src/share/vm/opto/type.hpp

Fri, 11 Mar 2011 07:50:51 -0800

author
kvn
date
Fri, 11 Mar 2011 07:50:51 -0800
changeset 2636
83f08886981c
parent 2314
f95d63e2154a
child 2661
b099aaf51bf8
permissions
-rw-r--r--

7026631: field _klass is incorrectly set for dual type of TypeAryPtr::OOPS
Summary: add missing check this->dual() != TypeAryPtr::OOPS into TypeAryPtr::klass().
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_TYPE_HPP
    26 #define SHARE_VM_OPTO_TYPE_HPP
    28 #include "libadt/port.hpp"
    29 #include "opto/adlcVMDeps.hpp"
    30 #include "runtime/handles.hpp"
    32 // Portions of code courtesy of Clifford Click
    34 // Optimization - Graph Style
    37 // This class defines a Type lattice.  The lattice is used in the constant
    38 // propagation algorithms, and for some type-checking of the iloc code.
    39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    40 // float & double precision constants, sets of data-labels and code-labels.
    41 // The complete lattice is described below.  Subtypes have no relationship to
    42 // up or down in the lattice; that is entirely determined by the behavior of
    43 // the MEET/JOIN functions.
    45 class Dict;
    46 class Type;
    47 class   TypeD;
    48 class   TypeF;
    49 class   TypeInt;
    50 class   TypeLong;
    51 class   TypeNarrowOop;
    52 class   TypeAry;
    53 class   TypeTuple;
    54 class   TypePtr;
    55 class     TypeRawPtr;
    56 class     TypeOopPtr;
    57 class       TypeInstPtr;
    58 class       TypeAryPtr;
    59 class       TypeKlassPtr;
    61 //------------------------------Type-------------------------------------------
    62 // Basic Type object, represents a set of primitive Values.
    63 // Types are hash-cons'd into a private class dictionary, so only one of each
    64 // different kind of Type exists.  Types are never modified after creation, so
    65 // all their interesting fields are constant.
    66 class Type {
    67 public:
    68   enum TYPES {
    69     Bad=0,                      // Type check
    70     Control,                    // Control of code (not in lattice)
    71     Top,                        // Top of the lattice
    72     Int,                        // Integer range (lo-hi)
    73     Long,                       // Long integer range (lo-hi)
    74     Half,                       // Placeholder half of doubleword
    75     NarrowOop,                  // Compressed oop pointer
    77     Tuple,                      // Method signature or object layout
    78     Array,                      // Array types
    80     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    81     RawPtr,                     // Raw (non-oop) pointers
    82     OopPtr,                     // Any and all Java heap entities
    83     InstPtr,                    // Instance pointers (non-array objects)
    84     AryPtr,                     // Array pointers
    85     KlassPtr,                   // Klass pointers
    86     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
    88     Function,                   // Function signature
    89     Abio,                       // Abstract I/O
    90     Return_Address,             // Subroutine return address
    91     Memory,                     // Abstract store
    92     FloatTop,                   // No float value
    93     FloatCon,                   // Floating point constant
    94     FloatBot,                   // Any float value
    95     DoubleTop,                  // No double value
    96     DoubleCon,                  // Double precision constant
    97     DoubleBot,                  // Any double value
    98     Bottom,                     // Bottom of lattice
    99     lastype                     // Bogus ending type (not in lattice)
   100   };
   102   // Signal values for offsets from a base pointer
   103   enum OFFSET_SIGNALS {
   104     OffsetTop = -2000000000,    // undefined offset
   105     OffsetBot = -2000000001     // any possible offset
   106   };
   108   // Min and max WIDEN values.
   109   enum WIDEN {
   110     WidenMin = 0,
   111     WidenMax = 3
   112   };
   114 private:
   115   // Dictionary of types shared among compilations.
   116   static Dict* _shared_type_dict;
   118   static int uhash( const Type *const t );
   119   // Structural equality check.  Assumes that cmp() has already compared
   120   // the _base types and thus knows it can cast 't' appropriately.
   121   virtual bool eq( const Type *t ) const;
   123   // Top-level hash-table of types
   124   static Dict *type_dict() {
   125     return Compile::current()->type_dict();
   126   }
   128   // DUAL operation: reflect around lattice centerline.  Used instead of
   129   // join to ensure my lattice is symmetric up and down.  Dual is computed
   130   // lazily, on demand, and cached in _dual.
   131   const Type *_dual;            // Cached dual value
   132   // Table for efficient dualing of base types
   133   static const TYPES dual_type[lastype];
   135 protected:
   136   // Each class of type is also identified by its base.
   137   const TYPES _base;            // Enum of Types type
   139   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   140   // ~Type();                   // Use fast deallocation
   141   const Type *hashcons();       // Hash-cons the type
   143 public:
   145   inline void* operator new( size_t x ) {
   146     Compile* compile = Compile::current();
   147     compile->set_type_last_size(x);
   148     void *temp = compile->type_arena()->Amalloc_D(x);
   149     compile->set_type_hwm(temp);
   150     return temp;
   151   }
   152   inline void operator delete( void* ptr ) {
   153     Compile* compile = Compile::current();
   154     compile->type_arena()->Afree(ptr,compile->type_last_size());
   155   }
   157   // Initialize the type system for a particular compilation.
   158   static void Initialize(Compile* compile);
   160   // Initialize the types shared by all compilations.
