src/share/vm/opto/macro.cpp

Fri, 11 Mar 2011 07:50:51 -0800

author
kvn
date
Fri, 11 Mar 2011 07:50:51 -0800
changeset 2636
83f08886981c
parent 2423
b1a2afa37ec4
child 2814
149bb459be66
permissions
-rw-r--r--

7026631: field _klass is incorrectly set for dual type of TypeAryPtr::OOPS
Summary: add missing check this->dual() != TypeAryPtr::OOPS into TypeAryPtr::klass().
Reviewed-by: never

     1 /*
     2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "libadt/vectset.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/compile.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/locknode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/macro.hpp"
    36 #include "opto/memnode.hpp"
    37 #include "opto/node.hpp"
    38 #include "opto/phaseX.hpp"
    39 #include "opto/rootnode.hpp"
    40 #include "opto/runtime.hpp"
    41 #include "opto/subnode.hpp"
    42 #include "opto/type.hpp"
    43 #include "runtime/sharedRuntime.hpp"
    46 //
    47 // Replace any references to "oldref" in inputs to "use" with "newref".
    48 // Returns the number of replacements made.
    49 //
    50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
    51   int nreplacements = 0;
    52   uint req = use->req();
    53   for (uint j = 0; j < use->len(); j++) {
    54     Node *uin = use->in(j);
    55     if (uin == oldref) {
    56       if (j < req)
    57         use->set_req(j, newref);
    58       else
    59         use->set_prec(j, newref);
    60       nreplacements++;
    61     } else if (j >= req && uin == NULL) {
    62       break;
    63     }
    64   }
    65   return nreplacements;
    66 }
    68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
    69   // Copy debug information and adjust JVMState information
    70   uint old_dbg_start = oldcall->tf()->domain()->cnt();
    71   uint new_dbg_start = newcall->tf()->domain()->cnt();
    72   int jvms_adj  = new_dbg_start - old_dbg_start;
    73   assert (new_dbg_start == newcall->req(), "argument count mismatch");
    75   Dict* sosn_map = new Dict(cmpkey,hashkey);
    76   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
    77     Node* old_in = oldcall->in(i);
    78     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
    79     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
    80       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
    81       uint old_unique = C->unique();
    82       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
    83       if (old_unique != C->unique()) {
    84         new_in->set_req(0, newcall->in(0)); // reset control edge
    85         new_in = transform_later(new_in); // Register new node.
    86       }
    87       old_in = new_in;
    88     }
    89     newcall->add_req(old_in);
    90   }
    92   newcall->set_jvms(oldcall->jvms());
    93   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    94     jvms->set_map(newcall);
    95     jvms->set_locoff(jvms->locoff()+jvms_adj);
    96     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    97     jvms->set_monoff(jvms->monoff()+jvms_adj);
    98     jvms->set_scloff(jvms->scloff()+jvms_adj);
    99     jvms->set_endoff(jvms->endoff()+jvms_adj);
   100   }
   101 }
   103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
   104   Node* cmp;
   105   if (mask != 0) {
   106     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
   107     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
   108   } else {
   109     cmp = word;
   110   }
   111   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
   112   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
   113   transform_later(iff);
   115   // Fast path taken.
   116   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
   118   // Fast path not-taken, i.e. slow path
   119   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
   121   if (return_fast_path) {
   122     region->init_req(edge, slow_taken); // Capture slow-control
   123     return fast_taken;
   124   } else {
   125     region->init_req(edge, fast_taken); // Capture fast-control
   126     return slow_taken;
   127   }
   128 }
   130 //--------------------copy_predefined_input_for_runtime_call--------------------
   131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
   132   // Set fixed predefined input arguments
   133   call->init_req( TypeFunc::Control, ctrl );
   134   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
   135   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
   136   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
   137   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
   138 }
   140 //------------------------------make_slow_call---------------------------------
   141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
   143   // Slow-path call
   144   int size = slow_call_type->domain()->cnt();
   145  CallNode *call = leaf_name
   146    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
   147    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
   149   // Slow path call has no side-effects, uses few values
   150   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
   151   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
   152   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
   153   copy_call_debug_info(oldcall, call);
   154   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
   155   _igvn.replace_node(oldcall, call);
   156   transform_later(call);
   158   return call;
   159 }
   161 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
   162   _fallthroughproj = NULL;
   163   _fallthroughcatchproj = NULL;
   164   _ioproj_fallthrough = NULL;
   165   _ioproj_catchall = NULL;
   166   _catchallcatchproj = NULL;
   167   _memproj_fallthrough = NULL;
   168   _memproj_catchall = NULL;
   169   _resproj = NULL;
   170   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
   171     ProjNode *pn = call->fast_out(i)->as_Proj();
   172     switch (pn->_con) {
   173       case TypeFunc::Control:
   174       {
   175         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   176         _fallthroughproj = pn;
   177         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   178         const Node *cn = pn->fast_out(j);
   179         if (cn->is_Catch()) {
   180           ProjNode *cpn = NULL;
   181           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   182             cpn = cn->fast_out(k)->as_Proj();
   183             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   184             if (cpn->_con == CatchProjNode::fall_through_index)
   185               _fallthroughcatchproj = cpn;
   186             else {
   187               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   188               _catchallcatchproj = cpn;
   189             }
   190           }
   191         }
   192         break;
   193       }
   194       case TypeFunc::I_O:
   195         if (pn->_is_io_use)
   196           _ioproj_catchall = pn;
   197         else
   198           _ioproj_fallthrough = pn;
   199         break;
   200       case TypeFunc::Memory:
   201         if (pn->_is_io_use)
   202           _memproj_catchall = pn;
   203         else
   204           _memproj_fallthrough = pn;
   205         break;
   206       case TypeFunc::Parms:
   207         _resproj = pn;
   208         break;
   209       default:
   210         assert(false, "unexpected projection from allocation node.");
   211     }
   212   }
   214 }
   216 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
   217 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
   218   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
   219   if (!UseG1GC) {
   220     // vanilla/CMS post barrier
   221     Node *shift = p2x->unique_out();
   222     Node *addp = shift->unique_out();
   223     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
   224       Node *st = addp->last_out(j);
   225       assert(st->is_Store(), "store required");
   226       _igvn.replace_node(st, st->in(MemNode::Memory));
   227     }
   228   } else {
   229     // G1 pre/post barriers
   230     assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
   231     // It could be only one user, URShift node, in Object.clone() instrinsic
   232     // but the new allocation is passed to arraycopy stub and it could not
   233     // be scalar replaced. So we don't check the case.
   235     // Remove G1 post barrier.
   237     // Search for CastP2X->Xor->URShift->Cmp path which
   238     // checks if the store done to a different from the value's region.
   239     // And replace Cmp with #0 (false) to collapse G1 post barrier.
   240     Node* xorx = NULL;
   241     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
   242       Node* u = p2x->fast_out(i);
   243       if (u->Opcode() == Op_XorX) {
   244         xorx = u;
   245         break;
   246       }
   247     }
   248     assert(xorx != NULL, "missing G1 post barrier");
   249     Node* shift = xorx->unique_out();
   250     Node* cmpx = shift->unique_out();
   251     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
   252     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
   253     "missing region check in G1 post barrier");
   254     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   256     // Remove G1 pre barrier.
   258     // Search "if (marking != 0)" check and set it to "false".
   259     Node* this_region = p2x->in(0);
   260     assert(this_region != NULL, "");
   261     // There is no G1 pre barrier if previous stored value is NULL
   262     // (for example, after initialization).
   263     if (this_region->is_Region() && this_region->req() == 3) {
   264       int ind = 1;
   265       if (!this_region->in(ind)->is_IfFalse()) {
   266         ind = 2;
   267       }
   268       if (this_region->in(ind)->is_IfFalse()) {
   269         Node* bol = this_region->in(ind)->in(0)->in(1);
   270         assert(bol->is_Bool(), "");
   271         cmpx = bol->in(1);
   272         if (bol->as_Bool()->_test._test == BoolTest::ne &&
   273             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
   274             cmpx->in(1)->is_Load()) {
   275           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
   276           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
   277                                               PtrQueue::byte_offset_of_active());
   278           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
   279               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   280               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
   281             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   282           }
   283         }
   284       }
   285     }
   286     // Now CastP2X can be removed since it is used only on dead path
   287     // which currently still alive until igvn optimize it.
   288     assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
   289     _igvn.replace_node(p2x, top());
   290   }
   291 }
   293 // Search for a memory operation for the specified memory slice.
   294 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
   295   Node *orig_mem = mem;
   296   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   297   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
   298   while (true) {
   299     if (mem == alloc_mem || mem == start_mem ) {
   300       return mem;  // hit one of our sentinels
   301     } else if (mem->is_MergeMem()) {
   302       mem = mem->as_MergeMem()->memory_at(alias_idx);
   303     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
   304       Node *in = mem->in(0);
   305       // we can safely skip over safepoints, calls, locks and membars because we
   306       // already know that the object is safe to eliminate.
   307       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
   308         return in;
   309       } else if (in->is_Call()) {
   310         CallNode *call = in->as_Call();
   311         if (!call->may_modify(tinst, phase)) {
   312           mem = call->in(TypeFunc::Memory);
   313         }
   314         mem = in->in(TypeFunc::Memory);
   315       } else if (in->is_MemBar()) {
   316         mem = in->in(TypeFunc::Memory);
   317       } else {
   318         assert(false, "unexpected projection");
   319       }
   320     } else if (mem->is_Store()) {
   321       const TypePtr* atype = mem->as_Store()->adr_type();
   322       int adr_idx = Compile::current()->get_alias_index(atype);
   323       if (adr_idx == alias_idx) {
   324         assert(atype->isa_oopptr(), "address type must be oopptr");
   325         int adr_offset = atype->offset();
   326         uint adr_iid = atype->is_oopptr()->instance_id();
   327         // Array elements references have the same alias_idx
   328         // but different offset and different instance_id.
