117 //     most "local" and most conservative approach, albeit one
  1118 //     that may cause weak references to be enqueued least promptly.
  1119 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1120 // #1: the reference object may be in any generation (span), but if
  1121 //     the referent is in the generation (span) being currently collected
  1122 //     then we can discover the reference object, provided
  1123 //     the object has not already been discovered by
  1124 //     a different concurrently running collector (as may be the
  1125 //     case, for instance, if the reference object is in CMS and
  1126 //     the referent in DefNewGeneration), and provided the processing
  1127 //     of this reference object by the current collector will
  1128 //     appear atomic to every other collector in the system.
  1129 //     (Thus, for instance, a concurrent collector may not
  1130 //     discover references in other generations even if the
  1131 //     referent is in its own generation). This policy may,
  1132 //     in certain cases, enqueue references somewhat sooner than
  1133 //     might Policy #0 above, but at marginally increased cost
  1134 //     and complexity in processing these references.
  1135 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1136 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1137   // Make sure we are discovering refs (rather than processing discovered refs).
  1138   if (!_discovering_refs || !RegisterReferences) {
  1139     return false;
  1141   // We only discover active references.
  1142   oop next = java_lang_ref_Reference::next(obj);
  1143   if (next != NULL) {   // Ref is no longer active
  1144     return false;
  1147   HeapWord* obj_addr = (HeapWord*)obj;
  1148   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1149       !_span.contains(obj_addr)) {
  1150     // Reference is not in the originating generation;
  1151     // don't treat it specially (i.e. we want to scan it as a normal
  1152     // object with strong references).
  1153     return false;
  1156   // We only discover references whose referents are not (yet)
  1157   // known to be strongly reachable.
  1158   if (is_alive_non_header() != NULL) {
  1159     verify_referent(obj);
  1160     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
  1161       return false;  // referent is reachable
  1164   if (rt == REF_SOFT) {
  1165     // For soft refs we can decide now if these are not
  1166     // current candidates for clearing, in which case we
  1167     // can mark through them now, rather than delaying that
  1168     // to the reference-processing phase. Since all current
  1169     // time-stamp policies advance the soft-ref clock only
  1170     // at a major collection cycle, this is always currently
  1171     // accurate.
  1172     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
  1173       return false;
  1177   ResourceMark rm;      // Needed for tracing.
  1179   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1180   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1181   assert(discovered->is_oop_or_null(), "bad discovered field");
  1182   if (discovered != NULL) {
  1183     // The reference has already been discovered...
  1184     if (TraceReferenceGC) {
  1185       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1186                              obj, obj->klass()->internal_name());
  1188     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1189       // assumes that an object is not processed twice;
  1190       // if it's been already discovered it must be on another
  1191       // generation's discovered list; so we won't discover it.
  1192       return false;
  1193     } else {
  1194       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1195              "Unrecognized policy");
  1196       // Check assumption that an object is not potentially
  1197       // discovered twice except by concurrent collectors that potentially
  1198       // trace the same Reference object twice.
  1199       assert(UseConcMarkSweepGC || UseG1GC,
  1200              "Only possible with a concurrent marking collector");
  1201       return true;
  1205   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1206     verify_referent(obj);
  1207     // Discover if and only if EITHER:
  1208     // .. reference is in our span, OR
  1209     // .. we are an atomic collector and referent is in our span
  1210     if (_span.contains(obj_addr) ||
  1211         (discovery_is_atomic() &&
  1212          _span.contains(java_lang_ref_Reference::referent(obj)))) {
  1213       // should_enqueue = true;
  1214     } else {
  1215       return false;
  1217   } else {
  1218     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1219            _span.contains(obj_addr), "code inconsistency");
  1222   // Get the right type of discovered queue head.
  1223   DiscoveredList* list = get_discovered_list(rt);
  1224   if (list == NULL) {
  1225     return false;   // nothing special needs to be done
  1228   if (_discovery_is_mt) {
  1229     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1230   } else {
  1231     // If "_discovered_list_needs_barrier", we do write barriers when
  1232     // updating the discovered reference list.  Otherwise, we do a raw store
  1233     // here: the field will be visited later when processing the discovered
  1234     // references.
  1235     oop current_head = list->head();
  1236     // The last ref must have its discovered field pointing to itself.
  1237     oop next_discovered = (current_head != NULL) ? current_head : obj;
  1239     // As in the case further above, since we are over-writing a NULL
  1240     // pre-value, we can safely elide the pre-barrier here for the case of G1.