   161   static void Initialize_shared(Compile* compile);
   163   TYPES base() const {
   164     assert(_base > Bad && _base < lastype, "sanity");
   165     return _base;
   166   }
   168   // Create a new hash-consd type
   169   static const Type *make(enum TYPES);
   170   // Test for equivalence of types
   171   static int cmp( const Type *const t1, const Type *const t2 );
   172   // Test for higher or equal in lattice
   173   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
   175   // MEET operation; lower in lattice.
   176   const Type *meet( const Type *t ) const;
   177   // WIDEN: 'widens' for Ints and other range types
   178   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
   179   // NARROW: complement for widen, used by pessimistic phases
   180   virtual const Type *narrow( const Type *old ) const { return this; }
   182   // DUAL operation: reflect around lattice centerline.  Used instead of
   183   // join to ensure my lattice is symmetric up and down.
   184   const Type *dual() const { return _dual; }
   186   // Compute meet dependent on base type
   187   virtual const Type *xmeet( const Type *t ) const;
   188   virtual const Type *xdual() const;    // Compute dual right now.
   190   // JOIN operation; higher in lattice.  Done by finding the dual of the
   191   // meet of the dual of the 2 inputs.
   192   const Type *join( const Type *t ) const {
   193     return dual()->meet(t->dual())->dual(); }
   195   // Modified version of JOIN adapted to the needs Node::Value.
   196   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   197   // Currently, it also works around limitations involving interface types.
   198   virtual const Type *filter( const Type *kills ) const;
   200 #ifdef ASSERT
   201   // One type is interface, the other is oop
   202   virtual bool interface_vs_oop(const Type *t) const;
   203 #endif
   205   // Returns true if this pointer points at memory which contains a
   206   // compressed oop references.
   207   bool is_ptr_to_narrowoop() const;
   209   // Convenience access
   210   float getf() const;
   211   double getd() const;
   213   const TypeInt    *is_int() const;
   214   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   215   const TypeLong   *is_long() const;
   216   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   217   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   218   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   219   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   220   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   221   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   222   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   223   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   224   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   225   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   226   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   227   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
   228   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
   229   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   230   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   231   const TypeKlassPtr *isa_klassptr() const;      // Returns NULL if not KlassPtr
   232   const TypeKlassPtr *is_klassptr() const;       // assert if not KlassPtr
   233   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   234   const TypeInstPtr  *is_instptr() const;        // Instance
   235   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   236   const TypeAryPtr   *is_aryptr() const;         // Array oop
   237   virtual bool      is_finite() const;           // Has a finite value
   238   virtual bool      is_nan()    const;           // Is not a number (NaN)
   240   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
   241   const TypePtr* make_ptr() const;
   243   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
   244   // Asserts if the underlying type is not an oopptr or narrowoop.
   245   const TypeOopPtr* make_oopptr() const;
   247   // Returns this compressed pointer or the equivalent compressed version
   248   // of this pointer type.
   249   const TypeNarrowOop* make_narrowoop() const;
   251   // Special test for register pressure heuristic
   252   bool is_floatingpoint() const;        // True if Float or Double base type
   254   // Do you have memory, directly or through a tuple?
   255   bool has_memory( ) const;
   257   // Are you a pointer type or not?
   258   bool isa_oop_ptr() const;
   260   // TRUE if type is a singleton
   261   virtual bool singleton(void) const;
   263   // TRUE if type is above the lattice centerline, and is therefore vacuous
   264   virtual bool empty(void) const;
   266   // Return a hash for this type.  The hash function is public so ConNode
   267   // (constants) can hash on their constant, which is represented by a Type.
   268   virtual int hash() const;
   270   // Map ideal registers (machine types) to ideal types
   271   static const Type *mreg2type[];
   273   // Printing, statistics
   274   static const char * const msg[lastype]; // Printable strings
   275 #ifndef PRODUCT
   276   void         dump_on(outputStream *st) const;
   277   void         dump() const {
   278     dump_on(tty);
   279   }
   280   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   281   static  void dump_stats();
   282   static  void verify_lastype();          // Check that arrays match type enum
   283 #endif
   284   void typerr(const Type *t) const; // Mixing types error
   286   // Create basic type
   287   static const Type* get_const_basic_type(BasicType type) {
   288     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   289     return _const_basic_type[type];
   290   }
   292   // Mapping to the array element's basic type.
   293   BasicType array_element_basic_type() const;
   295   // Create standard type for a ciType:
   296   static const Type* get_const_type(ciType* type);
   298   // Create standard zero value:
   299   static const Type* get_zero_type(BasicType type) {
   300     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   301     return _zero_type[type];
   302   }
   304   // Report if this is a zero value (not top).
   305   bool is_zero_type() const {
   306     BasicType type = basic_type();
   307     if (type == T_VOID || type >= T_CONFLICT)
   308       return false;
   309     else
   310       return (this == _zero_type[type]);
   311   }
   313   // Convenience common pre-built types.
   314   static const Type *ABIO;
   315   static const Type *BOTTOM;
   316   static const Type *CONTROL;
   317   static const Type *DOUBLE;
   318   static const Type *FLOAT;
   319   static const Type *HALF;
   320   static const Type *MEMORY;
   321   static const Type *MULTI;
   322   static const Type *RETURN_ADDRESS;
   323   static const Type *TOP;
   325   // Mapping from compiler type to VM BasicType
   326   BasicType basic_type() const { return _basic_type[_base]; }
   328   // Mapping from CI type system to compiler type:
   329   static const Type* get_typeflow_type(ciType* type);
   331 private:
   332   // support arrays
   333   static const BasicType _basic_type[];
   334   static const Type*        _zero_type[T_CONFLICT+1];
   335   static const Type* _const_basic_type[T_CONFLICT+1];
   336 };
   338 //------------------------------TypeF------------------------------------------
   339 // Class of Float-Constant Types.
