src/share/vm/opto/output.cpp

Fri, 11 Mar 2011 07:50:51 -0800

author
kvn
date
Fri, 11 Mar 2011 07:50:51 -0800
changeset 2636
83f08886981c
parent 2635
1c0cf339481b
child 2708
1d1603768966
child 2780
e6beb62de02d
permissions
-rw-r--r--

7026631: field _klass is incorrectly set for dual type of TypeAryPtr::OOPS
Summary: add missing check this->dual() != TypeAryPtr::OOPS into TypeAryPtr::klass().
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.inline.hpp"
    27 #include "code/debugInfo.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "compiler/compileBroker.hpp"
    30 #include "compiler/oopMap.hpp"
    31 #include "memory/allocation.inline.hpp"
    32 #include "opto/callnode.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/locknode.hpp"
    35 #include "opto/machnode.hpp"
    36 #include "opto/output.hpp"
    37 #include "opto/regalloc.hpp"
    38 #include "opto/runtime.hpp"
    39 #include "opto/subnode.hpp"
    40 #include "opto/type.hpp"
    41 #include "runtime/handles.inline.hpp"
    42 #include "utilities/xmlstream.hpp"
    44 extern uint size_java_to_interp();
    45 extern uint reloc_java_to_interp();
    46 extern uint size_exception_handler();
    47 extern uint size_deopt_handler();
    49 #ifndef PRODUCT
    50 #define DEBUG_ARG(x) , x
    51 #else
    52 #define DEBUG_ARG(x)
    53 #endif
    55 extern int emit_exception_handler(CodeBuffer &cbuf);
    56 extern int emit_deopt_handler(CodeBuffer &cbuf);
    58 //------------------------------Output-----------------------------------------
    59 // Convert Nodes to instruction bits and pass off to the VM
    60 void Compile::Output() {
    61   // RootNode goes
    62   assert( _cfg->_broot->_nodes.size() == 0, "" );
    64   // The number of new nodes (mostly MachNop) is proportional to
    65   // the number of java calls and inner loops which are aligned.
    66   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
    67                             C->inner_loops()*(OptoLoopAlignment-1)),
    68                            "out of nodes before code generation" ) ) {
    69     return;
    70   }
    71   // Make sure I can find the Start Node
    72   Block_Array& bbs = _cfg->_bbs;
    73   Block *entry = _cfg->_blocks[1];
    74   Block *broot = _cfg->_broot;
    76   const StartNode *start = entry->_nodes[0]->as_Start();
    78   // Replace StartNode with prolog
    79   MachPrologNode *prolog = new (this) MachPrologNode();
    80   entry->_nodes.map( 0, prolog );
    81   bbs.map( prolog->_idx, entry );
    82   bbs.map( start->_idx, NULL ); // start is no longer in any block
    84   // Virtual methods need an unverified entry point
    86   if( is_osr_compilation() ) {
    87     if( PoisonOSREntry ) {
    88       // TODO: Should use a ShouldNotReachHereNode...
    89       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    90     }
    91   } else {
    92     if( _method && !_method->flags().is_static() ) {
    93       // Insert unvalidated entry point
    94       _cfg->insert( broot, 0, new (this) MachUEPNode() );
    95     }
    97   }
   100   // Break before main entry point
   101   if( (_method && _method->break_at_execute())
   102 #ifndef PRODUCT
   103     ||(OptoBreakpoint && is_method_compilation())
   104     ||(OptoBreakpointOSR && is_osr_compilation())
   105     ||(OptoBreakpointC2R && !_method)
   106 #endif
   107     ) {
   108     // checking for _method means that OptoBreakpoint does not apply to
   109     // runtime stubs or frame converters
   110     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
   111   }
   113   // Insert epilogs before every return
   114   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   115     Block *b = _cfg->_blocks[i];
   116     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
   117       Node *m = b->end();
   118       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
   119         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
   120         b->add_inst( epilog );
   121         bbs.map(epilog->_idx, b);
   122         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
   123       }
   124     }
   125   }
   127 # ifdef ENABLE_ZAP_DEAD_LOCALS
   128   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
   129 # endif
   131   ScheduleAndBundle();
   133 #ifndef PRODUCT
   134   if (trace_opto_output()) {
   135     tty->print("\n---- After ScheduleAndBundle ----\n");
   136     for (uint i = 0; i < _cfg->_num_blocks; i++) {
   137       tty->print("\nBB#%03d:\n", i);
   138       Block *bb = _cfg->_blocks[i];
   139       for (uint j = 0; j < bb->_nodes.size(); j++) {
   140         Node *n = bb->_nodes[j];
   141         OptoReg::Name reg = _regalloc->get_reg_first(n);
   142         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
   143         n->dump();
   144       }
   145     }
   146   }
   147 #endif
   149   if (failing())  return;
   151   BuildOopMaps();
   153   if (failing())  return;
   155   Fill_buffer();
   156 }
   158 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
   159   // Determine if we need to generate a stack overflow check.
   160   // Do it if the method is not a stub function and
   161   // has java calls or has frame size > vm_page_size/8.
   162   return (stub_function() == NULL &&
   163           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
   164 }
   166 bool Compile::need_register_stack_bang() const {
   167   // Determine if we need to generate a register stack overflow check.
   168   // This is only used on architectures which have split register
   169   // and memory stacks (ie. IA64).
   170   // Bang if the method is not a stub function and has java calls
   171   return (stub_function() == NULL && has_java_calls());
   172 }
   174 # ifdef ENABLE_ZAP_DEAD_LOCALS
   177 // In order to catch compiler oop-map bugs, we have implemented
   178 // a debugging mode called ZapDeadCompilerLocals.
   179 // This mode causes the compiler to insert a call to a runtime routine,
   180 // "zap_dead_locals", right before each place in compiled code
   181 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
   182 // The runtime routine checks that locations mapped as oops are really
   183 // oops, that locations mapped as values do not look like oops,
   184 // and that locations mapped as dead are not used later
   185 // (by zapping them to an invalid address).
   187 int Compile::_CompiledZap_count = 0;
   189 void Compile::Insert_zap_nodes() {
   190   bool skip = false;
   193   // Dink with static counts because code code without the extra
   194   // runtime calls is MUCH faster for debugging purposes
   196        if ( CompileZapFirst  ==  0  ) ; // nothing special
   197   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
   198   else if ( CompileZapFirst  == CompiledZap_count() )
   199     warning("starting zap compilation after skipping");
   201        if ( CompileZapLast  ==  -1  ) ; // nothing special
   202   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
   203   else if ( CompileZapLast  ==  CompiledZap_count() )
   204     warning("about to compile last zap");
   206   ++_CompiledZap_count; // counts skipped zaps, too
   208   if ( skip )  return;
   211   if ( _method == NULL )
   212     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
   214   // Insert call to zap runtime stub before every node with an oop map
   215   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   216     Block *b = _cfg->_blocks[i];
   217     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
   218       Node *n = b->_nodes[j];
   220       // Determining if we should insert a zap-a-lot node in output.
   221       // We do that for all nodes that has oopmap info, except for calls
   222       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
   223       // and expect the C code to reset it.  Hence, there can be no safepoints between
   224       // the inlined-allocation and the call to new_Java, etc.
   225       // We also cannot zap monitor calls, as they must hold the microlock
   226       // during the call to Zap, which also wants to grab the microlock.
   227       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
   228       if ( insert ) { // it is MachSafePoint
   229         if ( !n->is_MachCall() ) {
   230           insert = false;
   231         } else if ( n->is_MachCall() ) {
   232           MachCallNode* call = n->as_MachCall();
   233           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
   234               call->entry_point() == OptoRuntime::new_array_Java() ||
   235               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
   236               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
   237               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
   238               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
   239               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
   240               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
   241               ) {
   242             insert = false;
   243           }
   244         }
   245         if (insert) {
   246           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
   247           b->_nodes.insert( j, zap );
   248           _cfg->_bbs.map( zap->_idx, b );
   249           ++j;
   250         }
   251       }
   252     }
   253   }
   254 }
   257 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
   258   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
   259   CallStaticJavaNode* ideal_node =
   260     new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
   261          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
   262                             "call zap dead locals stub", 0, TypePtr::BOTTOM);
   263   // We need to copy the OopMap from the site we're zapping at.
   264   // We have to make a copy, because the zap site might not be
   265   // a call site, and zap_dead is a call site.
   266   OopMap* clone = node_to_check->oop_map()->deep_copy();
   268   // Add the cloned OopMap to the zap node
   269   ideal_node->set_oop_map(clone);
   270   return _matcher->match_sfpt(ideal_node);
   271 }
   273 //------------------------------is_node_getting_a_safepoint--------------------
   274 bool Compile::is_node_getting_a_safepoint( Node* n) {
   275   // This code duplicates the logic prior to the call of add_safepoint
   276   // below in this file.
   277   if( n->is_MachSafePoint() ) return true;
   278   return false;
   279 }
   281 # endif // ENABLE_ZAP_DEAD_LOCALS
   283 //------------------------------compute_loop_first_inst_sizes------------------
   284 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
   285 // of a loop. When aligning a loop we need to provide enough instructions
   286 // in cpu's fetch buffer to feed decoders. The loop alignment could be
   287 // avoided if we have enough instructions in fetch buffer at the head of a loop.
   288 // By default, the size is set to 999999 by Block's constructor so that
   289 // a loop will be aligned if the size is not reset here.
   290 //
   291 // Note: Mach instructions could contain several HW instructions
   292 // so the size is estimated only.
   293 //
   294 void Compile::compute_loop_first_inst_sizes() {
   295   // The next condition is used to gate the loop alignment optimization.
   296   // Don't aligned a loop if there are enough instructions at the head of a loop
   297   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
   298   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
   299   // equal to 11 bytes which is the largest address NOP instruction.
   300   if( MaxLoopPad < OptoLoopAlignment-1 ) {
   301     uint last_block = _cfg->_num_blocks-1;
   302     for( uint i=1; i <= last_block; i++ ) {
   303       Block *b = _cfg->_blocks[i];
   304       // Check the first loop's block which requires an alignment.
   305       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
   306         uint sum_size = 0;
   307         uint inst_cnt = NumberOfLoopInstrToAlign;
   308         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   310         // Check subsequent fallthrough blocks if the loop's first
   311         // block(s) does not have enough instructions.
   312         Block *nb = b;
   313         while( inst_cnt > 0 &&
   314                i < last_block &&
   315                !_cfg->_blocks[i+1]->has_loop_alignment() &&
   316                !nb->has_successor(b) ) {
   317           i++;
   318           nb = _cfg->_blocks[i];
   319           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   320         } // while( inst_cnt > 0 && i < last_block  )
   322         b->set_first_inst_size(sum_size);
   323       } // f( b->head()->is_Loop() )
   324     } // for( i <= last_block )
   325   } // if( MaxLoopPad < OptoLoopAlignment-1 )
   326 }
   328 //----------------------Shorten_branches---------------------------------------
   329 // The architecture description provides short branch variants for some long
   330 // branch instructions. Replace eligible long branches with short branches.
   331 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size) {
   333   // fill in the nop array for bundling computations
   334   MachNode *_nop_list[Bundle::_nop_count];
   335   Bundle::initialize_nops(_nop_list, this);
   337   // ------------------
   338   // Compute size of each block, method size, and relocation information size
   339   uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
   340   uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
   341   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
   342   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
   343   blk_starts[0]    = 0;
   345   // Initialize the sizes to 0
   346   code_size  = 0;          // Size in bytes of generated code
   347   stub_size  = 0;          // Size in bytes of all stub entries
   348   // Size in bytes of all relocation entries, including those in local stubs.
   349   // Start with 2-bytes of reloc info for the unvalidated entry point
   350   reloc_size = 1;          // Number of relocation entries
   352   // Make three passes.  The first computes pessimistic blk_starts,
   353   // relative jmp_end and reloc_size information.  The second performs
   354   // short branch substitution using the pessimistic sizing.  The
   355   // third inserts nops where needed.