  1241     // e.g.:- _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
  1242     assert(discovered == NULL, "control point invariant");
  1243     assert(!_discovered_list_needs_barrier || UseG1GC,
  1244            "For non-G1 collector, may need a pre-write-barrier for CAS from NULL below");
  1245     oop_store_raw(discovered_addr, next_discovered);
  1246     if (_discovered_list_needs_barrier) {
  1247       _bs->write_ref_field((void*)discovered_addr, next_discovered);
  1249     list->set_head(obj);
  1250     list->inc_length(1);
  1252     if (TraceReferenceGC) {
  1253       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
  1254                                 obj, obj->klass()->internal_name());
  1257   assert(obj->is_oop(), "Discovered a bad reference");
  1258   verify_referent(obj);
  1259   return true;
  1262 // Preclean the discovered references by removing those
  1263 // whose referents are alive, and by marking from those that
  1264 // are not active. These lists can be handled here
  1265 // in any order and, indeed, concurrently.
  1266 void ReferenceProcessor::preclean_discovered_references(
  1267   BoolObjectClosure* is_alive,
  1268   OopClosure* keep_alive,
  1269   VoidClosure* complete_gc,
  1270   YieldClosure* yield) {
  1272   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1274   // Soft references
  1276     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1277               false, gclog_or_tty);
  1278     for (uint i = 0; i < _max_num_q; i++) {
  1279       if (yield->should_return()) {
  1280         return;
  1282       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1283                                   keep_alive, complete_gc, yield);
  1287   // Weak references
  1289     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1290               false, gclog_or_tty);
  1291     for (uint i = 0; i < _max_num_q; i++) {
  1292       if (yield->should_return()) {
  1293         return;
  1295       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1296                                   keep_alive, complete_gc, yield);
  1300   // Final references
  1302     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1303               false, gclog_or_tty);
  1304     for (uint i = 0; i < _max_num_q; i++) {
  1305       if (yield->should_return()) {
  1306         return;
  1308       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1309                                   keep_alive, complete_gc, yield);
  1313   // Phantom references
  1315     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1316               false, gclog_or_tty);
  1317     for (uint i = 0; i < _max_num_q; i++) {
  1318       if (yield->should_return()) {
  1319         return;
  1321       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1322                                   keep_alive, complete_gc, yield);
  1327 // Walk the given discovered ref list, and remove all reference objects
  1328 // whose referents are still alive, whose referents are NULL or which
  1329 // are not active (have a non-NULL next field). NOTE: When we are
  1330 // thus precleaning the ref lists (which happens single-threaded today),
  1331 // we do not disable refs discovery to honour the correct semantics of
  1332 // java.lang.Reference. As a result, we need to be careful below
  1333 // that ref removal steps interleave safely with ref discovery steps
  1334 // (in this thread).
  1335 void
  1336 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1337                                                 BoolObjectClosure* is_alive,
  1338                                                 OopClosure*        keep_alive,
  1339                                                 VoidClosure*       complete_gc,
  1340                                                 YieldClosure*      yield) {
  1341   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1342   while (iter.has_next()) {
  1343     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1344     oop obj = iter.obj();
  1345     oop next = java_lang_ref_Reference::next(obj);
  1346     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1347         next != NULL) {
  1348       // The referent has been cleared, or is alive, or the Reference is not
  1349       // active; we need to trace and mark its cohort.
  1350       if (TraceReferenceGC) {
  1351         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1352                                iter.obj(), iter.obj()->klass()->internal_name());
  1354       // Remove Reference object from list
  1355       iter.remove();
  1356       // Keep alive its cohort.
  1357       iter.make_referent_alive();
  1358       if (UseCompressedOops) {
  1359         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1360         keep_alive->do_oop(next_addr);
  1361       } else {
  1362         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1363         keep_alive->do_oop(next_addr);
  1365       iter.move_to_next();
  1366     } else {
  1367       iter.next();
  1370   // Close the reachable set
  1371   complete_gc->do_void();
  1373   NOT_PRODUCT(
  1374     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
  1375       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
  1376         "Refs in discovered list " INTPTR_FORMAT,
  1377         iter.removed(), iter.processed(), (address)refs_list.head());
  1382 const char* ReferenceProcessor::list_name(uint i) {
  1383    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
  1384           "Out of bounds index");
  1386    int j = i / _max_num_q;
  1387    switch (j) {
  1388      case 0: return "SoftRef";
  1389      case 1: return "WeakRef";
  1390      case 2: return "FinalRef";
  1391      case 3: return "PhantomRef";
  1393    ShouldNotReachHere();
  1394    return NULL;
  1397 #ifndef PRODUCT
  1398 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1399   // empty for now
  1401 #endif
  1403 #ifndef PRODUCT
  1404 void ReferenceProcessor::clear_discovered_references() {
  1405   guarantee(!_discovering_refs, "Discovering refs?");
  1406   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
  1407     clear_discovered_references(_discovered_refs[i]);
  1411 #endif // PRODUCT

mercurial