   340 class TypeF : public Type {
   341   TypeF( float f ) : Type(FloatCon), _f(f) {};
   342 public:
   343   virtual bool eq( const Type *t ) const;
   344   virtual int  hash() const;             // Type specific hashing
   345   virtual bool singleton(void) const;    // TRUE if type is a singleton
   346   virtual bool empty(void) const;        // TRUE if type is vacuous
   347 public:
   348   const float _f;               // Float constant
   350   static const TypeF *make(float f);
   352   virtual bool        is_finite() const;  // Has a finite value
   353   virtual bool        is_nan()    const;  // Is not a number (NaN)
   355   virtual const Type *xmeet( const Type *t ) const;
   356   virtual const Type *xdual() const;    // Compute dual right now.
   357   // Convenience common pre-built types.
   358   static const TypeF *ZERO; // positive zero only
   359   static const TypeF *ONE;
   360 #ifndef PRODUCT
   361   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   362 #endif
   363 };
   365 //------------------------------TypeD------------------------------------------
   366 // Class of Double-Constant Types.
   367 class TypeD : public Type {
   368   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   369 public:
   370   virtual bool eq( const Type *t ) const;
   371   virtual int  hash() const;             // Type specific hashing
   372   virtual bool singleton(void) const;    // TRUE if type is a singleton
   373   virtual bool empty(void) const;        // TRUE if type is vacuous
   374 public:
   375   const double _d;              // Double constant
   377   static const TypeD *make(double d);
   379   virtual bool        is_finite() const;  // Has a finite value
   380   virtual bool        is_nan()    const;  // Is not a number (NaN)
   382   virtual const Type *xmeet( const Type *t ) const;
   383   virtual const Type *xdual() const;    // Compute dual right now.
   384   // Convenience common pre-built types.
   385   static const TypeD *ZERO; // positive zero only
   386   static const TypeD *ONE;
   387 #ifndef PRODUCT
   388   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   389 #endif
   390 };
   392 //------------------------------TypeInt----------------------------------------
   393 // Class of integer ranges, the set of integers between a lower bound and an
   394 // upper bound, inclusive.
   395 class TypeInt : public Type {
   396   TypeInt( jint lo, jint hi, int w );
   397 public:
   398   virtual bool eq( const Type *t ) const;
   399   virtual int  hash() const;             // Type specific hashing
   400   virtual bool singleton(void) const;    // TRUE if type is a singleton
   401   virtual bool empty(void) const;        // TRUE if type is vacuous
   402 public:
   403   const jint _lo, _hi;          // Lower bound, upper bound
   404   const short _widen;           // Limit on times we widen this sucker
   406   static const TypeInt *make(jint lo);
   407   // must always specify w
   408   static const TypeInt *make(jint lo, jint hi, int w);
   410   // Check for single integer
   411   int is_con() const { return _lo==_hi; }
   412   bool is_con(int i) const { return is_con() && _lo == i; }
   413   jint get_con() const { assert( is_con(), "" );  return _lo; }
   415   virtual bool        is_finite() const;  // Has a finite value
   417   virtual const Type *xmeet( const Type *t ) const;
   418   virtual const Type *xdual() const;    // Compute dual right now.
   419   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   420   virtual const Type *narrow( const Type *t ) const;
   421   // Do not kill _widen bits.
   422   virtual const Type *filter( const Type *kills ) const;
   423   // Convenience common pre-built types.
   424   static const TypeInt *MINUS_1;
   425   static const TypeInt *ZERO;
   426   static const TypeInt *ONE;
   427   static const TypeInt *BOOL;
   428   static const TypeInt *CC;
   429   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   430   static const TypeInt *CC_GT;  // [1]   == ONE
   431   static const TypeInt *CC_EQ;  // [0]   == ZERO
   432   static const TypeInt *CC_LE;  // [-1,0]
   433   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   434   static const TypeInt *BYTE;
   435   static const TypeInt *UBYTE;
   436   static const TypeInt *CHAR;
   437   static const TypeInt *SHORT;
   438   static const TypeInt *POS;
   439   static const TypeInt *POS1;
   440   static const TypeInt *INT;
   441   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   442 #ifndef PRODUCT
   443   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   444 #endif
   445 };
   448 //------------------------------TypeLong---------------------------------------
   449 // Class of long integer ranges, the set of integers between a lower bound and
   450 // an upper bound, inclusive.
   451 class TypeLong : public Type {
   452   TypeLong( jlong lo, jlong hi, int w );
   453 public:
   454   virtual bool eq( const Type *t ) const;
   455   virtual int  hash() const;             // Type specific hashing
   456   virtual bool singleton(void) const;    // TRUE if type is a singleton
   457   virtual bool empty(void) const;        // TRUE if type is vacuous
   458 public:
   459   const jlong _lo, _hi;         // Lower bound, upper bound
   460   const short _widen;           // Limit on times we widen this sucker
   462   static const TypeLong *make(jlong lo);
   463   // must always specify w
   464   static const TypeLong *make(jlong lo, jlong hi, int w);
   466   // Check for single integer
   467   int is_con() const { return _lo==_hi; }
   468   bool is_con(int i) const { return is_con() && _lo == i; }
   469   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   471   virtual bool        is_finite() const;  // Has a finite value
   473   virtual const Type *xmeet( const Type *t ) const;
   474   virtual const Type *xdual() const;    // Compute dual right now.
   475   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   476   virtual const Type *narrow( const Type *t ) const;
   477   // Do not kill _widen bits.