   357   Node *nj; // tmp
   359   // Step one, perform a pessimistic sizing pass.
   360   uint i;
   361   uint min_offset_from_last_call = 1;  // init to a positive value
   362   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
   363   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   364     Block *b = _cfg->_blocks[i];
   366     // Sum all instruction sizes to compute block size
   367     uint last_inst = b->_nodes.size();
   368     uint blk_size = 0;
   369     for( uint j = 0; j<last_inst; j++ ) {
   370       nj = b->_nodes[j];
   371       uint inst_size = nj->size(_regalloc);
   372       blk_size += inst_size;
   373       // Handle machine instruction nodes
   374       if( nj->is_Mach() ) {
   375         MachNode *mach = nj->as_Mach();
   376         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
   377         reloc_size += mach->reloc();
   378         if( mach->is_MachCall() ) {
   379           MachCallNode *mcall = mach->as_MachCall();
   380           // This destination address is NOT PC-relative
   382           mcall->method_set((intptr_t)mcall->entry_point());
   384           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
   385             stub_size  += size_java_to_interp();
   386             reloc_size += reloc_java_to_interp();
   387           }
   388         } else if (mach->is_MachSafePoint()) {
   389           // If call/safepoint are adjacent, account for possible
   390           // nop to disambiguate the two safepoints.
   391           if (min_offset_from_last_call == 0) {
   392             blk_size += nop_size;
   393           }
   394         }
   395       }
   396       min_offset_from_last_call += inst_size;
   397       // Remember end of call offset
   398       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   399         min_offset_from_last_call = 0;
   400       }
   401     }
   403     // During short branch replacement, we store the relative (to blk_starts)
   404     // end of jump in jmp_end, rather than the absolute end of jump.  This
   405     // is so that we do not need to recompute sizes of all nodes when we compute
   406     // correct blk_starts in our next sizing pass.
   407     jmp_end[i] = blk_size;
   408     DEBUG_ONLY( jmp_target[i] = 0; )
   410     // When the next block starts a loop, we may insert pad NOP
   411     // instructions.  Since we cannot know our future alignment,
   412     // assume the worst.
   413     if( i<_cfg->_num_blocks-1 ) {
   414       Block *nb = _cfg->_blocks[i+1];
   415       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
   416       if( max_loop_pad > 0 ) {
   417         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
   418         blk_size += max_loop_pad;
   419       }
   420     }
   422     // Save block size; update total method size
   423     blk_starts[i+1] = blk_starts[i]+blk_size;
   424   }
   426   // Step two, replace eligible long jumps.
   428   // Note: this will only get the long branches within short branch
   429   //   range. Another pass might detect more branches that became
   430   //   candidates because the shortening in the first pass exposed
   431   //   more opportunities. Unfortunately, this would require
   432   //   recomputing the starting and ending positions for the blocks
   433   for( i=0; i<_cfg->_num_blocks; i++ ) {
   434     Block *b = _cfg->_blocks[i];
   436     int j;
   437     // Find the branch; ignore trailing NOPs.
   438     for( j = b->_nodes.size()-1; j>=0; j-- ) {
   439       nj = b->_nodes[j];
   440       if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
   441         break;
   442     }
   444     if (j >= 0) {
   445       if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
   446         MachNode *mach = nj->as_Mach();
   447         // This requires the TRUE branch target be in succs[0]
   448         uint bnum = b->non_connector_successor(0)->_pre_order;
   449         uintptr_t target = blk_starts[bnum];
   450         if( mach->is_pc_relative() ) {
   451           int offset = target-(blk_starts[i] + jmp_end[i]);
   452           if (_matcher->is_short_branch_offset(mach->rule(), offset)) {
   453             // We've got a winner.  Replace this branch.
   454             MachNode* replacement = mach->short_branch_version(this);
   455             b->_nodes.map(j, replacement);
   456             mach->subsume_by(replacement);
   458             // Update the jmp_end size to save time in our
   459             // next pass.
   460             jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
   461             DEBUG_ONLY( jmp_target[i] = bnum; );
   462             DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
   463           }
   464         } else {
   465 #ifndef PRODUCT
   466           mach->dump(3);
   467 #endif
   468           Unimplemented();
   469         }
   470       }
   471     }
   472   }
   474   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
   475   // of a loop. It is used to determine the padding for loop alignment.
   476   compute_loop_first_inst_sizes();
   478   // Step 3, compute the offsets of all the labels
   479   uint last_call_adr = max_uint;
   480   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   481     // copy the offset of the beginning to the corresponding label
   482     assert(labels[i].is_unused(), "cannot patch at this point");
   483     labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
   485     // insert padding for any instructions that need it
   486     Block *b = _cfg->_blocks[i];
   487     uint last_inst = b->_nodes.size();
   488     uint adr = blk_starts[i];
   489     for( uint j = 0; j<last_inst; j++ ) {
   490       nj = b->_nodes[j];
   491       if( nj->is_Mach() ) {
   492         int padding = nj->as_Mach()->compute_padding(adr);
   493         // If call/safepoint are adjacent insert a nop (5010568)
   494         if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
   495             adr == last_call_adr ) {
   496           padding = nop_size;
   497         }
   498         if(padding > 0) {
   499           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
   500           int nops_cnt = padding / nop_size;
   501           MachNode *nop = new (this) MachNopNode(nops_cnt);
   502           b->_nodes.insert(j++, nop);
   503           _cfg->_bbs.map( nop->_idx, b );
   504           adr += padding;
   505           last_inst++;
   506         }
   507       }
   508       adr += nj->size(_regalloc);
   510       // Remember end of call offset
   511       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   512         last_call_adr = adr;
   513       }
   514     }
   516     if ( i != _cfg->_num_blocks-1) {
   517       // Get the size of the block
   518       uint blk_size = adr - blk_starts[i];
   520       // When the next block is the top of a loop, we may insert pad NOP
   521       // instructions.
   522       Block *nb = _cfg->_blocks[i+1];
   523       int current_offset = blk_starts[i] + blk_size;
   524       current_offset += nb->alignment_padding(current_offset);
   525       // Save block size; update total method size
   526       blk_starts[i+1] = current_offset;
   527     }
   528   }
   530 #ifdef ASSERT
   531   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   532     if( jmp_target[i] != 0 ) {
   533       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
   534       if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) {
   535         tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
   536       }
   537       assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp");
   538     }
   539   }
   540 #endif
   542   // ------------------
   543   // Compute size for code buffer
   544   code_size   = blk_starts[i-1] + jmp_end[i-1];
   546   // Relocation records
   547   reloc_size += 1;              // Relo entry for exception handler
   549   // Adjust reloc_size to number of record of relocation info
   550   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
   551   // a relocation index.
   552   // The CodeBuffer will expand the locs array if this estimate is too low.
   553   reloc_size   *= 10 / sizeof(relocInfo);
   554 }
   556 //------------------------------FillLocArray-----------------------------------
   557 // Create a bit of debug info and append it to the array.  The mapping is from
   558 // Java local or expression stack to constant, register or stack-slot.  For
   559 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
   560 // entry has been taken care of and caller should skip it).
   561 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
   562   // This should never have accepted Bad before
   563   assert(OptoReg::is_valid(regnum), "location must be valid");
   564   return (OptoReg::is_reg(regnum))
   565     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
   566     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
   567 }
   570 ObjectValue*
   571 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
   572   for (int i = 0; i < objs->length(); i++) {
   573     assert(objs->at(i)->is_object(), "corrupt object cache");
   574     ObjectValue* sv = (ObjectValue*) objs->at(i);
   575     if (sv->id() == id) {
   576       return sv;
   577     }
   578   }
   579   // Otherwise..
   580   return NULL;
   581 }
   583 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
   584                                      ObjectValue* sv ) {
   585   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
   586   objs->append(sv);
   587 }
   590 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
   591                             GrowableArray<ScopeValue*> *array,
   592                             GrowableArray<ScopeValue*> *objs ) {
   593   assert( local, "use _top instead of null" );
   594   if (array->length() != idx) {
   595     assert(array->length() == idx + 1, "Unexpected array count");
   596     // Old functionality:
   597     //   return
   598     // New functionality:
   599     //   Assert if the local is not top. In product mode let the new node
   600     //   override the old entry.
   601     assert(local == top(), "LocArray collision");
   602     if (local == top()) {
   603       return;
   604     }
   605     array->pop();
   606   }
   607   const Type *t = local->bottom_type();
   609   // Is it a safepoint scalar object node?
   610   if (local->is_SafePointScalarObject()) {
   611     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
   613     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
   614     if (sv == NULL) {
   615       ciKlass* cik = t->is_oopptr()->klass();
   616       assert(cik->is_instance_klass() ||
   617              cik->is_array_klass(), "Not supported allocation.");
   618       sv = new ObjectValue(spobj->_idx,
   619                            new ConstantOopWriteValue(cik->constant_encoding()));
   620       Compile::set_sv_for_object_node(objs, sv);
   622       uint first_ind = spobj->first_index();
   623       for (uint i = 0; i < spobj->n_fields(); i++) {
   624         Node* fld_node = sfpt->in(first_ind+i);
   625         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
   626       }
   627     }
   628     array->append(sv);
   629     return;
   630   }
   632   // Grab the register number for the local
   633   OptoReg::Name regnum = _regalloc->get_reg_first(local);
   634   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
   635     // Record the double as two float registers.
   636     // The register mask for such a value always specifies two adjacent
   637     // float registers, with the lower register number even.
   638     // Normally, the allocation of high and low words to these registers
   639     // is irrelevant, because nearly all operations on register pairs
   640     // (e.g., StoreD) treat them as a single unit.
   641     // Here, we assume in addition that the words in these two registers
   642     // stored "naturally" (by operations like StoreD and double stores
   643     // within the interpreter) such that the lower-numbered register
   644     // is written to the lower memory address.  This may seem like
   645     // a machine dependency, but it is not--it is a requirement on
   646     // the author of the <arch>.ad file to ensure that, for every
   647     // even/odd double-register pair to which a double may be allocated,
   648     // the word in the even single-register is stored to the first
   649     // memory word.  (Note that register numbers are completely
   650     // arbitrary, and are not tied to any machine-level encodings.)
   651 #ifdef _LP64
   652     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
   653       array->append(new ConstantIntValue(0));
   654       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
   655     } else if ( t->base() == Type::Long ) {
   656       array->append(new ConstantIntValue(0));
   657       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   658     } else if ( t->base() == Type::RawPtr ) {
   659       // jsr/ret return address which must be restored into a the full
   660       // width 64-bit stack slot.
   661       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   662     }
   663 #else //_LP64
   664 #ifdef SPARC
   665     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
   666       // For SPARC we have to swap high and low words for
   667       // long values stored in a single-register (g0-g7).
   668       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   669       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   670     } else
   671 #endif //SPARC
   672     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
   673       // Repack the double/long as two jints.
   674       // The convention the interpreter uses is that the second local
   675       // holds the first raw word of the native double representation.
   676       // This is actually reasonable, since locals and stack arrays
   677       // grow downwards in all implementations.
   678       // (If, on some machine, the interpreter's Java locals or stack
   679       // were to grow upwards, the embedded doubles would be word-swapped.)
   680       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   681       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   682     }
   683 #endif //_LP64
   684     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
   685                OptoReg::is_reg(regnum) ) {
   686       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
   687                                    ? Location::float_in_dbl : Location::normal ));
   688     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
   689       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
   690                                    ? Location::int_in_long : Location::normal ));
   691     } else if( t->base() == Type::NarrowOop ) {
   692       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
   693     } else {
   694       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
   695     }
   696     return;
   697   }
   699   // No register.  It must be constant data.
