src/share/vm/memory/cardTableRS.cpp

Mon, 08 Apr 2013 07:49:28 +0200

author
brutisso
date
Mon, 08 Apr 2013 07:49:28 +0200
changeset 4901
83f27710f5f7
parent 4668
3c9db54c2660
child 4962
6f817ce50129
permissions
-rw-r--r--

7197666: java -d64 -version core dumps in a box with lots of memory
Summary: Allow task queues to be mmapped instead of malloced on Solaris
Reviewed-by: coleenp, jmasa, johnc, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "memory/cardTableRS.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/generation.hpp"
    30 #include "memory/space.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "runtime/java.hpp"
    33 #include "runtime/os.hpp"
    34 #include "utilities/macros.hpp"
    35 #if INCLUDE_ALL_GCS
    36 #include "gc_implementation/g1/concurrentMark.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #endif // INCLUDE_ALL_GCS
    40 CardTableRS::CardTableRS(MemRegion whole_heap,
    41                          int max_covered_regions) :
    42   GenRemSet(),
    43   _cur_youngergen_card_val(youngergenP1_card),
    44   _regions_to_iterate(max_covered_regions - 1)
    45 {
    46 #if INCLUDE_ALL_GCS
    47   if (UseG1GC) {
    48       _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
    49                                                   max_covered_regions);
    50   } else {
    51     _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    52   }
    53 #else
    54   _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    55 #endif
    56   set_bs(_ct_bs);
    57   _last_cur_val_in_gen = new jbyte[GenCollectedHeap::max_gens + 1];
    58   if (_last_cur_val_in_gen == NULL) {
    59     vm_exit_during_initialization("Could not last_cur_val_in_gen array.");
    60   }
    61   for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
    62     _last_cur_val_in_gen[i] = clean_card_val();
    63   }
    64   _ct_bs->set_CTRS(this);
    65 }
    67 void CardTableRS::resize_covered_region(MemRegion new_region) {
    68   _ct_bs->resize_covered_region(new_region);
    69 }
    71 jbyte CardTableRS::find_unused_youngergenP_card_value() {
    72   for (jbyte v = youngergenP1_card;
    73        v < cur_youngergen_and_prev_nonclean_card;
    74        v++) {
    75     bool seen = false;
    76     for (int g = 0; g < _regions_to_iterate; g++) {
    77       if (_last_cur_val_in_gen[g] == v) {
    78         seen = true;
    79         break;
    80       }
    81     }
    82     if (!seen) return v;
    83   }
    84   ShouldNotReachHere();
    85   return 0;
    86 }
    88 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
    89   // Parallel or sequential, we must always set the prev to equal the
    90   // last one written.
    91   if (parallel) {
    92     // Find a parallel value to be used next.
    93     jbyte next_val = find_unused_youngergenP_card_value();
    94     set_cur_youngergen_card_val(next_val);
    96   } else {
    97     // In an sequential traversal we will always write youngergen, so that
    98     // the inline barrier is  correct.
    99     set_cur_youngergen_card_val(youngergen_card);
   100   }
   101 }
   103 void CardTableRS::younger_refs_iterate(Generation* g,
   104                                        OopsInGenClosure* blk) {
   105   _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
   106   g->younger_refs_iterate(blk);
   107 }
   109 inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
   110   if (_is_par) {
   111     return clear_card_parallel(entry);
   112   } else {
   113     return clear_card_serial(entry);
   114   }
   115 }
   117 inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
   118   while (true) {
   119     // In the parallel case, we may have to do this several times.
   120     jbyte entry_val = *entry;
   121     assert(entry_val != CardTableRS::clean_card_val(),
   122            "We shouldn't be looking at clean cards, and this should "
   123            "be the only place they get cleaned.");
   124     if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
   125         || _ct->is_prev_youngergen_card_val(entry_val)) {
   126       jbyte res =
   127         Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
   128       if (res == entry_val) {
   129         break;
   130       } else {
   131         assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
   132                "The CAS above should only fail if another thread did "
   133                "a GC write barrier.");
   134       }
   135     } else if (entry_val ==
   136                CardTableRS::cur_youngergen_and_prev_nonclean_card) {
   137       // Parallelism shouldn't matter in this case.  Only the thread
   138       // assigned to scan the card should change this value.