   478   virtual const Type *filter( const Type *kills ) const;
   479   // Convenience common pre-built types.
   480   static const TypeLong *MINUS_1;
   481   static const TypeLong *ZERO;
   482   static const TypeLong *ONE;
   483   static const TypeLong *POS;
   484   static const TypeLong *LONG;
   485   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   486   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   487 #ifndef PRODUCT
   488   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   489 #endif
   490 };
   492 //------------------------------TypeTuple--------------------------------------
   493 // Class of Tuple Types, essentially type collections for function signatures
   494 // and class layouts.  It happens to also be a fast cache for the HotSpot
   495 // signature types.
   496 class TypeTuple : public Type {
   497   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   498 public:
   499   virtual bool eq( const Type *t ) const;
   500   virtual int  hash() const;             // Type specific hashing
   501   virtual bool singleton(void) const;    // TRUE if type is a singleton
   502   virtual bool empty(void) const;        // TRUE if type is vacuous
   504 public:
   505   const uint          _cnt;              // Count of fields
   506   const Type ** const _fields;           // Array of field types
   508   // Accessors:
   509   uint cnt() const { return _cnt; }
   510   const Type* field_at(uint i) const {
   511     assert(i < _cnt, "oob");
   512     return _fields[i];
   513   }
   514   void set_field_at(uint i, const Type* t) {
   515     assert(i < _cnt, "oob");
   516     _fields[i] = t;
   517   }
   519   static const TypeTuple *make( uint cnt, const Type **fields );
   520   static const TypeTuple *make_range(ciSignature *sig);
   521   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   523   // Subroutine call type with space allocated for argument types
   524   static const Type **fields( uint arg_cnt );
   526   virtual const Type *xmeet( const Type *t ) const;
   527   virtual const Type *xdual() const;    // Compute dual right now.
   528   // Convenience common pre-built types.
   529   static const TypeTuple *IFBOTH;
   530   static const TypeTuple *IFFALSE;
   531   static const TypeTuple *IFTRUE;
   532   static const TypeTuple *IFNEITHER;
   533   static const TypeTuple *LOOPBODY;
   534   static const TypeTuple *MEMBAR;
   535   static const TypeTuple *STORECONDITIONAL;
   536   static const TypeTuple *START_I2C;
   537   static const TypeTuple *INT_PAIR;
   538   static const TypeTuple *LONG_PAIR;
   539 #ifndef PRODUCT
   540   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   541 #endif
   542 };
   544 //------------------------------TypeAry----------------------------------------
   545 // Class of Array Types
   546 class TypeAry : public Type {
   547   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
   548     _elem(elem), _size(size) {}
   549 public:
   550   virtual bool eq( const Type *t ) const;
   551   virtual int  hash() const;             // Type specific hashing
   552   virtual bool singleton(void) const;    // TRUE if type is a singleton
   553   virtual bool empty(void) const;        // TRUE if type is vacuous
   555 private:
   556   const Type *_elem;            // Element type of array
   557   const TypeInt *_size;         // Elements in array
   558   friend class TypeAryPtr;
   560 public:
   561   static const TypeAry *make(  const Type *elem, const TypeInt *size);
   563   virtual const Type *xmeet( const Type *t ) const;
   564   virtual const Type *xdual() const;    // Compute dual right now.
   565   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   566 #ifdef ASSERT
   567   // One type is interface, the other is oop
   568   virtual bool interface_vs_oop(const Type *t) const;
   569 #endif
   570 #ifndef PRODUCT
   571   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   572 #endif
   573 };
   575 //------------------------------TypePtr----------------------------------------
   576 // Class of machine Pointer Types: raw data, instances or arrays.
   577 // If the _base enum is AnyPtr, then this refers to all of the above.
   578 // Otherwise the _base will indicate which subset of pointers is affected,
   579 // and the class will be inherited from.
   580 class TypePtr : public Type {
   581   friend class TypeNarrowOop;
   582 public:
   583   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   584 protected:
   585   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   586   virtual bool eq( const Type *t ) const;
   587   virtual int  hash() const;             // Type specific hashing
   588   static const PTR ptr_meet[lastPTR][lastPTR];
   589   static const PTR ptr_dual[lastPTR];
   590   static const char * const ptr_msg[lastPTR];
   592 public:
   593   const int _offset;            // Offset into oop, with TOP & BOT
   594   const PTR _ptr;               // Pointer equivalence class
   596   const int offset() const { return _offset; }
   597   const PTR ptr()    const { return _ptr; }
   599   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   601   // Return a 'ptr' version of this type
   602   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   604   virtual intptr_t get_con() const;
   606   int xadd_offset( intptr_t offset ) const;
   607   virtual const TypePtr *add_offset( intptr_t offset ) const;
   609   virtual bool singleton(void) const;    // TRUE if type is a singleton
   610   virtual bool empty(void) const;        // TRUE if type is vacuous
   611   virtual const Type *xmeet( const Type *t ) const;
   612   int meet_offset( int offset ) const;
   613   int dual_offset( ) const;
   614   virtual const Type *xdual() const;    // Compute dual right now.
   616   // meet, dual and join over pointer equivalence sets
   617   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   618   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   620   // This is textually confusing unless one recalls that
   621   // join(t) == dual()->meet(t->dual())->dual().
   622   PTR join_ptr( const PTR in_ptr ) const {
   623     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   624   }
   626   // Tests for relation to centerline of type lattice:
   627   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   628   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   629   // Convenience common pre-built types.