   700   switch (t->base()) {
   701   case Type::Half:              // Second half of a double
   702     ShouldNotReachHere();       // Caller should skip 2nd halves
   703     break;
   704   case Type::AnyPtr:
   705     array->append(new ConstantOopWriteValue(NULL));
   706     break;
   707   case Type::AryPtr:
   708   case Type::InstPtr:
   709   case Type::KlassPtr:          // fall through
   710     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
   711     break;
   712   case Type::NarrowOop:
   713     if (t == TypeNarrowOop::NULL_PTR) {
   714       array->append(new ConstantOopWriteValue(NULL));
   715     } else {
   716       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
   717     }
   718     break;
   719   case Type::Int:
   720     array->append(new ConstantIntValue(t->is_int()->get_con()));
   721     break;
   722   case Type::RawPtr:
   723     // A return address (T_ADDRESS).
   724     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
   725 #ifdef _LP64
   726     // Must be restored to the full-width 64-bit stack slot.
   727     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
   728 #else
   729     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
   730 #endif
   731     break;
   732   case Type::FloatCon: {
   733     float f = t->is_float_constant()->getf();
   734     array->append(new ConstantIntValue(jint_cast(f)));
   735     break;
   736   }
   737   case Type::DoubleCon: {
   738     jdouble d = t->is_double_constant()->getd();
   739 #ifdef _LP64
   740     array->append(new ConstantIntValue(0));
   741     array->append(new ConstantDoubleValue(d));
   742 #else
   743     // Repack the double as two jints.
   744     // The convention the interpreter uses is that the second local
   745     // holds the first raw word of the native double representation.
   746     // This is actually reasonable, since locals and stack arrays
   747     // grow downwards in all implementations.
   748     // (If, on some machine, the interpreter's Java locals or stack
   749     // were to grow upwards, the embedded doubles would be word-swapped.)
   750     jint   *dp = (jint*)&d;
   751     array->append(new ConstantIntValue(dp[1]));
   752     array->append(new ConstantIntValue(dp[0]));
   753 #endif
   754     break;
   755   }
   756   case Type::Long: {
   757     jlong d = t->is_long()->get_con();
   758 #ifdef _LP64
   759     array->append(new ConstantIntValue(0));
   760     array->append(new ConstantLongValue(d));
   761 #else
   762     // Repack the long as two jints.
   763     // The convention the interpreter uses is that the second local
   764     // holds the first raw word of the native double representation.
   765     // This is actually reasonable, since locals and stack arrays
   766     // grow downwards in all implementations.
   767     // (If, on some machine, the interpreter's Java locals or stack
   768     // were to grow upwards, the embedded doubles would be word-swapped.)
   769     jint *dp = (jint*)&d;
   770     array->append(new ConstantIntValue(dp[1]));
   771     array->append(new ConstantIntValue(dp[0]));
   772 #endif
   773     break;
   774   }
   775   case Type::Top:               // Add an illegal value here
   776     array->append(new LocationValue(Location()));
   777     break;
   778   default:
   779     ShouldNotReachHere();
   780     break;
   781   }
   782 }
   784 // Determine if this node starts a bundle
   785 bool Compile::starts_bundle(const Node *n) const {
   786   return (_node_bundling_limit > n->_idx &&
   787           _node_bundling_base[n->_idx].starts_bundle());
   788 }
   790 //--------------------------Process_OopMap_Node--------------------------------
   791 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
   793   // Handle special safepoint nodes for synchronization
   794   MachSafePointNode *sfn   = mach->as_MachSafePoint();
   795   MachCallNode      *mcall;
   797 #ifdef ENABLE_ZAP_DEAD_LOCALS
   798   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
   799 #endif
   801   int safepoint_pc_offset = current_offset;
   802   bool is_method_handle_invoke = false;
   803   bool return_oop = false;
   805   // Add the safepoint in the DebugInfoRecorder
   806   if( !mach->is_MachCall() ) {
   807     mcall = NULL;
   808     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
   809   } else {
   810     mcall = mach->as_MachCall();
   812     // Is the call a MethodHandle call?
   813     if (mcall->is_MachCallJava()) {
   814       if (mcall->as_MachCallJava()->_method_handle_invoke) {
   815         assert(has_method_handle_invokes(), "must have been set during call generation");
   816         is_method_handle_invoke = true;
   817       }
   818     }
   820     // Check if a call returns an object.
   821     if (mcall->return_value_is_used() &&
   822         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
   823       return_oop = true;
   824     }
   825     safepoint_pc_offset += mcall->ret_addr_offset();
   826     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
   827   }
   829   // Loop over the JVMState list to add scope information
   830   // Do not skip safepoints with a NULL method, they need monitor info
   831   JVMState* youngest_jvms = sfn->jvms();
   832   int max_depth = youngest_jvms->depth();
   834   // Allocate the object pool for scalar-replaced objects -- the map from
   835   // small-integer keys (which can be recorded in the local and ostack
   836   // arrays) to descriptions of the object state.
   837   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
   839   // Visit scopes from oldest to youngest.
   840   for (int depth = 1; depth <= max_depth; depth++) {
   841     JVMState* jvms = youngest_jvms->of_depth(depth);
   842     int idx;
   843     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   844     // Safepoints that do not have method() set only provide oop-map and monitor info
   845     // to support GC; these do not support deoptimization.
   846     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
   847     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
   848     int num_mon  = jvms->nof_monitors();
   849     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
   850            "JVMS local count must match that of the method");
   852     // Add Local and Expression Stack Information
   854     // Insert locals into the locarray
   855     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
   856     for( idx = 0; idx < num_locs; idx++ ) {
   857       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
   858     }
   860     // Insert expression stack entries into the exparray
   861     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
   862     for( idx = 0; idx < num_exps; idx++ ) {
   863       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
   864     }
   866     // Add in mappings of the monitors
   867     assert( !method ||
   868             !method->is_synchronized() ||
   869             method->is_native() ||
   870             num_mon > 0 ||
   871             !GenerateSynchronizationCode,
   872             "monitors must always exist for synchronized methods");
   874     // Build the growable array of ScopeValues for exp stack
   875     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
   877     // Loop over monitors and insert into array
   878     for(idx = 0; idx < num_mon; idx++) {
   879       // Grab the node that defines this monitor
   880       Node* box_node = sfn->monitor_box(jvms, idx);
   881       Node* obj_node = sfn->monitor_obj(jvms, idx);
   883       // Create ScopeValue for object
   884       ScopeValue *scval = NULL;
   886       if( obj_node->is_SafePointScalarObject() ) {
   887         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
   888         scval = Compile::sv_for_node_id(objs, spobj->_idx);
   889         if (scval == NULL) {
   890           const Type *t = obj_node->bottom_type();
   891           ciKlass* cik = t->is_oopptr()->klass();
   892           assert(cik->is_instance_klass() ||
   893                  cik->is_array_klass(), "Not supported allocation.");
   894           ObjectValue* sv = new ObjectValue(spobj->_idx,
   895                                 new ConstantOopWriteValue(cik->constant_encoding()));
   896           Compile::set_sv_for_object_node(objs, sv);
   898           uint first_ind = spobj->first_index();
   899           for (uint i = 0; i < spobj->n_fields(); i++) {
   900             Node* fld_node = sfn->in(first_ind+i);
   901             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
   902           }
   903           scval = sv;
   904         }
   905       } else if( !obj_node->is_Con() ) {
   906         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
   907         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
   908           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
   909         } else {
   910           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
   911         }
   912       } else {
   913         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
   914         scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->constant_encoding());
   915       }
   917       OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
   918       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
   919       while( !box_node->is_BoxLock() )  box_node = box_node->in(1);
   920       monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
   921     }
   923     // We dump the object pool first, since deoptimization reads it in first.
   924     debug_info()->dump_object_pool(objs);
   926     // Build first class objects to pass to scope
   927     DebugToken *locvals = debug_info()->create_scope_values(locarray);
   928     DebugToken *expvals = debug_info()->create_scope_values(exparray);
   929     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
   931     // Make method available for all Safepoints
   932     ciMethod* scope_method = method ? method : _method;
   933     // Describe the scope here
   934     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
   935     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
   936     // Now we can describe the scope.
   937     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
   938   } // End jvms loop
   940   // Mark the end of the scope set.
   941   debug_info()->end_safepoint(safepoint_pc_offset);
   942 }
   946 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
   947 class NonSafepointEmitter {
   948   Compile*  C;
   949   JVMState* _pending_jvms;
   950   int       _pending_offset;
   952   void emit_non_safepoint();
   954  public:
   955   NonSafepointEmitter(Compile* compile) {
   956     this->C = compile;
   957     _pending_jvms = NULL;
   958     _pending_offset = 0;
   959   }
   961   void observe_instruction(Node* n, int pc_offset) {
   962     if (!C->debug_info()->recording_non_safepoints())  return;
   964     Node_Notes* nn = C->node_notes_at(n->_idx);
   965     if (nn == NULL || nn->jvms() == NULL)  return;
   966     if (_pending_jvms != NULL &&
   967         _pending_jvms->same_calls_as(nn->jvms())) {
   968       // Repeated JVMS?  Stretch it up here.
   969       _pending_offset = pc_offset;
   970     } else {
   971       if (_pending_jvms != NULL &&
   972           _pending_offset < pc_offset) {
   973         emit_non_safepoint();
   974       }
   975       _pending_jvms = NULL;
   976       if (pc_offset > C->debug_info()->last_pc_offset()) {
   977         // This is the only way _pending_jvms can become non-NULL:
   978         _pending_jvms = nn->jvms();
   979         _pending_offset = pc_offset;
   980       }
   981     }
   982   }
   984   // Stay out of the way of real safepoints:
   985   void observe_safepoint(JVMState* jvms, int pc_offset) {
   986     if (_pending_jvms != NULL &&
   987         !_pending_jvms->same_calls_as(jvms) &&
   988         _pending_offset < pc_offset) {
   989       emit_non_safepoint();
   990     }
   991     _pending_jvms = NULL;
   992   }
   994   void flush_at_end() {
   995     if (_pending_jvms != NULL) {
   996       emit_non_safepoint();
   997     }
   998     _pending_jvms = NULL;
   999   }
  1000 };
  1002 void NonSafepointEmitter::emit_non_safepoint() {
  1003   JVMState* youngest_jvms = _pending_jvms;
  1004   int       pc_offset     = _pending_offset;
  1006   // Clear it now:
  1007   _pending_jvms = NULL;
  1009   DebugInformationRecorder* debug_info = C->debug_info();
  1010   assert(debug_info->recording_non_safepoints(), "sanity");
  1012   debug_info->add_non_safepoint(pc_offset);
  1013   int max_depth = youngest_jvms->depth();
  1015   // Visit scopes from oldest to youngest.
  1016   for (int depth = 1; depth <= max_depth; depth++) {
  1017     JVMState* jvms = youngest_jvms->of_depth(depth);
  1018     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
  1019     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
  1020     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
  1023   // Mark the end of the scope set.
  1024   debug_info->end_non_safepoint(pc_offset);
  1029 // helper for Fill_buffer bailout logic
  1030 static void turn_off_compiler(Compile* C) {
  1031   if (CodeCache::largest_free_block() >= CodeCacheMinimumFreeSpace*10) {
  1032     // Do not turn off compilation if a single giant method has
  1033     // blown the code cache size.
  1034     C->record_failure("excessive request to CodeCache");
  1035   } else {
  1036     // Let CompilerBroker disable further compilations.
  1037     C->record_failure("CodeCache is full");
  1042 //------------------------------Fill_buffer------------------------------------
  1043 void Compile::Fill_buffer() {
  1045   // Set the initially allocated size
  1046   int  code_req   = initial_code_capacity;
  1047   int  locs_req   = initial_locs_capacity;
  1048   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
  1049   int  const_req  = initial_const_capacity;
  1050   bool labels_not_set = true;
  1052   int  pad_req    = NativeCall::instruction_size;
  1053   // The extra spacing after the code is necessary on some platforms.
  1054   // Sometimes we need to patch in a jump after the last instruction,
  1055   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
  1057   uint i;
  1058   // Compute the byte offset where we can store the deopt pc.
  1059   if (fixed_slots() != 0) {
  1060     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
  1063   // Compute prolog code size
  1064   _method_size = 0;
  1065   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
  1066 #ifdef IA64
  1067   if (save_argument_registers()) {
  1068     // 4815101: this is a stub with implicit and unknown precision fp args.