   139       *entry = _ct->cur_youngergen_card_val();
   140       break;
   141     } else {
   142       assert(entry_val == _ct->cur_youngergen_card_val(),
   143              "Should be the only possibility.");
   144       // In this case, the card was clean before, and become
   145       // cur_youngergen only because of processing of a promoted object.
   146       // We don't have to look at the card.
   147       return false;
   148     }
   149   }
   150   return true;
   151 }
   154 inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
   155   jbyte entry_val = *entry;
   156   assert(entry_val != CardTableRS::clean_card_val(),
   157          "We shouldn't be looking at clean cards, and this should "
   158          "be the only place they get cleaned.");
   159   assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
   160          "This should be possible in the sequential case.");
   161   *entry = CardTableRS::clean_card_val();
   162   return true;
   163 }
   165 ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
   166   DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
   167     _dirty_card_closure(dirty_card_closure), _ct(ct) {
   168     // Cannot yet substitute active_workers for n_par_threads
   169     // in the case where parallelism is being turned off by
   170     // setting n_par_threads to 0.
   171     _is_par = (SharedHeap::heap()->n_par_threads() > 0);
   172     assert(!_is_par ||
   173            (SharedHeap::heap()->n_par_threads() ==
   174             SharedHeap::heap()->workers()->active_workers()), "Mismatch");
   175 }
   177 bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
   178   return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
   179 }
   181 void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
   182   assert(mr.word_size() > 0, "Error");
   183   assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
   184   // mr.end() may not necessarily be card aligned.
   185   jbyte* cur_entry = _ct->byte_for(mr.last());
   186   const jbyte* limit = _ct->byte_for(mr.start());
   187   HeapWord* end_of_non_clean = mr.end();
   188   HeapWord* start_of_non_clean = end_of_non_clean;
   189   while (cur_entry >= limit) {
   190     HeapWord* cur_hw = _ct->addr_for(cur_entry);
   191     if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
   192       // Continue the dirty range by opening the
   193       // dirty window one card to the left.
   194       start_of_non_clean = cur_hw;
   195     } else {
   196       // We hit a "clean" card; process any non-empty
   197       // "dirty" range accumulated so far.
   198       if (start_of_non_clean < end_of_non_clean) {
   199         const MemRegion mrd(start_of_non_clean, end_of_non_clean);
   200         _dirty_card_closure->do_MemRegion(mrd);
   201       }
   203       // fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary
   204       if (is_word_aligned(cur_entry)) {
   205         jbyte* cur_row = cur_entry - BytesPerWord;
   206         while (cur_row >= limit && *((intptr_t*)cur_row) ==  CardTableRS::clean_card_row()) {
   207           cur_row -= BytesPerWord;
   208         }
   209         cur_entry = cur_row + BytesPerWord;
   210         cur_hw = _ct->addr_for(cur_entry);
   211       }
   213       // Reset the dirty window, while continuing to look
   214       // for the next dirty card that will start a
   215       // new dirty window.
   216       end_of_non_clean = cur_hw;
   217       start_of_non_clean = cur_hw;
   218     }
   219     // Note that "cur_entry" leads "start_of_non_clean" in
   220     // its leftward excursion after this point
   221     // in the loop and, when we hit the left end of "mr",
   222     // will point off of the left end of the card-table
   223     // for "mr".
   224     cur_entry--;
   225   }
   226   // If the first card of "mr" was dirty, we will have
   227   // been left with a dirty window, co-initial with "mr",
   228   // which we now process.
   229   if (start_of_non_clean < end_of_non_clean) {
   230     const MemRegion mrd(start_of_non_clean, end_of_non_clean);
   231     _dirty_card_closure->do_MemRegion(mrd);
   232   }
   233 }
   235 // clean (by dirty->clean before) ==> cur_younger_gen
   236 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
   237 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
   238 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
   239 // cur-younger-gen                ==> cur_younger_gen
   240 // cur_youngergen_and_prev_nonclean_card ==> no change.
   241 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
   242   jbyte* entry = ct_bs()->byte_for(field);
   243   do {
   244     jbyte entry_val = *entry;
   245     // We put this first because it's probably the most common case.
