src/share/vm/opto/loopnode.cpp

Fri, 11 Mar 2011 07:50:51 -0800

author
kvn
date
Fri, 11 Mar 2011 07:50:51 -0800
changeset 2636
83f08886981c
parent 2555
194c9fdee631
child 2665
9dc311b8473e
permissions
-rw-r--r--

7026631: field _klass is incorrectly set for dual type of TypeAryPtr::OOPS
Summary: add missing check this->dual() != TypeAryPtr::OOPS into TypeAryPtr::klass().
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/loopnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/superword.hpp"
    40 //=============================================================================
    41 //------------------------------is_loop_iv-------------------------------------
    42 // Determine if a node is Counted loop induction variable.
    43 // The method is declared in node.hpp.
    44 const Node* Node::is_loop_iv() const {
    45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    46       this->as_Phi()->region()->is_CountedLoop() &&
    47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    48     return this;
    49   } else {
    50     return NULL;
    51   }
    52 }
    54 //=============================================================================
    55 //------------------------------dump_spec--------------------------------------
    56 // Dump special per-node info
    57 #ifndef PRODUCT
    58 void LoopNode::dump_spec(outputStream *st) const {
    59   if( is_inner_loop () ) st->print( "inner " );
    60   if( is_partial_peel_loop () ) st->print( "partial_peel " );
    61   if( partial_peel_has_failed () ) st->print( "partial_peel_failed " );
    62 }
    63 #endif
    65 //------------------------------get_early_ctrl---------------------------------
    66 // Compute earliest legal control
    67 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    68   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    69   uint i;
    70   Node *early;
    71   if( n->in(0) ) {
    72     early = n->in(0);
    73     if( !early->is_CFG() ) // Might be a non-CFG multi-def
    74       early = get_ctrl(early);        // So treat input as a straight data input
    75     i = 1;
    76   } else {
    77     early = get_ctrl(n->in(1));
    78     i = 2;
    79   }
    80   uint e_d = dom_depth(early);
    81   assert( early, "" );
    82   for( ; i < n->req(); i++ ) {
    83     Node *cin = get_ctrl(n->in(i));
    84     assert( cin, "" );
    85     // Keep deepest dominator depth
    86     uint c_d = dom_depth(cin);
    87     if( c_d > e_d ) {           // Deeper guy?
    88       early = cin;              // Keep deepest found so far
    89       e_d = c_d;
    90     } else if( c_d == e_d &&    // Same depth?
    91                early != cin ) { // If not equal, must use slower algorithm
    92       // If same depth but not equal, one _must_ dominate the other
    93       // and we want the deeper (i.e., dominated) guy.
    94       Node *n1 = early;
    95       Node *n2 = cin;
    96       while( 1 ) {
    97         n1 = idom(n1);          // Walk up until break cycle
    98         n2 = idom(n2);
    99         if( n1 == cin ||        // Walked early up to cin
   100             dom_depth(n2) < c_d )
   101           break;                // early is deeper; keep him
   102         if( n2 == early ||      // Walked cin up to early
   103             dom_depth(n1) < c_d ) {
   104           early = cin;          // cin is deeper; keep him
   105           break;
   106         }
   107       }
   108       e_d = dom_depth(early);   // Reset depth register cache
   109     }
   110   }
   112   // Return earliest legal location
   113   assert(early == find_non_split_ctrl(early), "unexpected early control");
   115   return early;
   116 }
   118 //------------------------------set_early_ctrl---------------------------------
   119 // Set earliest legal control
   120 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   121   Node *early = get_early_ctrl(n);
   123   // Record earliest legal location
   124   set_ctrl(n, early);
   125 }
   127 //------------------------------set_subtree_ctrl-------------------------------
   128 // set missing _ctrl entries on new nodes
   129 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   130   // Already set?  Get out.
   131   if( _nodes[n->_idx] ) return;
   132   // Recursively set _nodes array to indicate where the Node goes
   133   uint i;
   134   for( i = 0; i < n->req(); ++i ) {
   135     Node *m = n->in(i);
   136     if( m && m != C->root() )
   137       set_subtree_ctrl( m );
   138   }
   140   // Fixup self
   141   set_early_ctrl( n );
   142 }
   144 //------------------------------is_counted_loop--------------------------------
   145 Node *PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   146   PhaseGVN *gvn = &_igvn;
   148   // Counted loop head must be a good RegionNode with only 3 not NULL
   149   // control input edges: Self, Entry, LoopBack.
   150   if ( x->in(LoopNode::Self) == NULL || x->req() != 3 )
   151     return NULL;
   153   Node *init_control = x->in(LoopNode::EntryControl);
   154   Node *back_control = x->in(LoopNode::LoopBackControl);
   155   if( init_control == NULL || back_control == NULL )    // Partially dead
   156     return NULL;
   157   // Must also check for TOP when looking for a dead loop
   158   if( init_control->is_top() || back_control->is_top() )
   159     return NULL;
   161   // Allow funny placement of Safepoint
   162   if( back_control->Opcode() == Op_SafePoint )
   163     back_control = back_control->in(TypeFunc::Control);
   165   // Controlling test for loop
   166   Node *iftrue = back_control;
   167   uint iftrue_op = iftrue->Opcode();
   168   if( iftrue_op != Op_IfTrue &&
   169       iftrue_op != Op_IfFalse )
   170     // I have a weird back-control.  Probably the loop-exit test is in
   171     // the middle of the loop and I am looking at some trailing control-flow
   172     // merge point.  To fix this I would have to partially peel the loop.
   173     return NULL; // Obscure back-control
   175   // Get boolean guarding loop-back test
   176   Node *iff = iftrue->in(0);
   177   if( get_loop(iff) != loop || !iff->in(1)->is_Bool() ) return NULL;
   178   BoolNode *test = iff->in(1)->as_Bool();
   179   BoolTest::mask bt = test->_test._test;
   180   float cl_prob = iff->as_If()->_prob;
   181   if( iftrue_op == Op_IfFalse ) {
   182     bt = BoolTest(bt).negate();
   183     cl_prob = 1.0 - cl_prob;
   184   }
   185   // Get backedge compare
   186   Node *cmp = test->in(1);
   187   int cmp_op = cmp->Opcode();
   188   if( cmp_op != Op_CmpI )
   189     return NULL;                // Avoid pointer & float compares
   191   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   192   Node *incr  = cmp->in(1);
   193   Node *limit = cmp->in(2);
   195   // ---------
   196   // need 'loop()' test to tell if limit is loop invariant
   197   // ---------
   199   if( !is_member( loop, get_ctrl(incr) ) ) { // Swapped trip counter and limit?
   200     Node *tmp = incr;           // Then reverse order into the CmpI
   201     incr = limit;
   202     limit = tmp;
   203     bt = BoolTest(bt).commute(); // And commute the exit test
   204   }
   205   if( is_member( loop, get_ctrl(limit) ) ) // Limit must loop-invariant
   206     return NULL;
   208   // Trip-counter increment must be commutative & associative.
   209   uint incr_op = incr->Opcode();
   210   if( incr_op == Op_Phi && incr->req() == 3 ) {
   211     incr = incr->in(2);         // Assume incr is on backedge of Phi
   212     incr_op = incr->Opcode();
   213   }
   214   Node* trunc1 = NULL;
   215   Node* trunc2 = NULL;
   216   const TypeInt* iv_trunc_t = NULL;
   217   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   218     return NULL; // Funny increment opcode
   219   }
   221   // Get merge point
   222   Node *xphi = incr->in(1);
   223   Node *stride = incr->in(2);
   224   if( !stride->is_Con() ) {     // Oops, swap these
   225     if( !xphi->is_Con() )       // Is the other guy a constant?
   226       return NULL;              // Nope, unknown stride, bail out
   227     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   228     xphi = stride;
   229     stride = tmp;
   230   }
   231   //if( loop(xphi) != l) return NULL;// Merge point is in inner loop??
   232   if( !xphi->is_Phi() ) return NULL; // Too much math on the trip counter
   233   PhiNode *phi = xphi->as_Phi();
   235   // Stride must be constant
   236   const Type *stride_t = stride->bottom_type();
   237   int stride_con = stride_t->is_int()->get_con();
   238   assert( stride_con, "missed some peephole opt" );
   240   // Phi must be of loop header; backedge must wrap to increment
   241   if( phi->region() != x ) return NULL;
   242   if( trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   243       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1 ) {
   244     return NULL;
   245   }
   246   Node *init_trip = phi->in(LoopNode::EntryControl);
   247   //if (!init_trip->is_Con()) return NULL; // avoid rolling over MAXINT/MININT
   249   // If iv trunc type is smaller than int, check for possible wrap.
   250   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   251     assert(trunc1 != NULL, "must have found some truncation");
   253     // Get a better type for the phi (filtered thru if's)
   254     const TypeInt* phi_ft = filtered_type(phi);
   256     // Can iv take on a value that will wrap?
   257     //
   258     // Ensure iv's limit is not within "stride" of the wrap value.
   259     //
   260     // Example for "short" type
   261     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   262     //    If the stride is +10, then the last value of the induction
   263     //    variable before the increment (phi_ft->_hi) must be
   264     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   265     //    ensure no truncation occurs after the increment.
   267     if (stride_con > 0) {
   268       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   269           iv_trunc_t->_lo > phi_ft->_lo) {
   270         return NULL;  // truncation may occur
   271       }
   272     } else if (stride_con < 0) {
   273       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   274           iv_trunc_t->_hi < phi_ft->_hi) {
   275         return NULL;  // truncation may occur
   276       }
   277     }
   278     // No possibility of wrap so truncation can be discarded
   279     // Promote iv type to Int
   280   } else {
   281     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   282   }
   284   // =================================================
   285   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   286   //
   287   // Canonicalize the condition on the test.  If we can exactly determine
   288   // the trip-counter exit value, then set limit to that value and use
   289   // a '!=' test.  Otherwise use condition '<' for count-up loops and
   290   // '>' for count-down loops.  If the condition is inverted and we will
   291   // be rolling through MININT to MAXINT, then bail out.
   293   C->print_method("Before CountedLoop", 3);
   295   // Check for SafePoint on backedge and remove
   296   Node *sfpt = x->in(LoopNode::LoopBackControl);
   297   if( sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   298     lazy_replace( sfpt, iftrue );
   299     loop->_tail = iftrue;
   300   }
   303   // If compare points to incr, we are ok.  Otherwise the compare
   304   // can directly point to the phi; in this case adjust the compare so that
   305   // it points to the incr by adjusting the limit.
   306   if( cmp->in(1) == phi || cmp->in(2) == phi )
   307     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
   309   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   310   // Final value for iterator should be: trip_count * stride + init_trip.
   311   const Type *limit_t = limit->bottom_type();
   312   const Type *init_t = init_trip->bottom_type();
   313   Node *one_p = gvn->intcon( 1);
   314   Node *one_m = gvn->intcon(-1);
   316   Node *trip_count = NULL;
   317   Node *hook = new (C, 6) Node(6);
   318   switch( bt ) {
   319   case BoolTest::eq:
   320     return NULL;                // Bail out, but this loop trips at most twice!
   321   case BoolTest::ne:            // Ahh, the case we desire
   322     if( stride_con == 1 )
   323       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   324     else if( stride_con == -1 )
   325       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
   326     else
   327       return NULL;              // Odd stride; must prove we hit limit exactly
   328     set_subtree_ctrl( trip_count );
   329     //_loop.map(trip_count->_idx,loop(limit));
   330     break;
   331   case BoolTest::le:            // Maybe convert to '<' case
   332     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
   333     set_subtree_ctrl( limit );
   334     hook->init_req(4, limit);
   336     bt = BoolTest::lt;
   337     // Make the new limit be in the same loop nest as the old limit
   338     //_loop.map(limit->_idx,limit_loop);
   339     // Fall into next case
   340   case BoolTest::lt: {          // Maybe convert to '!=' case
   341     if( stride_con < 0 ) return NULL; // Count down loop rolls through MAXINT
   342     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   343     set_subtree_ctrl( range );
   344     hook->init_req(0, range);
   346     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   347     set_subtree_ctrl( bias );
   348     hook->init_req(1, bias);
   350     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
   351     set_subtree_ctrl( bias1 );
   352     hook->init_req(2, bias1);
   354     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   355     set_subtree_ctrl( trip_count );
   356     hook->init_req(3, trip_count);
   357     break;
   358   }
   360   case BoolTest::ge:            // Maybe convert to '>' case
   361     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
   362     set_subtree_ctrl( limit );
   363     hook->init_req(4 ,limit);
   365     bt = BoolTest::gt;
   366     // Make the new limit be in the same loop nest as the old limit
   367     //_loop.map(limit->_idx,limit_loop);
   368     // Fall into next case
   369   case BoolTest::gt: {          // Maybe convert to '!=' case
   370     if( stride_con > 0 ) return NULL; // count up loop rolls through MININT
   371     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   372     set_subtree_ctrl( range );
   373     hook->init_req(0, range);
   375     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   376     set_subtree_ctrl( bias );
   377     hook->init_req(1, bias);
   379     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
   380     set_subtree_ctrl( bias1 );
   381     hook->init_req(2, bias1);
   383     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   384     set_subtree_ctrl( trip_count );
   385     hook->init_req(3, trip_count);
   386     break;
   387   }
   388   }
   390   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
   391   set_subtree_ctrl( span );
   392   hook->init_req(5, span);
   394   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
   395   set_subtree_ctrl( limit );
   397   // Build a canonical trip test.