   329         if (adr_offset == offset && adr_iid == alloc->_idx)
   330           return mem;
   331       } else {
   332         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
   333       }
   334       mem = mem->in(MemNode::Memory);
   335     } else if (mem->is_ClearArray()) {
   336       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
   337         // Can not bypass initialization of the instance
   338         // we are looking.
   339         debug_only(intptr_t offset;)
   340         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
   341         InitializeNode* init = alloc->as_Allocate()->initialization();
   342         // We are looking for stored value, return Initialize node
   343         // or memory edge from Allocate node.
   344         if (init != NULL)
   345           return init;
   346         else
   347           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
   348       }
   349       // Otherwise skip it (the call updated 'mem' value).
   350     } else if (mem->Opcode() == Op_SCMemProj) {
   351       assert(mem->in(0)->is_LoadStore(), "sanity");
   352       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
   353       int adr_idx = Compile::current()->get_alias_index(atype);
   354       if (adr_idx == alias_idx) {
   355         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   356         return NULL;
   357       }
   358       mem = mem->in(0)->in(MemNode::Memory);
   359     } else {
   360       return mem;
   361     }
   362     assert(mem != orig_mem, "dead memory loop");
   363   }
   364 }
   366 //
   367 // Given a Memory Phi, compute a value Phi containing the values from stores
   368 // on the input paths.
   369 // Note: this function is recursive, its depth is limied by the "level" argument
   370 // Returns the computed Phi, or NULL if it cannot compute it.
   371 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
   372   assert(mem->is_Phi(), "sanity");
   373   int alias_idx = C->get_alias_index(adr_t);
   374   int offset = adr_t->offset();
   375   int instance_id = adr_t->instance_id();
   377   // Check if an appropriate value phi already exists.
   378   Node* region = mem->in(0);
   379   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
   380     Node* phi = region->fast_out(k);
   381     if (phi->is_Phi() && phi != mem &&
   382         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
   383       return phi;
   384     }
   385   }
   386   // Check if an appropriate new value phi already exists.
   387   Node* new_phi = NULL;
   388   uint size = value_phis->size();
   389   for (uint i=0; i < size; i++) {
   390     if ( mem->_idx == value_phis->index_at(i) ) {
   391       return value_phis->node_at(i);
   392     }
   393   }
   395   if (level <= 0) {
   396     return NULL; // Give up: phi tree too deep
   397   }
   398   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   399   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   401   uint length = mem->req();
   402   GrowableArray <Node *> values(length, length, NULL);
   404   // create a new Phi for the value
   405   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
   406   transform_later(phi);
   407   value_phis->push(phi, mem->_idx);
   409   for (uint j = 1; j < length; j++) {
   410     Node *in = mem->in(j);
   411     if (in == NULL || in->is_top()) {
   412       values.at_put(j, in);
   413     } else  {
   414       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
   415       if (val == start_mem || val == alloc_mem) {
   416         // hit a sentinel, return appropriate 0 value
   417         values.at_put(j, _igvn.zerocon(ft));
   418         continue;
   419       }
   420       if (val->is_Initialize()) {
   421         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   422       }
   423       if (val == NULL) {
   424         return NULL;  // can't find a value on this path
   425       }
   426       if (val == mem) {
   427         values.at_put(j, mem);
   428       } else if (val->is_Store()) {
   429         values.at_put(j, val->in(MemNode::ValueIn));
   430       } else if(val->is_Proj() && val->in(0) == alloc) {
   431         values.at_put(j, _igvn.zerocon(ft));
   432       } else if (val->is_Phi()) {
   433         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
   434         if (val == NULL) {
   435           return NULL;
   436         }
   437         values.at_put(j, val);
   438       } else if (val->Opcode() == Op_SCMemProj) {
   439         assert(val->in(0)->is_LoadStore(), "sanity");
   440         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   441         return NULL;
   442       } else {
   443 #ifdef ASSERT
   444         val->dump();
   445         assert(false, "unknown node on this path");
   446 #endif
   447         return NULL;  // unknown node on this path
   448       }
   449     }
   450   }
   451   // Set Phi's inputs
   452   for (uint j = 1; j < length; j++) {
   453     if (values.at(j) == mem) {
   454       phi->init_req(j, phi);
   455     } else {
   456       phi->init_req(j, values.at(j));
   457     }
   458   }
   459   return phi;
   460 }
   462 // Search the last value stored into the object's field.
   463 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
   464   assert(adr_t->is_known_instance_field(), "instance required");
   465   int instance_id = adr_t->instance_id();
   466   assert((uint)instance_id == alloc->_idx, "wrong allocation");
   468   int alias_idx = C->get_alias_index(adr_t);
   469   int offset = adr_t->offset();
   470   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   471   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
   472   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   473   Arena *a = Thread::current()->resource_area();
   474   VectorSet visited(a);
   477   bool done = sfpt_mem == alloc_mem;
   478   Node *mem = sfpt_mem;
   479   while (!done) {
   480     if (visited.test_set(mem->_idx)) {
   481       return NULL;  // found a loop, give up
   482     }
   483     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
   484     if (mem == start_mem || mem == alloc_mem) {
   485       done = true;  // hit a sentinel, return appropriate 0 value
   486     } else if (mem->is_Initialize()) {
   487       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   488       if (mem == NULL) {
   489         done = true; // Something go wrong.
   490       } else if (mem->is_Store()) {
   491         const TypePtr* atype = mem->as_Store()->adr_type();
   492         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
   493         done = true;
   494       }
   495     } else if (mem->is_Store()) {
   496       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
   497       assert(atype != NULL, "address type must be oopptr");
   498       assert(C->get_alias_index(atype) == alias_idx &&
   499              atype->is_known_instance_field() && atype->offset() == offset &&
   500              atype->instance_id() == instance_id, "store is correct memory slice");
   501       done = true;
   502     } else if (mem->is_Phi()) {
   503       // try to find a phi's unique input
   504       Node *unique_input = NULL;
   505       Node *top = C->top();
   506       for (uint i = 1; i < mem->req(); i++) {
   507         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
   508         if (n == NULL || n == top || n == mem) {
   509           continue;
   510         } else if (unique_input == NULL) {
   511           unique_input = n;
   512         } else if (unique_input != n) {
   513           unique_input = top;
   514           break;
   515         }
   516       }
   517       if (unique_input != NULL && unique_input != top) {
   518         mem = unique_input;
   519       } else {
   520         done = true;
   521       }
   522     } else {
   523       assert(false, "unexpected node");
   524     }
   525   }
   526   if (mem != NULL) {
   527     if (mem == start_mem || mem == alloc_mem) {
   528       // hit a sentinel, return appropriate 0 value
   529       return _igvn.zerocon(ft);
   530     } else if (mem->is_Store()) {
   531       return mem->in(MemNode::ValueIn);
   532     } else if (mem->is_Phi()) {
   533       // attempt to produce a Phi reflecting the values on the input paths of the Phi
   534       Node_Stack value_phis(a, 8);
   535       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
   536       if (phi != NULL) {
   537         return phi;
   538       } else {
   539         // Kill all new Phis
   540         while(value_phis.is_nonempty()) {
   541           Node* n = value_phis.node();
   542           _igvn.replace_node(n, C->top());
   543           value_phis.pop();
   544         }
   545       }
   546     }
   547   }
   548   // Something go wrong.
   549   return NULL;
   550 }
   552 // Check the possibility of scalar replacement.
   553 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   554   //  Scan the uses of the allocation to check for anything that would
   555   //  prevent us from eliminating it.
   556   NOT_PRODUCT( const char* fail_eliminate = NULL; )
   557   DEBUG_ONLY( Node* disq_node = NULL; )
   558   bool  can_eliminate = true;
   560   Node* res = alloc->result_cast();
   561   const TypeOopPtr* res_type = NULL;
   562   if (res == NULL) {
   563     // All users were eliminated.
   564   } else if (!res->is_CheckCastPP()) {
   565     alloc->_is_scalar_replaceable = false;  // don't try again
   566     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
   567     can_eliminate = false;
   568   } else {
   569     res_type = _igvn.type(res)->isa_oopptr();
   570     if (res_type == NULL) {
   571       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
   572       can_eliminate = false;
   573     } else if (res_type->isa_aryptr()) {
   574       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   575       if (length < 0) {
   576         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
   577         can_eliminate = false;
   578       }
   579     }
   580   }
   582   if (can_eliminate && res != NULL) {
   583     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
   584                                j < jmax && can_eliminate; j++) {
   585       Node* use = res->fast_out(j);
   587       if (use->is_AddP()) {
   588         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
   589         int offset = addp_type->offset();
   591         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
   592           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
   593           can_eliminate = false;
   594           break;
   595         }
   596         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
   597                                    k < kmax && can_eliminate; k++) {
   598           Node* n = use->fast_out(k);
   599           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
   600             DEBUG_ONLY(disq_node = n;)
   601             if (n->is_Load() || n->is_LoadStore()) {
   602               NOT_PRODUCT(fail_eliminate = "Field load";)
   603             } else {
   604               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
   605             }
   606             can_eliminate = false;
   607           }
   608         }
   609       } else if (use->is_SafePoint()) {
   610         SafePointNode* sfpt = use->as_SafePoint();
   611         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
   612           // Object is passed as argument.