   246     if (entry_val == clean_card_val()) {
   247       // No threat of contention with cleaning threads.
   248       *entry = cur_youngergen_card_val();
   249       return;
   250     } else if (card_is_dirty_wrt_gen_iter(entry_val)
   251                || is_prev_youngergen_card_val(entry_val)) {
   252       // Mark it as both cur and prev youngergen; card cleaning thread will
   253       // eventually remove the previous stuff.
   254       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
   255       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
   256       // Did the CAS succeed?
   257       if (res == entry_val) return;
   258       // Otherwise, retry, to see the new value.
   259       continue;
   260     } else {
   261       assert(entry_val == cur_youngergen_and_prev_nonclean_card
   262              || entry_val == cur_youngergen_card_val(),
   263              "should be only possibilities.");
   264       return;
   265     }
   266   } while (true);
   267 }
   269 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
   270                                                 OopsInGenClosure* cl) {
   271   const MemRegion urasm = sp->used_region_at_save_marks();
   272 #ifdef ASSERT
   273   // Convert the assertion check to a warning if we are running
   274   // CMS+ParNew until related bug is fixed.
   275   MemRegion ur    = sp->used_region();
   276   assert(ur.contains(urasm) || (UseConcMarkSweepGC && UseParNewGC),
   277          err_msg("Did you forget to call save_marks()? "
   278                  "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
   279                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
   280                  urasm.start(), urasm.end(), ur.start(), ur.end()));
   281   // In the case of CMS+ParNew, issue a warning
   282   if (!ur.contains(urasm)) {
   283     assert(UseConcMarkSweepGC && UseParNewGC, "Tautology: see assert above");
   284     warning("CMS+ParNew: Did you forget to call save_marks()? "
   285             "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
   286             "[" PTR_FORMAT ", " PTR_FORMAT ")",
   287              urasm.start(), urasm.end(), ur.start(), ur.end());
   288     MemRegion ur2 = sp->used_region();
   289     MemRegion urasm2 = sp->used_region_at_save_marks();
   290     if (!ur.equals(ur2)) {
   291       warning("CMS+ParNew: Flickering used_region()!!");
   292     }
   293     if (!urasm.equals(urasm2)) {
   294       warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
   295     }
   296     ShouldNotReachHere();
   297   }
   298 #endif
   299   _ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this);
   300 }
   302 void CardTableRS::clear_into_younger(Generation* gen) {
   303   GenCollectedHeap* gch = GenCollectedHeap::heap();
   304   // Generations younger than gen have been evacuated. We can clear
   305   // card table entries for gen (we know that it has no pointers
   306   // to younger gens) and for those below. The card tables for
   307   // the youngest gen need never be cleared.
   308   // There's a bit of subtlety in the clear() and invalidate()
   309   // methods that we exploit here and in invalidate_or_clear()
   310   // below to avoid missing cards at the fringes. If clear() or
   311   // invalidate() are changed in the future, this code should
   312   // be revisited. 20040107.ysr
   313   Generation* g = gen;
   314   for(Generation* prev_gen = gch->prev_gen(g);
   315       prev_gen != NULL;
   316       g = prev_gen, prev_gen = gch->prev_gen(g)) {
   317     MemRegion to_be_cleared_mr = g->prev_used_region();
   318     clear(to_be_cleared_mr);
   319   }
   320 }
   322 void CardTableRS::invalidate_or_clear(Generation* gen, bool younger) {
   323   GenCollectedHeap* gch = GenCollectedHeap::heap();
   324   // For each generation gen (and younger)
   325   // invalidate the cards for the currently occupied part
   326   // of that generation and clear the cards for the
   327   // unoccupied part of the generation (if any, making use
   328   // of that generation's prev_used_region to determine that
   329   // region). No need to do anything for the youngest
   330   // generation. Also see note#20040107.ysr above.