   398   // Clone code, as old values may be in use.
   399   incr = incr->clone();
   400   incr->set_req(1,phi);
   401   incr->set_req(2,stride);
   402   incr = _igvn.register_new_node_with_optimizer(incr);
   403   set_early_ctrl( incr );
   404   _igvn.hash_delete(phi);
   405   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
   407   // If phi type is more restrictive than Int, raise to
   408   // Int to prevent (almost) infinite recursion in igvn
   409   // which can only handle integer types for constants or minint..maxint.
   410   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
   411     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
   412     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
   413     nphi = _igvn.register_new_node_with_optimizer(nphi);
   414     set_ctrl(nphi, get_ctrl(phi));
   415     _igvn.replace_node(phi, nphi);
   416     phi = nphi->as_Phi();
   417   }
   418   cmp = cmp->clone();
   419   cmp->set_req(1,incr);
   420   cmp->set_req(2,limit);
   421   cmp = _igvn.register_new_node_with_optimizer(cmp);
   422   set_ctrl(cmp, iff->in(0));
   424   Node *tmp = test->clone();
   425   assert( tmp->is_Bool(), "" );
   426   test = (BoolNode*)tmp;
   427   (*(BoolTest*)&test->_test)._test = bt; //BoolTest::ne;
   428   test->set_req(1,cmp);
   429   _igvn.register_new_node_with_optimizer(test);
   430   set_ctrl(test, iff->in(0));
   431   // If the exit test is dead, STOP!
   432   if( test == NULL ) return NULL;
   433   _igvn.hash_delete(iff);
   434   iff->set_req_X( 1, test, &_igvn );
   436   // Replace the old IfNode with a new LoopEndNode
   437   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), iff->in(1), cl_prob, iff->as_If()->_fcnt ));
   438   IfNode *le = lex->as_If();
   439   uint dd = dom_depth(iff);
   440   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   441   set_loop(le, loop);
   443   // Get the loop-exit control
   444   Node *if_f = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   446   // Need to swap loop-exit and loop-back control?
   447   if( iftrue_op == Op_IfFalse ) {
   448     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
   449     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
   451     loop->_tail = back_control = ift2;
   452     set_loop(ift2, loop);
   453     set_loop(iff2, get_loop(if_f));
   455     // Lazy update of 'get_ctrl' mechanism.
   456     lazy_replace_proj( if_f  , iff2 );
   457     lazy_replace_proj( iftrue, ift2 );
   459     // Swap names
   460     if_f   = iff2;
   461     iftrue = ift2;
   462   } else {
   463     _igvn.hash_delete(if_f  );
   464     _igvn.hash_delete(iftrue);
   465     if_f  ->set_req_X( 0, le, &_igvn );
   466     iftrue->set_req_X( 0, le, &_igvn );
   467   }
   469   set_idom(iftrue, le, dd+1);
   470   set_idom(if_f,   le, dd+1);
   472   // Now setup a new CountedLoopNode to replace the existing LoopNode
   473   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
   474   // The following assert is approximately true, and defines the intention
   475   // of can_be_counted_loop.  It fails, however, because phase->type
   476   // is not yet initialized for this loop and its parts.
   477   //assert(l->can_be_counted_loop(this), "sanity");
   478   _igvn.register_new_node_with_optimizer(l);
   479   set_loop(l, loop);
   480   loop->_head = l;
   481   // Fix all data nodes placed at the old loop head.
   482   // Uses the lazy-update mechanism of 'get_ctrl'.
   483   lazy_replace( x, l );
   484   set_idom(l, init_control, dom_depth(x));
   486   // Check for immediately preceding SafePoint and remove
   487   Node *sfpt2 = le->in(0);
   488   if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
   489     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   491   // Free up intermediate goo
   492   _igvn.remove_dead_node(hook);
   494   C->print_method("After CountedLoop", 3);
   496   // Return trip counter
   497   return trip_count;
   498 }
   501 //------------------------------Ideal------------------------------------------
   502 // Return a node which is more "ideal" than the current node.
   503 // Attempt to convert into a counted-loop.
   504 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   505   if (!can_be_counted_loop(phase)) {
   506     phase->C->set_major_progress();
   507   }
   508   return RegionNode::Ideal(phase, can_reshape);
   509 }
   512 //=============================================================================
   513 //------------------------------Ideal------------------------------------------
   514 // Return a node which is more "ideal" than the current node.
   515 // Attempt to convert into a counted-loop.
   516 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   517   return RegionNode::Ideal(phase, can_reshape);
   518 }
   520 //------------------------------dump_spec--------------------------------------
   521 // Dump special per-node info
   522 #ifndef PRODUCT
   523 void CountedLoopNode::dump_spec(outputStream *st) const {
   524   LoopNode::dump_spec(st);
   525   if( stride_is_con() ) {
   526     st->print("stride: %d ",stride_con());
   527   } else {
   528     st->print("stride: not constant ");
   529   }
   530   if( is_pre_loop () ) st->print("pre of N%d" , _main_idx );
   531   if( is_main_loop() ) st->print("main of N%d", _idx );
   532   if( is_post_loop() ) st->print("post of N%d", _main_idx );
   533 }
   534 #endif
   536 //=============================================================================
   537 int CountedLoopEndNode::stride_con() const {
   538   return stride()->bottom_type()->is_int()->get_con();
   539 }
   542 //----------------------match_incr_with_optional_truncation--------------------
   543 // Match increment with optional truncation:
   544 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
   545 // Return NULL for failure. Success returns the increment node.
   546 Node* CountedLoopNode::match_incr_with_optional_truncation(
   547                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
   548   // Quick cutouts:
   549   if (expr == NULL || expr->req() != 3)  return false;
   551   Node *t1 = NULL;
   552   Node *t2 = NULL;
   553   const TypeInt* trunc_t = TypeInt::INT;
   554   Node* n1 = expr;
   555   int   n1op = n1->Opcode();
   557   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
   558   if (n1op == Op_AndI &&
   559       n1->in(2)->is_Con() &&
   560       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
   561     // %%% This check should match any mask of 2**K-1.
   562     t1 = n1;
   563     n1 = t1->in(1);
   564     n1op = n1->Opcode();
   565     trunc_t = TypeInt::CHAR;
   566   } else if (n1op == Op_RShiftI &&
   567              n1->in(1) != NULL &&
   568              n1->in(1)->Opcode() == Op_LShiftI &&
   569              n1->in(2) == n1->in(1)->in(2) &&
   570              n1->in(2)->is_Con()) {
   571     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
   572     // %%% This check should match any shift in [1..31].
   573     if (shift == 16 || shift == 8) {
   574       t1 = n1;
   575       t2 = t1->in(1);
   576       n1 = t2->in(1);
   577       n1op = n1->Opcode();
   578       if (shift == 16) {
   579         trunc_t = TypeInt::SHORT;
   580       } else if (shift == 8) {
   581         trunc_t = TypeInt::BYTE;
   582       }
   583     }
   584   }
   586   // If (maybe after stripping) it is an AddI, we won:
   587   if (n1op == Op_AddI) {
   588     *trunc1 = t1;
   589     *trunc2 = t2;
   590     *trunc_type = trunc_t;
   591     return n1;
   592   }
   594   // failed
   595   return NULL;
   596 }
   599 //------------------------------filtered_type--------------------------------
   600 // Return a type based on condition control flow
   601 // A successful return will be a type that is restricted due
   602 // to a series of dominating if-tests, such as:
   603 //    if (i < 10) {
   604 //       if (i > 0) {
   605 //          here: "i" type is [1..10)
   606 //       }
   607 //    }
   608 // or a control flow merge
   609 //    if (i < 10) {
   610 //       do {
   611 //          phi( , ) -- at top of loop type is [min_int..10)
   612 //         i = ?
   613 //       } while ( i < 10)
   614 //
   615 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
   616   assert(n && n->bottom_type()->is_int(), "must be int");
   617   const TypeInt* filtered_t = NULL;
   618   if (!n->is_Phi()) {
   619     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
   620     filtered_t = filtered_type_from_dominators(n, n_ctrl);
   622   } else {
   623     Node* phi    = n->as_Phi();
   624     Node* region = phi->in(0);
   625     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
   626     if (region && region != C->top()) {
   627       for (uint i = 1; i < phi->req(); i++) {
   628         Node* val   = phi->in(i);
   629         Node* use_c = region->in(i);
   630         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
   631         if (val_t != NULL) {
   632           if (filtered_t == NULL) {
   633             filtered_t = val_t;
   634           } else {
   635             filtered_t = filtered_t->meet(val_t)->is_int();
   636           }
   637         }
   638       }
   639     }
   640   }
   641   const TypeInt* n_t = _igvn.type(n)->is_int();
   642   if (filtered_t != NULL) {
   643     n_t = n_t->join(filtered_t)->is_int();
   644   }
   645   return n_t;
   646 }
   649 //------------------------------filtered_type_from_dominators--------------------------------
   650 // Return a possibly more restrictive type for val based on condition control flow of dominators
   651 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
   652   if (val->is_Con()) {
   653      return val->bottom_type()->is_int();
   654   }
   655   uint if_limit = 10; // Max number of dominating if's visited
   656   const TypeInt* rtn_t = NULL;
   658   if (use_ctrl && use_ctrl != C->top()) {
   659     Node* val_ctrl = get_ctrl(val);
   660     uint val_dom_depth = dom_depth(val_ctrl);
   661     Node* pred = use_ctrl;
   662     uint if_cnt = 0;
   663     while (if_cnt < if_limit) {
   664       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
   665         if_cnt++;
   666         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
   667         if (if_t != NULL) {
   668           if (rtn_t == NULL) {
   669             rtn_t = if_t;
   670           } else {
   671             rtn_t = rtn_t->join(if_t)->is_int();
   672           }
   673         }
   674       }
   675       pred = idom(pred);
   676       if (pred == NULL || pred == C->top()) {
   677         break;
   678       }
   679       // Stop if going beyond definition block of val
   680       if (dom_depth(pred) < val_dom_depth) {
   681         break;
   682       }
   683     }
   684   }
   685   return rtn_t;
   686 }
   689 //------------------------------dump_spec--------------------------------------
   690 // Dump special per-node info
   691 #ifndef PRODUCT
   692 void CountedLoopEndNode::dump_spec(outputStream *st) const {
   693   if( in(TestValue)->is_Bool() ) {
   694     BoolTest bt( test_trip()); // Added this for g++.
   696     st->print("[");
   697     bt.dump_on(st);
   698     st->print("]");
   699   }
   700   st->print(" ");
   701   IfNode::dump_spec(st);
   702 }
   703 #endif
   705 //=============================================================================
   706 //------------------------------is_member--------------------------------------
   707 // Is 'l' a member of 'this'?
   708 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
   709   while( l->_nest > _nest ) l = l->_parent;
   710   return l == this;
   711 }
   713 //------------------------------set_nest---------------------------------------
   714 // Set loop tree nesting depth.  Accumulate _has_call bits.
   715 int IdealLoopTree::set_nest( uint depth ) {
   716   _nest = depth;
   717   int bits = _has_call;
   718   if( _child ) bits |= _child->set_nest(depth+1);
   719   if( bits ) _has_call = 1;
   720   if( _next  ) bits |= _next ->set_nest(depth  );
   721   return bits;
   722 }
   724 //------------------------------split_fall_in----------------------------------
   725 // Split out multiple fall-in edges from the loop header.  Move them to a
   726 // private RegionNode before the loop.  This becomes the loop landing pad.
   727 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
   728   PhaseIterGVN &igvn = phase->_igvn;
   729   uint i;
   731   // Make a new RegionNode to be the landing pad.
   732   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
   733   phase->set_loop(landing_pad,_parent);
   734   // Gather all the fall-in control paths into the landing pad
   735   uint icnt = fall_in_cnt;
   736   uint oreq = _head->req();
   737   for( i = oreq-1; i>0; i-- )
   738     if( !phase->is_member( this, _head->in(i) ) )
   739       landing_pad->set_req(icnt--,_head->in(i));
   741   // Peel off PhiNode edges as well
   742   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   743     Node *oj = _head->fast_out(j);
   744     if( oj->is_Phi() ) {
   745       PhiNode* old_phi = oj->as_Phi();
   746       assert( old_phi->region() == _head, "" );
   747       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
   748       Node *p = PhiNode::make_blank(landing_pad, old_phi);
   749       uint icnt = fall_in_cnt;
   750       for( i = oreq-1; i>0; i-- ) {
   751         if( !phase->is_member( this, _head->in(i) ) ) {
   752           p->init_req(icnt--, old_phi->in(i));
   753           // Go ahead and clean out old edges from old phi
   754           old_phi->del_req(i);
   755         }
   756       }
   757       // Search for CSE's here, because ZKM.jar does a lot of
   758       // loop hackery and we need to be a little incremental
   759       // with the CSE to avoid O(N^2) node blow-up.
   760       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
   761       if( p2 ) {                // Found CSE
   762         p->destruct();          // Recover useless new node
   763         p = p2;                 // Use old node
   764       } else {
   765         igvn.register_new_node_with_optimizer(p, old_phi);
   766       }
   767       // Make old Phi refer to new Phi.
   768       old_phi->add_req(p);
   769       // Check for the special case of making the old phi useless and
   770       // disappear it.  In JavaGrande I have a case where this useless
   771       // Phi is the loop limit and prevents recognizing a CountedLoop
   772       // which in turn prevents removing an empty loop.