   613           DEBUG_ONLY(disq_node = use;)
   614           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
   615           can_eliminate = false;
   616         }
   617         Node* sfptMem = sfpt->memory();
   618         if (sfptMem == NULL || sfptMem->is_top()) {
   619           DEBUG_ONLY(disq_node = use;)
   620           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
   621           can_eliminate = false;
   622         } else {
   623           safepoints.append_if_missing(sfpt);
   624         }
   625       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
   626         if (use->is_Phi()) {
   627           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
   628             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   629           } else {
   630             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
   631           }
   632           DEBUG_ONLY(disq_node = use;)
   633         } else {
   634           if (use->Opcode() == Op_Return) {
   635             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   636           }else {
   637             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
   638           }
   639           DEBUG_ONLY(disq_node = use;)
   640         }
   641         can_eliminate = false;
   642       }
   643     }
   644   }
   646 #ifndef PRODUCT
   647   if (PrintEliminateAllocations) {
   648     if (can_eliminate) {
   649       tty->print("Scalar ");
   650       if (res == NULL)
   651         alloc->dump();
   652       else
   653         res->dump();
   654     } else {
   655       tty->print("NotScalar (%s)", fail_eliminate);
   656       if (res == NULL)
   657         alloc->dump();
   658       else
   659         res->dump();
   660 #ifdef ASSERT
   661       if (disq_node != NULL) {
   662           tty->print("  >>>> ");
   663           disq_node->dump();
   664       }
   665 #endif /*ASSERT*/
   666     }
   667   }
   668 #endif
   669   return can_eliminate;
   670 }
   672 // Do scalar replacement.
   673 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   674   GrowableArray <SafePointNode *> safepoints_done;
   676   ciKlass* klass = NULL;
   677   ciInstanceKlass* iklass = NULL;
   678   int nfields = 0;
   679   int array_base;
   680   int element_size;
   681   BasicType basic_elem_type;
   682   ciType* elem_type;
   684   Node* res = alloc->result_cast();
   685   const TypeOopPtr* res_type = NULL;
   686   if (res != NULL) { // Could be NULL when there are no users
   687     res_type = _igvn.type(res)->isa_oopptr();
   688   }
   690   if (res != NULL) {
   691     klass = res_type->klass();
   692     if (res_type->isa_instptr()) {
   693       // find the fields of the class which will be needed for safepoint debug information
   694       assert(klass->is_instance_klass(), "must be an instance klass.");
   695       iklass = klass->as_instance_klass();
   696       nfields = iklass->nof_nonstatic_fields();
   697     } else {
   698       // find the array's elements which will be needed for safepoint debug information
   699       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   700       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
   701       elem_type = klass->as_array_klass()->element_type();
   702       basic_elem_type = elem_type->basic_type();
   703       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
   704       element_size = type2aelembytes(basic_elem_type);
   705     }
   706   }
   707   //
   708   // Process the safepoint uses
   709   //
   710   while (safepoints.length() > 0) {
   711     SafePointNode* sfpt = safepoints.pop();
   712     Node* mem = sfpt->memory();
   713     uint first_ind = sfpt->req();
   714     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
   715 #ifdef ASSERT
   716                                                  alloc,
   717 #endif
   718                                                  first_ind, nfields);
   719     sobj->init_req(0, sfpt->in(TypeFunc::Control));
   720     transform_later(sobj);
   722     // Scan object's fields adding an input to the safepoint for each field.
   723     for (int j = 0; j < nfields; j++) {
   724       intptr_t offset;
   725       ciField* field = NULL;
   726       if (iklass != NULL) {
   727         field = iklass->nonstatic_field_at(j);
   728         offset = field->offset();
   729         elem_type = field->type();
   730         basic_elem_type = field->layout_type();
   731       } else {
   732         offset = array_base + j * (intptr_t)element_size;
   733       }
   735       const Type *field_type;
   736       // The next code is taken from Parse::do_get_xxx().
   737       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
   738         if (!elem_type->is_loaded()) {
   739           field_type = TypeInstPtr::BOTTOM;
   740         } else if (field != NULL && field->is_constant() && field->is_static()) {
   741           // This can happen if the constant oop is non-perm.
   742           ciObject* con = field->constant_value().as_object();
   743           // Do not "join" in the previous type; it doesn't add value,
   744           // and may yield a vacuous result if the field is of interface type.
   745           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
   746           assert(field_type != NULL, "field singleton type must be consistent");
   747         } else {
   748           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
   749         }
   750         if (UseCompressedOops) {
   751           field_type = field_type->make_narrowoop();
   752           basic_elem_type = T_NARROWOOP;
   753         }
   754       } else {
   755         field_type = Type::get_const_basic_type(basic_elem_type);
   756       }
   758       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
   760       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
   761       if (field_val == NULL) {
   762         // we weren't able to find a value for this field,
   763         // give up on eliminating this allocation
   764         alloc->_is_scalar_replaceable = false;  // don't try again
   765         // remove any extra entries we added to the safepoint
   766         uint last = sfpt->req() - 1;
   767         for (int k = 0;  k < j; k++) {
   768           sfpt->del_req(last--);
   769         }
   770         // rollback processed safepoints
   771         while (safepoints_done.length() > 0) {
   772           SafePointNode* sfpt_done = safepoints_done.pop();
   773           // remove any extra entries we added to the safepoint
   774           last = sfpt_done->req() - 1;
   775           for (int k = 0;  k < nfields; k++) {
   776             sfpt_done->del_req(last--);
   777           }
   778           JVMState *jvms = sfpt_done->jvms();
   779           jvms->set_endoff(sfpt_done->req());
   780           // Now make a pass over the debug information replacing any references
   781           // to SafePointScalarObjectNode with the allocated object.
   782           int start = jvms->debug_start();
   783           int end   = jvms->debug_end();
   784           for (int i = start; i < end; i++) {
   785             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
   786               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
   787               if (scobj->first_index() == sfpt_done->req() &&
   788                   scobj->n_fields() == (uint)nfields) {
   789                 assert(scobj->alloc() == alloc, "sanity");
   790                 sfpt_done->set_req(i, res);
   791               }
   792             }
   793           }
   794         }
   795 #ifndef PRODUCT
   796         if (PrintEliminateAllocations) {
   797           if (field != NULL) {
   798             tty->print("=== At SafePoint node %d can't find value of Field: ",
   799                        sfpt->_idx);
   800             field->print();
   801             int field_idx = C->get_alias_index(field_addr_type);
   802             tty->print(" (alias_idx=%d)", field_idx);
   803           } else { // Array's element
   804             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
   805                        sfpt->_idx, j);
   806           }
   807           tty->print(", which prevents elimination of: ");
   808           if (res == NULL)
   809             alloc->dump();
   810           else
   811             res->dump();
   812         }
   813 #endif
   814         return false;
   815       }
   816       if (UseCompressedOops && field_type->isa_narrowoop()) {
   817         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
   818         // to be able scalar replace the allocation.
   819         if (field_val->is_EncodeP()) {
   820           field_val = field_val->in(1);
   821         } else {
   822           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
   823         }
   824       }
   825       sfpt->add_req(field_val);
   826     }
   827     JVMState *jvms = sfpt->jvms();
   828     jvms->set_endoff(sfpt->req());
   829     // Now make a pass over the debug information replacing any references
   830     // to the allocated object with "sobj"
   831     int start = jvms->debug_start();
   832     int end   = jvms->debug_end();
   833     for (int i = start; i < end; i++) {
   834       if (sfpt->in(i) == res) {
   835         sfpt->set_req(i, sobj);
   836       }
   837     }
   838     safepoints_done.append_if_missing(sfpt); // keep it for rollback
   839   }
   840   return true;
   841 }
   843 // Process users of eliminated allocation.
   844 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
   845   Node* res = alloc->result_cast();
   846   if (res != NULL) {
   847     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
   848       Node *use = res->last_out(j);
   849       uint oc1 = res->outcnt();
   851       if (use->is_AddP()) {
   852         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
   853           Node *n = use->last_out(k);
   854           uint oc2 = use->outcnt();
   855           if (n->is_Store()) {
   856 #ifdef ASSERT
   857             // Verify that there is no dependent MemBarVolatile nodes,
   858             // they should be removed during IGVN, see MemBarNode::Ideal().
   859             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
   860                                        p < pmax; p++) {
   861               Node* mb = n->fast_out(p);
   862               assert(mb->is_Initialize() || !mb->is_MemBar() ||
   863                      mb->req() <= MemBarNode::Precedent ||
   864                      mb->in(MemBarNode::Precedent) != n,
   865                      "MemBarVolatile should be eliminated for non-escaping object");
   866             }
   867 #endif
   868             _igvn.replace_node(n, n->in(MemNode::Memory));
   869           } else {
   870             eliminate_card_mark(n);
   871           }
   872           k -= (oc2 - use->outcnt());
   873         }
   874       } else {
   875         eliminate_card_mark(use);
   876       }
   877       j -= (oc1 - res->outcnt());
   878     }
   879     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
   880     _igvn.remove_dead_node(res);
   881   }
   883   //
   884   // Process other users of allocation's projections
   885   //
   886   if (_resproj != NULL && _resproj->outcnt() != 0) {
   887     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
   888       Node *use = _resproj->last_out(j);
   889       uint oc1 = _resproj->outcnt();
   890       if (use->is_Initialize()) {
   891         // Eliminate Initialize node.