   331   Generation* g = gen;
   332   for(Generation* prev_gen = gch->prev_gen(g); prev_gen != NULL;
   333       g = prev_gen, prev_gen = gch->prev_gen(g))  {
   334     MemRegion used_mr = g->used_region();
   335     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
   336     if (!to_be_cleared_mr.is_empty()) {
   337       clear(to_be_cleared_mr);
   338     }
   339     invalidate(used_mr);
   340     if (!younger) break;
   341   }
   342 }
   345 class VerifyCleanCardClosure: public OopClosure {
   346 private:
   347   HeapWord* _boundary;
   348   HeapWord* _begin;
   349   HeapWord* _end;
   350 protected:
   351   template <class T> void do_oop_work(T* p) {
   352     HeapWord* jp = (HeapWord*)p;
   353     assert(jp >= _begin && jp < _end,
   354            err_msg("Error: jp " PTR_FORMAT " should be within "
   355                    "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
   356                    jp, _begin, _end));
   357     oop obj = oopDesc::load_decode_heap_oop(p);
   358     guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
   359               err_msg("pointer " PTR_FORMAT " at " PTR_FORMAT " on "
   360                       "clean card crosses boundary" PTR_FORMAT,
   361                       (HeapWord*)obj, jp, _boundary));
   362   }
   364 public:
   365   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
   366     _boundary(b), _begin(begin), _end(end) {
   367     assert(b <= begin,
   368            err_msg("Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
   369                    b, begin));
   370     assert(begin <= end,
   371            err_msg("Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
   372                    begin, end));
   373   }
   375   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
   376   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
   377 };
   379 class VerifyCTSpaceClosure: public SpaceClosure {
   380 private:
   381   CardTableRS* _ct;
   382   HeapWord* _boundary;
   383 public:
   384   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
   385     _ct(ct), _boundary(boundary) {}
   386   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
   387 };
   389 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
   390   CardTableRS* _ct;
   391 public:
   392   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
   393   void do_generation(Generation* gen) {
   394     // Skip the youngest generation.
   395     if (gen->level() == 0) return;
   396     // Normally, we're interested in pointers to younger generations.
   397     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
   398     gen->space_iterate(&blk, true);
   399   }
   400 };
   402 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
   403   // We don't need to do young-gen spaces.
   404   if (s->end() <= gen_boundary) return;
   405   MemRegion used = s->used_region();
   407   jbyte* cur_entry = byte_for(used.start());
   408   jbyte* limit = byte_after(used.last());
   409   while (cur_entry < limit) {
   410     if (*cur_entry == CardTableModRefBS::clean_card) {
   411       jbyte* first_dirty = cur_entry+1;
   412       while (first_dirty < limit &&
   413              *first_dirty == CardTableModRefBS::clean_card) {
   414         first_dirty++;
   415       }
   416       // If the first object is a regular object, and it has a
   417       // young-to-old field, that would mark the previous card.
   418       HeapWord* boundary = addr_for(cur_entry);
   419       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
   420       HeapWord* boundary_block = s->block_start(boundary);
   421       HeapWord* begin = boundary;             // Until proven otherwise.
   422       HeapWord* start_block = boundary_block; // Until proven otherwise.
   423       if (boundary_block < boundary) {
   424         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
   425           oop boundary_obj = oop(boundary_block);
   426           if (!boundary_obj->is_objArray() &&
   427               !boundary_obj->is_typeArray()) {
   428             guarantee(cur_entry > byte_for(used.start()),
   429                       "else boundary would be boundary_block");
   430             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
   431               begin = boundary_block + s->block_size(boundary_block);
   432               start_block = begin;
   433             }
   434           }
   435         }
   436       }
   437       // Now traverse objects until end.
   438       if (begin < end) {
   439         MemRegion mr(begin, end);
   440         VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
   441         for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
   442           if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
   443             oop(cur)->oop_iterate_no_header(&verify_blk, mr);
   444           }
   445         }
   446       }
   447       cur_entry = first_dirty;
   448     } else {
   449       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
   450       // is a transient value, that cannot be in the card table
   451       // except during GC, and thus assert that:
   452       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
   453       //        "Illegal CT value");
   454       // That however, need not hold, as will become clear in the
   455       // following...
   457       // We'd normally expect that if we are in the parallel case,
   458       // we can't have left a prev value (which would be different
   459       // from the current value) in the card table, and so we'd like to
   460       // assert that:
   461       // guarantee(cur_youngergen_card_val() == youngergen_card
   462       //           || !is_prev_youngergen_card_val(*cur_entry),
   463       //           "Illegal CT value");
   464       // That, however, may not hold occasionally, because of
   465       // CMS or MSC in the old gen. To wit, consider the
   466       // following two simple illustrative scenarios:
   467       // (a) CMS: Consider the case where a large object L
   468       //     spanning several cards is allocated in the old
   469       //     gen, and has a young gen reference stored in it, dirtying
   470       //     some interior cards. A young collection scans the card,
   471       //     finds a young ref and installs a youngergenP_n value.