  1069     // The usual spill mechanism can only generate stfd's in this case, which
  1070     // doesn't work if the fp reg to spill contains a single-precision denorm.
  1071     // Instead, we hack around the normal spill mechanism using stfspill's and
  1072     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
  1073     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
  1074     //
  1075     // If we ever implement 16-byte 'registers' == stack slots, we can
  1076     // get rid of this hack and have SpillCopy generate stfspill/ldffill
  1077     // instead of stfd/stfs/ldfd/ldfs.
  1078     _frame_slots += 8*(16/BytesPerInt);
  1080 #endif
  1081   assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
  1083   // Create an array of unused labels, one for each basic block
  1084   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
  1086   for( i=0; i <= _cfg->_num_blocks; i++ ) {
  1087     blk_labels[i].init();
  1090   if (has_mach_constant_base_node()) {
  1091     // Fill the constant table.
  1092     // Note:  This must happen before Shorten_branches.
  1093     for (i = 0; i < _cfg->_num_blocks; i++) {
  1094       Block* b = _cfg->_blocks[i];
  1096       for (uint j = 0; j < b->_nodes.size(); j++) {
  1097         Node* n = b->_nodes[j];
  1099         // If the node is a MachConstantNode evaluate the constant
  1100         // value section.
  1101         if (n->is_MachConstant()) {
  1102           MachConstantNode* machcon = n->as_MachConstant();
  1103           machcon->eval_constant(C);
  1108     // Calculate the offsets of the constants and the size of the
  1109     // constant table (including the padding to the next section).
  1110     constant_table().calculate_offsets_and_size();
  1111     const_req = constant_table().size();
  1114   // Initialize the space for the BufferBlob used to find and verify
  1115   // instruction size in MachNode::emit_size()
  1116   init_scratch_buffer_blob(const_req);
  1117   if (failing())  return; // Out of memory
  1119   // If this machine supports different size branch offsets, then pre-compute
  1120   // the length of the blocks
  1121   if( _matcher->is_short_branch_offset(-1, 0) ) {
  1122     Shorten_branches(blk_labels, code_req, locs_req, stub_req);
  1123     labels_not_set = false;
  1126   // nmethod and CodeBuffer count stubs & constants as part of method's code.
  1127   int exception_handler_req = size_exception_handler();
  1128   int deopt_handler_req = size_deopt_handler();
  1129   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
  1130   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
  1131   stub_req += MAX_stubs_size;   // ensure per-stub margin
  1132   code_req += MAX_inst_size;    // ensure per-instruction margin
  1134   if (StressCodeBuffers)
  1135     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
  1137   int total_req =
  1138     const_req +
  1139     code_req +
  1140     pad_req +
  1141     stub_req +
  1142     exception_handler_req +
  1143     deopt_handler_req;               // deopt handler
  1145   if (has_method_handle_invokes())
  1146     total_req += deopt_handler_req;  // deopt MH handler
  1148   CodeBuffer* cb = code_buffer();
  1149   cb->initialize(total_req, locs_req);
  1151   // Have we run out of code space?
  1152   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1153     turn_off_compiler(this);
  1154     return;
  1156   // Configure the code buffer.
  1157   cb->initialize_consts_size(const_req);
  1158   cb->initialize_stubs_size(stub_req);
  1159   cb->initialize_oop_recorder(env()->oop_recorder());
  1161   // fill in the nop array for bundling computations
  1162   MachNode *_nop_list[Bundle::_nop_count];
  1163   Bundle::initialize_nops(_nop_list, this);
  1165   // Create oopmap set.
  1166   _oop_map_set = new OopMapSet();
  1168   // !!!!! This preserves old handling of oopmaps for now
  1169   debug_info()->set_oopmaps(_oop_map_set);
  1171   // Count and start of implicit null check instructions
  1172   uint inct_cnt = 0;
  1173   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1175   // Count and start of calls
  1176   uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1178   uint  return_offset = 0;
  1179   int nop_size = (new (this) MachNopNode())->size(_regalloc);
  1181   int previous_offset = 0;
  1182   int current_offset  = 0;
  1183   int last_call_offset = -1;
  1185   // Create an array of unused labels, one for each basic block, if printing is enabled
  1186 #ifndef PRODUCT
  1187   int *node_offsets      = NULL;
  1188   uint  node_offset_limit = unique();
  1191   if ( print_assembly() )
  1192     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
  1193 #endif
  1195   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
  1197   // Emit the constant table.
  1198   if (has_mach_constant_base_node()) {
  1199     constant_table().emit(*cb);
  1202   // ------------------
  1203   // Now fill in the code buffer
  1204   Node *delay_slot = NULL;
  1206   for( i=0; i < _cfg->_num_blocks; i++ ) {
  1207     Block *b = _cfg->_blocks[i];
  1209     Node *head = b->head();
  1211     // If this block needs to start aligned (i.e, can be reached other
  1212     // than by falling-thru from the previous block), then force the
  1213     // start of a new bundle.
  1214     if( Pipeline::requires_bundling() && starts_bundle(head) )
  1215       cb->flush_bundle(true);
  1217     // Define the label at the beginning of the basic block
  1218     if (labels_not_set) {
  1219       MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
  1220     } else {
  1221       assert(blk_labels[b->_pre_order].loc_pos() == cb->insts_size(),
  1222              err_msg("label position does not match code offset: %d != %d",
  1223                      blk_labels[b->_pre_order].loc_pos(), cb->insts_size()));
  1226     uint last_inst = b->_nodes.size();
  1228     // Emit block normally, except for last instruction.
  1229     // Emit means "dump code bits into code buffer".
  1230     for( uint j = 0; j<last_inst; j++ ) {
  1232       // Get the node
  1233       Node* n = b->_nodes[j];
  1235       // See if delay slots are supported
  1236       if (valid_bundle_info(n) &&
  1237           node_bundling(n)->used_in_unconditional_delay()) {
  1238         assert(delay_slot == NULL, "no use of delay slot node");
  1239         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
  1241         delay_slot = n;
  1242         continue;
  1245       // If this starts a new instruction group, then flush the current one
  1246       // (but allow split bundles)
  1247       if( Pipeline::requires_bundling() && starts_bundle(n) )
  1248         cb->flush_bundle(false);
  1250       // The following logic is duplicated in the code ifdeffed for
  1251       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
  1252       // should be factored out.  Or maybe dispersed to the nodes?
  1254       // Special handling for SafePoint/Call Nodes
  1255       bool is_mcall = false;
  1256       if( n->is_Mach() ) {
  1257         MachNode *mach = n->as_Mach();
  1258         is_mcall = n->is_MachCall();
  1259         bool is_sfn = n->is_MachSafePoint();
  1261         // If this requires all previous instructions be flushed, then do so
  1262         if( is_sfn || is_mcall || mach->alignment_required() != 1) {
  1263           cb->flush_bundle(true);
  1264           current_offset = cb->insts_size();
  1267         // align the instruction if necessary
  1268         int padding = mach->compute_padding(current_offset);
  1269         // Make sure safepoint node for polling is distinct from a call's
  1270         // return by adding a nop if needed.
  1271         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
  1272           padding = nop_size;
  1274         assert( labels_not_set || padding == 0, "instruction should already be aligned");
  1276         if(padding > 0) {
  1277           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
  1278           int nops_cnt = padding / nop_size;
  1279           MachNode *nop = new (this) MachNopNode(nops_cnt);
  1280           b->_nodes.insert(j++, nop);
  1281           last_inst++;
  1282           _cfg->_bbs.map( nop->_idx, b );
  1283           nop->emit(*cb, _regalloc);
  1284           cb->flush_bundle(true);
  1285           current_offset = cb->insts_size();
  1288         // Remember the start of the last call in a basic block
  1289         if (is_mcall) {
  1290           MachCallNode *mcall = mach->as_MachCall();
  1292           // This destination address is NOT PC-relative
  1293           mcall->method_set((intptr_t)mcall->entry_point());
  1295           // Save the return address
  1296           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
  1298           if (!mcall->is_safepoint_node()) {
  1299             is_mcall = false;
  1300             is_sfn = false;
  1304         // sfn will be valid whenever mcall is valid now because of inheritance
  1305         if( is_sfn || is_mcall ) {
  1307           // Handle special safepoint nodes for synchronization
  1308           if( !is_mcall ) {
  1309             MachSafePointNode *sfn = mach->as_MachSafePoint();
  1310             // !!!!! Stubs only need an oopmap right now, so bail out
  1311             if( sfn->jvms()->method() == NULL) {
  1312               // Write the oopmap directly to the code blob??!!
  1313 #             ifdef ENABLE_ZAP_DEAD_LOCALS
  1314               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
  1315 #             endif
  1316               continue;
  1318           } // End synchronization
  1320           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1321                                            current_offset);
  1322           Process_OopMap_Node(mach, current_offset);
  1323         } // End if safepoint
  1325         // If this is a null check, then add the start of the previous instruction to the list
  1326         else if( mach->is_MachNullCheck() ) {
  1327           inct_starts[inct_cnt++] = previous_offset;
  1330         // If this is a branch, then fill in the label with the target BB's label
  1331         else if ( mach->is_Branch() ) {
  1333           if ( mach->ideal_Opcode() == Op_Jump ) {
  1334             for (uint h = 0; h < b->_num_succs; h++ ) {
  1335               Block* succs_block = b->_succs[h];
  1336               for (uint j = 1; j < succs_block->num_preds(); j++) {
  1337                 Node* jpn = succs_block->pred(j);
  1338                 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
  1339                   uint block_num = succs_block->non_connector()->_pre_order;
  1340                   Label *blkLabel = &blk_labels[block_num];
  1341                   mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
  1345           } else {
  1346             // For Branchs
  1347             // This requires the TRUE branch target be in succs[0]
  1348             uint block_num = b->non_connector_successor(0)->_pre_order;
  1349             mach->label_set( blk_labels[block_num], block_num );
  1353 #ifdef ASSERT
  1354         // Check that oop-store precedes the card-mark
  1355         else if( mach->ideal_Opcode() == Op_StoreCM ) {
  1356           uint storeCM_idx = j;
  1357           Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
  1358           assert( oop_store != NULL, "storeCM expects a precedence edge");
  1359           uint i4;
  1360           for( i4 = 0; i4 < last_inst; ++i4 ) {
  1361             if( b->_nodes[i4] == oop_store ) break;
  1363           // Note: This test can provide a false failure if other precedence
  1364           // edges have been added to the storeCMNode.
  1365           assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
  1367 #endif
  1369         else if( !n->is_Proj() ) {
  1370           // Remember the beginning of the previous instruction, in case
  1371           // it's followed by a flag-kill and a null-check.  Happens on
  1372           // Intel all the time, with add-to-memory kind of opcodes.
  1373           previous_offset = current_offset;
  1377       // Verify that there is sufficient space remaining
  1378       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
  1379       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1380         turn_off_compiler(this);
  1381         return;
  1384       // Save the offset for the listing
  1385 #ifndef PRODUCT
  1386       if( node_offsets && n->_idx < node_offset_limit )
  1387         node_offsets[n->_idx] = cb->insts_size();
  1388 #endif
  1390       // "Normal" instruction case
  1391       n->emit(*cb, _regalloc);
  1392       current_offset  = cb->insts_size();
  1393       non_safepoints.observe_instruction(n, current_offset);
  1395       // mcall is last "call" that can be a safepoint
  1396       // record it so we can see if a poll will directly follow it
  1397       // in which case we'll need a pad to make the PcDesc sites unique
  1398       // see  5010568. This can be slightly inaccurate but conservative
  1399       // in the case that return address is not actually at current_offset.
  1400       // This is a small price to pay.