   630   static const TypePtr *NULL_PTR;
   631   static const TypePtr *NOTNULL;
   632   static const TypePtr *BOTTOM;
   633 #ifndef PRODUCT
   634   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   635 #endif
   636 };
   638 //------------------------------TypeRawPtr-------------------------------------
   639 // Class of raw pointers, pointers to things other than Oops.  Examples
   640 // include the stack pointer, top of heap, card-marking area, handles, etc.
   641 class TypeRawPtr : public TypePtr {
   642 protected:
   643   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   644 public:
   645   virtual bool eq( const Type *t ) const;
   646   virtual int  hash() const;     // Type specific hashing
   648   const address _bits;          // Constant value, if applicable
   650   static const TypeRawPtr *make( PTR ptr );
   651   static const TypeRawPtr *make( address bits );
   653   // Return a 'ptr' version of this type
   654   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   656   virtual intptr_t get_con() const;
   658   virtual const TypePtr *add_offset( intptr_t offset ) const;
   660   virtual const Type *xmeet( const Type *t ) const;
   661   virtual const Type *xdual() const;    // Compute dual right now.
   662   // Convenience common pre-built types.
   663   static const TypeRawPtr *BOTTOM;
   664   static const TypeRawPtr *NOTNULL;
   665 #ifndef PRODUCT
   666   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   667 #endif
   668 };
   670 //------------------------------TypeOopPtr-------------------------------------
   671 // Some kind of oop (Java pointer), either klass or instance or array.
   672 class TypeOopPtr : public TypePtr {
   673 protected:
   674   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   675 public:
   676   virtual bool eq( const Type *t ) const;
   677   virtual int  hash() const;             // Type specific hashing
   678   virtual bool singleton(void) const;    // TRUE if type is a singleton
   679   enum {
   680    InstanceTop = -1,   // undefined instance
   681    InstanceBot = 0     // any possible instance
   682   };
   683 protected:
   685   // Oop is NULL, unless this is a constant oop.
   686   ciObject*     _const_oop;   // Constant oop
   687   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   688   ciKlass*      _klass;       // Klass object
   689   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   690   bool          _klass_is_exact;
   691   bool          _is_ptr_to_narrowoop;
   693   // If not InstanceTop or InstanceBot, indicates that this is
   694   // a particular instance of this type which is distinct.
   695   // This is the the node index of the allocation node creating this instance.
   696   int           _instance_id;
   698   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   700   int dual_instance_id() const;
   701   int meet_instance_id(int uid) const;
   703 public:
   704   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   705   // Respects UseUniqueSubclasses.
   706   // If the klass is final, the resulting type will be exact.
   707   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   708     return make_from_klass_common(klass, true, false);
   709   }
   710   // Same as before, but will produce an exact type, even if
   711   // the klass is not final, as long as it has exactly one implementation.
   712   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   713     return make_from_klass_common(klass, true, true);
   714   }
   715   // Same as before, but does not respects UseUniqueSubclasses.
   716   // Use this only for creating array element types.
   717   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   718     return make_from_klass_common(klass, false, false);
   719   }
   720   // Creates a singleton type given an object.
   721   // If the object cannot be rendered as a constant,
   722   // may return a non-singleton type.
   723   // If require_constant, produce a NULL if a singleton is not possible.
   724   static const TypeOopPtr* make_from_constant(ciObject* o, bool require_constant = false);
   726   // Make a generic (unclassed) pointer to an oop.
   727   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
   729   ciObject* const_oop()    const { return _const_oop; }
   730   virtual ciKlass* klass() const { return _klass;     }
   731   bool klass_is_exact()    const { return _klass_is_exact; }
   733   // Returns true if this pointer points at memory which contains a
   734   // compressed oop references.
   735   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
   737   bool is_known_instance()       const { return _instance_id > 0; }
   738   int  instance_id()             const { return _instance_id; }
   739   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
   741   virtual intptr_t get_con() const;
   743   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   745   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   747   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   749   // corresponding pointer to klass, for a given instance
   750   const TypeKlassPtr* as_klass_type() const;
   752   virtual const TypePtr *add_offset( intptr_t offset ) const;
   754   virtual const Type *xmeet( const Type *t ) const;
   755   virtual const Type *xdual() const;    // Compute dual right now.
   757   // Do not allow interface-vs.-noninterface joins to collapse to top.
   758   virtual const Type *filter( const Type *kills ) const;
   760   // Convenience common pre-built type.
   761   static const TypeOopPtr *BOTTOM;
   762 #ifndef PRODUCT
   763   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   764 #endif
   765 };
   767 //------------------------------TypeInstPtr------------------------------------
   768 // Class of Java object pointers, pointing either to non-array Java instances
   769 // or to a klassOop (including array klasses).
   770 class TypeInstPtr : public TypeOopPtr {
   771   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   772   virtual bool eq( const Type *t ) const;
   773   virtual int  hash() const;             // Type specific hashing
   775   ciSymbol*  _name;        // class name
   777  public:
   778   ciSymbol* name()         const { return _name; }
   780   bool  is_loaded() const { return _klass->is_loaded(); }
   782   // Make a pointer to a constant oop.
   783   static const TypeInstPtr *make(ciObject* o) {
   784     return make(TypePtr::Constant, o->klass(), true, o, 0);
   785   }
   787   // Make a pointer to a constant oop with offset.
   788   static const TypeInstPtr *make(ciObject* o, int offset) {
   789     return make(TypePtr::Constant, o->klass(), true, o, offset);
   790   }
   792   // Make a pointer to some value of type klass.
   793   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
   794     return make(ptr, klass, false, NULL, 0);
   795   }
   797   // Make a pointer to some non-polymorphic value of exactly type klass.