   472       //     L then goes dead. Now a CMS collection starts,
   473       //     finds L dead and sweeps it up. Assume that L is
   474       //     abutting _unallocated_blk, so _unallocated_blk is
   475       //     adjusted down to (below) L. Assume further that
   476       //     no young collection intervenes during this CMS cycle.
   477       //     The next young gen cycle will not get to look at this
   478       //     youngergenP_n card since it lies in the unoccupied
   479       //     part of the space.
   480       //     Some young collections later the blocks on this
   481       //     card can be re-allocated either due to direct allocation
   482       //     or due to absorbing promotions. At this time, the
   483       //     before-gc verification will fail the above assert.
   484       // (b) MSC: In this case, an object L with a young reference
   485       //     is on a card that (therefore) holds a youngergen_n value.
   486       //     Suppose also that L lies towards the end of the used
   487       //     the used space before GC. An MSC collection
   488       //     occurs that compacts to such an extent that this
   489       //     card is no longer in the occupied part of the space.
   490       //     Since current code in MSC does not always clear cards
   491       //     in the unused part of old gen, this stale youngergen_n
   492       //     value is left behind and can later be covered by
   493       //     an object when promotion or direct allocation
   494       //     re-allocates that part of the heap.
   495       //
   496       // Fortunately, the presence of such stale card values is
   497       // "only" a minor annoyance in that subsequent young collections
   498       // might needlessly scan such cards, but would still never corrupt
   499       // the heap as a result. However, it's likely not to be a significant
   500       // performance inhibitor in practice. For instance,
   501       // some recent measurements with unoccupied cards eagerly cleared
   502       // out to maintain this invariant, showed next to no
   503       // change in young collection times; of course one can construct
   504       // degenerate examples where the cost can be significant.)
   505       // Note, in particular, that if the "stale" card is modified
   506       // after re-allocation, it would be dirty, not "stale". Thus,
   507       // we can never have a younger ref in such a card and it is
   508       // safe not to scan that card in any collection. [As we see
   509       // below, we do some unnecessary scanning
   510       // in some cases in the current parallel scanning algorithm.]
   511       //
   512       // The main point below is that the parallel card scanning code
   513       // deals correctly with these stale card values. There are two main
   514       // cases to consider where we have a stale "younger gen" value and a
   515       // "derivative" case to consider, where we have a stale
   516       // "cur_younger_gen_and_prev_non_clean" value, as will become
   517       // apparent in the case analysis below.
   518       // o Case 1. If the stale value corresponds to a younger_gen_n
   519       //   value other than the cur_younger_gen value then the code
   520       //   treats this as being tantamount to a prev_younger_gen
   521       //   card. This means that the card may be unnecessarily scanned.
   522       //   There are two sub-cases to consider:
   523       //   o Case 1a. Let us say that the card is in the occupied part
   524       //     of the generation at the time the collection begins. In
   525       //     that case the card will be either cleared when it is scanned
   526       //     for young pointers, or will be set to cur_younger_gen as a
   527       //     result of promotion. (We have elided the normal case where
   528       //     the scanning thread and the promoting thread interleave
   529       //     possibly resulting in a transient
   530       //     cur_younger_gen_and_prev_non_clean value before settling
   531       //     to cur_younger_gen. [End Case 1a.]
   532       //   o Case 1b. Consider now the case when the card is in the unoccupied
   533       //     part of the space which becomes occupied because of promotions
   534       //     into it during the current young GC. In this case the card
   535       //     will never be scanned for young references. The current
   536       //     code will set the card value to either
   537       //     cur_younger_gen_and_prev_non_clean or leave
   538       //     it with its stale value -- because the promotions didn't
   539       //     result in any younger refs on that card. Of these two
   540       //     cases, the latter will be covered in Case 1a during
   541       //     a subsequent scan. To deal with the former case, we need
   542       //     to further consider how we deal with a stale value of
   543       //     cur_younger_gen_and_prev_non_clean in our case analysis
   544       //     below. This we do in Case 3 below. [End Case 1b]
   545       //   [End Case 1]
   546       // o Case 2. If the stale value corresponds to cur_younger_gen being
   547       //   a value not necessarily written by a current promotion, the
   548       //   card will not be scanned by the younger refs scanning code.