   892         InitializeNode *init = use->as_Initialize();
   893         assert(init->outcnt() <= 2, "only a control and memory projection expected");
   894         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
   895         if (ctrl_proj != NULL) {
   896            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
   897           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
   898         }
   899         Node *mem_proj = init->proj_out(TypeFunc::Memory);
   900         if (mem_proj != NULL) {
   901           Node *mem = init->in(TypeFunc::Memory);
   902 #ifdef ASSERT
   903           if (mem->is_MergeMem()) {
   904             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
   905           } else {
   906             assert(mem == _memproj_fallthrough, "allocation memory projection");
   907           }
   908 #endif
   909           _igvn.replace_node(mem_proj, mem);
   910         }
   911       } else if (use->is_AddP()) {
   912         // raw memory addresses used only by the initialization
   913         _igvn.replace_node(use, C->top());
   914       } else  {
   915         assert(false, "only Initialize or AddP expected");
   916       }
   917       j -= (oc1 - _resproj->outcnt());
   918     }
   919   }
   920   if (_fallthroughcatchproj != NULL) {
   921     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
   922   }
   923   if (_memproj_fallthrough != NULL) {
   924     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
   925   }
   926   if (_memproj_catchall != NULL) {
   927     _igvn.replace_node(_memproj_catchall, C->top());
   928   }
   929   if (_ioproj_fallthrough != NULL) {
   930     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
   931   }
   932   if (_ioproj_catchall != NULL) {
   933     _igvn.replace_node(_ioproj_catchall, C->top());
   934   }
   935   if (_catchallcatchproj != NULL) {
   936     _igvn.replace_node(_catchallcatchproj, C->top());
   937   }
   938 }
   940 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
   942   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
   943     return false;
   944   }
   946   extract_call_projections(alloc);
   948   GrowableArray <SafePointNode *> safepoints;
   949   if (!can_eliminate_allocation(alloc, safepoints)) {
   950     return false;
   951   }
   953   if (!scalar_replacement(alloc, safepoints)) {
   954     return false;
   955   }
   957   CompileLog* log = C->log();
   958   if (log != NULL) {
   959     Node* klass = alloc->in(AllocateNode::KlassNode);
   960     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
   961     log->head("eliminate_allocation type='%d'",
   962               log->identify(tklass->klass()));
   963     JVMState* p = alloc->jvms();
   964     while (p != NULL) {
   965       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
   966       p = p->caller();
   967     }
   968     log->tail("eliminate_allocation");
   969   }
   971   process_users_of_allocation(alloc);
   973 #ifndef PRODUCT
   974   if (PrintEliminateAllocations) {
   975     if (alloc->is_AllocateArray())
   976       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
   977     else
   978       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
   979   }
   980 #endif
   982   return true;
   983 }
   986 //---------------------------set_eden_pointers-------------------------
   987 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
   988   if (UseTLAB) {                // Private allocation: load from TLS
   989     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
   990     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
   991     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
   992     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
   993     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
   994   } else {                      // Shared allocation: load from globals
   995     CollectedHeap* ch = Universe::heap();
   996     address top_adr = (address)ch->top_addr();
   997     address end_adr = (address)ch->end_addr();
   998     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
   999     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
  1004 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
  1005   Node* adr = basic_plus_adr(base, offset);
  1006   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
  1007   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
  1008   transform_later(value);
  1009   return value;
  1013 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
  1014   Node* adr = basic_plus_adr(base, offset);
  1015   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
  1016   transform_later(mem);
  1017   return mem;
  1020 //=============================================================================
  1021 //
  1022 //                              A L L O C A T I O N
  1023 //
  1024 // Allocation attempts to be fast in the case of frequent small objects.
  1025 // It breaks down like this:
  1026 //
  1027 // 1) Size in doublewords is computed.  This is a constant for objects and
  1028 // variable for most arrays.  Doubleword units are used to avoid size
  1029 // overflow of huge doubleword arrays.  We need doublewords in the end for
  1030 // rounding.
  1031 //
  1032 // 2) Size is checked for being 'too large'.  Too-large allocations will go
  1033 // the slow path into the VM.  The slow path can throw any required
  1034 // exceptions, and does all the special checks for very large arrays.  The
  1035 // size test can constant-fold away for objects.  For objects with
  1036 // finalizers it constant-folds the otherway: you always go slow with
  1037 // finalizers.
  1038 //
  1039 // 3) If NOT using TLABs, this is the contended loop-back point.
  1040 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
  1041 //
  1042 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
  1043 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
  1044 // "size*8" we always enter the VM, where "largish" is a constant picked small
  1045 // enough that there's always space between the eden max and 4Gig (old space is
  1046 // there so it's quite large) and large enough that the cost of entering the VM
  1047 // is dwarfed by the cost to initialize the space.
  1048 //
  1049 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
  1050 // down.  If contended, repeat at step 3.  If using TLABs normal-store
  1051 // adjusted heap top back down; there is no contention.
  1052 //
  1053 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
  1054 // fields.
  1055 //
  1056 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
  1057 // oop flavor.
  1058 //
  1059 //=============================================================================
  1060 // FastAllocateSizeLimit value is in DOUBLEWORDS.
  1061 // Allocations bigger than this always go the slow route.
  1062 // This value must be small enough that allocation attempts that need to
  1063 // trigger exceptions go the slow route.  Also, it must be small enough so
  1064 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
  1065 //=============================================================================j//
  1066 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
  1067 // The allocator will coalesce int->oop copies away.  See comment in
  1068 // coalesce.cpp about how this works.  It depends critically on the exact
  1069 // code shape produced here, so if you are changing this code shape
  1070 // make sure the GC info for the heap-top is correct in and around the
  1071 // slow-path call.
  1072 //
  1074 void PhaseMacroExpand::expand_allocate_common(
  1075             AllocateNode* alloc, // allocation node to be expanded
  1076             Node* length,  // array length for an array allocation
  1077             const TypeFunc* slow_call_type, // Type of slow call
  1078             address slow_call_address  // Address of slow call
  1082   Node* ctrl = alloc->in(TypeFunc::Control);
  1083   Node* mem  = alloc->in(TypeFunc::Memory);
  1084   Node* i_o  = alloc->in(TypeFunc::I_O);
  1085   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
  1086   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
  1087   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
  1089   assert(ctrl != NULL, "must have control");
  1090   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
  1091   // they will not be used if "always_slow" is set
  1092   enum { slow_result_path = 1, fast_result_path = 2 };
  1093   Node *result_region;
  1094   Node *result_phi_rawmem;
  1095   Node *result_phi_rawoop;
  1096   Node *result_phi_i_o;
  1098   // The initial slow comparison is a size check, the comparison
  1099   // we want to do is a BoolTest::gt
  1100   bool always_slow = false;
  1101   int tv = _igvn.find_int_con(initial_slow_test, -1);
  1102   if (tv >= 0) {
  1103     always_slow = (tv == 1);
  1104     initial_slow_test = NULL;
  1105   } else {
  1106     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
  1109   if (C->env()->dtrace_alloc_probes() ||
  1110       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
  1111                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
  1112     // Force slow-path allocation
  1113     always_slow = true;
  1114     initial_slow_test = NULL;
  1118   enum { too_big_or_final_path = 1, need_gc_path = 2 };
  1119   Node *slow_region = NULL;
  1120   Node *toobig_false = ctrl;
  1122   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
  1123   // generate the initial test if necessary
  1124   if (initial_slow_test != NULL ) {
  1125     slow_region = new (C, 3) RegionNode(3);
  1127     // Now make the initial failure test.  Usually a too-big test but
  1128     // might be a TRUE for finalizers or a fancy class check for
  1129     // newInstance0.
  1130     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
  1131     transform_later(toobig_iff);
  1132     // Plug the failing-too-big test into the slow-path region
  1133     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
  1134     transform_later(toobig_true);
  1135     slow_region    ->init_req( too_big_or_final_path, toobig_true );
  1136     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
  1137     transform_later(toobig_false);
  1138   } else {         // No initial test, just fall into next case
  1139     toobig_false = ctrl;
  1140     debug_only(slow_region = NodeSentinel);
  1143   Node *slow_mem = mem;  // save the current memory state for slow path
  1144   // generate the fast allocation code unless we know that the initial test will always go slow
  1145   if (!always_slow) {
  1146     // Fast path modifies only raw memory.
  1147     if (mem->is_MergeMem()) {
  1148       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
  1151     Node* eden_top_adr;
  1152     Node* eden_end_adr;
  1154     set_eden_pointers(eden_top_adr, eden_end_adr);
  1156     // Load Eden::end.  Loop invariant and hoisted.
  1157     //
  1158     // Note: We set the control input on "eden_end" and "old_eden_top" when using
  1159     //       a TLAB to work around a bug where these values were being moved across
  1160     //       a safepoint.  These are not oops, so they cannot be include in the oop
  1161     //       map, but they can be changed by a GC.   The proper way to fix this would
  1162     //       be to set the raw memory state when generating a  SafepointNode.  However
  1163     //       this will require extensive changes to the loop optimization in order to
  1164     //       prevent a degradation of the optimization.
  1165     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
  1166     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
  1168     // allocate the Region and Phi nodes for the result
  1169     result_region = new (C, 3) RegionNode(3);
  1170     result_phi_rawmem = new (C, 3) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1171     result_phi_rawoop = new (C, 3) PhiNode(result_region, TypeRawPtr::BOTTOM);
  1172     result_phi_i_o    = new (C, 3) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
  1174     // We need a Region for the loop-back contended case.