  1402       if (is_mcall) {
  1403         last_call_offset = current_offset;
  1406       // See if this instruction has a delay slot
  1407       if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1408         assert(delay_slot != NULL, "expecting delay slot node");
  1410         // Back up 1 instruction
  1411         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
  1413         // Save the offset for the listing
  1414 #ifndef PRODUCT
  1415         if( node_offsets && delay_slot->_idx < node_offset_limit )
  1416           node_offsets[delay_slot->_idx] = cb->insts_size();
  1417 #endif
  1419         // Support a SafePoint in the delay slot
  1420         if( delay_slot->is_MachSafePoint() ) {
  1421           MachNode *mach = delay_slot->as_Mach();
  1422           // !!!!! Stubs only need an oopmap right now, so bail out
  1423           if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
  1424             // Write the oopmap directly to the code blob??!!
  1425 #           ifdef ENABLE_ZAP_DEAD_LOCALS
  1426             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
  1427 #           endif
  1428             delay_slot = NULL;
  1429             continue;
  1432           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
  1433           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1434                                            adjusted_offset);
  1435           // Generate an OopMap entry
  1436           Process_OopMap_Node(mach, adjusted_offset);
  1439         // Insert the delay slot instruction
  1440         delay_slot->emit(*cb, _regalloc);
  1442         // Don't reuse it
  1443         delay_slot = NULL;
  1446     } // End for all instructions in block
  1448     // If the next block is the top of a loop, pad this block out to align
  1449     // the loop top a little. Helps prevent pipe stalls at loop back branches.
  1450     if( i<_cfg->_num_blocks-1 ) {
  1451       Block *nb = _cfg->_blocks[i+1];
  1452       uint padding = nb->alignment_padding(current_offset);
  1453       if( padding > 0 ) {
  1454         MachNode *nop = new (this) MachNopNode(padding / nop_size);
  1455         b->_nodes.insert( b->_nodes.size(), nop );
  1456         _cfg->_bbs.map( nop->_idx, b );
  1457         nop->emit(*cb, _regalloc);
  1458         current_offset = cb->insts_size();
  1462   } // End of for all blocks
  1464   non_safepoints.flush_at_end();
  1466   // Offset too large?
  1467   if (failing())  return;
  1469   // Define a pseudo-label at the end of the code
  1470   MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
  1472   // Compute the size of the first block
  1473   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
  1475   assert(cb->insts_size() < 500000, "method is unreasonably large");
  1477   // ------------------
  1479 #ifndef PRODUCT
  1480   // Information on the size of the method, without the extraneous code
  1481   Scheduling::increment_method_size(cb->insts_size());
  1482 #endif
  1484   // ------------------
  1485   // Fill in exception table entries.
  1486   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
  1488   // Only java methods have exception handlers and deopt handlers
  1489   if (_method) {
  1490     // Emit the exception handler code.
  1491     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
  1492     // Emit the deopt handler code.
  1493     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
  1495     // Emit the MethodHandle deopt handler code (if required).
  1496     if (has_method_handle_invokes()) {
  1497       // We can use the same code as for the normal deopt handler, we
  1498       // just need a different entry point address.
  1499       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
  1503   // One last check for failed CodeBuffer::expand:
  1504   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1505     turn_off_compiler(this);
  1506     return;
  1509 #ifndef PRODUCT
  1510   // Dump the assembly code, including basic-block numbers
  1511   if (print_assembly()) {
  1512     ttyLocker ttyl;  // keep the following output all in one block
  1513     if (!VMThread::should_terminate()) {  // test this under the tty lock
  1514       // This output goes directly to the tty, not the compiler log.
  1515       // To enable tools to match it up with the compilation activity,
  1516       // be sure to tag this tty output with the compile ID.
  1517       if (xtty != NULL) {
  1518         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
  1519                    is_osr_compilation()    ? " compile_kind='osr'" :
  1520                    "");
  1522       if (method() != NULL) {
  1523         method()->print_oop();
  1524         print_codes();
  1526       dump_asm(node_offsets, node_offset_limit);
  1527       if (xtty != NULL) {
  1528         xtty->tail("opto_assembly");
  1532 #endif
  1536 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  1537   _inc_table.set_size(cnt);
  1539   uint inct_cnt = 0;
  1540   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1541     Block *b = _cfg->_blocks[i];
  1542     Node *n = NULL;
  1543     int j;
  1545     // Find the branch; ignore trailing NOPs.
  1546     for( j = b->_nodes.size()-1; j>=0; j-- ) {
  1547       n = b->_nodes[j];
  1548       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
  1549         break;
  1552     // If we didn't find anything, continue
  1553     if( j < 0 ) continue;
  1555     // Compute ExceptionHandlerTable subtable entry and add it
  1556     // (skip empty blocks)
  1557     if( n->is_Catch() ) {
  1559       // Get the offset of the return from the call
  1560       uint call_return = call_returns[b->_pre_order];
  1561 #ifdef ASSERT
  1562       assert( call_return > 0, "no call seen for this basic block" );
  1563       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
  1564       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
  1565 #endif
  1566       // last instruction is a CatchNode, find it's CatchProjNodes
  1567       int nof_succs = b->_num_succs;
  1568       // allocate space
  1569       GrowableArray<intptr_t> handler_bcis(nof_succs);
  1570       GrowableArray<intptr_t> handler_pcos(nof_succs);
  1571       // iterate through all successors
  1572       for (int j = 0; j < nof_succs; j++) {
  1573         Block* s = b->_succs[j];
  1574         bool found_p = false;
  1575         for( uint k = 1; k < s->num_preds(); k++ ) {
  1576           Node *pk = s->pred(k);
  1577           if( pk->is_CatchProj() && pk->in(0) == n ) {
  1578             const CatchProjNode* p = pk->as_CatchProj();
  1579             found_p = true;
  1580             // add the corresponding handler bci & pco information
  1581             if( p->_con != CatchProjNode::fall_through_index ) {
  1582               // p leads to an exception handler (and is not fall through)
  1583               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
  1584               // no duplicates, please
  1585               if( !handler_bcis.contains(p->handler_bci()) ) {
  1586                 uint block_num = s->non_connector()->_pre_order;
  1587                 handler_bcis.append(p->handler_bci());
  1588                 handler_pcos.append(blk_labels[block_num].loc_pos());
  1593         assert(found_p, "no matching predecessor found");
  1594         // Note:  Due to empty block removal, one block may have
  1595         // several CatchProj inputs, from the same Catch.
  1598       // Set the offset of the return from the call
  1599       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
  1600       continue;
  1603     // Handle implicit null exception table updates
  1604     if( n->is_MachNullCheck() ) {
  1605       uint block_num = b->non_connector_successor(0)->_pre_order;
  1606       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
  1607       continue;
  1609   } // End of for all blocks fill in exception table entries
  1612 // Static Variables
  1613 #ifndef PRODUCT
  1614 uint Scheduling::_total_nop_size = 0;
  1615 uint Scheduling::_total_method_size = 0;
  1616 uint Scheduling::_total_branches = 0;
  1617 uint Scheduling::_total_unconditional_delays = 0;
  1618 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
  1619 #endif
  1621 // Initializer for class Scheduling
  1623 Scheduling::Scheduling(Arena *arena, Compile &compile)
  1624   : _arena(arena),
  1625     _cfg(compile.cfg()),
  1626     _bbs(compile.cfg()->_bbs),
  1627     _regalloc(compile.regalloc()),
  1628     _reg_node(arena),
  1629     _bundle_instr_count(0),
  1630     _bundle_cycle_number(0),
  1631     _scheduled(arena),
  1632     _available(arena),
  1633     _next_node(NULL),
  1634     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
  1635     _pinch_free_list(arena)
  1636 #ifndef PRODUCT
  1637   , _branches(0)
  1638   , _unconditional_delays(0)
  1639 #endif
  1641   // Create a MachNopNode
  1642   _nop = new (&compile) MachNopNode();
  1644   // Now that the nops are in the array, save the count
  1645   // (but allow entries for the nops)
  1646   _node_bundling_limit = compile.unique();
  1647   uint node_max = _regalloc->node_regs_max_index();
  1649   compile.set_node_bundling_limit(_node_bundling_limit);
  1651   // This one is persistent within the Compile class
  1652   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
  1654   // Allocate space for fixed-size arrays
  1655   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1656   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  1657   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1659   // Clear the arrays
  1660   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  1661   memset(_node_latency,       0, node_max * sizeof(unsigned short));
  1662   memset(_uses,               0, node_max * sizeof(short));
  1663   memset(_current_latency,    0, node_max * sizeof(unsigned short));
  1665   // Clear the bundling information
  1666   memcpy(_bundle_use_elements,
  1667     Pipeline_Use::elaborated_elements,
  1668     sizeof(Pipeline_Use::elaborated_elements));
  1670   // Get the last node
  1671   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
  1673   _next_node = bb->_nodes[bb->_nodes.size()-1];
  1676 #ifndef PRODUCT
  1677 // Scheduling destructor
  1678 Scheduling::~Scheduling() {
  1679   _total_branches             += _branches;
  1680   _total_unconditional_delays += _unconditional_delays;
  1682 #endif
  1684 // Step ahead "i" cycles
  1685 void Scheduling::step(uint i) {
  1687   Bundle *bundle = node_bundling(_next_node);
  1688   bundle->set_starts_bundle();
  1690   // Update the bundle record, but leave the flags information alone
  1691   if (_bundle_instr_count > 0) {
  1692     bundle->set_instr_count(_bundle_instr_count);
  1693     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1696   // Update the state information
  1697   _bundle_instr_count = 0;
  1698   _bundle_cycle_number += i;
  1699   _bundle_use.step(i);
  1702 void Scheduling::step_and_clear() {
  1703   Bundle *bundle = node_bundling(_next_node);
  1704   bundle->set_starts_bundle();
  1706   // Update the bundle record
  1707   if (_bundle_instr_count > 0) {
  1708     bundle->set_instr_count(_bundle_instr_count);
  1709     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1711     _bundle_cycle_number += 1;
  1714   // Clear the bundling information
  1715   _bundle_instr_count = 0;
  1716   _bundle_use.reset();
  1718   memcpy(_bundle_use_elements,
  1719     Pipeline_Use::elaborated_elements,
  1720     sizeof(Pipeline_Use::elaborated_elements));
  1723 //------------------------------ScheduleAndBundle------------------------------
  1724 // Perform instruction scheduling and bundling over the sequence of
  1725 // instructions in backwards order.
  1726 void Compile::ScheduleAndBundle() {
  1728   // Don't optimize this if it isn't a method
  1729   if (!_method)
  1730     return;
  1732   // Don't optimize this if scheduling is disabled
  1733   if (!do_scheduling())
  1734     return;
  1736   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
  1738   // Create a data structure for all the scheduling information
  1739   Scheduling scheduling(Thread::current()->resource_area(), *this);
  1741   // Initialize the space for the BufferBlob used to find and verify
  1742   // instruction size in MachNode::emit_size()
  1743   init_scratch_buffer_blob(MAX_const_size);
  1744   if (failing())  return;  // Out of memory
  1746   // Walk backwards over each basic block, computing the needed alignment
  1747   // Walk over all the basic blocks
  1748   scheduling.DoScheduling();
  1751 //------------------------------ComputeLocalLatenciesForward-------------------
  1752 // Compute the latency of all the instructions.  This is fairly simple,
  1753 // because we already have a legal ordering.  Walk over the instructions
  1754 // from first to last, and compute the latency of the instruction based
  1755 // on the latency of the preceding instruction(s).
  1756 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
  1757 #ifndef PRODUCT
  1758   if (_cfg->C->trace_opto_output())
  1759     tty->print("# -> ComputeLocalLatenciesForward\n");
  1760 #endif
  1762   // Walk over all the schedulable instructions
  1763   for( uint j=_bb_start; j < _bb_end; j++ ) {
  1765     // This is a kludge, forcing all latency calculations to start at 1.