   549       //   (This is OK since as we argued above such cards cannot contain
   550       //   any younger refs.) The result is that this value will be
   551       //   treated as a prev_younger_gen value in a subsequent collection,
   552       //   which is addressed in Case 1 above. [End Case 2]
   553       // o Case 3. We here consider the "derivative" case from Case 1b. above
   554       //   because of which we may find a stale
   555       //   cur_younger_gen_and_prev_non_clean card value in the table.
   556       //   Once again, as in Case 1, we consider two subcases, depending
   557       //   on whether the card lies in the occupied or unoccupied part
   558       //   of the space at the start of the young collection.
   559       //   o Case 3a. Let us say the card is in the occupied part of
   560       //     the old gen at the start of the young collection. In that
   561       //     case, the card will be scanned by the younger refs scanning
   562       //     code which will set it to cur_younger_gen. In a subsequent
   563       //     scan, the card will be considered again and get its final
   564       //     correct value. [End Case 3a]
   565       //   o Case 3b. Now consider the case where the card is in the
   566       //     unoccupied part of the old gen, and is occupied as a result
   567       //     of promotions during thus young gc. In that case,
   568       //     the card will not be scanned for younger refs. The presence
   569       //     of newly promoted objects on the card will then result in
   570       //     its keeping the value cur_younger_gen_and_prev_non_clean
   571       //     value, which we have dealt with in Case 3 here. [End Case 3b]
   572       //   [End Case 3]
   573       //
   574       // (Please refer to the code in the helper class
   575       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
   576       //
   577       // The informal arguments above can be tightened into a formal
   578       // correctness proof and it behooves us to write up such a proof,
   579       // or to use model checking to prove that there are no lingering
   580       // concerns.
   581       //
   582       // Clearly because of Case 3b one cannot bound the time for
   583       // which a card will retain what we have called a "stale" value.
   584       // However, one can obtain a Loose upper bound on the redundant
   585       // work as a result of such stale values. Note first that any
   586       // time a stale card lies in the occupied part of the space at
   587       // the start of the collection, it is scanned by younger refs
   588       // code and we can define a rank function on card values that
   589       // declines when this is so. Note also that when a card does not
   590       // lie in the occupied part of the space at the beginning of a
   591       // young collection, its rank can either decline or stay unchanged.
   592       // In this case, no extra work is done in terms of redundant
   593       // younger refs scanning of that card.
   594       // Then, the case analysis above reveals that, in the worst case,
   595       // any such stale card will be scanned unnecessarily at most twice.
   596       //
   597       // It is nonethelss advisable to try and get rid of some of this
   598       // redundant work in a subsequent (low priority) re-design of
   599       // the card-scanning code, if only to simplify the underlying
   600       // state machine analysis/proof. ysr 1/28/2002. XXX
   601       cur_entry++;
   602     }
   603   }
   604 }
   606 void CardTableRS::verify() {
   607   // At present, we only know how to verify the card table RS for
   608   // generational heaps.
   609   VerifyCTGenClosure blk(this);
   610   CollectedHeap* ch = Universe::heap();
   612   if (ch->kind() == CollectedHeap::GenCollectedHeap) {
   613     GenCollectedHeap::heap()->generation_iterate(&blk, false);
   614     _ct_bs->verify();
   615     }
   616   }
   619 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
   620   if (!mr.is_empty()) {
   621     jbyte* cur_entry = byte_for(mr.start());
   622     jbyte* limit = byte_after(mr.last());
   623     // The region mr may not start on a card boundary so
   624     // the first card may reflect a write to the space
   625     // just prior to mr.
   626     if (!is_aligned(mr.start())) {
   627       cur_entry++;
   628     }
   629     for (;cur_entry < limit; cur_entry++) {
   630       guarantee(*cur_entry == CardTableModRefBS::clean_card,
   631                 "Unexpected dirty card found");
   632     }
   633   }
   634 }

mercurial