  1175     enum { fall_in_path = 1, contended_loopback_path = 2 };
  1176     Node *contended_region;
  1177     Node *contended_phi_rawmem;
  1178     if (UseTLAB) {
  1179       contended_region = toobig_false;
  1180       contended_phi_rawmem = mem;
  1181     } else {
  1182       contended_region = new (C, 3) RegionNode(3);
  1183       contended_phi_rawmem = new (C, 3) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1184       // Now handle the passing-too-big test.  We fall into the contended
  1185       // loop-back merge point.
  1186       contended_region    ->init_req(fall_in_path, toobig_false);
  1187       contended_phi_rawmem->init_req(fall_in_path, mem);
  1188       transform_later(contended_region);
  1189       transform_later(contended_phi_rawmem);
  1192     // Load(-locked) the heap top.
  1193     // See note above concerning the control input when using a TLAB
  1194     Node *old_eden_top = UseTLAB
  1195       ? new (C, 3) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
  1196       : new (C, 3) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
  1198     transform_later(old_eden_top);
  1199     // Add to heap top to get a new heap top
  1200     Node *new_eden_top = new (C, 4) AddPNode(top(), old_eden_top, size_in_bytes);
  1201     transform_later(new_eden_top);
  1202     // Check for needing a GC; compare against heap end
  1203     Node *needgc_cmp = new (C, 3) CmpPNode(new_eden_top, eden_end);
  1204     transform_later(needgc_cmp);
  1205     Node *needgc_bol = new (C, 2) BoolNode(needgc_cmp, BoolTest::ge);
  1206     transform_later(needgc_bol);
  1207     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
  1208     transform_later(needgc_iff);
  1210     // Plug the failing-heap-space-need-gc test into the slow-path region
  1211     Node *needgc_true = new (C, 1) IfTrueNode(needgc_iff);
  1212     transform_later(needgc_true);
  1213     if (initial_slow_test) {
  1214       slow_region->init_req(need_gc_path, needgc_true);
  1215       // This completes all paths into the slow merge point
  1216       transform_later(slow_region);
  1217     } else {                      // No initial slow path needed!
  1218       // Just fall from the need-GC path straight into the VM call.
  1219       slow_region = needgc_true;
  1221     // No need for a GC.  Setup for the Store-Conditional
  1222     Node *needgc_false = new (C, 1) IfFalseNode(needgc_iff);
  1223     transform_later(needgc_false);
  1225     // Grab regular I/O before optional prefetch may change it.
  1226     // Slow-path does no I/O so just set it to the original I/O.
  1227     result_phi_i_o->init_req(slow_result_path, i_o);
  1229     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
  1230                               old_eden_top, new_eden_top, length);
  1232     // Name successful fast-path variables
  1233     Node* fast_oop = old_eden_top;
  1234     Node* fast_oop_ctrl;
  1235     Node* fast_oop_rawmem;
  1237     // Store (-conditional) the modified eden top back down.
  1238     // StorePConditional produces flags for a test PLUS a modified raw
  1239     // memory state.
  1240     if (UseTLAB) {
  1241       Node* store_eden_top =
  1242         new (C, 4) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1243                               TypeRawPtr::BOTTOM, new_eden_top);
  1244       transform_later(store_eden_top);
  1245       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
  1246       fast_oop_rawmem = store_eden_top;
  1247     } else {
  1248       Node* store_eden_top =
  1249         new (C, 5) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1250                                          new_eden_top, fast_oop/*old_eden_top*/);
  1251       transform_later(store_eden_top);
  1252       Node *contention_check = new (C, 2) BoolNode(store_eden_top, BoolTest::ne);
  1253       transform_later(contention_check);
  1254       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
  1255       transform_later(store_eden_top);
  1257       // If not using TLABs, check to see if there was contention.
  1258       IfNode *contention_iff = new (C, 2) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
  1259       transform_later(contention_iff);
  1260       Node *contention_true = new (C, 1) IfTrueNode(contention_iff);
  1261       transform_later(contention_true);
  1262       // If contention, loopback and try again.
  1263       contended_region->init_req(contended_loopback_path, contention_true);
  1264       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
  1266       // Fast-path succeeded with no contention!
  1267       Node *contention_false = new (C, 1) IfFalseNode(contention_iff);
  1268       transform_later(contention_false);
  1269       fast_oop_ctrl = contention_false;
  1271       // Bump total allocated bytes for this thread
  1272       Node* thread = new (C, 1) ThreadLocalNode();
  1273       transform_later(thread);
  1274       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
  1275                                              in_bytes(JavaThread::allocated_bytes_offset()));
  1276       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1277                                     0, TypeLong::LONG, T_LONG);
  1278 #ifdef _LP64
  1279       Node* alloc_size = size_in_bytes;
  1280 #else
  1281       Node* alloc_size = new (C, 2) ConvI2LNode(size_in_bytes);
  1282       transform_later(alloc_size);
  1283 #endif
  1284       Node* new_alloc_bytes = new (C, 3) AddLNode(alloc_bytes, alloc_size);
  1285       transform_later(new_alloc_bytes);
  1286       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1287                                    0, new_alloc_bytes, T_LONG);
  1290     fast_oop_rawmem = initialize_object(alloc,
  1291                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
  1292                                         klass_node, length, size_in_bytes);
  1294     if (C->env()->dtrace_extended_probes()) {
  1295       // Slow-path call
  1296       int size = TypeFunc::Parms + 2;
  1297       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
  1298                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
  1299                                                       "dtrace_object_alloc",
  1300                                                       TypeRawPtr::BOTTOM);
  1302       // Get base of thread-local storage area
  1303       Node* thread = new (C, 1) ThreadLocalNode();
  1304       transform_later(thread);
  1306       call->init_req(TypeFunc::Parms+0, thread);
  1307       call->init_req(TypeFunc::Parms+1, fast_oop);
  1308       call->init_req(TypeFunc::Control, fast_oop_ctrl);
  1309       call->init_req(TypeFunc::I_O    , top()); // does no i/o
  1310       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
  1311       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
  1312       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
  1313       transform_later(call);
  1314       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  1315       transform_later(fast_oop_ctrl);
  1316       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  1317       transform_later(fast_oop_rawmem);
  1320     // Plug in the successful fast-path into the result merge point
  1321     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
  1322     result_phi_rawoop->init_req(fast_result_path, fast_oop);
  1323     result_phi_i_o   ->init_req(fast_result_path, i_o);
  1324     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
  1325   } else {
  1326     slow_region = ctrl;
  1329   // Generate slow-path call
  1330   CallNode *call = new (C, slow_call_type->domain()->cnt())
  1331     CallStaticJavaNode(slow_call_type, slow_call_address,
  1332                        OptoRuntime::stub_name(slow_call_address),
  1333                        alloc->jvms()->bci(),
  1334                        TypePtr::BOTTOM);
  1335   call->init_req( TypeFunc::Control, slow_region );
  1336   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  1337   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
  1338   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1339   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1341   call->init_req(TypeFunc::Parms+0, klass_node);
  1342   if (length != NULL) {
  1343     call->init_req(TypeFunc::Parms+1, length);
  1346   // Copy debug information and adjust JVMState information, then replace
  1347   // allocate node with the call
  1348   copy_call_debug_info((CallNode *) alloc,  call);
  1349   if (!always_slow) {
  1350     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
  1352   _igvn.replace_node(alloc, call);
  1353   transform_later(call);
  1355   // Identify the output projections from the allocate node and
  1356   // adjust any references to them.
  1357   // The control and io projections look like:
  1358   //
  1359   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
  1360   //  Allocate                   Catch
  1361   //        ^---Proj(io) <-------+   ^---CatchProj(io)
  1362   //
  1363   //  We are interested in the CatchProj nodes.
  1364   //
  1365   extract_call_projections(call);
  1367   // An allocate node has separate memory projections for the uses on the control and i_o paths
  1368   // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
  1369   if (!always_slow && _memproj_fallthrough != NULL) {
  1370     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1371       Node *use = _memproj_fallthrough->fast_out(i);
  1372       _igvn.hash_delete(use);
  1373       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
  1374       _igvn._worklist.push(use);
  1375       // back up iterator
  1376       --i;
  1379   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
  1380   // we end up with a call that has only 1 memory projection
  1381   if (_memproj_catchall != NULL ) {
  1382     if (_memproj_fallthrough == NULL) {
  1383       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
  1384       transform_later(_memproj_fallthrough);
  1386     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
  1387       Node *use = _memproj_catchall->fast_out(i);
  1388       _igvn.hash_delete(use);
  1389       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
  1390       _igvn._worklist.push(use);
  1391       // back up iterator
  1392       --i;
  1396   // An allocate node has separate i_o projections for the uses on the control and i_o paths
  1397   // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
  1398   if (_ioproj_fallthrough == NULL) {
  1399     _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
  1400     transform_later(_ioproj_fallthrough);
  1401   } else if (!always_slow) {
  1402     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1403       Node *use = _ioproj_fallthrough->fast_out(i);
  1405       _igvn.hash_delete(use);
  1406       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
  1407       _igvn._worklist.push(use);
  1408       // back up iterator
  1409       --i;
  1412   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
  1413   // we end up with a call that has only 1 control projection
  1414   if (_ioproj_catchall != NULL ) {
  1415     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
  1416       Node *use = _ioproj_catchall->fast_out(i);
  1417       _igvn.hash_delete(use);
  1418       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
  1419       _igvn._worklist.push(use);
  1420       // back up iterator
  1421       --i;
  1425   // if we generated only a slow call, we are done
  1426   if (always_slow)
  1427     return;
  1430   if (_fallthroughcatchproj != NULL) {
  1431     ctrl = _fallthroughcatchproj->clone();
  1432     transform_later(ctrl);
  1433     _igvn.replace_node(_fallthroughcatchproj, result_region);
  1434   } else {
  1435     ctrl = top();
  1437   Node *slow_result;
  1438   if (_resproj == NULL) {
  1439     // no uses of the allocation result
  1440     slow_result = top();
  1441   } else {
  1442     slow_result = _resproj->clone();
  1443     transform_later(slow_result);
  1444     _igvn.replace_node(_resproj, result_phi_rawoop);
  1447   // Plug slow-path into result merge point
  1448   result_region    ->init_req( slow_result_path, ctrl );
  1449   result_phi_rawoop->init_req( slow_result_path, slow_result);
  1450   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
  1451   transform_later(result_region);
  1452   transform_later(result_phi_rawoop);
  1453   transform_later(result_phi_rawmem);
  1454   transform_later(result_phi_i_o);
  1455   // This completes all paths into the result merge point
  1459 // Helper for PhaseMacroExpand::expand_allocate_common.
  1460 // Initializes the newly-allocated storage.
  1461 Node*
  1462 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
  1463                                     Node* control, Node* rawmem, Node* object,
  1464                                     Node* klass_node, Node* length,
  1465                                     Node* size_in_bytes) {
  1466   InitializeNode* init = alloc->initialization();
  1467   // Store the klass & mark bits
  1468   Node* mark_node = NULL;
  1469   // For now only enable fast locking for non-array types
  1470   if (UseBiasedLocking && (length == NULL)) {
  1471     mark_node = make_load(control, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
  1472   } else {
  1473     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
  1475   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
  1477   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
  1478   int header_size = alloc->minimum_header_size();  // conservatively small
  1480   // Array length
  1481   if (length != NULL) {         // Arrays need length field
  1482     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
  1483     // conservatively small header size:
  1484     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1485     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1486     if (k->is_array_klass())    // we know the exact header size in most cases:
  1487       header_size = Klass::layout_helper_header_size(k->layout_helper());
  1490   // Clear the object body, if necessary.
  1491   if (init == NULL) {
  1492     // The init has somehow disappeared; be cautious and clear everything.
  1493     //
  1494     // This can happen if a node is allocated but an uncommon trap occurs
  1495     // immediately.  In this case, the Initialize gets associated with the
  1496     // trap, and may be placed in a different (outer) loop, if the Allocate
  1497     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
  1498     // there can be two Allocates to one Initialize.  The answer in all these
  1499     // edge cases is safety first.  It is always safe to clear immediately
  1500     // within an Allocate, and then (maybe or maybe not) clear some more later.
  1501     if (!ZeroTLAB)
  1502       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
  1503                                             header_size, size_in_bytes,
  1504                                             &_igvn);
  1505   } else {
  1506     if (!init->is_complete()) {
  1507       // Try to win by zeroing only what the init does not store.
  1508       // We can also try to do some peephole optimizations,
  1509       // such as combining some adjacent subword stores.
  1510       rawmem = init->complete_stores(control, rawmem, object,
  1511                                      header_size, size_in_bytes, &_igvn);
  1513     // We have no more use for this link, since the AllocateNode goes away:
  1514     init->set_req(InitializeNode::RawAddress, top());
  1515     // (If we keep the link, it just confuses the register allocator,
  1516     // who thinks he sees a real use of the address by the membar.)
  1519   return rawmem;
  1522 // Generate prefetch instructions for next allocations.
  1523 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
  1524                                         Node*& contended_phi_rawmem,
  1525                                         Node* old_eden_top, Node* new_eden_top,
  1526                                         Node* length) {
  1527    enum { fall_in_path = 1, pf_path = 2 };
  1528    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
  1529       // Generate prefetch allocation with watermark check.
  1530       // As an allocation hits the watermark, we will prefetch starting
  1531       // at a "distance" away from watermark.
  1533       Node *pf_region = new (C, 3) RegionNode(3);
  1534       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1535                                                 TypeRawPtr::BOTTOM );
  1536       // I/O is used for Prefetch
  1537       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
  1539       Node *thread = new (C, 1) ThreadLocalNode();
  1540       transform_later(thread);
  1542       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
  1543                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
  1544       transform_later(eden_pf_adr);
  1546       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
  1547                                    contended_phi_rawmem, eden_pf_adr,
  1548                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
  1549       transform_later(old_pf_wm);
  1551       // check against new_eden_top
  1552       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
  1553       transform_later(need_pf_cmp);
  1554       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
  1555       transform_later(need_pf_bol);
  1556       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
  1557                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1558       transform_later(need_pf_iff);
  1560       // true node, add prefetchdistance
  1561       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
  1562       transform_later(need_pf_true);
  1564       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
  1565       transform_later(need_pf_false);
  1567       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
  1568                                     _igvn.MakeConX(AllocatePrefetchDistance) );
  1569       transform_later(new_pf_wmt );
  1570       new_pf_wmt->set_req(0, need_pf_true);
  1572       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
  1573                                        contended_phi_rawmem, eden_pf_adr,
  1574                                        TypeRawPtr::BOTTOM, new_pf_wmt );
  1575       transform_later(store_new_wmt);
  1577       // adding prefetches
  1578       pf_phi_abio->init_req( fall_in_path, i_o );
  1580       Node *prefetch_adr;
  1581       Node *prefetch;
  1582       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
  1583       uint step_size = AllocatePrefetchStepSize;
  1584       uint distance = 0;
  1586       for ( uint i = 0; i < lines; i++ ) {
  1587         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
  1588                                             _igvn.MakeConX(distance) );
  1589         transform_later(prefetch_adr);
  1590         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
  1591         transform_later(prefetch);
  1592         distance += step_size;
  1593         i_o = prefetch;
  1595       pf_phi_abio->set_req( pf_path, i_o );
  1597       pf_region->init_req( fall_in_path, need_pf_false );
  1598       pf_region->init_req( pf_path, need_pf_true );
  1600       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
  1601       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
  1603       transform_later(pf_region);
  1604       transform_later(pf_phi_rawmem);
  1605       transform_later(pf_phi_abio);
  1607       needgc_false = pf_region;
  1608       contended_phi_rawmem = pf_phi_rawmem;
  1609       i_o = pf_phi_abio;
  1610    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
  1611       // Insert a prefetch for each allocation only on the fast-path
  1612       Node *pf_region = new (C, 3) RegionNode(3);
  1613       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1614                                                 TypeRawPtr::BOTTOM );
  1616       // Generate several prefetch instructions only for arrays.
  1617       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
  1618       uint step_size = AllocatePrefetchStepSize;
  1619       uint distance = AllocatePrefetchDistance;
  1621       // Next cache address.
  1622       Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
  1623                                             _igvn.MakeConX(distance));
  1624       transform_later(cache_adr);
  1625       cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
  1626       transform_later(cache_adr);
  1627       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
  1628       cache_adr = new (C, 3) AndXNode(cache_adr, mask);
  1629       transform_later(cache_adr);
  1630       cache_adr = new (C, 2) CastX2PNode(cache_adr);
  1631       transform_later(cache_adr);
  1633       // Prefetch
  1634       Node *prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, cache_adr );
  1635       prefetch->set_req(0, needgc_false);
  1636       transform_later(prefetch);
  1637       contended_phi_rawmem = prefetch;
  1638       Node *prefetch_adr;
  1639       distance = step_size;
  1640       for ( uint i = 1; i < lines; i++ ) {
  1641         prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
  1642                                             _igvn.MakeConX(distance) );
  1643         transform_later(prefetch_adr);
  1644         prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, prefetch_adr );
  1645         transform_later(prefetch);
  1646         distance += step_size;
  1647         contended_phi_rawmem = prefetch;
  1649    } else if( AllocatePrefetchStyle > 0 ) {
  1650       // Insert a prefetch for each allocation only on the fast-path
  1651       Node *prefetch_adr;
  1652       Node *prefetch;
  1653       // Generate several prefetch instructions only for arrays.
  1654       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
  1655       uint step_size = AllocatePrefetchStepSize;
  1656       uint distance = AllocatePrefetchDistance;
  1657       for ( uint i = 0; i < lines; i++ ) {
  1658         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
  1659                                             _igvn.MakeConX(distance) );
  1660         transform_later(prefetch_adr);
  1661         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
  1662         // Do not let it float too high, since if eden_top == eden_end,
  1663         // both might be null.
  1664         if( i == 0 ) { // Set control for first prefetch, next follows it
  1665           prefetch->init_req(0, needgc_false);
  1667         transform_later(prefetch);
  1668         distance += step_size;
  1669         i_o = prefetch;
  1672    return i_o;
  1676 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
  1677   expand_allocate_common(alloc, NULL,
  1678                          OptoRuntime::new_instance_Type(),
  1679                          OptoRuntime::new_instance_Java());
  1682 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
  1683   Node* length = alloc->in(AllocateNode::ALength);
  1684   expand_allocate_common(alloc, length,
  1685                          OptoRuntime::new_array_Type(),
  1686                          OptoRuntime::new_array_Java());
  1690 // we have determined that this lock/unlock can be eliminated, we simply
  1691 // eliminate the node without expanding it.