  1766     // Used to allow latency 0 to force an instruction to the beginning
  1767     // of the bb
  1768     uint latency = 1;
  1769     Node *use = bb->_nodes[j];
  1770     uint nlen = use->len();
  1772     // Walk over all the inputs
  1773     for ( uint k=0; k < nlen; k++ ) {
  1774       Node *def = use->in(k);
  1775       if (!def)
  1776         continue;
  1778       uint l = _node_latency[def->_idx] + use->latency(k);
  1779       if (latency < l)
  1780         latency = l;
  1783     _node_latency[use->_idx] = latency;
  1785 #ifndef PRODUCT
  1786     if (_cfg->C->trace_opto_output()) {
  1787       tty->print("# latency %4d: ", latency);
  1788       use->dump();
  1790 #endif
  1793 #ifndef PRODUCT
  1794   if (_cfg->C->trace_opto_output())
  1795     tty->print("# <- ComputeLocalLatenciesForward\n");
  1796 #endif
  1798 } // end ComputeLocalLatenciesForward
  1800 // See if this node fits into the present instruction bundle
  1801 bool Scheduling::NodeFitsInBundle(Node *n) {
  1802   uint n_idx = n->_idx;
  1804   // If this is the unconditional delay instruction, then it fits
  1805   if (n == _unconditional_delay_slot) {
  1806 #ifndef PRODUCT
  1807     if (_cfg->C->trace_opto_output())
  1808       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
  1809 #endif
  1810     return (true);
  1813   // If the node cannot be scheduled this cycle, skip it
  1814   if (_current_latency[n_idx] > _bundle_cycle_number) {
  1815 #ifndef PRODUCT
  1816     if (_cfg->C->trace_opto_output())
  1817       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
  1818         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
  1819 #endif
  1820     return (false);
  1823   const Pipeline *node_pipeline = n->pipeline();
  1825   uint instruction_count = node_pipeline->instructionCount();
  1826   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  1827     instruction_count = 0;
  1828   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  1829     instruction_count++;
  1831   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
  1832 #ifndef PRODUCT
  1833     if (_cfg->C->trace_opto_output())
  1834       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
  1835         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
  1836 #endif
  1837     return (false);
  1840   // Don't allow non-machine nodes to be handled this way
  1841   if (!n->is_Mach() && instruction_count == 0)
  1842     return (false);
  1844   // See if there is any overlap
  1845   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
  1847   if (delay > 0) {
  1848 #ifndef PRODUCT
  1849     if (_cfg->C->trace_opto_output())
  1850       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
  1851 #endif
  1852     return false;
  1855 #ifndef PRODUCT
  1856   if (_cfg->C->trace_opto_output())
  1857     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
  1858 #endif
  1860   return true;
  1863 Node * Scheduling::ChooseNodeToBundle() {
  1864   uint siz = _available.size();
  1866   if (siz == 0) {
  1868 #ifndef PRODUCT
  1869     if (_cfg->C->trace_opto_output())
  1870       tty->print("#   ChooseNodeToBundle: NULL\n");
  1871 #endif
  1872     return (NULL);
  1875   // Fast path, if only 1 instruction in the bundle
  1876   if (siz == 1) {
  1877 #ifndef PRODUCT
  1878     if (_cfg->C->trace_opto_output()) {
  1879       tty->print("#   ChooseNodeToBundle (only 1): ");
  1880       _available[0]->dump();
  1882 #endif
  1883     return (_available[0]);
  1886   // Don't bother, if the bundle is already full
  1887   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
  1888     for ( uint i = 0; i < siz; i++ ) {
  1889       Node *n = _available[i];
  1891       // Skip projections, we'll handle them another way
  1892       if (n->is_Proj())
  1893         continue;
  1895       // This presupposed that instructions are inserted into the
  1896       // available list in a legality order; i.e. instructions that
  1897       // must be inserted first are at the head of the list
  1898       if (NodeFitsInBundle(n)) {
  1899 #ifndef PRODUCT
  1900         if (_cfg->C->trace_opto_output()) {
  1901           tty->print("#   ChooseNodeToBundle: ");
  1902           n->dump();
  1904 #endif
  1905         return (n);
  1910   // Nothing fits in this bundle, choose the highest priority
  1911 #ifndef PRODUCT
  1912   if (_cfg->C->trace_opto_output()) {
  1913     tty->print("#   ChooseNodeToBundle: ");
  1914     _available[0]->dump();
  1916 #endif
  1918   return _available[0];
  1921 //------------------------------AddNodeToAvailableList-------------------------
  1922 void Scheduling::AddNodeToAvailableList(Node *n) {
  1923   assert( !n->is_Proj(), "projections never directly made available" );
  1924 #ifndef PRODUCT
  1925   if (_cfg->C->trace_opto_output()) {
  1926     tty->print("#   AddNodeToAvailableList: ");
  1927     n->dump();
  1929 #endif
  1931   int latency = _current_latency[n->_idx];
  1933   // Insert in latency order (insertion sort)
  1934   uint i;
  1935   for ( i=0; i < _available.size(); i++ )
  1936     if (_current_latency[_available[i]->_idx] > latency)
  1937       break;
  1939   // Special Check for compares following branches
  1940   if( n->is_Mach() && _scheduled.size() > 0 ) {
  1941     int op = n->as_Mach()->ideal_Opcode();
  1942     Node *last = _scheduled[0];
  1943     if( last->is_MachIf() && last->in(1) == n &&
  1944         ( op == Op_CmpI ||
  1945           op == Op_CmpU ||
  1946           op == Op_CmpP ||
  1947           op == Op_CmpF ||
  1948           op == Op_CmpD ||
  1949           op == Op_CmpL ) ) {
  1951       // Recalculate position, moving to front of same latency
  1952       for ( i=0 ; i < _available.size(); i++ )
  1953         if (_current_latency[_available[i]->_idx] >= latency)
  1954           break;
  1958   // Insert the node in the available list
  1959   _available.insert(i, n);
  1961 #ifndef PRODUCT
  1962   if (_cfg->C->trace_opto_output())
  1963     dump_available();
  1964 #endif
  1967 //------------------------------DecrementUseCounts-----------------------------
  1968 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  1969   for ( uint i=0; i < n->len(); i++ ) {
  1970     Node *def = n->in(i);
  1971     if (!def) continue;
  1972     if( def->is_Proj() )        // If this is a machine projection, then
  1973       def = def->in(0);         // propagate usage thru to the base instruction
  1975     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
  1976       continue;
  1978     // Compute the latency
  1979     uint l = _bundle_cycle_number + n->latency(i);
  1980     if (_current_latency[def->_idx] < l)
  1981       _current_latency[def->_idx] = l;
  1983     // If this does not have uses then schedule it
  1984     if ((--_uses[def->_idx]) == 0)
  1985       AddNodeToAvailableList(def);
  1989 //------------------------------AddNodeToBundle--------------------------------
  1990 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
  1991 #ifndef PRODUCT
  1992   if (_cfg->C->trace_opto_output()) {
  1993     tty->print("#   AddNodeToBundle: ");
  1994     n->dump();
  1996 #endif
  1998   // Remove this from the available list
  1999   uint i;
  2000   for (i = 0; i < _available.size(); i++)
  2001     if (_available[i] == n)
  2002       break;
  2003   assert(i < _available.size(), "entry in _available list not found");
  2004   _available.remove(i);
  2006   // See if this fits in the current bundle
  2007   const Pipeline *node_pipeline = n->pipeline();
  2008   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
  2010   // Check for instructions to be placed in the delay slot. We
  2011   // do this before we actually schedule the current instruction,
  2012   // because the delay slot follows the current instruction.
  2013   if (Pipeline::_branch_has_delay_slot &&
  2014       node_pipeline->hasBranchDelay() &&
  2015       !_unconditional_delay_slot) {
  2017     uint siz = _available.size();
  2019     // Conditional branches can support an instruction that
  2020     // is unconditionally executed and not dependent by the
  2021     // branch, OR a conditionally executed instruction if
  2022     // the branch is taken.  In practice, this means that
  2023     // the first instruction at the branch target is
  2024     // copied to the delay slot, and the branch goes to
  2025     // the instruction after that at the branch target
  2026     if ( n->is_Mach() && n->is_Branch() ) {
  2028       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
  2029       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
  2031 #ifndef PRODUCT
  2032       _branches++;
  2033 #endif
  2035       // At least 1 instruction is on the available list
  2036       // that is not dependent on the branch
  2037       for (uint i = 0; i < siz; i++) {
  2038         Node *d = _available[i];
  2039         const Pipeline *avail_pipeline = d->pipeline();
  2041         // Don't allow safepoints in the branch shadow, that will
  2042         // cause a number of difficulties
  2043         if ( avail_pipeline->instructionCount() == 1 &&
  2044             !avail_pipeline->hasMultipleBundles() &&
  2045             !avail_pipeline->hasBranchDelay() &&
  2046             Pipeline::instr_has_unit_size() &&
  2047             d->size(_regalloc) == Pipeline::instr_unit_size() &&
  2048             NodeFitsInBundle(d) &&
  2049             !node_bundling(d)->used_in_delay()) {
  2051           if (d->is_Mach() && !d->is_MachSafePoint()) {
  2052             // A node that fits in the delay slot was found, so we need to
  2053             // set the appropriate bits in the bundle pipeline information so
  2054             // that it correctly indicates resource usage.  Later, when we
  2055             // attempt to add this instruction to the bundle, we will skip
  2056             // setting the resource usage.
  2057             _unconditional_delay_slot = d;
  2058             node_bundling(n)->set_use_unconditional_delay();
  2059             node_bundling(d)->set_used_in_unconditional_delay();
  2060             _bundle_use.add_usage(avail_pipeline->resourceUse());
  2061             _current_latency[d->_idx] = _bundle_cycle_number;
  2062             _next_node = d;
  2063             ++_bundle_instr_count;
  2064 #ifndef PRODUCT
  2065             _unconditional_delays++;
  2066 #endif
  2067             break;
  2073     // No delay slot, add a nop to the usage
  2074     if (!_unconditional_delay_slot) {
  2075       // See if adding an instruction in the delay slot will overflow
  2076       // the bundle.
  2077       if (!NodeFitsInBundle(_nop)) {
  2078 #ifndef PRODUCT
  2079         if (_cfg->C->trace_opto_output())
  2080           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
  2081 #endif
  2082         step(1);
  2085       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
  2086       _next_node = _nop;
  2087       ++_bundle_instr_count;
  2090     // See if the instruction in the delay slot requires a
  2091     // step of the bundles
  2092     if (!NodeFitsInBundle(n)) {
  2093 #ifndef PRODUCT
  2094         if (_cfg->C->trace_opto_output())
  2095           tty->print("#  *** STEP(branch won't fit) ***\n");
  2096 #endif
  2097         // Update the state information
  2098         _bundle_instr_count = 0;
  2099         _bundle_cycle_number += 1;
  2100         _bundle_use.step(1);
  2104   // Get the number of instructions
  2105   uint instruction_count = node_pipeline->instructionCount();
  2106   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  2107     instruction_count = 0;
  2109   // Compute the latency information
  2110   uint delay = 0;
  2112   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
  2113     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
  2114     if (relative_latency < 0)
  2115       relative_latency = 0;
  2117     delay = _bundle_use.full_latency(relative_latency, node_usage);
  2119     // Does not fit in this bundle, start a new one
  2120     if (delay > 0) {
  2121       step(delay);
  2123 #ifndef PRODUCT
  2124       if (_cfg->C->trace_opto_output())
  2125         tty->print("#  *** STEP(%d) ***\n", delay);
  2126 #endif
  2130   // If this was placed in the delay slot, ignore it
  2131   if (n != _unconditional_delay_slot) {
  2133     if (delay == 0) {
  2134       if (node_pipeline->hasMultipleBundles()) {
  2135 #ifndef PRODUCT
  2136         if (_cfg->C->trace_opto_output())
  2137           tty->print("#  *** STEP(multiple instructions) ***\n");
  2138 #endif
  2139         step(1);
  2142       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
  2143 #ifndef PRODUCT
  2144         if (_cfg->C->trace_opto_output())
  2145           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
  2146             instruction_count + _bundle_instr_count,
  2147             Pipeline::_max_instrs_per_cycle);
  2148 #endif
  2149         step(1);
  2153     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  2154       _bundle_instr_count++;
  2156     // Set the node's latency
  2157     _current_latency[n->_idx] = _bundle_cycle_number;
  2159     // Now merge the functional unit information
  2160     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
  2161       _bundle_use.add_usage(node_usage);
  2163     // Increment the number of instructions in this bundle
  2164     _bundle_instr_count += instruction_count;
  2166     // Remember this node for later
  2167     if (n->is_Mach())
  2168       _next_node = n;
  2171   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  2172   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  2173   // 'Schedule' them (basically ignore in the schedule) but do not insert them
  2174   // into the block.  All other scheduled nodes get put in the schedule here.