   773       Node *id_old_phi = old_phi->Identity( &igvn );
   774       if( id_old_phi != old_phi ) { // Found a simple identity?
   775         // Note that I cannot call 'replace_node' here, because
   776         // that will yank the edge from old_phi to the Region and
   777         // I'm mid-iteration over the Region's uses.
   778         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
   779           Node* use = old_phi->last_out(i);
   780           igvn.hash_delete(use);
   781           igvn._worklist.push(use);
   782           uint uses_found = 0;
   783           for (uint j = 0; j < use->len(); j++) {
   784             if (use->in(j) == old_phi) {
   785               if (j < use->req()) use->set_req (j, id_old_phi);
   786               else                use->set_prec(j, id_old_phi);
   787               uses_found++;
   788             }
   789           }
   790           i -= uses_found;    // we deleted 1 or more copies of this edge
   791         }
   792       }
   793       igvn._worklist.push(old_phi);
   794     }
   795   }
   796   // Finally clean out the fall-in edges from the RegionNode
   797   for( i = oreq-1; i>0; i-- ) {
   798     if( !phase->is_member( this, _head->in(i) ) ) {
   799       _head->del_req(i);
   800     }
   801   }
   802   // Transform landing pad
   803   igvn.register_new_node_with_optimizer(landing_pad, _head);
   804   // Insert landing pad into the header
   805   _head->add_req(landing_pad);
   806 }
   808 //------------------------------split_outer_loop-------------------------------
   809 // Split out the outermost loop from this shared header.
   810 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
   811   PhaseIterGVN &igvn = phase->_igvn;
   813   // Find index of outermost loop; it should also be my tail.
   814   uint outer_idx = 1;
   815   while( _head->in(outer_idx) != _tail ) outer_idx++;
   817   // Make a LoopNode for the outermost loop.
   818   Node *ctl = _head->in(LoopNode::EntryControl);
   819   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
   820   outer = igvn.register_new_node_with_optimizer(outer, _head);
   821   phase->set_created_loop_node();
   822   // Outermost loop falls into '_head' loop
   823   _head->set_req(LoopNode::EntryControl, outer);
   824   _head->del_req(outer_idx);
   825   // Split all the Phis up between '_head' loop and 'outer' loop.
   826   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   827     Node *out = _head->fast_out(j);
   828     if( out->is_Phi() ) {
   829       PhiNode *old_phi = out->as_Phi();
   830       assert( old_phi->region() == _head, "" );
   831       Node *phi = PhiNode::make_blank(outer, old_phi);
   832       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
   833       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
   834       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
   835       // Make old Phi point to new Phi on the fall-in path
   836       igvn.hash_delete(old_phi);
   837       old_phi->set_req(LoopNode::EntryControl, phi);
   838       old_phi->del_req(outer_idx);
   839       igvn._worklist.push(old_phi);
   840     }
   841   }
   843   // Use the new loop head instead of the old shared one
   844   _head = outer;
   845   phase->set_loop(_head, this);
   846 }
   848 //------------------------------fix_parent-------------------------------------
   849 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
   850   loop->_parent = parent;
   851   if( loop->_child ) fix_parent( loop->_child, loop   );
   852   if( loop->_next  ) fix_parent( loop->_next , parent );
   853 }
   855 //------------------------------estimate_path_freq-----------------------------
   856 static float estimate_path_freq( Node *n ) {
   857   // Try to extract some path frequency info
   858   IfNode *iff;
   859   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
   860     uint nop = n->Opcode();
   861     if( nop == Op_SafePoint ) {   // Skip any safepoint
   862       n = n->in(0);
   863       continue;
   864     }
   865     if( nop == Op_CatchProj ) {   // Get count from a prior call
   866       // Assume call does not always throw exceptions: means the call-site
   867       // count is also the frequency of the fall-through path.
   868       assert( n->is_CatchProj(), "" );
   869       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
   870         return 0.0f;            // Assume call exception path is rare
   871       Node *call = n->in(0)->in(0)->in(0);
   872       assert( call->is_Call(), "expect a call here" );
   873       const JVMState *jvms = ((CallNode*)call)->jvms();
   874       ciMethodData* methodData = jvms->method()->method_data();
   875       if (!methodData->is_mature())  return 0.0f; // No call-site data
   876       ciProfileData* data = methodData->bci_to_data(jvms->bci());
   877       if ((data == NULL) || !data->is_CounterData()) {
   878         // no call profile available, try call's control input
   879         n = n->in(0);
   880         continue;
   881       }
   882       return data->as_CounterData()->count()/FreqCountInvocations;
   883     }
   884     // See if there's a gating IF test
   885     Node *n_c = n->in(0);
   886     if( !n_c->is_If() ) break;       // No estimate available
   887     iff = n_c->as_If();
   888     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
   889       // Compute how much count comes on this path
   890       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
   891     // Have no count info.  Skip dull uncommon-trap like branches.
   892     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
   893         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
   894       break;
   895     // Skip through never-taken branch; look for a real loop exit.
   896     n = iff->in(0);
   897   }
   898   return 0.0f;                  // No estimate available
   899 }
   901 //------------------------------merge_many_backedges---------------------------
   902 // Merge all the backedges from the shared header into a private Region.
   903 // Feed that region as the one backedge to this loop.
   904 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
   905   uint i;
   907   // Scan for the top 2 hottest backedges
   908   float hotcnt = 0.0f;
   909   float warmcnt = 0.0f;
   910   uint hot_idx = 0;
   911   // Loop starts at 2 because slot 1 is the fall-in path
   912   for( i = 2; i < _head->req(); i++ ) {
   913     float cnt = estimate_path_freq(_head->in(i));
   914     if( cnt > hotcnt ) {       // Grab hottest path
   915       warmcnt = hotcnt;
   916       hotcnt = cnt;
   917       hot_idx = i;
   918     } else if( cnt > warmcnt ) { // And 2nd hottest path
   919       warmcnt = cnt;
   920     }
   921   }
   923   // See if the hottest backedge is worthy of being an inner loop
   924   // by being much hotter than the next hottest backedge.
   925   if( hotcnt <= 0.0001 ||
   926       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
   928   // Peel out the backedges into a private merge point; peel
   929   // them all except optionally hot_idx.
   930   PhaseIterGVN &igvn = phase->_igvn;
   932   Node *hot_tail = NULL;
   933   // Make a Region for the merge point
   934   Node *r = new (phase->C, 1) RegionNode(1);
   935   for( i = 2; i < _head->req(); i++ ) {
   936     if( i != hot_idx )
   937       r->add_req( _head->in(i) );
   938     else hot_tail = _head->in(i);
   939   }
   940   igvn.register_new_node_with_optimizer(r, _head);
   941   // Plug region into end of loop _head, followed by hot_tail
   942   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
   943   _head->set_req(2, r);
   944   if( hot_idx ) _head->add_req(hot_tail);
   946   // Split all the Phis up between '_head' loop and the Region 'r'
   947   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   948     Node *out = _head->fast_out(j);
   949     if( out->is_Phi() ) {
   950       PhiNode* n = out->as_Phi();
   951       igvn.hash_delete(n);      // Delete from hash before hacking edges
   952       Node *hot_phi = NULL;
   953       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
   954       // Check all inputs for the ones to peel out
   955       uint j = 1;
   956       for( uint i = 2; i < n->req(); i++ ) {
   957         if( i != hot_idx )
   958           phi->set_req( j++, n->in(i) );
   959         else hot_phi = n->in(i);
   960       }
   961       // Register the phi but do not transform until whole place transforms
   962       igvn.register_new_node_with_optimizer(phi, n);
   963       // Add the merge phi to the old Phi
   964       while( n->req() > 3 ) n->del_req( n->req()-1 );
   965       n->set_req(2, phi);
   966       if( hot_idx ) n->add_req(hot_phi);
   967     }
   968   }
   971   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
   972   // of self loop tree.  Turn self into a loop headed by _head and with
   973   // tail being the new merge point.
   974   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
   975   phase->set_loop(_tail,ilt);   // Adjust tail
   976   _tail = r;                    // Self's tail is new merge point
   977   phase->set_loop(r,this);
   978   ilt->_child = _child;         // New guy has my children
   979   _child = ilt;                 // Self has new guy as only child
   980   ilt->_parent = this;          // new guy has self for parent
   981   ilt->_nest = _nest;           // Same nesting depth (for now)
   983   // Starting with 'ilt', look for child loop trees using the same shared
   984   // header.  Flatten these out; they will no longer be loops in the end.
   985   IdealLoopTree **pilt = &_child;
   986   while( ilt ) {
   987     if( ilt->_head == _head ) {
   988       uint i;
   989       for( i = 2; i < _head->req(); i++ )
   990         if( _head->in(i) == ilt->_tail )
   991           break;                // Still a loop
   992       if( i == _head->req() ) { // No longer a loop
   993         // Flatten ilt.  Hang ilt's "_next" list from the end of
   994         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
   995         IdealLoopTree **cp = &ilt->_child;
   996         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
   997         *cp = ilt->_next;       // Hang next list at end of child list
   998         *pilt = ilt->_child;    // Move child up to replace ilt
   999         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1000         ilt = ilt->_child;      // Repeat using new ilt
  1001         continue;               // do not advance over ilt->_child
  1003       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1004       phase->set_loop(_head,ilt);
  1006     pilt = &ilt->_child;        // Advance to next
  1007     ilt = *pilt;
  1010   if( _child ) fix_parent( _child, this );
  1013 //------------------------------beautify_loops---------------------------------
  1014 // Split shared headers and insert loop landing pads.
  1015 // Insert a LoopNode to replace the RegionNode.
  1016 // Return TRUE if loop tree is structurally changed.
  1017 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1018   bool result = false;
  1019   // Cache parts in locals for easy
  1020   PhaseIterGVN &igvn = phase->_igvn;
  1022   phase->C->print_method("Before beautify loops", 3);
  1024   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1026   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1027   int fall_in_cnt = 0;
  1028   for( uint i = 1; i < _head->req(); i++ )
  1029     if( !phase->is_member( this, _head->in(i) ) )
  1030       fall_in_cnt++;
  1031   assert( fall_in_cnt, "at least 1 fall-in path" );
  1032   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1033     split_fall_in( phase, fall_in_cnt );
  1035   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1036   // the left.
  1037   fall_in_cnt = 1;
  1038   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1039     fall_in_cnt++;
  1040   if( fall_in_cnt > 1 ) {
  1041     // Since I am just swapping inputs I do not need to update def-use info
  1042     Node *tmp = _head->in(1);
  1043     _head->set_req( 1, _head->in(fall_in_cnt) );
  1044     _head->set_req( fall_in_cnt, tmp );
  1045     // Swap also all Phis
  1046     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1047       Node* phi = _head->fast_out(i);
  1048       if( phi->is_Phi() ) {
  1049         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1050         tmp = phi->in(1);
  1051         phi->set_req( 1, phi->in(fall_in_cnt) );
  1052         phi->set_req( fall_in_cnt, tmp );
  1056   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1057   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1059   // If I am a shared header (multiple backedges), peel off the many
  1060   // backedges into a private merge point and use the merge point as
  1061   // the one true backedge.
  1062   if( _head->req() > 3 ) {
  1063     // Merge the many backedges into a single backedge.
  1064     merge_many_backedges( phase );
  1065     result = true;
  1068   // If I am a shared header (multiple backedges), peel off myself loop.
  1069   // I better be the outermost loop.
  1070   if( _head->req() > 3 ) {
  1071     split_outer_loop( phase );
  1072     result = true;
  1074   } else if( !_head->is_Loop() && !_irreducible ) {
  1075     // Make a new LoopNode to replace the old loop head
  1076     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
  1077     l = igvn.register_new_node_with_optimizer(l, _head);
  1078     phase->set_created_loop_node();
  1079     // Go ahead and replace _head
  1080     phase->_igvn.replace_node( _head, l );
  1081     _head = l;
  1082     phase->set_loop(_head, this);
  1085   // Now recursively beautify nested loops
  1086   if( _child ) result |= _child->beautify_loops( phase );
  1087   if( _next  ) result |= _next ->beautify_loops( phase );
  1088   return result;
  1091 //------------------------------allpaths_check_safepts----------------------------
  1092 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1093 // encountered.  Helper for check_safepts.
  1094 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1095   assert(stack.size() == 0, "empty stack");
  1096   stack.push(_tail);
  1097   visited.Clear();
  1098   visited.set(_tail->_idx);
  1099   while (stack.size() > 0) {
  1100     Node* n = stack.pop();
  1101     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1102       // Terminate this path
  1103     } else if (n->Opcode() == Op_SafePoint) {
  1104       if (_phase->get_loop(n) != this) {
  1105         if (_required_safept == NULL) _required_safept = new Node_List();
  1106         _required_safept->push(n);  // save the one closest to the tail
  1108       // Terminate this path
  1109     } else {
  1110       uint start = n->is_Region() ? 1 : 0;
  1111       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1112       for (uint i = start; i < end; i++) {
  1113         Node* in = n->in(i);
  1114         assert(in->is_CFG(), "must be");
  1115         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1116           stack.push(in);
  1123 //------------------------------check_safepts----------------------------
  1124 // Given dominators, try to find loops with calls that must always be
  1125 // executed (call dominates loop tail).  These loops do not need non-call
  1126 // safepoints (ncsfpt).
  1127 //
  1128 // A complication is that a safepoint in a inner loop may be needed
  1129 // by an outer loop. In the following, the inner loop sees it has a
  1130 // call (block 3) on every path from the head (block 2) to the
  1131 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1132 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1133 //
  1134 //          entry  0
  1135 //                 |
  1136 //                 v
  1137 // outer 1,2    +->1
  1138 //              |  |
  1139 //              |  v
  1140 //              |  2<---+  ncsfpt in 2
  1141 //              |_/|\   |
  1142 //                 | v  |
  1143 // inner 2,3      /  3  |  call in 3
  1144 //               /   |  |
  1145 //              v    +--+
  1146 //        exit  4
  1147 //
  1148 //
  1149 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1150 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1151 // is first looked for in the lists for the outer loops of the current loop.
  1152 //
  1153 // The insights into the problem:
  1154 //  A) counted loops are okay
  1155 //  B) innermost loops are okay (only an inner loop can delete
  1156 //     a ncsfpt needed by an outer loop)
  1157 //  C) a loop is immune from an inner loop deleting a safepoint
  1158 //     if the loop has a call on the idom-path
  1159 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1160 //     idom-path that is not in a nested loop
  1161 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1162 //     loop needs to be prevented from deletion by an inner loop
  1163 //
  1164 // There are two analyses:
  1165 //  1) The first, and cheaper one, scans the loop body from
  1166 //     tail to head following the idom (immediate dominator)
  1167 //     chain, looking for the cases (C,D,E) above.
  1168 //     Since inner loops are scanned before outer loops, there is summary
  1169 //     information about inner loops.  Inner loops can be skipped over
  1170 //     when the tail of an inner loop is encountered.
  1171 //
  1172 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1173 //     the idom path (which is rare), scans all predecessor control paths
  1174 //     from the tail to the head, terminating a path when a call or sfpt
  1175 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1176 //
  1177 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1178   // Bottom up traversal
  1179   IdealLoopTree* ch = _child;
  1180   while (ch != NULL) {
  1181     ch->check_safepts(visited, stack);
  1182     ch = ch->_next;
  1185   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1186     bool  has_call         = false; // call on dom-path
  1187     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1188     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1189     // Scan the dom-path nodes from tail to head
  1190     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1191       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1192         has_call = true;
  1193         _has_sfpt = 1;          // Then no need for a safept!
  1194         break;
  1195       } else if (n->Opcode() == Op_SafePoint) {
  1196         if (_phase->get_loop(n) == this) {
  1197           has_local_ncsfpt = true;
  1198           break;
  1200         if (nonlocal_ncsfpt == NULL) {
  1201           nonlocal_ncsfpt = n; // save the one closest to the tail
  1203       } else {
  1204         IdealLoopTree* nlpt = _phase->get_loop(n);
  1205         if (this != nlpt) {
  1206           // If at an inner loop tail, see if the inner loop has already
  1207           // recorded seeing a call on the dom-path (and stop.)  If not,
  1208           // jump to the head of the inner loop.
  1209           assert(is_member(nlpt), "nested loop");
  1210           Node* tail = nlpt->_tail;
  1211           if (tail->in(0)->is_If()) tail = tail->in(0);
  1212           if (n == tail) {
  1213             // If inner loop has call on dom-path, so does outer loop
  1214             if (nlpt->_has_sfpt) {
  1215               has_call = true;
  1216               _has_sfpt = 1;
  1217               break;
  1219             // Skip to head of inner loop
  1220             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1221             n = nlpt->_head;
  1226     // Record safept's that this loop needs preserved when an
  1227     // inner loop attempts to delete it's safepoints.
  1228     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1229       if (nonlocal_ncsfpt != NULL) {
  1230         if (_required_safept == NULL) _required_safept = new Node_List();
  1231         _required_safept->push(nonlocal_ncsfpt);
  1232       } else {
  1233         // Failed to find a suitable safept on the dom-path.  Now use
  1234         // an all paths walk from tail to head, looking for safepoints to preserve.
  1235         allpaths_check_safepts(visited, stack);
  1241 //---------------------------is_deleteable_safept----------------------------
  1242 // Is safept not required by an outer loop?
  1243 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1244   assert(sfpt->Opcode() == Op_SafePoint, "");
  1245   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1246   while (lp != NULL) {
  1247     Node_List* sfpts = lp->_required_safept;
  1248     if (sfpts != NULL) {
  1249       for (uint i = 0; i < sfpts->size(); i++) {
  1250         if (sfpt == sfpts->at(i))
  1251           return false;
  1254     lp = lp->_parent;
  1256   return true;
  1259 //------------------------------counted_loop-----------------------------------
  1260 // Convert to counted loops where possible
  1261 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1263   // For grins, set the inner-loop flag here
  1264   if( !_child ) {
  1265     if( _head->is_Loop() ) _head->as_Loop()->set_inner_loop();
  1268   if( _head->is_CountedLoop() ||
  1269       phase->is_counted_loop( _head, this ) ) {
  1270     _has_sfpt = 1;              // Indicate we do not need a safepoint here
  1272     // Look for a safepoint to remove
  1273     for (Node* n = tail(); n != _head; n = phase->idom(n))
  1274       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1275           phase->is_deleteable_safept(n))
  1276         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1278     CountedLoopNode *cl = _head->as_CountedLoop();
  1279     Node *incr = cl->incr();
  1280     if( !incr ) return;         // Dead loop?
  1281     Node *init = cl->init_trip();
  1282     Node *phi  = cl->phi();
  1283     // protect against stride not being a constant
  1284     if( !cl->stride_is_con() ) return;
  1285     int stride_con = cl->stride_con();
  1287     // Look for induction variables
  1289     // Visit all children, looking for Phis
  1290     for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1291       Node *out = cl->out(i);
  1292       // Look for other phis (secondary IVs). Skip dead ones
  1293       if (!out->is_Phi() || out == phi || !phase->has_node(out)) continue;
  1294       PhiNode* phi2 = out->as_Phi();
  1295       Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1296       // Look for induction variables of the form:  X += constant
  1297       if( phi2->region() != _head ||
  1298           incr2->req() != 3 ||
  1299           incr2->in(1) != phi2 ||
  1300           incr2 == incr ||
  1301           incr2->Opcode() != Op_AddI ||
  1302           !incr2->in(2)->is_Con() )
  1303         continue;
  1305       // Check for parallel induction variable (parallel to trip counter)
  1306       // via an affine function.  In particular, count-down loops with
  1307       // count-up array indices are common. We only RCE references off
  1308       // the trip-counter, so we need to convert all these to trip-counter
  1309       // expressions.
  1310       Node *init2 = phi2->in( LoopNode::EntryControl );
  1311       int stride_con2 = incr2->in(2)->get_int();
  1313       // The general case here gets a little tricky.  We want to find the
  1314       // GCD of all possible parallel IV's and make a new IV using this
  1315       // GCD for the loop.  Then all possible IVs are simple multiples of
  1316       // the GCD.  In practice, this will cover very few extra loops.
  1317       // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1318       // where +/-1 is the common case, but other integer multiples are
  1319       // also easy to handle.
  1320       int ratio_con = stride_con2/stride_con;
  1322       if( ratio_con * stride_con == stride_con2 ) { // Check for exact
  1323         // Convert to using the trip counter.  The parallel induction
  1324         // variable differs from the trip counter by a loop-invariant
  1325         // amount, the difference between their respective initial values.
  1326         // It is scaled by the 'ratio_con'.
  1327         Compile* C = phase->C;
  1328         Node* ratio = phase->_igvn.intcon(ratio_con);
  1329         phase->set_ctrl(ratio, C->root());
  1330         Node* ratio_init = new (C, 3) MulINode(init, ratio);
  1331         phase->_igvn.register_new_node_with_optimizer(ratio_init, init);
  1332         phase->set_early_ctrl(ratio_init);
  1333         Node* diff = new (C, 3) SubINode(init2, ratio_init);
  1334         phase->_igvn.register_new_node_with_optimizer(diff, init2);
  1335         phase->set_early_ctrl(diff);
  1336         Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
  1337         phase->_igvn.register_new_node_with_optimizer(ratio_idx, phi);
  1338         phase->set_ctrl(ratio_idx, cl);
  1339         Node* add  = new (C, 3) AddINode(ratio_idx, diff);
  1340         phase->_igvn.register_new_node_with_optimizer(add);
  1341         phase->set_ctrl(add, cl);
  1342         phase->_igvn.replace_node( phi2, add );
  1343         // Sometimes an induction variable is unused
  1344         if (add->outcnt() == 0) {
  1345           phase->_igvn.remove_dead_node(add);
  1347         --i; // deleted this phi; rescan starting with next position
  1348         continue;
  1351   } else if (_parent != NULL && !_irreducible) {
  1352     // Not a counted loop.
  1353     // Look for a safepoint on the idom-path to remove, preserving the first one
  1354     bool found = false;
  1355     Node* n = tail();
  1356     for (; n != _head && !found; n = phase->idom(n)) {
  1357       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
  1358         found = true; // Found one
  1360     // Skip past it and delete the others
  1361     for (; n != _head; n = phase->idom(n)) {
  1362       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1363           phase->is_deleteable_safept(n))
  1364         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1368   // Recursively
  1369   if( _child ) _child->counted_loop( phase );
  1370   if( _next  ) _next ->counted_loop( phase );
  1373 #ifndef PRODUCT
  1374 //------------------------------dump_head--------------------------------------
  1375 // Dump 1 liner for loop header info
  1376 void IdealLoopTree::dump_head( ) const {
  1377   for( uint i=0; i<_nest; i++ )
  1378     tty->print("  ");
  1379   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1380   if( _irreducible ) tty->print(" IRREDUCIBLE");
  1381   if( _head->is_CountedLoop() ) {
  1382     CountedLoopNode *cl = _head->as_CountedLoop();
  1383     tty->print(" counted");
  1384     if( cl->is_pre_loop () ) tty->print(" pre" );
  1385     if( cl->is_main_loop() ) tty->print(" main");
  1386     if( cl->is_post_loop() ) tty->print(" post");
  1388   tty->cr();
  1391 //------------------------------dump-------------------------------------------
  1392 // Dump loops by loop tree
  1393 void IdealLoopTree::dump( ) const {
  1394   dump_head();
  1395   if( _child ) _child->dump();
  1396   if( _next  ) _next ->dump();
  1399 #endif
  1401 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
  1402   if (loop == root) {
  1403     if (loop->_child != NULL) {
  1404       log->begin_head("loop_tree");
  1405       log->end_head();
  1406       if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1407       log->tail("loop_tree");
  1408       assert(loop->_next == NULL, "what?");
  1410   } else {
  1411     Node* head = loop->_head;
  1412     log->begin_head("loop");
  1413     log->print(" idx='%d' ", head->_idx);
  1414     if (loop->_irreducible) log->print("irreducible='1' ");
  1415     if (head->is_Loop()) {
  1416       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
  1417       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
  1419     if (head->is_CountedLoop()) {
  1420       CountedLoopNode* cl = head->as_CountedLoop();
  1421       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
  1422       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
  1423       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
  1425     log->end_head();
  1426     if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1427     log->tail("loop");
  1428     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
  1432 //---------------------collect_potentially_useful_predicates-----------------------
  1433 // Helper function to collect potentially useful predicates to prevent them from
  1434 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
  1435 void PhaseIdealLoop::collect_potentially_useful_predicates(
  1436                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
  1437   if (loop->_child) { // child
  1438     collect_potentially_useful_predicates(loop->_child, useful_predicates);
  1441   // self (only loops that we can apply loop predication may use their predicates)
  1442   if (loop->_head->is_Loop()     &&
  1443       !loop->_irreducible        &&
  1444       !loop->tail()->is_top()) {
  1445     LoopNode *lpn  = loop->_head->as_Loop();
  1446     Node* entry = lpn->in(LoopNode::EntryControl);
  1447     ProjNode *predicate_proj = find_predicate_insertion_point(entry);
  1448     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
  1449       assert(entry->in(0)->in(1)->in(1)->Opcode()==Op_Opaque1, "must be");
  1450       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1454   if ( loop->_next ) { // sibling
  1455     collect_potentially_useful_predicates(loop->_next, useful_predicates);
  1459 //------------------------eliminate_useless_predicates-----------------------------
  1460 // Eliminate all inserted predicates if they could not be used by loop predication.
  1461 void PhaseIdealLoop::eliminate_useless_predicates() {
  1462   if (C->predicate_count() == 0) return; // no predicate left
  1464   Unique_Node_List useful_predicates; // to store useful predicates
  1465   if (C->has_loops()) {
  1466     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
  1469   for (int i = C->predicate_count(); i > 0; i--) {
  1470      Node * n = C->predicate_opaque1_node(i-1);
  1471      assert(n->Opcode() == Op_Opaque1, "must be");
  1472      if (!useful_predicates.member(n)) { // not in the useful list
  1473        _igvn.replace_node(n, n->in(1));
  1478 //=============================================================================
  1479 //----------------------------build_and_optimize-------------------------------
  1480 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  1481 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  1482 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool do_loop_pred) {
  1483   ResourceMark rm;
  1485   int old_progress = C->major_progress();
  1487   // Reset major-progress flag for the driver's heuristics
  1488   C->clear_major_progress();
  1490 #ifndef PRODUCT
  1491   // Capture for later assert
  1492   uint unique = C->unique();
  1493   _loop_invokes++;
  1494   _loop_work += unique;
  1495 #endif
  1497   // True if the method has at least 1 irreducible loop
  1498   _has_irreducible_loops = false;
  1500   _created_loop_node = false;
  1502   Arena *a = Thread::current()->resource_area();
  1503   VectorSet visited(a);
  1504   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  1505   _nodes.map(C->unique(), NULL);
  1506   memset(_nodes.adr(), 0, wordSize * C->unique());
  1508   // Pre-build the top-level outermost loop tree entry
  1509   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  1510   // Do not need a safepoint at the top level
  1511   _ltree_root->_has_sfpt = 1;
  1513   // Empty pre-order array
  1514   allocate_preorders();
  1516   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  1517   // IdealLoopTree entries.  Data nodes are NOT walked.
  1518   build_loop_tree();
  1519   // Check for bailout, and return
  1520   if (C->failing()) {
  1521     return;
  1524   // No loops after all
  1525   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
  1527   // There should always be an outer loop containing the Root and Return nodes.
  1528   // If not, we have a degenerate empty program.  Bail out in this case.
  1529   if (!has_node(C->root())) {
  1530     if (!_verify_only) {
  1531       C->clear_major_progress();
  1532       C->record_method_not_compilable("empty program detected during loop optimization");
  1534     return;
  1537   // Nothing to do, so get out
  1538   if( !C->has_loops() && !do_split_ifs && !_verify_me && !_verify_only ) {
  1539     _igvn.optimize();           // Cleanup NeverBranches
  1540     return;
  1543   // Set loop nesting depth
  1544   _ltree_root->set_nest( 0 );
  1546   // Split shared headers and insert loop landing pads.
  1547   // Do not bother doing this on the Root loop of course.
  1548   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
  1549     if( _ltree_root->_child->beautify_loops( this ) ) {
  1550       // Re-build loop tree!
  1551       _ltree_root->_child = NULL;
  1552       _nodes.clear();
  1553       reallocate_preorders();
  1554       build_loop_tree();
  1555       // Check for bailout, and return
  1556       if (C->failing()) {
  1557         return;
  1559       // Reset loop nesting depth
  1560       _ltree_root->set_nest( 0 );
  1562       C->print_method("After beautify loops", 3);
  1566   // Build Dominators for elision of NULL checks & loop finding.
  1567   // Since nodes do not have a slot for immediate dominator, make
  1568   // a persistent side array for that info indexed on node->_idx.
  1569   _idom_size = C->unique();
  1570   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  1571   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  1572   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  1573   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  1575   Dominators();
  1577   if (!_verify_only) {
  1578     // As a side effect, Dominators removed any unreachable CFG paths
  1579     // into RegionNodes.  It doesn't do this test against Root, so
  1580     // we do it here.
  1581     for( uint i = 1; i < C->root()->req(); i++ ) {
  1582       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  1583         _igvn.hash_delete(C->root());
  1584         C->root()->del_req(i);
  1585         _igvn._worklist.push(C->root());
  1586         i--;                      // Rerun same iteration on compressed edges
  1590     // Given dominators, try to find inner loops with calls that must
  1591     // always be executed (call dominates loop tail).  These loops do
  1592     // not need a separate safepoint.
  1593     Node_List cisstack(a);
  1594     _ltree_root->check_safepts(visited, cisstack);
  1597   // Walk the DATA nodes and place into loops.  Find earliest control
  1598   // node.  For CFG nodes, the _nodes array starts out and remains
  1599   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  1600   // _nodes array holds the earliest legal controlling CFG node.
  1602   // Allocate stack with enough space to avoid frequent realloc
  1603   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
  1604   Node_Stack nstack( a, stack_size );
  1606   visited.Clear();
  1607   Node_List worklist(a);
  1608   // Don't need C->root() on worklist since
  1609   // it will be processed among C->top() inputs
  1610   worklist.push( C->top() );
  1611   visited.set( C->top()->_idx ); // Set C->top() as visited now
  1612   build_loop_early( visited, worklist, nstack );
  1614   // Given early legal placement, try finding counted loops.  This placement
  1615   // is good enough to discover most loop invariants.
  1616   if( !_verify_me && !_verify_only )
  1617     _ltree_root->counted_loop( this );
  1619   // Find latest loop placement.  Find ideal loop placement.
  1620   visited.Clear();
  1621   init_dom_lca_tags();
  1622   // Need C->root() on worklist when processing outs
  1623   worklist.push( C->root() );
  1624   NOT_PRODUCT( C->verify_graph_edges(); )
  1625   worklist.push( C->top() );
  1626   build_loop_late( visited, worklist, nstack );
  1628   if (_verify_only) {
  1629     // restore major progress flag
  1630     for (int i = 0; i < old_progress; i++)
  1631       C->set_major_progress();
  1632     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
  1633     assert(_igvn._worklist.size() == 0, "shouldn't push anything");
  1634     return;
  1637   // some parser-inserted loop predicates could never be used by loop
  1638   // predication. Eliminate them before loop optimization
  1639   if (UseLoopPredicate) {
  1640     eliminate_useless_predicates();
  1643   // clear out the dead code
  1644   while(_deadlist.size()) {
  1645     _igvn.remove_globally_dead_node(_deadlist.pop());
  1648 #ifndef PRODUCT
  1649   C->verify_graph_edges();
  1650   if( _verify_me ) {             // Nested verify pass?
  1651     // Check to see if the verify mode is broken
  1652     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  1653     return;
  1655   if( VerifyLoopOptimizations ) verify();
  1656 #endif
  1658   if (ReassociateInvariants) {
  1659     // Reassociate invariants and prep for split_thru_phi
  1660     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  1661       IdealLoopTree* lpt = iter.current();
  1662       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  1664       lpt->reassociate_invariants(this);
  1666       // Because RCE opportunities can be masked by split_thru_phi,
  1667       // look for RCE candidates and inhibit split_thru_phi
  1668       // on just their loop-phi's for this pass of loop opts
  1669       if (SplitIfBlocks && do_split_ifs) {
  1670         if (lpt->policy_range_check(this)) {
  1671           lpt->_rce_candidate = 1; // = true
  1677   // Check for aggressive application of split-if and other transforms
  1678   // that require basic-block info (like cloning through Phi's)
  1679   if( SplitIfBlocks && do_split_ifs ) {
  1680     visited.Clear();
  1681     split_if_with_blocks( visited, nstack );
  1682     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  1685   // Perform loop predication before iteration splitting
  1686   if (do_loop_pred && C->has_loops() && !C->major_progress()) {
  1687     _ltree_root->_child->loop_predication(this);
  1690   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
  1691     if (do_intrinsify_fill()) {
  1692       C->set_major_progress();
  1696   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  1697   // range checks or one-shot null checks.
  1699   // If split-if's didn't hack the graph too bad (no CFG changes)
  1700   // then do loop opts.
  1701   if (C->has_loops() && !C->major_progress()) {
  1702     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  1703     _ltree_root->_child->iteration_split( this, worklist );
  1704     // No verify after peeling!  GCM has hoisted code out of the loop.
  1705     // After peeling, the hoisted code could sink inside the peeled area.
  1706     // The peeling code does not try to recompute the best location for
  1707     // all the code before the peeled area, so the verify pass will always
  1708     // complain about it.
  1710   // Do verify graph edges in any case
  1711   NOT_PRODUCT( C->verify_graph_edges(); );
  1713   if (!do_split_ifs) {
  1714     // We saw major progress in Split-If to get here.  We forced a
  1715     // pass with unrolling and not split-if, however more split-if's
  1716     // might make progress.  If the unrolling didn't make progress
  1717     // then the major-progress flag got cleared and we won't try
  1718     // another round of Split-If.  In particular the ever-common
  1719     // instance-of/check-cast pattern requires at least 2 rounds of
  1720     // Split-If to clear out.
  1721     C->set_major_progress();
  1724   // Repeat loop optimizations if new loops were seen
  1725   if (created_loop_node()) {
  1726     C->set_major_progress();
  1729   // Convert scalar to superword operations
  1731   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  1732     // SuperWord transform
  1733     SuperWord sw(this);
  1734     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  1735       IdealLoopTree* lpt = iter.current();
  1736       if (lpt->is_counted()) {
  1737         sw.transform_loop(lpt);
  1742   // Cleanup any modified bits
  1743   _igvn.optimize();
  1745   // disable assert until issue with split_flow_path is resolved (6742111)
  1746   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
  1747   //        "shouldn't introduce irreducible loops");
  1749   if (C->log() != NULL) {
  1750     log_loop_tree(_ltree_root, _ltree_root, C->log());
  1754 #ifndef PRODUCT
  1755 //------------------------------print_statistics-------------------------------
  1756 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  1757 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  1758 void PhaseIdealLoop::print_statistics() {
  1759   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  1762 //------------------------------verify-----------------------------------------
  1763 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  1764 static int fail;                // debug only, so its multi-thread dont care
  1765 void PhaseIdealLoop::verify() const {
  1766   int old_progress = C->major_progress();
  1767   ResourceMark rm;
  1768   PhaseIdealLoop loop_verify( _igvn, this );
  1769   VectorSet visited(Thread::current()->resource_area());
  1771   fail = 0;
  1772   verify_compare( C->root(), &loop_verify, visited );
  1773   assert( fail == 0, "verify loops failed" );
  1774   // Verify loop structure is the same
  1775   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  1776   // Reset major-progress.  It was cleared by creating a verify version of
  1777   // PhaseIdealLoop.
  1778   for( int i=0; i<old_progress; i++ )
  1779     C->set_major_progress();
  1782 //------------------------------verify_compare---------------------------------
  1783 // Make sure me and the given PhaseIdealLoop agree on key data structures
  1784 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  1785   if( !n ) return;
  1786   if( visited.test_set( n->_idx ) ) return;
  1787   if( !_nodes[n->_idx] ) {      // Unreachable
  1788     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  1789     return;
  1792   uint i;
  1793   for( i = 0; i < n->req(); i++ )
  1794     verify_compare( n->in(i), loop_verify, visited );
  1796   // Check the '_nodes' block/loop structure
  1797   i = n->_idx;
  1798   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  1799     if( _nodes[i] != loop_verify->_nodes[i] &&
  1800         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  1801       tty->print("Mismatched control setting for: ");
  1802       n->dump();
  1803       if( fail++ > 10 ) return;
  1804       Node *c = get_ctrl_no_update(n);
  1805       tty->print("We have it as: ");
  1806       if( c->in(0) ) c->dump();
  1807         else tty->print_cr("N%d",c->_idx);
  1808       tty->print("Verify thinks: ");
  1809       if( loop_verify->has_ctrl(n) )
  1810         loop_verify->get_ctrl_no_update(n)->dump();
  1811       else
  1812         loop_verify->get_loop_idx(n)->dump();
  1813       tty->cr();
  1815   } else {                    // We have a loop
  1816     IdealLoopTree *us = get_loop_idx(n);
  1817     if( loop_verify->has_ctrl(n) ) {
  1818       tty->print("Mismatched loop setting for: ");
  1819       n->dump();
  1820       if( fail++ > 10 ) return;
  1821       tty->print("We have it as: ");
  1822       us->dump();
  1823       tty->print("Verify thinks: ");
  1824       loop_verify->get_ctrl_no_update(n)->dump();
  1825       tty->cr();
  1826     } else if (!C->major_progress()) {
  1827       // Loop selection can be messed up if we did a major progress
  1828       // operation, like split-if.  Do not verify in that case.
  1829       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  1830       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  1831         tty->print("Unequals loops for: ");
  1832         n->dump();
  1833         if( fail++ > 10 ) return;
  1834         tty->print("We have it as: ");
  1835         us->dump();
  1836         tty->print("Verify thinks: ");
  1837         them->dump();
  1838         tty->cr();
  1843   // Check for immediate dominators being equal
  1844   if( i >= _idom_size ) {
  1845     if( !n->is_CFG() ) return;
  1846     tty->print("CFG Node with no idom: ");
  1847     n->dump();
  1848     return;
  1850   if( !n->is_CFG() ) return;
  1851   if( n == C->root() ) return; // No IDOM here
  1853   assert(n->_idx == i, "sanity");
  1854   Node *id = idom_no_update(n);
  1855   if( id != loop_verify->idom_no_update(n) ) {
  1856     tty->print("Unequals idoms for: ");
  1857     n->dump();
  1858     if( fail++ > 10 ) return;
  1859     tty->print("We have it as: ");
  1860     id->dump();
  1861     tty->print("Verify thinks: ");
  1862     loop_verify->idom_no_update(n)->dump();
  1863     tty->cr();
  1868 //------------------------------verify_tree------------------------------------
  1869 // Verify that tree structures match.  Because the CFG can change, siblings
  1870 // within the loop tree can be reordered.  We attempt to deal with that by
  1871 // reordering the verify's loop tree if possible.
  1872 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  1873   assert( _parent == parent, "Badly formed loop tree" );
  1875   // Siblings not in same order?  Attempt to re-order.
  1876   if( _head != loop->_head ) {
  1877     // Find _next pointer to update
  1878     IdealLoopTree **pp = &loop->_parent->_child;
  1879     while( *pp != loop )
  1880       pp = &((*pp)->_next);
  1881     // Find proper sibling to be next
  1882     IdealLoopTree **nn = &loop->_next;
  1883     while( (*nn) && (*nn)->_head != _head )
  1884       nn = &((*nn)->_next);
  1886     // Check for no match.
  1887     if( !(*nn) ) {
  1888       // Annoyingly, irreducible loops can pick different headers
  1889       // after a major_progress operation, so the rest of the loop
  1890       // tree cannot be matched.
  1891       if (_irreducible && Compile::current()->major_progress())  return;
  1892       assert( 0, "failed to match loop tree" );
  1895     // Move (*nn) to (*pp)
  1896     IdealLoopTree *hit = *nn;
  1897     *nn = hit->_next;
  1898     hit->_next = loop;
  1899     *pp = loop;
  1900     loop = hit;
  1901     // Now try again to verify
  1904   assert( _head  == loop->_head , "mismatched loop head" );
  1905   Node *tail = _tail;           // Inline a non-updating version of
  1906   while( !tail->in(0) )         // the 'tail()' call.
  1907     tail = tail->in(1);
  1908   assert( tail == loop->_tail, "mismatched loop tail" );
  1910   // Counted loops that are guarded should be able to find their guards
  1911   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  1912     CountedLoopNode *cl = _head->as_CountedLoop();
  1913     Node *init = cl->init_trip();
  1914     Node *ctrl = cl->in(LoopNode::EntryControl);
  1915     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1916     Node *iff  = ctrl->in(0);
  1917     assert( iff->Opcode() == Op_If, "" );
  1918     Node *bol  = iff->in(1);
  1919     assert( bol->Opcode() == Op_Bool, "" );
  1920     Node *cmp  = bol->in(1);
  1921     assert( cmp->Opcode() == Op_CmpI, "" );
  1922     Node *add  = cmp->in(1);
  1923     Node *opaq;
  1924     if( add->Opcode() == Op_Opaque1 ) {
  1925       opaq = add;
  1926     } else {
  1927       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  1928       assert( add == init, "" );
  1929       opaq = cmp->in(2);
  1931     assert( opaq->Opcode() == Op_Opaque1, "" );
  1935   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  1936   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  1937   // Innermost loops need to verify loop bodies,
  1938   // but only if no 'major_progress'
  1939   int fail = 0;
  1940   if (!Compile::current()->major_progress() && _child == NULL) {
  1941     for( uint i = 0; i < _body.size(); i++ ) {
  1942       Node *n = _body.at(i);
  1943       if (n->outcnt() == 0)  continue; // Ignore dead
  1944       uint j;
  1945       for( j = 0; j < loop->_body.size(); j++ )
  1946         if( loop->_body.at(j) == n )
  1947           break;
  1948       if( j == loop->_body.size() ) { // Not found in loop body
  1949         // Last ditch effort to avoid assertion: Its possible that we
  1950         // have some users (so outcnt not zero) but are still dead.
  1951         // Try to find from root.
  1952         if (Compile::current()->root()->find(n->_idx)) {
  1953           fail++;
  1954           tty->print("We have that verify does not: ");
  1955           n->dump();
  1959     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  1960       Node *n = loop->_body.at(i2);
  1961       if (n->outcnt() == 0)  continue; // Ignore dead
  1962       uint j;
  1963       for( j = 0; j < _body.size(); j++ )
  1964         if( _body.at(j) == n )
  1965           break;
  1966       if( j == _body.size() ) { // Not found in loop body
  1967         // Last ditch effort to avoid assertion: Its possible that we
  1968         // have some users (so outcnt not zero) but are still dead.
  1969         // Try to find from root.
  1970         if (Compile::current()->root()->find(n->_idx)) {
  1971           fail++;
  1972           tty->print("Verify has that we do not: ");
  1973           n->dump();
  1977     assert( !fail, "loop body mismatch" );
  1981 #endif
  1983 //------------------------------set_idom---------------------------------------
  1984 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  1985   uint idx = d->_idx;
  1986   if (idx >= _idom_size) {
  1987     uint newsize = _idom_size<<1;
  1988     while( idx >= newsize ) {
  1989       newsize <<= 1;
  1991     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  1992     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  1993     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  1994     _idom_size = newsize;
  1996   _idom[idx] = n;
  1997   _dom_depth[idx] = dom_depth;
  2000 //------------------------------recompute_dom_depth---------------------------------------
  2001 // The dominator tree is constructed with only parent pointers.
  2002 // This recomputes the depth in the tree by first tagging all
  2003 // nodes as "no depth yet" marker.  The next pass then runs up
  2004 // the dom tree from each node marked "no depth yet", and computes
  2005 // the depth on the way back down.
  2006 void PhaseIdealLoop::recompute_dom_depth() {
  2007   uint no_depth_marker = C->unique();
  2008   uint i;
  2009   // Initialize depth to "no depth yet"
  2010   for (i = 0; i < _idom_size; i++) {
  2011     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  2012      _dom_depth[i] = no_depth_marker;
  2015   if (_dom_stk == NULL) {
  2016     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
  2017     if (init_size < 10) init_size = 10;
  2018     _dom_stk = new GrowableArray<uint>(init_size);
  2020   // Compute new depth for each node.
  2021   for (i = 0; i < _idom_size; i++) {
  2022     uint j = i;
  2023     // Run up the dom tree to find a node with a depth
  2024     while (_dom_depth[j] == no_depth_marker) {
  2025       _dom_stk->push(j);
  2026       j = _idom[j]->_idx;
  2028     // Compute the depth on the way back down this tree branch
  2029     uint dd = _dom_depth[j] + 1;
  2030     while (_dom_stk->length() > 0) {
  2031       uint j = _dom_stk->pop();
  2032       _dom_depth[j] = dd;
  2033       dd++;
  2038 //------------------------------sort-------------------------------------------
  2039 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  2040 // loop tree, not the root.
  2041 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  2042   if( !innermost ) return loop; // New innermost loop
  2044   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  2045   assert( loop_preorder, "not yet post-walked loop" );
  2046   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  2047   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  2049   // Insert at start of list
  2050   while( l ) {                  // Insertion sort based on pre-order
  2051     if( l == loop ) return innermost; // Already on list!
  2052     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  2053     assert( l_preorder, "not yet post-walked l" );
  2054     // Check header pre-order number to figure proper nesting
  2055     if( loop_preorder > l_preorder )
  2056       break;                    // End of insertion
  2057     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  2058     // Since I split shared headers, you'd think this could not happen.
  2059     // BUT: I must first do the preorder numbering before I can discover I
  2060     // have shared headers, so the split headers all get the same preorder
  2061     // number as the RegionNode they split from.
  2062     if( loop_preorder == l_preorder &&
  2063         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  2064       break;                    // Also check for shared headers (same pre#)
  2065     pp = &l->_parent;           // Chain up list
  2066     l = *pp;
  2068   // Link into list
  2069   // Point predecessor to me
  2070   *pp = loop;
  2071   // Point me to successor
  2072   IdealLoopTree *p = loop->_parent;
  2073   loop->_parent = l;            // Point me to successor
  2074   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2075   return innermost;
  2078 //------------------------------build_loop_tree--------------------------------
  2079 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2080 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2081 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2082 // tightest enclosing IdealLoopTree for post-walked.
  2083 //
  2084 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2085 // a loop backedge with that doesn't have any work on the backedge.  This
  2086 // helps me construct nested loops with shared headers better.
  2087 //
  2088 // Once I've done the forward recursion, I do the post-work.  For each child
  2089 // I check to see if there is a backedge.  Backedges define a loop!  I
  2090 // insert an IdealLoopTree at the target of the backedge.
  2091 //
  2092 // During the post-work I also check to see if I have several children
  2093 // belonging to different loops.  If so, then this Node is a decision point
  2094 // where control flow can choose to change loop nests.  It is at this
  2095 // decision point where I can figure out how loops are nested.  At this
  2096 // time I can properly order the different loop nests from my children.
  2097 // Note that there may not be any backedges at the decision point!
  2098 //
  2099 // Since the decision point can be far removed from the backedges, I can't
  2100 // order my loops at the time I discover them.  Thus at the decision point
  2101 // I need to inspect loop header pre-order numbers to properly nest my
  2102 // loops.  This means I need to sort my childrens' loops by pre-order.
  2103 // The sort is of size number-of-control-children, which generally limits
  2104 // it to size 2 (i.e., I just choose between my 2 target loops).
  2105 void PhaseIdealLoop::build_loop_tree() {
  2106   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2107   GrowableArray <Node *> bltstack(C->unique() >> 1);
  2108   Node *n = C->root();
  2109   bltstack.push(n);
  2110   int pre_order = 1;
  2111   int stack_size;
  2113   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2114     n = bltstack.top(); // Leave node on stack
  2115     if ( !is_visited(n) ) {
  2116       // ---- Pre-pass Work ----
  2117       // Pre-walked but not post-walked nodes need a pre_order number.
  2119       set_preorder_visited( n, pre_order ); // set as visited
  2121       // ---- Scan over children ----
  2122       // Scan first over control projections that lead to loop headers.
  2123       // This helps us find inner-to-outer loops with shared headers better.
  2125       // Scan children's children for loop headers.
  2126       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2127         Node* m = n->raw_out(i);       // Child
  2128         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2129           // Scan over children's children to find loop
  2130           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2131             Node* l = m->fast_out(j);
  2132             if( is_visited(l) &&       // Been visited?
  2133                 !is_postvisited(l) &&  // But not post-visited
  2134                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2135               // Found!  Scan the DFS down this path before doing other paths
  2136               bltstack.push(m);
  2137               break;
  2142       pre_order++;
  2144     else if ( !is_postvisited(n) ) {
  2145       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2146       // such as com.sun.rsasign.am::a.
  2147       // For non-recursive version, first, process current children.
  2148       // On next iteration, check if additional children were added.
  2149       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2150         Node* u = n->raw_out(k);
  2151         if ( u->is_CFG() && !is_visited(u) ) {
  2152           bltstack.push(u);
  2155       if ( bltstack.length() == stack_size ) {
  2156         // There were no additional children, post visit node now
  2157         (void)bltstack.pop(); // Remove node from stack
  2158         pre_order = build_loop_tree_impl( n, pre_order );
  2159         // Check for bailout
  2160         if (C->failing()) {
  2161           return;
  2163         // Check to grow _preorders[] array for the case when
  2164         // build_loop_tree_impl() adds new nodes.
  2165         check_grow_preorders();
  2168     else {
  2169       (void)bltstack.pop(); // Remove post-visited node from stack
  2174 //------------------------------build_loop_tree_impl---------------------------
  2175 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2176   // ---- Post-pass Work ----
  2177   // Pre-walked but not post-walked nodes need a pre_order number.
  2179   // Tightest enclosing loop for this Node
  2180   IdealLoopTree *innermost = NULL;
  2182   // For all children, see if any edge is a backedge.  If so, make a loop
  2183   // for it.  Then find the tightest enclosing loop for the self Node.
  2184   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2185     Node* m = n->fast_out(i);   // Child
  2186     if( n == m ) continue;      // Ignore control self-cycles
  2187     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2189     IdealLoopTree *l;           // Child's loop
  2190     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2191       // Found a backedge
  2192       assert( get_preorder(m) < pre_order, "should be backedge" );
  2193       // Check for the RootNode, which is already a LoopNode and is allowed
  2194       // to have multiple "backedges".
  2195       if( m == C->root()) {     // Found the root?
  2196         l = _ltree_root;        // Root is the outermost LoopNode
  2197       } else {                  // Else found a nested loop
  2198         // Insert a LoopNode to mark this loop.
  2199         l = new IdealLoopTree(this, m, n);
  2200       } // End of Else found a nested loop
  2201       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2202         set_loop(m, l);         // Set loop header to loop now
  2204     } else {                    // Else not a nested loop
  2205       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2206       l = get_loop(m);          // Get previously determined loop
  2207       // If successor is header of a loop (nest), move up-loop till it
  2208       // is a member of some outer enclosing loop.  Since there are no
  2209       // shared headers (I've split them already) I only need to go up
  2210       // at most 1 level.
  2211       while( l && l->_head == m ) // Successor heads loop?
  2212         l = l->_parent;         // Move up 1 for me
  2213       // If this loop is not properly parented, then this loop
  2214       // has no exit path out, i.e. its an infinite loop.
  2215       if( !l ) {
  2216         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2217         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2218         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2219         // many backedges as well.
  2221         // Here I set the loop to be the root loop.  I could have, after
  2222         // inserting a bogus loop exit, restarted the recursion and found my
  2223         // new loop exit.  This would make the infinite loop a first-class
  2224         // loop and it would then get properly optimized.  What's the use of
  2225         // optimizing an infinite loop?
  2226         l = _ltree_root;        // Oops, found infinite loop
  2228         if (!_verify_only) {
  2229           // Insert the NeverBranch between 'm' and it's control user.
  2230           NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
  2231           _igvn.register_new_node_with_optimizer(iff);
  2232           set_loop(iff, l);
  2233           Node *if_t = new (C, 1) CProjNode( iff, 0 );
  2234           _igvn.register_new_node_with_optimizer(if_t);
  2235           set_loop(if_t, l);
  2237           Node* cfg = NULL;       // Find the One True Control User of m
  2238           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2239             Node* x = m->fast_out(j);
  2240             if (x->is_CFG() && x != m && x != iff)
  2241               { cfg = x; break; }
  2243           assert(cfg != NULL, "must find the control user of m");
  2244           uint k = 0;             // Probably cfg->in(0)
  2245           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2246           cfg->set_req( k, if_t ); // Now point to NeverBranch
  2248           // Now create the never-taken loop exit
  2249           Node *if_f = new (C, 1) CProjNode( iff, 1 );
  2250           _igvn.register_new_node_with_optimizer(if_f);
  2251           set_loop(if_f, l);
  2252           // Find frame ptr for Halt.  Relies on the optimizer
  2253           // V-N'ing.  Easier and quicker than searching through
  2254           // the program structure.
  2255           Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
  2256           _igvn.register_new_node_with_optimizer(frame);
  2257           // Halt & Catch Fire
  2258           Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
  2259           _igvn.register_new_node_with_optimizer(halt);
  2260           set_loop(halt, l);
  2261           C->root()->add_req(halt);
  2263         set_loop(C->root(), _ltree_root);
  2266     // Weeny check for irreducible.  This child was already visited (this
  2267     // IS the post-work phase).  Is this child's loop header post-visited
  2268     // as well?  If so, then I found another entry into the loop.
  2269     if (!_verify_only) {
  2270       while( is_postvisited(l->_head) ) {
  2271         // found irreducible
  2272         l->_irreducible = 1; // = true
  2273         l = l->_parent;
  2274         _has_irreducible_loops = true;
  2275         // Check for bad CFG here to prevent crash, and bailout of compile
  2276         if (l == NULL) {
  2277           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2278           return pre_order;
  2283     // This Node might be a decision point for loops.  It is only if
  2284     // it's children belong to several different loops.  The sort call
  2285     // does a trivial amount of work if there is only 1 child or all
  2286     // children belong to the same loop.  If however, the children
  2287     // belong to different loops, the sort call will properly set the
  2288     // _parent pointers to show how the loops nest.
  2289     //
  2290     // In any case, it returns the tightest enclosing loop.
  2291     innermost = sort( l, innermost );
  2294   // Def-use info will have some dead stuff; dead stuff will have no
  2295   // loop decided on.
  2297   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  2298   if( innermost && innermost->_head == n ) {
  2299     assert( get_loop(n) == innermost, "" );
  2300     IdealLoopTree *p = innermost->_parent;
  2301     IdealLoopTree *l = innermost;
  2302     while( p && l->_head == n ) {
  2303       l->_next = p->_child;     // Put self on parents 'next child'
  2304       p->_child = l;            // Make self as first child of parent
  2305       l = p;                    // Now walk up the parent chain
  2306       p = l->_parent;
  2308   } else {
  2309     // Note that it is possible for a LoopNode to reach here, if the
  2310     // backedge has been made unreachable (hence the LoopNode no longer
  2311     // denotes a Loop, and will eventually be removed).
  2313     // Record tightest enclosing loop for self.  Mark as post-visited.
  2314     set_loop(n, innermost);
  2315     // Also record has_call flag early on
  2316     if( innermost ) {
  2317       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  2318         // Do not count uncommon calls
  2319         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  2320           Node *iff = n->in(0)->in(0);
  2321           if( !iff->is_If() ||
  2322               (n->in(0)->Opcode() == Op_IfFalse &&
  2323                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  2324               (iff->as_If()->_prob >= 0.01) )
  2325             innermost->_has_call = 1;
  2327       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  2328         // Disable loop optimizations if the loop has a scalar replaceable
  2329         // allocation. This disabling may cause a potential performance lost
  2330         // if the allocation is not eliminated for some reason.
  2331         innermost->_allow_optimizations = false;
  2332         innermost->_has_call = 1; // = true
  2337   // Flag as post-visited now
  2338   set_postvisited(n);
  2339   return pre_order;
  2343 //------------------------------build_loop_early-------------------------------
  2344 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2345 // First pass computes the earliest controlling node possible.  This is the
  2346 // controlling input with the deepest dominating depth.
  2347 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  2348   while (worklist.size() != 0) {
  2349     // Use local variables nstack_top_n & nstack_top_i to cache values
  2350     // on nstack's top.
  2351     Node *nstack_top_n = worklist.pop();
  2352     uint  nstack_top_i = 0;
  2353 //while_nstack_nonempty:
  2354     while (true) {
  2355       // Get parent node and next input's index from stack's top.
  2356       Node  *n = nstack_top_n;
  2357       uint   i = nstack_top_i;
  2358       uint cnt = n->req(); // Count of inputs
  2359       if (i == 0) {        // Pre-process the node.
  2360         if( has_node(n) &&            // Have either loop or control already?
  2361             !has_ctrl(n) ) {          // Have loop picked out already?
  2362           // During "merge_many_backedges" we fold up several nested loops
  2363           // into a single loop.  This makes the members of the original
  2364           // loop bodies pointing to dead loops; they need to move up
  2365           // to the new UNION'd larger loop.  I set the _head field of these
  2366           // dead loops to NULL and the _parent field points to the owning
  2367           // loop.  Shades of UNION-FIND algorithm.
  2368           IdealLoopTree *ilt;
  2369           while( !(ilt = get_loop(n))->_head ) {
  2370             // Normally I would use a set_loop here.  But in this one special
  2371             // case, it is legal (and expected) to change what loop a Node
  2372             // belongs to.
  2373             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  2375           // Remove safepoints ONLY if I've already seen I don't need one.
  2376           // (the old code here would yank a 2nd safepoint after seeing a
  2377           // first one, even though the 1st did not dominate in the loop body
  2378           // and thus could be avoided indefinitely)
  2379           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  2380               is_deleteable_safept(n)) {
  2381             Node *in = n->in(TypeFunc::Control);
  2382             lazy_replace(n,in);       // Pull safepoint now
  2383             // Carry on with the recursion "as if" we are walking
  2384             // only the control input
  2385             if( !visited.test_set( in->_idx ) ) {
  2386               worklist.push(in);      // Visit this guy later, using worklist
  2388             // Get next node from nstack:
  2389             // - skip n's inputs processing by setting i > cnt;
  2390             // - we also will not call set_early_ctrl(n) since
  2391             //   has_node(n) == true (see the condition above).
  2392             i = cnt + 1;
  2395       } // if (i == 0)
  2397       // Visit all inputs
  2398       bool done = true;       // Assume all n's inputs will be processed
  2399       while (i < cnt) {
  2400         Node *in = n->in(i);
  2401         ++i;
  2402         if (in == NULL) continue;
  2403         if (in->pinned() && !in->is_CFG())
  2404           set_ctrl(in, in->in(0));
  2405         int is_visited = visited.test_set( in->_idx );
  2406         if (!has_node(in)) {  // No controlling input yet?
  2407           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  2408           assert( !is_visited, "visit only once" );
  2409           nstack.push(n, i);  // Save parent node and next input's index.
  2410           nstack_top_n = in;  // Process current input now.
  2411           nstack_top_i = 0;
  2412           done = false;       // Not all n's inputs processed.
  2413           break; // continue while_nstack_nonempty;
  2414         } else if (!is_visited) {
  2415           // This guy has a location picked out for him, but has not yet
  2416           // been visited.  Happens to all CFG nodes, for instance.
  2417           // Visit him using the worklist instead of recursion, to break
  2418           // cycles.  Since he has a location already we do not need to
  2419           // find his location before proceeding with the current Node.
  2420           worklist.push(in);  // Visit this guy later, using worklist
  2423       if (done) {
  2424         // All of n's inputs have been processed, complete post-processing.
  2426         // Compute earliest point this Node can go.
  2427         // CFG, Phi, pinned nodes already know their controlling input.
  2428         if (!has_node(n)) {
  2429           // Record earliest legal location
  2430           set_early_ctrl( n );
  2432         if (nstack.is_empty()) {
  2433           // Finished all nodes on stack.
  2434           // Process next node on the worklist.
  2435           break;
  2437         // Get saved parent node and next input's index.
  2438         nstack_top_n = nstack.node();
  2439         nstack_top_i = nstack.index();
  2440         nstack.pop();
  2442     } // while (true)
  2446 //------------------------------dom_lca_internal--------------------------------
  2447 // Pair-wise LCA
  2448 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  2449   if( !n1 ) return n2;          // Handle NULL original LCA
  2450   assert( n1->is_CFG(), "" );
  2451   assert( n2->is_CFG(), "" );
  2452   // find LCA of all uses
  2453   uint d1 = dom_depth(n1);
  2454   uint d2 = dom_depth(n2);
  2455   while (n1 != n2) {
  2456     if (d1 > d2) {
  2457       n1 =      idom(n1);
  2458       d1 = dom_depth(n1);
  2459     } else if (d1 < d2) {
  2460       n2 =      idom(n2);
  2461       d2 = dom_depth(n2);
  2462     } else {
  2463       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2464       // of the tree might have the same depth.  These sections have
  2465       // to be searched more carefully.
  2467       // Scan up all the n1's with equal depth, looking for n2.
  2468       Node *t1 = idom(n1);
  2469       while (dom_depth(t1) == d1) {
  2470         if (t1 == n2)  return n2;
  2471         t1 = idom(t1);
  2473       // Scan up all the n2's with equal depth, looking for n1.
  2474       Node *t2 = idom(n2);
  2475       while (dom_depth(t2) == d2) {
  2476         if (t2 == n1)  return n1;
  2477         t2 = idom(t2);
  2479       // Move up to a new dominator-depth value as well as up the dom-tree.
  2480       n1 = t1;
  2481       n2 = t2;
  2482       d1 = dom_depth(n1);
  2483       d2 = dom_depth(n2);
  2486   return n1;
  2489 //------------------------------compute_idom-----------------------------------
  2490 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  2491 // IDOMs are correct.
  2492 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  2493   assert( region->is_Region(), "" );
  2494   Node *LCA = NULL;
  2495   for( uint i = 1; i < region->req(); i++ ) {
  2496     if( region->in(i) != C->top() )
  2497       LCA = dom_lca( LCA, region->in(i) );
  2499   return LCA;
  2502 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
  2503   bool had_error = false;
  2504 #ifdef ASSERT
  2505   if (early != C->root()) {
  2506     // Make sure that there's a dominance path from use to LCA
  2507     Node* d = use;
  2508     while (d != LCA) {
  2509       d = idom(d);
  2510       if (d == C->root()) {
  2511         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
  2512         n->dump();
  2513         use->dump();
  2514         had_error = true;
  2515         break;
  2519 #endif
  2520   return had_error;
  2524 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
  2525   // Compute LCA over list of uses
  2526   bool had_error = false;
  2527   Node *LCA = NULL;
  2528   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  2529     Node* c = n->fast_out(i);
  2530     if (_nodes[c->_idx] == NULL)
  2531       continue;                 // Skip the occasional dead node
  2532     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  2533       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  2534         if( c->in(j) == n ) {   // Found matching input?
  2535           Node *use = c->in(0)->in(j);
  2536           if (_verify_only && use->is_top()) continue;
  2537           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2538           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2541     } else {
  2542       // For CFG data-users, use is in the block just prior
  2543       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  2544       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2545       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2548   assert(!had_error, "bad dominance");
  2549   return LCA;
  2552 //------------------------------get_late_ctrl----------------------------------
  2553 // Compute latest legal control.
  2554 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  2555   assert(early != NULL, "early control should not be NULL");
  2557   Node* LCA = compute_lca_of_uses(n, early);
  2558 #ifdef ASSERT
  2559   if (LCA == C->root() && LCA != early) {
  2560     // def doesn't dominate uses so print some useful debugging output
  2561     compute_lca_of_uses(n, early, true);
  2563 #endif
  2565   // if this is a load, check for anti-dependent stores
  2566   // We use a conservative algorithm to identify potential interfering
  2567   // instructions and for rescheduling the load.  The users of the memory
  2568   // input of this load are examined.  Any use which is not a load and is
  2569   // dominated by early is considered a potentially interfering store.
  2570   // This can produce false positives.
  2571   if (n->is_Load() && LCA != early) {
  2572     Node_List worklist;
  2574     Node *mem = n->in(MemNode::Memory);
  2575     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  2576       Node* s = mem->fast_out(i);
  2577       worklist.push(s);
  2579     while(worklist.size() != 0 && LCA != early) {
  2580       Node* s = worklist.pop();
  2581       if (s->is_Load()) {
  2582         continue;
  2583       } else if (s->is_MergeMem()) {
  2584         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  2585           Node* s1 = s->fast_out(i);
  2586           worklist.push(s1);
  2588       } else {
  2589         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  2590         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  2591         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  2592           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  2598   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  2599   return LCA;
  2602 // true if CFG node d dominates CFG node n
  2603 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  2604   if (d == n)
  2605     return true;
  2606   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  2607   uint dd = dom_depth(d);
  2608   while (dom_depth(n) >= dd) {
  2609     if (n == d)
  2610       return true;
  2611     n = idom(n);
  2613   return false;
  2616 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  2617 // Pair-wise LCA with tags.
  2618 // Tag each index with the node 'tag' currently being processed
  2619 // before advancing up the dominator chain using idom().
  2620 // Later calls that find a match to 'tag' know that this path has already
  2621 // been considered in the current LCA (which is input 'n1' by convention).
  2622 // Since get_late_ctrl() is only called once for each node, the tag array
  2623 // does not need to be cleared between calls to get_late_ctrl().
  2624 // Algorithm trades a larger constant factor for better asymptotic behavior
  2625 //
  2626 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  2627   uint d1 = dom_depth(n1);
  2628   uint d2 = dom_depth(n2);
  2630   do {
  2631     if (d1 > d2) {
  2632       // current lca is deeper than n2
  2633       _dom_lca_tags.map(n1->_idx, tag);
  2634       n1 =      idom(n1);
  2635       d1 = dom_depth(n1);
  2636     } else if (d1 < d2) {
  2637       // n2 is deeper than current lca
  2638       Node *memo = _dom_lca_tags[n2->_idx];
  2639       if( memo == tag ) {
  2640         return n1;    // Return the current LCA
  2642       _dom_lca_tags.map(n2->_idx, tag);
  2643       n2 =      idom(n2);
  2644       d2 = dom_depth(n2);
  2645     } else {
  2646       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2647       // of the tree might have the same depth.  These sections have
  2648       // to be searched more carefully.
  2650       // Scan up all the n1's with equal depth, looking for n2.
  2651       _dom_lca_tags.map(n1->_idx, tag);
  2652       Node *t1 = idom(n1);
  2653       while (dom_depth(t1) == d1) {
  2654         if (t1 == n2)  return n2;
  2655         _dom_lca_tags.map(t1->_idx, tag);
  2656         t1 = idom(t1);
  2658       // Scan up all the n2's with equal depth, looking for n1.
  2659       _dom_lca_tags.map(n2->_idx, tag);
  2660       Node *t2 = idom(n2);
  2661       while (dom_depth(t2) == d2) {
  2662         if (t2 == n1)  return n1;
  2663         _dom_lca_tags.map(t2->_idx, tag);
  2664         t2 = idom(t2);
  2666       // Move up to a new dominator-depth value as well as up the dom-tree.
  2667       n1 = t1;
  2668       n2 = t2;
  2669       d1 = dom_depth(n1);
  2670       d2 = dom_depth(n2);
  2672   } while (n1 != n2);
  2673   return n1;
  2676 //------------------------------init_dom_lca_tags------------------------------
  2677 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  2678 // Intended use does not involve any growth for the array, so it could
  2679 // be of fixed size.
  2680 void PhaseIdealLoop::init_dom_lca_tags() {
  2681   uint limit = C->unique() + 1;
  2682   _dom_lca_tags.map( limit, NULL );
  2683 #ifdef ASSERT
  2684   for( uint i = 0; i < limit; ++i ) {
  2685     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  2687 #endif // ASSERT
  2690 //------------------------------clear_dom_lca_tags------------------------------
  2691 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  2692 // Intended use does not involve any growth for the array, so it could
  2693 // be of fixed size.
  2694 void PhaseIdealLoop::clear_dom_lca_tags() {
  2695   uint limit = C->unique() + 1;
  2696   _dom_lca_tags.map( limit, NULL );
  2697   _dom_lca_tags.clear();
  2698 #ifdef ASSERT
  2699   for( uint i = 0; i < limit; ++i ) {
  2700     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  2702 #endif // ASSERT
  2705 //------------------------------build_loop_late--------------------------------
  2706 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2707 // Second pass finds latest legal placement, and ideal loop placement.
  2708 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  2709   while (worklist.size() != 0) {
  2710     Node *n = worklist.pop();
  2711     // Only visit once
  2712     if (visited.test_set(n->_idx)) continue;
  2713     uint cnt = n->outcnt();
  2714     uint   i = 0;
  2715     while (true) {
  2716       assert( _nodes[n->_idx], "no dead nodes" );
  2717       // Visit all children
  2718       if (i < cnt) {
  2719         Node* use = n->raw_out(i);
  2720         ++i;
  2721         // Check for dead uses.  Aggressively prune such junk.  It might be
  2722         // dead in the global sense, but still have local uses so I cannot
  2723         // easily call 'remove_dead_node'.
  2724         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  2725           // Due to cycles, we might not hit the same fixed point in the verify
  2726           // pass as we do in the regular pass.  Instead, visit such phis as
  2727           // simple uses of the loop head.
  2728           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  2729             if( !visited.test(use->_idx) )
  2730               worklist.push(use);
  2731           } else if( !visited.test_set(use->_idx) ) {
  2732             nstack.push(n, i); // Save parent and next use's index.
  2733             n   = use;         // Process all children of current use.
  2734             cnt = use->outcnt();
  2735             i   = 0;
  2737         } else {
  2738           // Do not visit around the backedge of loops via data edges.
  2739           // push dead code onto a worklist
  2740           _deadlist.push(use);
  2742       } else {
  2743         // All of n's children have been processed, complete post-processing.
  2744         build_loop_late_post(n);
  2745         if (nstack.is_empty()) {
  2746           // Finished all nodes on stack.
  2747           // Process next node on the worklist.
  2748           break;
  2750         // Get saved parent node and next use's index. Visit the rest of uses.
  2751         n   = nstack.node();
  2752         cnt = n->outcnt();
  2753         i   = nstack.index();
  2754         nstack.pop();
  2760 //------------------------------build_loop_late_post---------------------------
  2761 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2762 // Second pass finds latest legal placement, and ideal loop placement.
  2763 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
  2765   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
  2766     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  2769   // CFG and pinned nodes already handled
  2770   if( n->in(0) ) {
  2771     if( n->in(0)->is_top() ) return; // Dead?
  2773     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  2774     // _must_ be pinned (they have to observe their control edge of course).
  2775     // Unlike Stores (which modify an unallocable resource, the memory
  2776     // state), Mods/Loads can float around.  So free them up.
  2777     bool pinned = true;
  2778     switch( n->Opcode() ) {
  2779     case Op_DivI:
  2780     case Op_DivF:
  2781     case Op_DivD:
  2782     case Op_ModI:
  2783     case Op_ModF:
  2784     case Op_ModD:
  2785     case Op_LoadB:              // Same with Loads; they can sink
  2786     case Op_LoadUS:             // during loop optimizations.
  2787     case Op_LoadD:
  2788     case Op_LoadF:
  2789     case Op_LoadI:
  2790     case Op_LoadKlass:
  2791     case Op_LoadNKlass:
  2792     case Op_LoadL:
  2793     case Op_LoadS:
  2794     case Op_LoadP:
  2795     case Op_LoadN:
  2796     case Op_LoadRange:
  2797     case Op_LoadD_unaligned:
  2798     case Op_LoadL_unaligned:
  2799     case Op_StrComp:            // Does a bunch of load-like effects
  2800     case Op_StrEquals:
  2801     case Op_StrIndexOf:
  2802     case Op_AryEq:
  2803       pinned = false;
  2805     if( pinned ) {
  2806       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  2807       if( !chosen_loop->_child )       // Inner loop?
  2808         chosen_loop->_body.push(n); // Collect inner loops
  2809       return;
  2811   } else {                      // No slot zero
  2812     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  2813       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  2814       return;
  2816     assert(!n->is_CFG() || n->outcnt() == 0, "");
  2819   // Do I have a "safe range" I can select over?
  2820   Node *early = get_ctrl(n);// Early location already computed
  2822   // Compute latest point this Node can go
  2823   Node *LCA = get_late_ctrl( n, early );
  2824   // LCA is NULL due to uses being dead
  2825   if( LCA == NULL ) {
  2826 #ifdef ASSERT
  2827     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  2828       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  2830 #endif
  2831     _nodes.map(n->_idx, 0);     // This node is useless
  2832     _deadlist.push(n);
  2833     return;
  2835   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  2837   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  2838   Node *least = legal;          // Best legal position so far
  2839   while( early != legal ) {     // While not at earliest legal
  2840 #ifdef ASSERT
  2841     if (legal->is_Start() && !early->is_Root()) {
  2842       // Bad graph. Print idom path and fail.
  2843       tty->print_cr( "Bad graph detected in build_loop_late");
  2844       tty->print("n: ");n->dump(); tty->cr();
  2845       tty->print("early: ");early->dump(); tty->cr();
  2846       int ct = 0;
  2847       Node *dbg_legal = LCA;
  2848       while(!dbg_legal->is_Start() && ct < 100) {
  2849         tty->print("idom[%d] ",ct); dbg_legal->dump(); tty->cr();
  2850         ct++;
  2851         dbg_legal = idom(dbg_legal);
  2853       assert(false, "Bad graph detected in build_loop_late");
  2855 #endif
  2856     // Find least loop nesting depth
  2857     legal = idom(legal);        // Bump up the IDOM tree
  2858     // Check for lower nesting depth
  2859     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  2860       least = legal;
  2862   assert(early == legal || legal != C->root(), "bad dominance of inputs");
  2864   // Try not to place code on a loop entry projection
  2865   // which can inhibit range check elimination.
  2866   if (least != early) {
  2867     Node* ctrl_out = least->unique_ctrl_out();
  2868     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  2869         least == ctrl_out->in(LoopNode::EntryControl)) {
  2870       Node* least_dom = idom(least);
  2871       if (get_loop(least_dom)->is_member(get_loop(least))) {
  2872         least = least_dom;
  2877 #ifdef ASSERT
  2878   // If verifying, verify that 'verify_me' has a legal location
  2879   // and choose it as our location.
  2880   if( _verify_me ) {
  2881     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
  2882     Node *legal = LCA;
  2883     while( early != legal ) {   // While not at earliest legal
  2884       if( legal == v_ctrl ) break;  // Check for prior good location
  2885       legal = idom(legal)      ;// Bump up the IDOM tree
  2887     // Check for prior good location
  2888     if( legal == v_ctrl ) least = legal; // Keep prior if found
  2890 #endif
  2892   // Assign discovered "here or above" point
  2893   least = find_non_split_ctrl(least);
  2894   set_ctrl(n, least);
  2896   // Collect inner loop bodies
  2897   IdealLoopTree *chosen_loop = get_loop(least);
  2898   if( !chosen_loop->_child )   // Inner loop?
  2899     chosen_loop->_body.push(n);// Collect inner loops
  2902 #ifndef PRODUCT
  2903 //------------------------------dump-------------------------------------------
  2904 void PhaseIdealLoop::dump( ) const {
  2905   ResourceMark rm;
  2906   Arena* arena = Thread::current()->resource_area();
  2907   Node_Stack stack(arena, C->unique() >> 2);
  2908   Node_List rpo_list;
  2909   VectorSet visited(arena);
  2910   visited.set(C->top()->_idx);
  2911   rpo( C->root(), stack, visited, rpo_list );
  2912   // Dump root loop indexed by last element in PO order
  2913   dump( _ltree_root, rpo_list.size(), rpo_list );
  2916 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  2917   loop->dump_head();
  2919   // Now scan for CFG nodes in the same loop
  2920   for( uint j=idx; j > 0;  j-- ) {
  2921     Node *n = rpo_list[j-1];
  2922     if( !_nodes[n->_idx] )      // Skip dead nodes
  2923       continue;
  2924     if( get_loop(n) != loop ) { // Wrong loop nest
  2925       if( get_loop(n)->_head == n &&    // Found nested loop?
  2926           get_loop(n)->_parent == loop )
  2927         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  2928       continue;
  2931     // Dump controlling node
  2932     for( uint x = 0; x < loop->_nest; x++ )
  2933       tty->print("  ");
  2934     tty->print("C");
  2935     if( n == C->root() ) {
  2936       n->dump();
  2937     } else {
  2938       Node* cached_idom   = idom_no_update(n);
  2939       Node *computed_idom = n->in(0);
  2940       if( n->is_Region() ) {
  2941         computed_idom = compute_idom(n);
  2942         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  2943         // any MultiBranch ctrl node), so apply a similar transform to
  2944         // the cached idom returned from idom_no_update.
  2945         cached_idom = find_non_split_ctrl(cached_idom);
  2947       tty->print(" ID:%d",computed_idom->_idx);
  2948       n->dump();
  2949       if( cached_idom != computed_idom ) {
  2950         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  2951                       computed_idom->_idx, cached_idom->_idx);
  2954     // Dump nodes it controls
  2955     for( uint k = 0; k < _nodes.Size(); k++ ) {
  2956       // (k < C->unique() && get_ctrl(find(k)) == n)
  2957       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  2958         Node *m = C->root()->find(k);
  2959         if( m && m->outcnt() > 0 ) {
  2960           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  2961             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  2962                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  2964           for( uint j = 0; j < loop->_nest; j++ )
  2965             tty->print("  ");
  2966           tty->print(" ");
  2967           m->dump();
  2974 // Collect a R-P-O for the whole CFG.
  2975 // Result list is in post-order (scan backwards for RPO)
  2976 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  2977   stk.push(start, 0);
  2978   visited.set(start->_idx);
  2980   while (stk.is_nonempty()) {
  2981     Node* m   = stk.node();
  2982     uint  idx = stk.index();
  2983     if (idx < m->outcnt()) {
  2984       stk.set_index(idx + 1);
  2985       Node* n = m->raw_out(idx);
  2986       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  2987         stk.push(n, 0);
  2989     } else {
  2990       rpo_list.push(m);
  2991       stk.pop();
  2995 #endif
  2998 //=============================================================================
  2999 //------------------------------LoopTreeIterator-----------------------------------
  3001 // Advance to next loop tree using a preorder, left-to-right traversal.
  3002 void LoopTreeIterator::next() {
  3003   assert(!done(), "must not be done.");
  3004   if (_curnt->_child != NULL) {
  3005     _curnt = _curnt->_child;
  3006   } else if (_curnt->_next != NULL) {
  3007     _curnt = _curnt->_next;
  3008   } else {
  3009     while (_curnt != _root && _curnt->_next == NULL) {
  3010       _curnt = _curnt->_parent;
  3012     if (_curnt == _root) {
  3013       _curnt = NULL;
  3014       assert(done(), "must be done.");
  3015     } else {
  3016       assert(_curnt->_next != NULL, "must be more to do");
  3017       _curnt = _curnt->_next;

mercurial