  1692 //
  1693 // Note:  The membar's associated with the lock/unlock are currently not
  1694 //        eliminated.  This should be investigated as a future enhancement.
  1695 //
  1696 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
  1698   if (!alock->is_eliminated()) {
  1699     return false;
  1701   if (alock->is_Lock() && !alock->is_coarsened()) {
  1702       // Create new "eliminated" BoxLock node and use it
  1703       // in monitor debug info for the same object.
  1704       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
  1705       Node* obj = alock->obj_node();
  1706       if (!oldbox->is_eliminated()) {
  1707         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
  1708         newbox->set_eliminated();
  1709         transform_later(newbox);
  1710         // Replace old box node with new box for all users
  1711         // of the same object.
  1712         for (uint i = 0; i < oldbox->outcnt();) {
  1714           bool next_edge = true;
  1715           Node* u = oldbox->raw_out(i);
  1716           if (u == alock) {
  1717             i++;
  1718             continue; // It will be removed below
  1720           if (u->is_Lock() &&
  1721               u->as_Lock()->obj_node() == obj &&
  1722               // oldbox could be referenced in debug info also
  1723               u->as_Lock()->box_node() == oldbox) {
  1724             assert(u->as_Lock()->is_eliminated(), "sanity");
  1725             _igvn.hash_delete(u);
  1726             u->set_req(TypeFunc::Parms + 1, newbox);
  1727             next_edge = false;
  1728 #ifdef ASSERT
  1729           } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
  1730             assert(u->as_Unlock()->is_eliminated(), "sanity");
  1731 #endif
  1733           // Replace old box in monitor debug info.
  1734           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
  1735             SafePointNode* sfn = u->as_SafePoint();
  1736             JVMState* youngest_jvms = sfn->jvms();
  1737             int max_depth = youngest_jvms->depth();
  1738             for (int depth = 1; depth <= max_depth; depth++) {
  1739               JVMState* jvms = youngest_jvms->of_depth(depth);
  1740               int num_mon  = jvms->nof_monitors();
  1741               // Loop over monitors
  1742               for (int idx = 0; idx < num_mon; idx++) {
  1743                 Node* obj_node = sfn->monitor_obj(jvms, idx);
  1744                 Node* box_node = sfn->monitor_box(jvms, idx);
  1745                 if (box_node == oldbox && obj_node == obj) {
  1746                   int j = jvms->monitor_box_offset(idx);
  1747                   _igvn.hash_delete(u);
  1748                   u->set_req(j, newbox);
  1749                   next_edge = false;
  1751               } // for (int idx = 0;
  1752             } // for (int depth = 1;
  1753           } // if (u->is_SafePoint()
  1754           if (next_edge) i++;
  1755         } // for (uint i = 0; i < oldbox->outcnt();)
  1756       } // if (!oldbox->is_eliminated())
  1757   } // if (alock->is_Lock() && !lock->is_coarsened())
  1759   CompileLog* log = C->log();
  1760   if (log != NULL) {
  1761     log->head("eliminate_lock lock='%d'",
  1762               alock->is_Lock());
  1763     JVMState* p = alock->jvms();
  1764     while (p != NULL) {
  1765       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1766       p = p->caller();
  1768     log->tail("eliminate_lock");
  1771   #ifndef PRODUCT
  1772   if (PrintEliminateLocks) {
  1773     if (alock->is_Lock()) {
  1774       tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
  1775     } else {
  1776       tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
  1779   #endif
  1781   Node* mem  = alock->in(TypeFunc::Memory);
  1782   Node* ctrl = alock->in(TypeFunc::Control);
  1784   extract_call_projections(alock);
  1785   // There are 2 projections from the lock.  The lock node will
  1786   // be deleted when its last use is subsumed below.
  1787   assert(alock->outcnt() == 2 &&
  1788          _fallthroughproj != NULL &&
  1789          _memproj_fallthrough != NULL,
  1790          "Unexpected projections from Lock/Unlock");
  1792   Node* fallthroughproj = _fallthroughproj;
  1793   Node* memproj_fallthrough = _memproj_fallthrough;
  1795   // The memory projection from a lock/unlock is RawMem
  1796   // The input to a Lock is merged memory, so extract its RawMem input
  1797   // (unless the MergeMem has been optimized away.)
  1798   if (alock->is_Lock()) {
  1799     // Seach for MemBarAcquire node and delete it also.
  1800     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
  1801     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
  1802     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
  1803     Node* memproj = membar->proj_out(TypeFunc::Memory);
  1804     _igvn.replace_node(ctrlproj, fallthroughproj);
  1805     _igvn.replace_node(memproj, memproj_fallthrough);
  1807     // Delete FastLock node also if this Lock node is unique user
  1808     // (a loop peeling may clone a Lock node).
  1809     Node* flock = alock->as_Lock()->fastlock_node();
  1810     if (flock->outcnt() == 1) {
  1811       assert(flock->unique_out() == alock, "sanity");
  1812       _igvn.replace_node(flock, top());
  1816   // Seach for MemBarRelease node and delete it also.
  1817   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
  1818       ctrl->in(0)->is_MemBar()) {
  1819     MemBarNode* membar = ctrl->in(0)->as_MemBar();
  1820     assert(membar->Opcode() == Op_MemBarRelease &&
  1821            mem->is_Proj() && membar == mem->in(0), "");
  1822     _igvn.replace_node(fallthroughproj, ctrl);
  1823     _igvn.replace_node(memproj_fallthrough, mem);
  1824     fallthroughproj = ctrl;
  1825     memproj_fallthrough = mem;
  1826     ctrl = membar->in(TypeFunc::Control);
  1827     mem  = membar->in(TypeFunc::Memory);
  1830   _igvn.replace_node(fallthroughproj, ctrl);
  1831   _igvn.replace_node(memproj_fallthrough, mem);
  1832   return true;
  1836 //------------------------------expand_lock_node----------------------
  1837 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
  1839   Node* ctrl = lock->in(TypeFunc::Control);
  1840   Node* mem = lock->in(TypeFunc::Memory);
  1841   Node* obj = lock->obj_node();
  1842   Node* box = lock->box_node();
  1843   Node* flock = lock->fastlock_node();
  1845   // Make the merge point
  1846   Node *region;
  1847   Node *mem_phi;
  1848   Node *slow_path;
  1850   if (UseOptoBiasInlining) {
  1851     /*
  1852      *  See the full description in MacroAssembler::biased_locking_enter().
  1854      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
  1855      *    // The object is biased.
  1856      *    proto_node = klass->prototype_header;
  1857      *    o_node = thread | proto_node;
  1858      *    x_node = o_node ^ mark_word;
  1859      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
  1860      *      // Done.
  1861      *    } else {
  1862      *      if( (x_node & biased_lock_mask) != 0 ) {
  1863      *        // The klass's prototype header is no longer biased.
  1864      *        cas(&mark_word, mark_word, proto_node)
  1865      *        goto cas_lock;
  1866      *      } else {
  1867      *        // The klass's prototype header is still biased.
  1868      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
  1869      *          old = mark_word;
  1870      *          new = o_node;
  1871      *        } else {
  1872      *          // Different thread or anonymous biased.
  1873      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
  1874      *          new = thread | old;
  1875      *        }
  1876      *        // Try to rebias.
  1877      *        if( cas(&mark_word, old, new) == 0 ) {
  1878      *          // Done.
  1879      *        } else {
  1880      *          goto slow_path; // Failed.
  1881      *        }
  1882      *      }
  1883      *    }
  1884      *  } else {
  1885      *    // The object is not biased.
  1886      *    cas_lock:
  1887      *    if( FastLock(obj) == 0 ) {
  1888      *      // Done.
  1889      *    } else {
  1890      *      slow_path:
  1891      *      OptoRuntime::complete_monitor_locking_Java(obj);
  1892      *    }
  1893      *  }
  1894      */
  1896     region  = new (C, 5) RegionNode(5);
  1897     // create a Phi for the memory state
  1898     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1900     Node* fast_lock_region  = new (C, 3) RegionNode(3);
  1901     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1903     // First, check mark word for the biased lock pattern.
  1904     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  1906     // Get fast path - mark word has the biased lock pattern.
  1907     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
  1908                          markOopDesc::biased_lock_mask_in_place,
  1909                          markOopDesc::biased_lock_pattern, true);
  1910     // fast_lock_region->in(1) is set to slow path.
  1911     fast_lock_mem_phi->init_req(1, mem);
  1913     // Now check that the lock is biased to the current thread and has
  1914     // the same epoch and bias as Klass::_prototype_header.
  1916     // Special-case a fresh allocation to avoid building nodes:
  1917     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
  1918     if (klass_node == NULL) {
  1919       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  1920       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
  1921 #ifdef _LP64
  1922       if (UseCompressedOops && klass_node->is_DecodeN()) {
  1923         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
  1924         klass_node->in(1)->init_req(0, ctrl);
  1925       } else
  1926 #endif
  1927       klass_node->init_req(0, ctrl);
  1929     Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
  1931     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
  1932     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  1933     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
  1934     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
  1936     // Get slow path - mark word does NOT match the value.
  1937     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
  1938                                       (~markOopDesc::age_mask_in_place), 0);
  1939     // region->in(3) is set to fast path - the object is biased to the current thread.
  1940     mem_phi->init_req(3, mem);
  1943     // Mark word does NOT match the value (thread | Klass::_prototype_header).
  1946     // First, check biased pattern.