   798   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
   799     return make(ptr, klass, true, NULL, 0);
   800   }
   802   // Make a pointer to some value of type klass with offset.
   803   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
   804     return make(ptr, klass, false, NULL, offset);
   805   }
   807   // Make a pointer to an oop.
   808   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
   810   // If this is a java.lang.Class constant, return the type for it or NULL.
   811   // Pass to Type::get_const_type to turn it to a type, which will usually
   812   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
   813   ciType* java_mirror_type() const;
   815   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   817   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   819   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   821   virtual const TypePtr *add_offset( intptr_t offset ) const;
   823   virtual const Type *xmeet( const Type *t ) const;
   824   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
   825   virtual const Type *xdual() const;    // Compute dual right now.
   827   // Convenience common pre-built types.
   828   static const TypeInstPtr *NOTNULL;
   829   static const TypeInstPtr *BOTTOM;
   830   static const TypeInstPtr *MIRROR;
   831   static const TypeInstPtr *MARK;
   832   static const TypeInstPtr *KLASS;
   833 #ifndef PRODUCT
   834   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   835 #endif
   836 };
   838 //------------------------------TypeAryPtr-------------------------------------
   839 // Class of Java array pointers
   840 class TypeAryPtr : public TypeOopPtr {
   841   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {
   842 #ifdef ASSERT
   843     if (k != NULL) {
   844       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
   845       ciKlass* ck = compute_klass(true);
   846       if (k != ck) {
   847         this->dump(); tty->cr();
   848         tty->print(" k: ");
   849         k->print(); tty->cr();
   850         tty->print("ck: ");
   851         if (ck != NULL) ck->print();
   852         else tty->print("<NULL>");
   853         tty->cr();
   854         assert(false, "unexpected TypeAryPtr::_klass");
   855       }
   856     }
   857 #endif
   858   }
   859   virtual bool eq( const Type *t ) const;
   860   virtual int hash() const;     // Type specific hashing
   861   const TypeAry *_ary;          // Array we point into
   863   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
   865 public:
   866   // Accessors
   867   ciKlass* klass() const;
   868   const TypeAry* ary() const  { return _ary; }
   869   const Type*    elem() const { return _ary->_elem; }
   870   const TypeInt* size() const { return _ary->_size; }
   872   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   873   // Constant pointer to array
   874   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   876   // Return a 'ptr' version of this type
   877   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   879   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   881   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   883   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
   884   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
   886   virtual bool empty(void) const;        // TRUE if type is vacuous
   887   virtual const TypePtr *add_offset( intptr_t offset ) const;
   889   virtual const Type *xmeet( const Type *t ) const;
   890   virtual const Type *xdual() const;    // Compute dual right now.
   892   // Convenience common pre-built types.
   893   static const TypeAryPtr *RANGE;
   894   static const TypeAryPtr *OOPS;
   895   static const TypeAryPtr *NARROWOOPS;
   896   static const TypeAryPtr *BYTES;
   897   static const TypeAryPtr *SHORTS;
   898   static const TypeAryPtr *CHARS;
   899   static const TypeAryPtr *INTS;
   900   static const TypeAryPtr *LONGS;
   901   static const TypeAryPtr *FLOATS;
   902   static const TypeAryPtr *DOUBLES;
   903   // selects one of the above:
   904   static const TypeAryPtr *get_array_body_type(BasicType elem) {
   905     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
   906     return _array_body_type[elem];
   907   }
   908   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
   909   // sharpen the type of an int which is used as an array size
   910 #ifdef ASSERT
   911   // One type is interface, the other is oop
   912   virtual bool interface_vs_oop(const Type *t) const;
   913 #endif
   914 #ifndef PRODUCT
   915   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   916 #endif
   917 };
   919 //------------------------------TypeKlassPtr-----------------------------------
   920 // Class of Java Klass pointers
   921 class TypeKlassPtr : public TypeOopPtr {
   922   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
   924   virtual bool eq( const Type *t ) const;
   925   virtual int hash() const;             // Type specific hashing
   927 public:
   928   ciSymbol* name()  const { return _klass->name(); }
   930   bool  is_loaded() const { return _klass->is_loaded(); }
   932   // ptr to klass 'k'
   933   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
   934   // ptr to klass 'k' with offset
   935   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
   936   // ptr to klass 'k' or sub-klass
   937   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
   939   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   941   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   943   // corresponding pointer to instance, for a given class
   944   const TypeOopPtr* as_instance_type() const;
   946   virtual const TypePtr *add_offset( intptr_t offset ) const;
   947   virtual const Type    *xmeet( const Type *t ) const;
   948   virtual const Type    *xdual() const;      // Compute dual right now.
   950   // Convenience common pre-built types.
   951   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
   952   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
   953 #ifndef PRODUCT
   954   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   955 #endif
   956 };
   958 //------------------------------TypeNarrowOop----------------------------------
   959 // A compressed reference to some kind of Oop.  This type wraps around
   960 // a preexisting TypeOopPtr and forwards most of it's operations to
   961 // the underlying type.  It's only real purpose is to track the
   962 // oopness of the compressed oop value when we expose the conversion
   963 // between the normal and the compressed form.