  2175   int op = n->Opcode();
  2176   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
  2177       (op != Op_Node &&         // Not an unused antidepedence node and
  2178        // not an unallocated boxlock
  2179        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
  2181     // Push any trailing projections
  2182     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
  2183       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2184         Node *foi = n->fast_out(i);
  2185         if( foi->is_Proj() )
  2186           _scheduled.push(foi);
  2190     // Put the instruction in the schedule list
  2191     _scheduled.push(n);
  2194 #ifndef PRODUCT
  2195   if (_cfg->C->trace_opto_output())
  2196     dump_available();
  2197 #endif
  2199   // Walk all the definitions, decrementing use counts, and
  2200   // if a definition has a 0 use count, place it in the available list.
  2201   DecrementUseCounts(n,bb);
  2204 //------------------------------ComputeUseCount--------------------------------
  2205 // This method sets the use count within a basic block.  We will ignore all
  2206 // uses outside the current basic block.  As we are doing a backwards walk,
  2207 // any node we reach that has a use count of 0 may be scheduled.  This also
  2208 // avoids the problem of cyclic references from phi nodes, as long as phi
  2209 // nodes are at the front of the basic block.  This method also initializes
  2210 // the available list to the set of instructions that have no uses within this
  2211 // basic block.
  2212 void Scheduling::ComputeUseCount(const Block *bb) {
  2213 #ifndef PRODUCT
  2214   if (_cfg->C->trace_opto_output())
  2215     tty->print("# -> ComputeUseCount\n");
  2216 #endif
  2218   // Clear the list of available and scheduled instructions, just in case
  2219   _available.clear();
  2220   _scheduled.clear();
  2222   // No delay slot specified
  2223   _unconditional_delay_slot = NULL;
  2225 #ifdef ASSERT
  2226   for( uint i=0; i < bb->_nodes.size(); i++ )
  2227     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
  2228 #endif
  2230   // Force the _uses count to never go to zero for unscheduable pieces
  2231   // of the block
  2232   for( uint k = 0; k < _bb_start; k++ )
  2233     _uses[bb->_nodes[k]->_idx] = 1;
  2234   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
  2235     _uses[bb->_nodes[l]->_idx] = 1;
  2237   // Iterate backwards over the instructions in the block.  Don't count the
  2238   // branch projections at end or the block header instructions.
  2239   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
  2240     Node *n = bb->_nodes[j];
  2241     if( n->is_Proj() ) continue; // Projections handled another way
  2243     // Account for all uses
  2244     for ( uint k = 0; k < n->len(); k++ ) {
  2245       Node *inp = n->in(k);
  2246       if (!inp) continue;
  2247       assert(inp != n, "no cycles allowed" );
  2248       if( _bbs[inp->_idx] == bb ) { // Block-local use?
  2249         if( inp->is_Proj() )    // Skip through Proj's
  2250           inp = inp->in(0);
  2251         ++_uses[inp->_idx];     // Count 1 block-local use
  2255     // If this instruction has a 0 use count, then it is available
  2256     if (!_uses[n->_idx]) {
  2257       _current_latency[n->_idx] = _bundle_cycle_number;
  2258       AddNodeToAvailableList(n);
  2261 #ifndef PRODUCT
  2262     if (_cfg->C->trace_opto_output()) {
  2263       tty->print("#   uses: %3d: ", _uses[n->_idx]);
  2264       n->dump();
  2266 #endif
  2269 #ifndef PRODUCT
  2270   if (_cfg->C->trace_opto_output())
  2271     tty->print("# <- ComputeUseCount\n");
  2272 #endif
  2275 // This routine performs scheduling on each basic block in reverse order,
  2276 // using instruction latencies and taking into account function unit
  2277 // availability.
  2278 void Scheduling::DoScheduling() {
  2279 #ifndef PRODUCT
  2280   if (_cfg->C->trace_opto_output())
  2281     tty->print("# -> DoScheduling\n");
  2282 #endif
  2284   Block *succ_bb = NULL;
  2285   Block *bb;
  2287   // Walk over all the basic blocks in reverse order
  2288   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
  2289     bb = _cfg->_blocks[i];
  2291 #ifndef PRODUCT
  2292     if (_cfg->C->trace_opto_output()) {
  2293       tty->print("#  Schedule BB#%03d (initial)\n", i);
  2294       for (uint j = 0; j < bb->_nodes.size(); j++)
  2295         bb->_nodes[j]->dump();
  2297 #endif
  2299     // On the head node, skip processing
  2300     if( bb == _cfg->_broot )
  2301       continue;
  2303     // Skip empty, connector blocks
  2304     if (bb->is_connector())
  2305       continue;
  2307     // If the following block is not the sole successor of
  2308     // this one, then reset the pipeline information
  2309     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
  2310 #ifndef PRODUCT
  2311       if (_cfg->C->trace_opto_output()) {
  2312         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
  2313                    _next_node->_idx, _bundle_instr_count);
  2315 #endif
  2316       step_and_clear();
  2319     // Leave untouched the starting instruction, any Phis, a CreateEx node
  2320     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
  2321     _bb_end = bb->_nodes.size()-1;
  2322     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
  2323       Node *n = bb->_nodes[_bb_start];
  2324       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
  2325       // Also, MachIdealNodes do not get scheduled
  2326       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
  2327       MachNode *mach = n->as_Mach();
  2328       int iop = mach->ideal_Opcode();
  2329       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
  2330       if( iop == Op_Con ) continue;      // Do not schedule Top
  2331       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
  2332           mach->pipeline() == MachNode::pipeline_class() &&
  2333           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
  2334         continue;
  2335       break;                    // Funny loop structure to be sure...
  2337     // Compute last "interesting" instruction in block - last instruction we
  2338     // might schedule.  _bb_end points just after last schedulable inst.  We
  2339     // normally schedule conditional branches (despite them being forced last
  2340     // in the block), because they have delay slots we can fill.  Calls all
  2341     // have their delay slots filled in the template expansions, so we don't
  2342     // bother scheduling them.
  2343     Node *last = bb->_nodes[_bb_end];
  2344     if( last->is_Catch() ||
  2345        // Exclude unreachable path case when Halt node is in a separate block.
  2346        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
  2347       // There must be a prior call.  Skip it.
  2348       while( !bb->_nodes[--_bb_end]->is_Call() ) {
  2349         assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
  2351     } else if( last->is_MachNullCheck() ) {
  2352       // Backup so the last null-checked memory instruction is
  2353       // outside the schedulable range. Skip over the nullcheck,
  2354       // projection, and the memory nodes.
  2355       Node *mem = last->in(1);
  2356       do {
  2357         _bb_end--;
  2358       } while (mem != bb->_nodes[_bb_end]);
  2359     } else {
  2360       // Set _bb_end to point after last schedulable inst.
  2361       _bb_end++;
  2364     assert( _bb_start <= _bb_end, "inverted block ends" );
  2366     // Compute the register antidependencies for the basic block
  2367     ComputeRegisterAntidependencies(bb);
  2368     if (_cfg->C->failing())  return;  // too many D-U pinch points
  2370     // Compute intra-bb latencies for the nodes
  2371     ComputeLocalLatenciesForward(bb);
  2373     // Compute the usage within the block, and set the list of all nodes
  2374     // in the block that have no uses within the block.
  2375     ComputeUseCount(bb);
  2377     // Schedule the remaining instructions in the block
  2378     while ( _available.size() > 0 ) {
  2379       Node *n = ChooseNodeToBundle();
  2380       AddNodeToBundle(n,bb);
  2383     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
  2384 #ifdef ASSERT
  2385     for( uint l = _bb_start; l < _bb_end; l++ ) {
  2386       Node *n = bb->_nodes[l];
  2387       uint m;
  2388       for( m = 0; m < _bb_end-_bb_start; m++ )
  2389         if( _scheduled[m] == n )
  2390           break;
  2391       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
  2393 #endif
  2395     // Now copy the instructions (in reverse order) back to the block
  2396     for ( uint k = _bb_start; k < _bb_end; k++ )
  2397       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
  2399 #ifndef PRODUCT
  2400     if (_cfg->C->trace_opto_output()) {
  2401       tty->print("#  Schedule BB#%03d (final)\n", i);
  2402       uint current = 0;
  2403       for (uint j = 0; j < bb->_nodes.size(); j++) {
  2404         Node *n = bb->_nodes[j];
  2405         if( valid_bundle_info(n) ) {
  2406           Bundle *bundle = node_bundling(n);
  2407           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
  2408             tty->print("*** Bundle: ");
  2409             bundle->dump();
  2411           n->dump();
  2415 #endif
  2416 #ifdef ASSERT
  2417   verify_good_schedule(bb,"after block local scheduling");
  2418 #endif
  2421 #ifndef PRODUCT
  2422   if (_cfg->C->trace_opto_output())
  2423     tty->print("# <- DoScheduling\n");
  2424 #endif
  2426   // Record final node-bundling array location
  2427   _regalloc->C->set_node_bundling_base(_node_bundling_base);
  2429 } // end DoScheduling
  2431 //------------------------------verify_good_schedule---------------------------
  2432 // Verify that no live-range used in the block is killed in the block by a
  2433 // wrong DEF.  This doesn't verify live-ranges that span blocks.
  2435 // Check for edge existence.  Used to avoid adding redundant precedence edges.
  2436 static bool edge_from_to( Node *from, Node *to ) {
  2437   for( uint i=0; i<from->len(); i++ )
  2438     if( from->in(i) == to )
  2439       return true;
  2440   return false;
  2443 #ifdef ASSERT
  2444 //------------------------------verify_do_def----------------------------------
  2445 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  2446   // Check for bad kills
  2447   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
  2448     Node *prior_use = _reg_node[def];
  2449     if( prior_use && !edge_from_to(prior_use,n) ) {
  2450       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
  2451       n->dump();
  2452       tty->print_cr("...");
  2453       prior_use->dump();
  2454       assert(edge_from_to(prior_use,n),msg);
  2456     _reg_node.map(def,NULL); // Kill live USEs
  2460 //------------------------------verify_good_schedule---------------------------
  2461 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
  2463   // Zap to something reasonable for the verify code
  2464   _reg_node.clear();
  2466   // Walk over the block backwards.  Check to make sure each DEF doesn't
  2467   // kill a live value (other than the one it's supposed to).  Add each
  2468   // USE to the live set.
  2469   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
  2470     Node *n = b->_nodes[i];
  2471     int n_op = n->Opcode();
  2472     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2473       // Fat-proj kills a slew of registers
  2474       RegMask rm = n->out_RegMask();// Make local copy
  2475       while( rm.is_NotEmpty() ) {
  2476         OptoReg::Name kill = rm.find_first_elem();
  2477         rm.Remove(kill);
  2478         verify_do_def( n, kill, msg );
  2480     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
  2481       // Get DEF'd registers the normal way
  2482       verify_do_def( n, _regalloc->get_reg_first(n), msg );
  2483       verify_do_def( n, _regalloc->get_reg_second(n), msg );
  2486     // Now make all USEs live
  2487     for( uint i=1; i<n->req(); i++ ) {
  2488       Node *def = n->in(i);
  2489       assert(def != 0, "input edge required");
  2490       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
  2491       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
  2492       if( OptoReg::is_valid(reg_lo) ) {
  2493         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
  2494         _reg_node.map(reg_lo,n);
  2496       if( OptoReg::is_valid(reg_hi) ) {
  2497         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
  2498         _reg_node.map(reg_hi,n);
  2504   // Zap to something reasonable for the Antidependence code
  2505   _reg_node.clear();
  2507 #endif
  2509 // Conditionally add precedence edges.  Avoid putting edges on Projs.
  2510 static void add_prec_edge_from_to( Node *from, Node *to ) {
  2511   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
  2512     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
  2513     from = from->in(0);
  2515   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
  2516       !edge_from_to( from, to ) ) // Avoid duplicate edge
  2517     from->add_prec(to);
  2520 //------------------------------anti_do_def------------------------------------
  2521 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  2522   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
  2523     return;
  2525   Node *pinch = _reg_node[def_reg]; // Get pinch point
  2526   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
  2527       is_def ) {    // Check for a true def (not a kill)
  2528     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
  2529     return;
  2532   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  2533   debug_only( def = (Node*)0xdeadbeef; )
  2535   // After some number of kills there _may_ be a later def
  2536   Node *later_def = NULL;
  2538   // Finding a kill requires a real pinch-point.
  2539   // Check for not already having a pinch-point.
  2540   // Pinch points are Op_Node's.
  2541   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
  2542     later_def = pinch;            // Must be def/kill as optimistic pinch-point
  2543     if ( _pinch_free_list.size() > 0) {
  2544       pinch = _pinch_free_list.pop();
  2545     } else {
  2546       pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
  2548     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
  2549       _cfg->C->record_method_not_compilable("too many D-U pinch points");
  2550       return;
  2552     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
  2553     _reg_node.map(def_reg,pinch); // Record pinch-point
  2554     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
  2555     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
  2556       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
  2557       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
  2558       later_def = NULL;           // and no later def
  2560     pinch->set_req(0,later_def);  // Hook later def so we can find it
  2561   } else {                        // Else have valid pinch point
  2562     if( pinch->in(0) )            // If there is a later-def
  2563       later_def = pinch->in(0);   // Get it
  2566   // Add output-dependence edge from later def to kill
  2567   if( later_def )               // If there is some original def
  2568     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
  2570   // See if current kill is also a use, and so is forced to be the pinch-point.
  2571   if( pinch->Opcode() == Op_Node ) {
  2572     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
  2573     for( uint i=1; i<uses->req(); i++ ) {
  2574       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
  2575           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
  2576         // Yes, found a use/kill pinch-point
  2577         pinch->set_req(0,NULL);  //
  2578         pinch->replace_by(kill); // Move anti-dep edges up
  2579         pinch = kill;
  2580         _reg_node.map(def_reg,pinch);
  2581         return;
  2586   // Add edge from kill to pinch-point
  2587   add_prec_edge_from_to(kill,pinch);
  2590 //------------------------------anti_do_use------------------------------------
  2591 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  2592   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
  2593     return;
  2594   Node *pinch = _reg_node[use_reg]; // Get pinch point
  2595   // Check for no later def_reg/kill in block
  2596   if( pinch && _bbs[pinch->_idx] == b &&
  2597       // Use has to be block-local as well
  2598       _bbs[use->_idx] == b ) {
  2599     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
  2600         pinch->req() == 1 ) {   // pinch not yet in block?
  2601       pinch->del_req(0);        // yank pointer to later-def, also set flag
  2602       // Insert the pinch-point in the block just after the last use
  2603       b->_nodes.insert(b->find_node(use)+1,pinch);
  2604       _bb_end++;                // Increase size scheduled region in block
  2607     add_prec_edge_from_to(pinch,use);
  2611 //------------------------------ComputeRegisterAntidependences-----------------
  2612 // We insert antidependences between the reads and following write of
  2613 // allocated registers to prevent illegal code motion. Hopefully, the
  2614 // number of added references should be fairly small, especially as we
  2615 // are only adding references within the current basic block.
  2616 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
  2618 #ifdef ASSERT
  2619   verify_good_schedule(b,"before block local scheduling");
  2620 #endif
  2622   // A valid schedule, for each register independently, is an endless cycle
  2623   // of: a def, then some uses (connected to the def by true dependencies),
  2624   // then some kills (defs with no uses), finally the cycle repeats with a new
  2625   // def.  The uses are allowed to float relative to each other, as are the
  2626   // kills.  No use is allowed to slide past a kill (or def).  This requires
  2627   // antidependencies between all uses of a single def and all kills that
  2628   // follow, up to the next def.  More edges are redundant, because later defs
  2629   // & kills are already serialized with true or antidependencies.  To keep
  2630   // the edge count down, we add a 'pinch point' node if there's more than
  2631   // one use or more than one kill/def.
  2633   // We add dependencies in one bottom-up pass.
  2635   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
  2637   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  2638   // register.  If not, we record the DEF/KILL in _reg_node, the
  2639   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  2640   // "pinch point", a new Node that's in the graph but not in the block.
  2641   // We put edges from the prior and current DEF/KILLs to the pinch point.
  2642   // We put the pinch point in _reg_node.  If there's already a pinch point
  2643   // we merely add an edge from the current DEF/KILL to the pinch point.
  2645   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  2646   // put an edge from the pinch point to the USE.
  2648   // To be expedient, the _reg_node array is pre-allocated for the whole
  2649   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  2650   // or a valid def/kill/pinch-point, or a leftover node from some prior
  2651   // block.  Leftover node from some prior block is treated like a NULL (no
  2652   // prior def, so no anti-dependence needed).  Valid def is distinguished by
  2653   // it being in the current block.
  2654   bool fat_proj_seen = false;
  2655   uint last_safept = _bb_end-1;
  2656   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
  2657   Node* last_safept_node = end_node;
  2658   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
  2659     Node *n = b->_nodes[i];
  2660     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
  2661     if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2662       // Fat-proj kills a slew of registers
  2663       // This can add edges to 'n' and obscure whether or not it was a def,
  2664       // hence the is_def flag.
  2665       fat_proj_seen = true;
  2666       RegMask rm = n->out_RegMask();// Make local copy
  2667       while( rm.is_NotEmpty() ) {
  2668         OptoReg::Name kill = rm.find_first_elem();
  2669         rm.Remove(kill);
  2670         anti_do_def( b, n, kill, is_def );
  2672     } else {
  2673       // Get DEF'd registers the normal way
  2674       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
  2675       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
  2678     // Check each register used by this instruction for a following DEF/KILL
  2679     // that must occur afterward and requires an anti-dependence edge.
  2680     for( uint j=0; j<n->req(); j++ ) {
  2681       Node *def = n->in(j);
  2682       if( def ) {
  2683         assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
  2684         anti_do_use( b, n, _regalloc->get_reg_first(def) );
  2685         anti_do_use( b, n, _regalloc->get_reg_second(def) );
  2688     // Do not allow defs of new derived values to float above GC
  2689     // points unless the base is definitely available at the GC point.
  2691     Node *m = b->_nodes[i];
  2693     // Add precedence edge from following safepoint to use of derived pointer
  2694     if( last_safept_node != end_node &&
  2695         m != last_safept_node) {
  2696       for (uint k = 1; k < m->req(); k++) {
  2697         const Type *t = m->in(k)->bottom_type();
  2698         if( t->isa_oop_ptr() &&
  2699             t->is_ptr()->offset() != 0 ) {
  2700           last_safept_node->add_prec( m );
  2701           break;
  2706     if( n->jvms() ) {           // Precedence edge from derived to safept
  2707       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
  2708       if( b->_nodes[last_safept] != last_safept_node ) {
  2709         last_safept = b->find_node(last_safept_node);
  2711       for( uint j=last_safept; j > i; j-- ) {
  2712         Node *mach = b->_nodes[j];
  2713         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
  2714           mach->add_prec( n );
  2716       last_safept = i;
  2717       last_safept_node = m;
  2721   if (fat_proj_seen) {
  2722     // Garbage collect pinch nodes that were not consumed.
  2723     // They are usually created by a fat kill MachProj for a call.
  2724     garbage_collect_pinch_nodes();
  2728 //------------------------------garbage_collect_pinch_nodes-------------------------------
  2730 // Garbage collect pinch nodes for reuse by other blocks.
  2731 //
  2732 // The block scheduler's insertion of anti-dependence
  2733 // edges creates many pinch nodes when the block contains
  2734 // 2 or more Calls.  A pinch node is used to prevent a
  2735 // combinatorial explosion of edges.  If a set of kills for a
  2736 // register is anti-dependent on a set of uses (or defs), rather
  2737 // than adding an edge in the graph between each pair of kill
  2738 // and use (or def), a pinch is inserted between them:
  2739 //
  2740 //            use1   use2  use3
  2741 //                \   |   /
  2742 //                 \  |  /
  2743 //                  pinch
  2744 //                 /  |  \
  2745 //                /   |   \
  2746 //            kill1 kill2 kill3
  2747 //
  2748 // One pinch node is created per register killed when
  2749 // the second call is encountered during a backwards pass
  2750 // over the block.  Most of these pinch nodes are never
  2751 // wired into the graph because the register is never
  2752 // used or def'ed in the block.
  2753 //
  2754 void Scheduling::garbage_collect_pinch_nodes() {
  2755 #ifndef PRODUCT
  2756     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
  2757 #endif
  2758     int trace_cnt = 0;
  2759     for (uint k = 0; k < _reg_node.Size(); k++) {
  2760       Node* pinch = _reg_node[k];
  2761       if (pinch != NULL && pinch->Opcode() == Op_Node &&
  2762           // no predecence input edges
  2763           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
  2764         cleanup_pinch(pinch);
  2765         _pinch_free_list.push(pinch);
  2766         _reg_node.map(k, NULL);
  2767 #ifndef PRODUCT
  2768         if (_cfg->C->trace_opto_output()) {
  2769           trace_cnt++;
  2770           if (trace_cnt > 40) {
  2771             tty->print("\n");
  2772             trace_cnt = 0;
  2774           tty->print(" %d", pinch->_idx);
  2776 #endif
  2779 #ifndef PRODUCT
  2780     if (_cfg->C->trace_opto_output()) tty->print("\n");
  2781 #endif
  2784 // Clean up a pinch node for reuse.
  2785 void Scheduling::cleanup_pinch( Node *pinch ) {
  2786   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
  2788   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
  2789     Node* use = pinch->last_out(i);
  2790     uint uses_found = 0;
  2791     for (uint j = use->req(); j < use->len(); j++) {
  2792       if (use->in(j) == pinch) {
  2793         use->rm_prec(j);
  2794         uses_found++;
  2797     assert(uses_found > 0, "must be a precedence edge");
  2798     i -= uses_found;    // we deleted 1 or more copies of this edge
  2800   // May have a later_def entry
  2801   pinch->set_req(0, NULL);
  2804 //------------------------------print_statistics-------------------------------
  2805 #ifndef PRODUCT
  2807 void Scheduling::dump_available() const {
  2808   tty->print("#Availist  ");
  2809   for (uint i = 0; i < _available.size(); i++)
  2810     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  2811   tty->cr();
  2814 // Print Scheduling Statistics
  2815 void Scheduling::print_statistics() {
  2816   // Print the size added by nops for bundling
  2817   tty->print("Nops added %d bytes to total of %d bytes",
  2818     _total_nop_size, _total_method_size);
  2819   if (_total_method_size > 0)
  2820     tty->print(", for %.2f%%",
  2821       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  2822   tty->print("\n");
  2824   // Print the number of branch shadows filled
  2825   if (Pipeline::_branch_has_delay_slot) {
  2826     tty->print("Of %d branches, %d had unconditional delay slots filled",
  2827       _total_branches, _total_unconditional_delays);
  2828     if (_total_branches > 0)
  2829       tty->print(", for %.2f%%",
  2830         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
  2831     tty->print("\n");
  2834   uint total_instructions = 0, total_bundles = 0;
  2836   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
  2837     uint bundle_count   = _total_instructions_per_bundle[i];
  2838     total_instructions += bundle_count * i;
  2839     total_bundles      += bundle_count;
  2842   if (total_bundles > 0)
  2843     tty->print("Average ILP (excluding nops) is %.2f\n",
  2844       ((double)total_instructions) / ((double)total_bundles));
  2846 #endif

mercurial