  1947     // Get fast path - _prototype_header has the same biased lock pattern.
  1948     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
  1949                           markOopDesc::biased_lock_mask_in_place, 0, true);
  1951     not_biased_ctrl = fast_lock_region->in(2); // Slow path
  1952     // fast_lock_region->in(2) - the prototype header is no longer biased
  1953     // and we have to revoke the bias on this object.
  1954     // We are going to try to reset the mark of this object to the prototype
  1955     // value and fall through to the CAS-based locking scheme.
  1956     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  1957     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
  1958                                                  proto_node, mark_node);
  1959     transform_later(cas);
  1960     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
  1961     fast_lock_mem_phi->init_req(2, proj);
  1964     // Second, check epoch bits.
  1965     Node* rebiased_region  = new (C, 3) RegionNode(3);
  1966     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  1967     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  1969     // Get slow path - mark word does NOT match epoch bits.
  1970     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
  1971                                       markOopDesc::epoch_mask_in_place, 0);
  1972     // The epoch of the current bias is not valid, attempt to rebias the object
  1973     // toward the current thread.
  1974     rebiased_region->init_req(2, epoch_ctrl);
  1975     old_phi->init_req(2, mark_node);
  1976     new_phi->init_req(2, o_node);
  1978     // rebiased_region->in(1) is set to fast path.
  1979     // The epoch of the current bias is still valid but we know
  1980     // nothing about the owner; it might be set or it might be clear.
  1981     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
  1982                              markOopDesc::age_mask_in_place |
  1983                              markOopDesc::epoch_mask_in_place);
  1984     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
  1985     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  1986     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
  1987     old_phi->init_req(1, old);
  1988     new_phi->init_req(1, new_mark);
  1990     transform_later(rebiased_region);
  1991     transform_later(old_phi);
  1992     transform_later(new_phi);
  1994     // Try to acquire the bias of the object using an atomic operation.
  1995     // If this fails we will go in to the runtime to revoke the object's bias.
  1996     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
  1997                                            new_phi, old_phi);
  1998     transform_later(cas);
  1999     proj = transform_later( new (C, 1) SCMemProjNode(cas));
  2001     // Get slow path - Failed to CAS.
  2002     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
  2003     mem_phi->init_req(4, proj);
  2004     // region->in(4) is set to fast path - the object is rebiased to the current thread.
  2006     // Failed to CAS.
  2007     slow_path  = new (C, 3) RegionNode(3);
  2008     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
  2010     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
  2011     slow_mem->init_req(1, proj);
  2013     // Call CAS-based locking scheme (FastLock node).
  2015     transform_later(fast_lock_region);
  2016     transform_later(fast_lock_mem_phi);
  2018     // Get slow path - FastLock failed to lock the object.
  2019     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
  2020     mem_phi->init_req(2, fast_lock_mem_phi);
  2021     // region->in(2) is set to fast path - the object is locked to the current thread.
  2023     slow_path->init_req(2, ctrl); // Capture slow-control
  2024     slow_mem->init_req(2, fast_lock_mem_phi);
  2026     transform_later(slow_path);
  2027     transform_later(slow_mem);
  2028     // Reset lock's memory edge.
  2029     lock->set_req(TypeFunc::Memory, slow_mem);
  2031   } else {
  2032     region  = new (C, 3) RegionNode(3);
  2033     // create a Phi for the memory state
  2034     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2036     // Optimize test; set region slot 2
  2037     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
  2038     mem_phi->init_req(2, mem);
  2041   // Make slow path call
  2042   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
  2044   extract_call_projections(call);
  2046   // Slow path can only throw asynchronous exceptions, which are always
  2047   // de-opted.  So the compiler thinks the slow-call can never throw an
  2048   // exception.  If it DOES throw an exception we would need the debug
  2049   // info removed first (since if it throws there is no monitor).
  2050   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2051            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2053   // Capture slow path
  2054   // disconnect fall-through projection from call and create a new one
  2055   // hook up users of fall-through projection to region
  2056   Node *slow_ctrl = _fallthroughproj->clone();
  2057   transform_later(slow_ctrl);
  2058   _igvn.hash_delete(_fallthroughproj);
  2059   _fallthroughproj->disconnect_inputs(NULL);
  2060   region->init_req(1, slow_ctrl);
  2061   // region inputs are now complete
  2062   transform_later(region);
  2063   _igvn.replace_node(_fallthroughproj, region);
  2065   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2066   mem_phi->init_req(1, memproj );
  2067   transform_later(mem_phi);
  2068   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2071 //------------------------------expand_unlock_node----------------------
  2072 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
  2074   Node* ctrl = unlock->in(TypeFunc::Control);
  2075   Node* mem = unlock->in(TypeFunc::Memory);
  2076   Node* obj = unlock->obj_node();
  2077   Node* box = unlock->box_node();
  2079   // No need for a null check on unlock
  2081   // Make the merge point
  2082   Node *region;
  2083   Node *mem_phi;
  2085   if (UseOptoBiasInlining) {
  2086     // Check for biased locking unlock case, which is a no-op.
  2087     // See the full description in MacroAssembler::biased_locking_exit().
  2088     region  = new (C, 4) RegionNode(4);
  2089     // create a Phi for the memory state
  2090     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2091     mem_phi->init_req(3, mem);
  2093     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2094     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
  2095                          markOopDesc::biased_lock_mask_in_place,
  2096                          markOopDesc::biased_lock_pattern);
  2097   } else {
  2098     region  = new (C, 3) RegionNode(3);
  2099     // create a Phi for the memory state
  2100     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2103   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
  2104   funlock = transform_later( funlock )->as_FastUnlock();
  2105   // Optimize test; set region slot 2
  2106   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
  2108   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
  2110   extract_call_projections(call);
  2112   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2113            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2115   // No exceptions for unlocking
  2116   // Capture slow path
  2117   // disconnect fall-through projection from call and create a new one
  2118   // hook up users of fall-through projection to region
  2119   Node *slow_ctrl = _fallthroughproj->clone();
  2120   transform_later(slow_ctrl);
  2121   _igvn.hash_delete(_fallthroughproj);
  2122   _fallthroughproj->disconnect_inputs(NULL);
  2123   region->init_req(1, slow_ctrl);
  2124   // region inputs are now complete
  2125   transform_later(region);
  2126   _igvn.replace_node(_fallthroughproj, region);
  2128   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2129   mem_phi->init_req(1, memproj );
  2130   mem_phi->init_req(2, mem);
  2131   transform_later(mem_phi);
  2132   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2135 //------------------------------expand_macro_nodes----------------------
  2136 //  Returns true if a failure occurred.
  2137 bool PhaseMacroExpand::expand_macro_nodes() {
  2138   if (C->macro_count() == 0)
  2139     return false;
  2140   // First, attempt to eliminate locks
  2141   bool progress = true;
  2142   while (progress) {
  2143     progress = false;
  2144     for (int i = C->macro_count(); i > 0; i--) {
  2145       Node * n = C->macro_node(i-1);
  2146       bool success = false;
  2147       debug_only(int old_macro_count = C->macro_count(););
  2148       if (n->is_AbstractLock()) {
  2149         success = eliminate_locking_node(n->as_AbstractLock());
  2150       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
  2151         _igvn.replace_node(n, n->in(1));
  2152         success = true;
  2154       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2155       progress = progress || success;
  2158   // Next, attempt to eliminate allocations
  2159   progress = true;
  2160   while (progress) {
  2161     progress = false;
  2162     for (int i = C->macro_count(); i > 0; i--) {
  2163       Node * n = C->macro_node(i-1);
  2164       bool success = false;
  2165       debug_only(int old_macro_count = C->macro_count(););
  2166       switch (n->class_id()) {
  2167       case Node::Class_Allocate:
  2168       case Node::Class_AllocateArray:
  2169         success = eliminate_allocate_node(n->as_Allocate());
  2170         break;
  2171       case Node::Class_Lock:
  2172       case Node::Class_Unlock:
  2173         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
  2174         break;
  2175       default:
  2176         assert(false, "unknown node type in macro list");
  2178       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2179       progress = progress || success;
  2182   // Make sure expansion will not cause node limit to be exceeded.
  2183   // Worst case is a macro node gets expanded into about 50 nodes.
  2184   // Allow 50% more for optimization.
  2185   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
  2186     return true;
  2188   // expand "macro" nodes
  2189   // nodes are removed from the macro list as they are processed
  2190   while (C->macro_count() > 0) {
  2191     int macro_count = C->macro_count();
  2192     Node * n = C->macro_node(macro_count-1);
  2193     assert(n->is_macro(), "only macro nodes expected here");
  2194     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
  2195       // node is unreachable, so don't try to expand it
  2196       C->remove_macro_node(n);
  2197       continue;
  2199     switch (n->class_id()) {
  2200     case Node::Class_Allocate:
  2201       expand_allocate(n->as_Allocate());
  2202       break;
  2203     case Node::Class_AllocateArray:
  2204       expand_allocate_array(n->as_AllocateArray());
  2205       break;
  2206     case Node::Class_Lock:
  2207       expand_lock_node(n->as_Lock());
  2208       break;
  2209     case Node::Class_Unlock:
  2210       expand_unlock_node(n->as_Unlock());
  2211       break;
  2212     default:
  2213       assert(false, "unknown node type in macro list");
  2215     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
  2216     if (C->failing())  return true;
  2219   _igvn.set_delay_transform(false);
  2220   _igvn.optimize();
  2221   return false;

mercurial