   964 class TypeNarrowOop : public Type {
   965 protected:
   966   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
   968   TypeNarrowOop( const TypePtr* ptrtype): Type(NarrowOop),
   969     _ptrtype(ptrtype) {
   970     assert(ptrtype->offset() == 0 ||
   971            ptrtype->offset() == OffsetBot ||
   972            ptrtype->offset() == OffsetTop, "no real offsets");
   973   }
   974 public:
   975   virtual bool eq( const Type *t ) const;
   976   virtual int  hash() const;             // Type specific hashing
   977   virtual bool singleton(void) const;    // TRUE if type is a singleton
   979   virtual const Type *xmeet( const Type *t ) const;
   980   virtual const Type *xdual() const;    // Compute dual right now.
   982   virtual intptr_t get_con() const;
   984   // Do not allow interface-vs.-noninterface joins to collapse to top.
   985   virtual const Type *filter( const Type *kills ) const;
   987   virtual bool empty(void) const;        // TRUE if type is vacuous
   989   static const TypeNarrowOop *make( const TypePtr* type);
   991   static const TypeNarrowOop* make_from_constant(ciObject* con) {
   992     return make(TypeOopPtr::make_from_constant(con));
   993   }
   995   // returns the equivalent ptr type for this compressed pointer
   996   const TypePtr *get_ptrtype() const {
   997     return _ptrtype;
   998   }
  1000   static const TypeNarrowOop *BOTTOM;
  1001   static const TypeNarrowOop *NULL_PTR;
  1003 #ifndef PRODUCT
  1004   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1005 #endif
  1006 };
  1008 //------------------------------TypeFunc---------------------------------------
  1009 // Class of Array Types
  1010 class TypeFunc : public Type {
  1011   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
  1012   virtual bool eq( const Type *t ) const;
  1013   virtual int  hash() const;             // Type specific hashing
  1014   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1015   virtual bool empty(void) const;        // TRUE if type is vacuous
  1016 public:
  1017   // Constants are shared among ADLC and VM
  1018   enum { Control    = AdlcVMDeps::Control,
  1019          I_O        = AdlcVMDeps::I_O,
  1020          Memory     = AdlcVMDeps::Memory,
  1021          FramePtr   = AdlcVMDeps::FramePtr,
  1022          ReturnAdr  = AdlcVMDeps::ReturnAdr,
  1023          Parms      = AdlcVMDeps::Parms
  1024   };
  1026   const TypeTuple* const _domain;     // Domain of inputs
  1027   const TypeTuple* const _range;      // Range of results
  1029   // Accessors:
  1030   const TypeTuple* domain() const { return _domain; }
  1031   const TypeTuple* range()  const { return _range; }
  1033   static const TypeFunc *make(ciMethod* method);
  1034   static const TypeFunc *make(ciSignature signature, const Type* extra);
  1035   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
  1037   virtual const Type *xmeet( const Type *t ) const;
  1038   virtual const Type *xdual() const;    // Compute dual right now.
  1040   BasicType return_type() const;
  1042 #ifndef PRODUCT
  1043   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1044   void print_flattened() const; // Print a 'flattened' signature
  1045 #endif
  1046   // Convenience common pre-built types.
  1047 };
  1049 //------------------------------accessors--------------------------------------
  1050 inline bool Type::is_ptr_to_narrowoop() const {
  1051 #ifdef _LP64
  1052   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
  1053 #else
  1054   return false;
  1055 #endif
  1058 inline float Type::getf() const {
  1059   assert( _base == FloatCon, "Not a FloatCon" );
  1060   return ((TypeF*)this)->_f;
  1063 inline double Type::getd() const {
  1064   assert( _base == DoubleCon, "Not a DoubleCon" );
  1065   return ((TypeD*)this)->_d;
  1068 inline const TypeF *Type::is_float_constant() const {
  1069   assert( _base == FloatCon, "Not a Float" );
  1070   return (TypeF*)this;
  1073 inline const TypeF *Type::isa_float_constant() const {
  1074   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1077 inline const TypeD *Type::is_double_constant() const {
  1078   assert( _base == DoubleCon, "Not a Double" );
  1079   return (TypeD*)this;
  1082 inline const TypeD *Type::isa_double_constant() const {
  1083   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1086 inline const TypeInt *Type::is_int() const {
  1087   assert( _base == Int, "Not an Int" );
  1088   return (TypeInt*)this;
  1091 inline const TypeInt *Type::isa_int() const {
  1092   return ( _base == Int ? (TypeInt*)this : NULL);
  1095 inline const TypeLong *Type::is_long() const {
  1096   assert( _base == Long, "Not a Long" );
  1097   return (TypeLong*)this;
  1100 inline const TypeLong *Type::isa_long() const {
  1101   return ( _base == Long ? (TypeLong*)this : NULL);
  1104 inline const TypeTuple *Type::is_tuple() const {
  1105   assert( _base == Tuple, "Not a Tuple" );
  1106   return (TypeTuple*)this;
  1109 inline const TypeAry *Type::is_ary() const {
  1110   assert( _base == Array , "Not an Array" );
  1111   return (TypeAry*)this;
  1114 inline const TypePtr *Type::is_ptr() const {
  1115   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1116   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1117   return (TypePtr*)this;
  1120 inline const TypePtr *Type::isa_ptr() const {
  1121   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1122   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1125 inline const TypeOopPtr *Type::is_oopptr() const {
  1126   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1127   assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
  1128   return (TypeOopPtr*)this;
  1131 inline const TypeOopPtr *Type::isa_oopptr() const {
  1132   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1133   return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
  1136 inline const TypeRawPtr *Type::isa_rawptr() const {
  1137   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1140 inline const TypeRawPtr *Type::is_rawptr() const {
  1141   assert( _base == RawPtr, "Not a raw pointer" );
  1142   return (TypeRawPtr*)this;
  1145 inline const TypeInstPtr *Type::isa_instptr() const {
  1146   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1149 inline const TypeInstPtr *Type::is_instptr() const {
  1150   assert( _base == InstPtr, "Not an object pointer" );
  1151   return (TypeInstPtr*)this;
  1154 inline const TypeAryPtr *Type::isa_aryptr() const {
  1155   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1158 inline const TypeAryPtr *Type::is_aryptr() const {
  1159   assert( _base == AryPtr, "Not an array pointer" );
  1160   return (TypeAryPtr*)this;
  1163 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1164   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1165   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1166   return (TypeNarrowOop*)this;
  1169 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1170   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1171   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1174 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1175   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1178 inline const TypeKlassPtr *Type::is_klassptr() const {
  1179   assert( _base == KlassPtr, "Not a klass pointer" );
  1180   return (TypeKlassPtr*)this;
  1183 inline const TypePtr* Type::make_ptr() const {
  1184   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
  1185                                 (isa_ptr() ? is_ptr() : NULL);
  1188 inline const TypeOopPtr* Type::make_oopptr() const {
  1189   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
  1192 inline const TypeNarrowOop* Type::make_narrowoop() const {
  1193   return (_base == NarrowOop) ? is_narrowoop() :
  1194                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
  1197 inline bool Type::is_floatingpoint() const {
  1198   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1199       (_base == DoubleCon) || (_base == DoubleBot) )
  1200     return true;
  1201   return false;
  1205 // ===============================================================
  1206 // Things that need to be 64-bits in the 64-bit build but
  1207 // 32-bits in the 32-bit build.  Done this way to get full
  1208 // optimization AND strong typing.
  1209 #ifdef _LP64
  1211 // For type queries and asserts
  1212 #define is_intptr_t  is_long
  1213 #define isa_intptr_t isa_long
  1214 #define find_intptr_t_type find_long_type
  1215 #define find_intptr_t_con  find_long_con
  1216 #define TypeX        TypeLong
  1217 #define Type_X       Type::Long
  1218 #define TypeX_X      TypeLong::LONG
  1219 #define TypeX_ZERO   TypeLong::ZERO
  1220 // For 'ideal_reg' machine registers
  1221 #define Op_RegX      Op_RegL
  1222 // For phase->intcon variants
  1223 #define MakeConX     longcon
  1224 #define ConXNode     ConLNode
  1225 // For array index arithmetic
  1226 #define MulXNode     MulLNode
  1227 #define AndXNode     AndLNode
  1228 #define OrXNode      OrLNode
  1229 #define CmpXNode     CmpLNode
  1230 #define SubXNode     SubLNode
  1231 #define LShiftXNode  LShiftLNode
  1232 // For object size computation:
  1233 #define AddXNode     AddLNode
  1234 #define RShiftXNode  RShiftLNode
  1235 // For card marks and hashcodes
  1236 #define URShiftXNode URShiftLNode
  1237 // UseOptoBiasInlining
  1238 #define XorXNode     XorLNode
  1239 #define StoreXConditionalNode StoreLConditionalNode
  1240 // Opcodes
  1241 #define Op_LShiftX   Op_LShiftL
  1242 #define Op_AndX      Op_AndL
  1243 #define Op_AddX      Op_AddL
  1244 #define Op_SubX      Op_SubL
  1245 #define Op_XorX      Op_XorL
  1246 #define Op_URShiftX  Op_URShiftL
  1247 // conversions
  1248 #define ConvI2X(x)   ConvI2L(x)
  1249 #define ConvL2X(x)   (x)
  1250 #define ConvX2I(x)   ConvL2I(x)
  1251 #define ConvX2L(x)   (x)
  1253 #else
  1255 // For type queries and asserts
  1256 #define is_intptr_t  is_int
  1257 #define isa_intptr_t isa_int
  1258 #define find_intptr_t_type find_int_type
  1259 #define find_intptr_t_con  find_int_con
  1260 #define TypeX        TypeInt
  1261 #define Type_X       Type::Int
  1262 #define TypeX_X      TypeInt::INT
  1263 #define TypeX_ZERO   TypeInt::ZERO
  1264 // For 'ideal_reg' machine registers
  1265 #define Op_RegX      Op_RegI
  1266 // For phase->intcon variants
  1267 #define MakeConX     intcon
  1268 #define ConXNode     ConINode
  1269 // For array index arithmetic
  1270 #define MulXNode     MulINode
  1271 #define AndXNode     AndINode
  1272 #define OrXNode      OrINode
  1273 #define CmpXNode     CmpINode
  1274 #define SubXNode     SubINode
  1275 #define LShiftXNode  LShiftINode
  1276 // For object size computation:
  1277 #define AddXNode     AddINode
  1278 #define RShiftXNode  RShiftINode
  1279 // For card marks and hashcodes
  1280 #define URShiftXNode URShiftINode
  1281 // UseOptoBiasInlining
  1282 #define XorXNode     XorINode
  1283 #define StoreXConditionalNode StoreIConditionalNode
  1284 // Opcodes
  1285 #define Op_LShiftX   Op_LShiftI
  1286 #define Op_AndX      Op_AndI
  1287 #define Op_AddX      Op_AddI
  1288 #define Op_SubX      Op_SubI
  1289 #define Op_XorX      Op_XorI
  1290 #define Op_URShiftX  Op_URShiftI
  1291 // conversions
  1292 #define ConvI2X(x)   (x)
  1293 #define ConvL2X(x)   ConvL2I(x)
  1294 #define ConvX2I(x)   (x)
  1295 #define ConvX2L(x)   ConvI2L(x)
  1297 #endif
  1299 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial