src/share/vm/opto/loopTransform.cpp

Fri, 11 Mar 2011 07:50:51 -0800

author
kvn
date
Fri, 11 Mar 2011 07:50:51 -0800
changeset 2636
83f08886981c
parent 2314
f95d63e2154a
child 2665
9dc311b8473e
permissions
-rw-r--r--

7026631: field _klass is incorrectly set for dual type of TypeAryPtr::OOPS
Summary: add missing check this->dual() != TypeAryPtr::OOPS into TypeAryPtr::klass().
Reviewed-by: never

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/divnode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/rootnode.hpp"
    35 #include "opto/runtime.hpp"
    36 #include "opto/subnode.hpp"
    38 //------------------------------is_loop_exit-----------------------------------
    39 // Given an IfNode, return the loop-exiting projection or NULL if both
    40 // arms remain in the loop.
    41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    42   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    43   PhaseIdealLoop *phase = _phase;
    44   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    45   // we need loop unswitching instead of peeling.
    46   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    47     return iff->raw_out(0);
    48   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    49     return iff->raw_out(1);
    50   return NULL;
    51 }
    54 //=============================================================================
    57 //------------------------------record_for_igvn----------------------------
    58 // Put loop body on igvn work list
    59 void IdealLoopTree::record_for_igvn() {
    60   for( uint i = 0; i < _body.size(); i++ ) {
    61     Node *n = _body.at(i);
    62     _phase->_igvn._worklist.push(n);
    63   }
    64 }
    66 //------------------------------compute_profile_trip_cnt----------------------------
    67 // Compute loop trip count from profile data as
    68 //    (backedge_count + loop_exit_count) / loop_exit_count
    69 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
    70   if (!_head->is_CountedLoop()) {
    71     return;
    72   }
    73   CountedLoopNode* head = _head->as_CountedLoop();
    74   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
    75     return; // Already computed
    76   }
    77   float trip_cnt = (float)max_jint; // default is big
    79   Node* back = head->in(LoopNode::LoopBackControl);
    80   while (back != head) {
    81     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    82         back->in(0) &&
    83         back->in(0)->is_If() &&
    84         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
    85         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
    86       break;
    87     }
    88     back = phase->idom(back);
    89   }
    90   if (back != head) {
    91     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    92            back->in(0), "if-projection exists");
    93     IfNode* back_if = back->in(0)->as_If();
    94     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
    96     // Now compute a loop exit count
    97     float loop_exit_cnt = 0.0f;
    98     for( uint i = 0; i < _body.size(); i++ ) {
    99       Node *n = _body[i];
   100       if( n->is_If() ) {
   101         IfNode *iff = n->as_If();
   102         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
   103           Node *exit = is_loop_exit(iff);
   104           if( exit ) {
   105             float exit_prob = iff->_prob;
   106             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
   107             if (exit_prob > PROB_MIN) {
   108               float exit_cnt = iff->_fcnt * exit_prob;
   109               loop_exit_cnt += exit_cnt;
   110             }
   111           }
   112         }
   113       }
   114     }
   115     if (loop_exit_cnt > 0.0f) {
   116       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   117     } else {
   118       // No exit count so use
   119       trip_cnt = loop_back_cnt;
   120     }
   121   }
   122 #ifndef PRODUCT
   123   if (TraceProfileTripCount) {
   124     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   125   }
   126 #endif
   127   head->set_profile_trip_cnt(trip_cnt);
   128 }
   130 //---------------------is_invariant_addition-----------------------------
   131 // Return nonzero index of invariant operand for an Add or Sub
   132 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
   133 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   134   int op = n->Opcode();
   135   if (op == Op_AddI || op == Op_SubI) {
   136     bool in1_invar = this->is_invariant(n->in(1));
   137     bool in2_invar = this->is_invariant(n->in(2));
   138     if (in1_invar && !in2_invar) return 1;
   139     if (!in1_invar && in2_invar) return 2;
   140   }
   141   return 0;
   142 }
   144 //---------------------reassociate_add_sub-----------------------------
   145 // Reassociate invariant add and subtract expressions:
   146 //
   147 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   148 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   149 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   150 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   151 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   152 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   153 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   154 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   155 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   156 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   157 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   158 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   159 //
   160 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   161   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   162   if (is_invariant(n1)) return NULL;
   163   int inv1_idx = is_invariant_addition(n1, phase);
   164   if (!inv1_idx) return NULL;
   165   // Don't mess with add of constant (igvn moves them to expression tree root.)
   166   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   167   Node* inv1 = n1->in(inv1_idx);
   168   Node* n2 = n1->in(3 - inv1_idx);
   169   int inv2_idx = is_invariant_addition(n2, phase);
   170   if (!inv2_idx) return NULL;
   171   Node* x    = n2->in(3 - inv2_idx);
   172   Node* inv2 = n2->in(inv2_idx);
   174   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   175   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   176   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   177   if (n1->is_Sub() && inv1_idx == 1) {
   178     neg_x    = !neg_x;
   179     neg_inv2 = !neg_inv2;
   180   }
   181   Node* inv1_c = phase->get_ctrl(inv1);
   182   Node* inv2_c = phase->get_ctrl(inv2);
   183   Node* n_inv1;
   184   if (neg_inv1) {
   185     Node *zero = phase->_igvn.intcon(0);
   186     phase->set_ctrl(zero, phase->C->root());
   187     n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
   188     phase->register_new_node(n_inv1, inv1_c);
   189   } else {
   190     n_inv1 = inv1;
   191   }
   192   Node* inv;
   193   if (neg_inv2) {
   194     inv = new (phase->C, 3) SubINode(n_inv1, inv2);
   195   } else {
   196     inv = new (phase->C, 3) AddINode(n_inv1, inv2);
   197   }
   198   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   200   Node* addx;
   201   if (neg_x) {
   202     addx = new (phase->C, 3) SubINode(inv, x);
   203   } else {
   204     addx = new (phase->C, 3) AddINode(x, inv);
   205   }
   206   phase->register_new_node(addx, phase->get_ctrl(x));
   207   phase->_igvn.replace_node(n1, addx);
   208   return addx;
   209 }
   211 //---------------------reassociate_invariants-----------------------------
   212 // Reassociate invariant expressions:
   213 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   214   for (int i = _body.size() - 1; i >= 0; i--) {
   215     Node *n = _body.at(i);
   216     for (int j = 0; j < 5; j++) {
   217       Node* nn = reassociate_add_sub(n, phase);
   218       if (nn == NULL) break;
   219       n = nn; // again
   220     };
   221   }
   222 }
   224 //------------------------------policy_peeling---------------------------------
   225 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   226 // make some loop-invariant test (usually a null-check) happen before the loop.
   227 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   228   Node *test = ((IdealLoopTree*)this)->tail();
   229   int  body_size = ((IdealLoopTree*)this)->_body.size();
   230   int  uniq      = phase->C->unique();
   231   // Peeling does loop cloning which can result in O(N^2) node construction
   232   if( body_size > 255 /* Prevent overflow for large body_size */
   233       || (body_size * body_size + uniq > MaxNodeLimit) ) {
   234     return false;           // too large to safely clone
   235   }
   236   while( test != _head ) {      // Scan till run off top of loop
   237     if( test->is_If() ) {       // Test?
   238       Node *ctrl = phase->get_ctrl(test->in(1));
   239       if (ctrl->is_top())
   240         return false;           // Found dead test on live IF?  No peeling!
   241       // Standard IF only has one input value to check for loop invariance
   242       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   243       // Condition is not a member of this loop?
   244       if( !is_member(phase->get_loop(ctrl)) &&
   245           is_loop_exit(test) )
   246         return true;            // Found reason to peel!
   247     }
   248     // Walk up dominators to loop _head looking for test which is
   249     // executed on every path thru loop.
   250     test = phase->idom(test);
   251   }
   252   return false;
   253 }
   255 //------------------------------peeled_dom_test_elim---------------------------
   256 // If we got the effect of peeling, either by actually peeling or by making
   257 // a pre-loop which must execute at least once, we can remove all
   258 // loop-invariant dominated tests in the main body.
   259 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   260   bool progress = true;
   261   while( progress ) {
   262     progress = false;           // Reset for next iteration
   263     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   264     Node *test = prev->in(0);
   265     while( test != loop->_head ) { // Scan till run off top of loop
   267       int p_op = prev->Opcode();
   268       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   269           test->is_If() &&      // Test?
   270           !test->in(1)->is_Con() && // And not already obvious?
   271           // Condition is not a member of this loop?
   272           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   273         // Walk loop body looking for instances of this test
   274         for( uint i = 0; i < loop->_body.size(); i++ ) {
   275           Node *n = loop->_body.at(i);
   276           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   277             // IfNode was dominated by version in peeled loop body
   278             progress = true;
   279             dominated_by( old_new[prev->_idx], n );
   280           }
   281         }
   282       }
   283       prev = test;
   284       test = idom(test);
   285     } // End of scan tests in loop
   287   } // End of while( progress )
   288 }
   290 //------------------------------do_peeling-------------------------------------
   291 // Peel the first iteration of the given loop.
   292 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   293 //         The pre-loop illegally has 2 control users (old & new loops).
   294 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   295 //         Do this by making the old-loop fall-in edges act as if they came
   296 //         around the loopback from the prior iteration (follow the old-loop
   297 //         backedges) and then map to the new peeled iteration.  This leaves
   298 //         the pre-loop with only 1 user (the new peeled iteration), but the
   299 //         peeled-loop backedge has 2 users.
   300 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   301 //         extra backedge user.
   302 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   304   C->set_major_progress();
   305   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   306   // 'pre' loop from the main and the 'pre' can no longer have it's
   307   // iterations adjusted.  Therefore, we need to declare this loop as
   308   // no longer a 'main' loop; it will need new pre and post loops before
   309   // we can do further RCE.
   310   Node *h = loop->_head;
   311   if( h->is_CountedLoop() ) {
   312     CountedLoopNode *cl = h->as_CountedLoop();
   313     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   314     cl->set_trip_count(cl->trip_count() - 1);
   315     if( cl->is_main_loop() ) {
   316       cl->set_normal_loop();
   317 #ifndef PRODUCT
   318       if( PrintOpto && VerifyLoopOptimizations ) {
   319         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   320         loop->dump_head();
   321       }
   322 #endif
   323     }
   324   }
   326   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   327   //         The pre-loop illegally has 2 control users (old & new loops).
   328   clone_loop( loop, old_new, dom_depth(loop->_head) );
   331   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   332   //         Do this by making the old-loop fall-in edges act as if they came
   333   //         around the loopback from the prior iteration (follow the old-loop
   334   //         backedges) and then map to the new peeled iteration.  This leaves
   335   //         the pre-loop with only 1 user (the new peeled iteration), but the
   336   //         peeled-loop backedge has 2 users.
   337   for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
   338     Node* old = loop->_head->fast_out(j);
   339     if( old->in(0) == loop->_head && old->req() == 3 &&
   340         (old->is_Loop() || old->is_Phi()) ) {
   341       Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   342       if( !new_exit_value )     // Backedge value is ALSO loop invariant?
   343         // Then loop body backedge value remains the same.
   344         new_exit_value = old->in(LoopNode::LoopBackControl);
   345       _igvn.hash_delete(old);
   346       old->set_req(LoopNode::EntryControl, new_exit_value);
   347     }
   348   }
   351   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   352   //         extra backedge user.
   353   Node *nnn = old_new[loop->_head->_idx];
   354   _igvn.hash_delete(nnn);
   355   nnn->set_req(LoopNode::LoopBackControl, C->top());
   356   for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
   357     Node* use = nnn->fast_out(j2);
   358     if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
   359       _igvn.hash_delete(use);
   360       use->set_req(LoopNode::LoopBackControl, C->top());
   361     }
   362   }
   365   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   366   int dd = dom_depth(loop->_head);
   367   set_idom(loop->_head, loop->_head->in(1), dd);
   368   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   369     Node *old = loop->_body.at(j3);
   370     Node *nnn = old_new[old->_idx];
   371     if (!has_ctrl(nnn))
   372       set_idom(nnn, idom(nnn), dd-1);
   373     // While we're at it, remove any SafePoints from the peeled code
   374     if( old->Opcode() == Op_SafePoint ) {
   375       Node *nnn = old_new[old->_idx];
   376       lazy_replace(nnn,nnn->in(TypeFunc::Control));
   377     }
   378   }
   380   // Now force out all loop-invariant dominating tests.  The optimizer
   381   // finds some, but we _know_ they are all useless.
   382   peeled_dom_test_elim(loop,old_new);
   384   loop->record_for_igvn();
   385 }
   387 //------------------------------policy_maximally_unroll------------------------
   388 // Return exact loop trip count, or 0 if not maximally unrolling
   389 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   390   CountedLoopNode *cl = _head->as_CountedLoop();
   391   assert( cl->is_normal_loop(), "" );
   393   Node *init_n = cl->init_trip();
   394   Node *limit_n = cl->limit();
   396   // Non-constant bounds
   397   if( init_n   == NULL || !init_n->is_Con()  ||
   398       limit_n  == NULL || !limit_n->is_Con() ||
   399       // protect against stride not being a constant
   400       !cl->stride_is_con() ) {
   401     return false;
   402   }
   403   int init   = init_n->get_int();
   404   int limit  = limit_n->get_int();
   405   int span   = limit - init;
   406   int stride = cl->stride_con();
   408   if (init >= limit || stride > span) {
   409     // return a false (no maximally unroll) and the regular unroll/peel
   410     // route will make a small mess which CCP will fold away.
   411     return false;
   412   }
   413   uint trip_count = span/stride;   // trip_count can be greater than 2 Gig.
   414   assert( (int)trip_count*stride == span, "must divide evenly" );
   416   // Real policy: if we maximally unroll, does it get too big?
   417   // Allow the unrolled mess to get larger than standard loop
   418   // size.  After all, it will no longer be a loop.
   419   uint body_size    = _body.size();
   420   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   421   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   422   cl->set_trip_count(trip_count);
   423   if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
   424     uint new_body_size = body_size * trip_count;
   425     if (new_body_size <= unroll_limit &&
   426         body_size == new_body_size / trip_count &&
   427         // Unrolling can result in a large amount of node construction
   428         new_body_size < MaxNodeLimit - phase->C->unique()) {
   429       return true;    // maximally unroll
   430     }
   431   }
   433   return false;               // Do not maximally unroll
   434 }
   437 //------------------------------policy_unroll----------------------------------
   438 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   439 // the loop is a CountedLoop and the body is small enough.
   440 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   442   CountedLoopNode *cl = _head->as_CountedLoop();
   443   assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
   445   // protect against stride not being a constant
   446   if( !cl->stride_is_con() ) return false;
   448   // protect against over-unrolling
   449   if( cl->trip_count() <= 1 ) return false;
   451   int future_unroll_ct = cl->unrolled_count() * 2;
   453   // Don't unroll if the next round of unrolling would push us
   454   // over the expected trip count of the loop.  One is subtracted
   455   // from the expected trip count because the pre-loop normally
   456   // executes 1 iteration.
   457   if (UnrollLimitForProfileCheck > 0 &&
   458       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   459       future_unroll_ct        > UnrollLimitForProfileCheck &&
   460       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   461     return false;
   462   }
   464   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   465   //   the residual iterations are more than 10% of the trip count
   466   //   and rounds of "unroll,optimize" are not making significant progress
   467   //   Progress defined as current size less than 20% larger than previous size.
   468   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   469       future_unroll_ct > LoopUnrollMin &&
   470       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   471       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   472     return false;
   473   }
   475   Node *init_n = cl->init_trip();
   476   Node *limit_n = cl->limit();
   477   // Non-constant bounds.
   478   // Protect against over-unrolling when init or/and limit are not constant
   479   // (so that trip_count's init value is maxint) but iv range is known.
   480   if( init_n   == NULL || !init_n->is_Con()  ||
   481       limit_n  == NULL || !limit_n->is_Con() ) {
   482     Node* phi = cl->phi();
   483     if( phi != NULL ) {
   484       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   485       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   486       int next_stride = cl->stride_con() * 2; // stride after this unroll
   487       if( next_stride > 0 ) {
   488         if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   489             iv_type->_lo + next_stride >  iv_type->_hi ) {
   490           return false;  // over-unrolling
   491         }
   492       } else if( next_stride < 0 ) {
   493         if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   494             iv_type->_hi + next_stride <  iv_type->_lo ) {
   495           return false;  // over-unrolling
   496         }
   497       }
   498     }
   499   }
   501   // Adjust body_size to determine if we unroll or not
   502   uint body_size = _body.size();
   503   // Key test to unroll CaffeineMark's Logic test
   504   int xors_in_loop = 0;
   505   // Also count ModL, DivL and MulL which expand mightly
   506   for( uint k = 0; k < _body.size(); k++ ) {
   507     switch( _body.at(k)->Opcode() ) {
   508     case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
   509     case Op_ModL: body_size += 30; break;
   510     case Op_DivL: body_size += 30; break;
   511     case Op_MulL: body_size += 10; break;
   512     }
   513   }
   515   // Check for being too big
   516   if( body_size > (uint)LoopUnrollLimit ) {
   517     if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   518     // Normal case: loop too big
   519     return false;
   520   }
   522   // Check for stride being a small enough constant
   523   if( abs(cl->stride_con()) > (1<<3) ) return false;
   525   // Unroll once!  (Each trip will soon do double iterations)
   526   return true;
   527 }
   529 //------------------------------policy_align-----------------------------------
   530 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   531 // expression that does the alignment.  Note that only one array base can be
   532 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
   533 // if we vectorize short memory ops into longer memory ops, we may want to
   534 // increase alignment.
   535 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   536   return false;
   537 }
   539 //------------------------------policy_range_check-----------------------------
   540 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   541 // Actually we do iteration-splitting, a more powerful form of RCE.
   542 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   543   if( !RangeCheckElimination ) return false;
   545   CountedLoopNode *cl = _head->as_CountedLoop();
   546   // If we unrolled with no intention of doing RCE and we later
   547   // changed our minds, we got no pre-loop.  Either we need to
   548   // make a new pre-loop, or we gotta disallow RCE.
   549   if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
   550   Node *trip_counter = cl->phi();
   552   // Check loop body for tests of trip-counter plus loop-invariant vs
   553   // loop-invariant.
   554   for( uint i = 0; i < _body.size(); i++ ) {
   555     Node *iff = _body[i];
   556     if( iff->Opcode() == Op_If ) { // Test?
   558       // Comparing trip+off vs limit
   559       Node *bol = iff->in(1);
   560       if( bol->req() != 2 ) continue; // dead constant test
   561       if (!bol->is_Bool()) {
   562         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
   563         continue;
   564       }
   565       Node *cmp = bol->in(1);
   567       Node *rc_exp = cmp->in(1);
   568       Node *limit = cmp->in(2);
   570       Node *limit_c = phase->get_ctrl(limit);
   571       if( limit_c == phase->C->top() )
   572         return false;           // Found dead test on live IF?  No RCE!
   573       if( is_member(phase->get_loop(limit_c) ) ) {
   574         // Compare might have operands swapped; commute them
   575         rc_exp = cmp->in(2);
   576         limit  = cmp->in(1);
   577         limit_c = phase->get_ctrl(limit);
   578         if( is_member(phase->get_loop(limit_c) ) )
   579           continue;             // Both inputs are loop varying; cannot RCE
   580       }
   582       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   583         continue;
   584       }
   585       // Yeah!  Found a test like 'trip+off vs limit'
   586       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   587       // we need loop unswitching instead of iteration splitting.
   588       if( is_loop_exit(iff) )
   589         return true;            // Found reason to split iterations
   590     } // End of is IF
   591   }
   593   return false;
   594 }
   596 //------------------------------policy_peel_only-------------------------------
   597 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   598 // for unrolling loops with NO array accesses.
   599 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   601   for( uint i = 0; i < _body.size(); i++ )
   602     if( _body[i]->is_Mem() )
   603       return false;
   605   // No memory accesses at all!
   606   return true;
   607 }
   609 //------------------------------clone_up_backedge_goo--------------------------
   610 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   611 // version of n in preheader_ctrl block and return that, otherwise return n.
   612 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
   613   if( get_ctrl(n) != back_ctrl ) return n;
   615   Node *x = NULL;               // If required, a clone of 'n'
   616   // Check for 'n' being pinned in the backedge.
   617   if( n->in(0) && n->in(0) == back_ctrl ) {
   618     x = n->clone();             // Clone a copy of 'n' to preheader
   619     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   620   }
   622   // Recursive fixup any other input edges into x.
   623   // If there are no changes we can just return 'n', otherwise
   624   // we need to clone a private copy and change it.
   625   for( uint i = 1; i < n->req(); i++ ) {
   626     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
   627     if( g != n->in(i) ) {
   628       if( !x )
   629         x = n->clone();
   630       x->set_req(i, g);
   631     }
   632   }
   633   if( x ) {                     // x can legally float to pre-header location
   634     register_new_node( x, preheader_ctrl );
   635     return x;
   636   } else {                      // raise n to cover LCA of uses
   637     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   638   }
   639   return n;
   640 }
   642 //------------------------------insert_pre_post_loops--------------------------
   643 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   644 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   645 // alignment.  Useful to unroll loops that do no array accesses.
   646 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   648   C->set_major_progress();
   650   // Find common pieces of the loop being guarded with pre & post loops
   651   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   652   assert( main_head->is_normal_loop(), "" );
   653   CountedLoopEndNode *main_end = main_head->loopexit();
   654   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   655   uint dd_main_head = dom_depth(main_head);
   656   uint max = main_head->outcnt();
   658   Node *pre_header= main_head->in(LoopNode::EntryControl);
   659   Node *init      = main_head->init_trip();
   660   Node *incr      = main_end ->incr();
   661   Node *limit     = main_end ->limit();
   662   Node *stride    = main_end ->stride();
   663   Node *cmp       = main_end ->cmp_node();
   664   BoolTest::mask b_test = main_end->test_trip();
   666   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   667   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   668   if( bol->outcnt() != 1 ) {
   669     bol = bol->clone();
   670     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   671     _igvn.hash_delete(main_end);
   672     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   673   }
   674   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   675   if( cmp->outcnt() != 1 ) {
   676     cmp = cmp->clone();
   677     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   678     _igvn.hash_delete(bol);
   679     bol->set_req(1, cmp);
   680   }
   682   //------------------------------
   683   // Step A: Create Post-Loop.
   684   Node* main_exit = main_end->proj_out(false);
   685   assert( main_exit->Opcode() == Op_IfFalse, "" );
   686   int dd_main_exit = dom_depth(main_exit);
   688   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   689   // loop pre-header illegally has 2 control users (old & new loops).
   690   clone_loop( loop, old_new, dd_main_exit );
   691   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   692   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   693   post_head->set_post_loop(main_head);
   695   // Reduce the post-loop trip count.
   696   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
   697   post_end->_prob = PROB_FAIR;
   699   // Build the main-loop normal exit.
   700   IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
   701   _igvn.register_new_node_with_optimizer( new_main_exit );
   702   set_idom(new_main_exit, main_end, dd_main_exit );
   703   set_loop(new_main_exit, loop->_parent);
   705   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   706   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   707   // (the main-loop trip-counter exit value) because we will be changing
   708   // the exit value (via unrolling) so we cannot constant-fold away the zero
   709   // trip guard until all unrolling is done.
   710   Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
   711   Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
   712   Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
   713   register_new_node( zer_opaq, new_main_exit );
   714   register_new_node( zer_cmp , new_main_exit );
   715   register_new_node( zer_bol , new_main_exit );
   717   // Build the IfNode
   718   IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   719   _igvn.register_new_node_with_optimizer( zer_iff );
   720   set_idom(zer_iff, new_main_exit, dd_main_exit);
   721   set_loop(zer_iff, loop->_parent);
   723   // Plug in the false-path, taken if we need to skip post-loop
   724   _igvn.hash_delete( main_exit );
   725   main_exit->set_req(0, zer_iff);
   726   _igvn._worklist.push(main_exit);
   727   set_idom(main_exit, zer_iff, dd_main_exit);
   728   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   729   // Make the true-path, must enter the post loop
   730   Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
   731   _igvn.register_new_node_with_optimizer( zer_taken );
   732   set_idom(zer_taken, zer_iff, dd_main_exit);
   733   set_loop(zer_taken, loop->_parent);
   734   // Plug in the true path
   735   _igvn.hash_delete( post_head );
   736   post_head->set_req(LoopNode::EntryControl, zer_taken);
   737   set_idom(post_head, zer_taken, dd_main_exit);
   739   // Step A3: Make the fall-in values to the post-loop come from the
   740   // fall-out values of the main-loop.
   741   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
   742     Node* main_phi = main_head->fast_out(i);
   743     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
   744       Node *post_phi = old_new[main_phi->_idx];
   745       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
   746                                               post_head->init_control(),
   747                                               main_phi->in(LoopNode::LoopBackControl));
   748       _igvn.hash_delete(post_phi);
   749       post_phi->set_req( LoopNode::EntryControl, fallmain );
   750     }
   751   }
   753   // Update local caches for next stanza
   754   main_exit = new_main_exit;
   757   //------------------------------
   758   // Step B: Create Pre-Loop.
   760   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
   761   // loop pre-header illegally has 2 control users (old & new loops).
   762   clone_loop( loop, old_new, dd_main_head );
   763   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
   764   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
   765   pre_head->set_pre_loop(main_head);
   766   Node *pre_incr = old_new[incr->_idx];
   768   // Reduce the pre-loop trip count.
   769   pre_end->_prob = PROB_FAIR;
   771   // Find the pre-loop normal exit.
   772   Node* pre_exit = pre_end->proj_out(false);
   773   assert( pre_exit->Opcode() == Op_IfFalse, "" );
   774   IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
   775   _igvn.register_new_node_with_optimizer( new_pre_exit );
   776   set_idom(new_pre_exit, pre_end, dd_main_head);
   777   set_loop(new_pre_exit, loop->_parent);
   779   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
   780   // pre-loop, the main-loop may not execute at all.  Later in life this
   781   // zero-trip guard will become the minimum-trip guard when we unroll
   782   // the main-loop.
   783   Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
   784   Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
   785   Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
   786   register_new_node( min_opaq, new_pre_exit );
   787   register_new_node( min_cmp , new_pre_exit );
   788   register_new_node( min_bol , new_pre_exit );
   790   // Build the IfNode (assume the main-loop is executed always).
   791   IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
   792   _igvn.register_new_node_with_optimizer( min_iff );
   793   set_idom(min_iff, new_pre_exit, dd_main_head);
   794   set_loop(min_iff, loop->_parent);
   796   // Plug in the false-path, taken if we need to skip main-loop
   797   _igvn.hash_delete( pre_exit );
   798   pre_exit->set_req(0, min_iff);
   799   set_idom(pre_exit, min_iff, dd_main_head);
   800   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
   801   // Make the true-path, must enter the main loop
   802   Node *min_taken = new (C, 1) IfTrueNode( min_iff );
   803   _igvn.register_new_node_with_optimizer( min_taken );
   804   set_idom(min_taken, min_iff, dd_main_head);
   805   set_loop(min_taken, loop->_parent);
   806   // Plug in the true path
   807   _igvn.hash_delete( main_head );
   808   main_head->set_req(LoopNode::EntryControl, min_taken);
   809   set_idom(main_head, min_taken, dd_main_head);
   811   // Step B3: Make the fall-in values to the main-loop come from the
   812   // fall-out values of the pre-loop.
   813   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
   814     Node* main_phi = main_head->fast_out(i2);
   815     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
   816       Node *pre_phi = old_new[main_phi->_idx];
   817       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
   818                                              main_head->init_control(),
   819                                              pre_phi->in(LoopNode::LoopBackControl));
   820       _igvn.hash_delete(main_phi);
   821       main_phi->set_req( LoopNode::EntryControl, fallpre );
   822     }
   823   }
   825   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
   826   // RCE and alignment may change this later.
   827   Node *cmp_end = pre_end->cmp_node();
   828   assert( cmp_end->in(2) == limit, "" );
   829   Node *pre_limit = new (C, 3) AddINode( init, stride );
   831   // Save the original loop limit in this Opaque1 node for
   832   // use by range check elimination.
   833   Node *pre_opaq  = new (C, 3) Opaque1Node(C, pre_limit, limit);
   835   register_new_node( pre_limit, pre_head->in(0) );
   836   register_new_node( pre_opaq , pre_head->in(0) );
   838   // Since no other users of pre-loop compare, I can hack limit directly
   839   assert( cmp_end->outcnt() == 1, "no other users" );
   840   _igvn.hash_delete(cmp_end);
   841   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
   843   // Special case for not-equal loop bounds:
   844   // Change pre loop test, main loop test, and the
   845   // main loop guard test to use lt or gt depending on stride
   846   // direction:
   847   // positive stride use <
   848   // negative stride use >
   850   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
   852     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
   853     // Modify pre loop end condition
   854     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
   855     BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
   856     register_new_node( new_bol0, pre_head->in(0) );
   857     _igvn.hash_delete(pre_end);
   858     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
   859     // Modify main loop guard condition
   860     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
   861     BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
   862     register_new_node( new_bol1, new_pre_exit );
   863     _igvn.hash_delete(min_iff);
   864     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
   865     // Modify main loop end condition
   866     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
   867     BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
   868     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
   869     _igvn.hash_delete(main_end);
   870     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
   871   }
   873   // Flag main loop
   874   main_head->set_main_loop();
   875   if( peel_only ) main_head->set_main_no_pre_loop();
   877   // It's difficult to be precise about the trip-counts
   878   // for the pre/post loops.  They are usually very short,
   879   // so guess that 4 trips is a reasonable value.
   880   post_head->set_profile_trip_cnt(4.0);
   881   pre_head->set_profile_trip_cnt(4.0);
   883   // Now force out all loop-invariant dominating tests.  The optimizer
   884   // finds some, but we _know_ they are all useless.
   885   peeled_dom_test_elim(loop,old_new);
   886 }
   888 //------------------------------is_invariant-----------------------------
   889 // Return true if n is invariant
   890 bool IdealLoopTree::is_invariant(Node* n) const {
   891   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
   892   if (n_c->is_top()) return false;
   893   return !is_member(_phase->get_loop(n_c));
   894 }
   897 //------------------------------do_unroll--------------------------------------
   898 // Unroll the loop body one step - make each trip do 2 iterations.
   899 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
   900   assert( LoopUnrollLimit, "" );
   901 #ifndef PRODUCT
   902   if( PrintOpto && VerifyLoopOptimizations ) {
   903     tty->print("Unrolling ");
   904     loop->dump_head();
   905   }
   906 #endif
   907   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
   908   CountedLoopEndNode *loop_end = loop_head->loopexit();
   909   assert( loop_end, "" );
   911   // Remember loop node count before unrolling to detect
   912   // if rounds of unroll,optimize are making progress
   913   loop_head->set_node_count_before_unroll(loop->_body.size());
   915   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
   916   Node *limit = loop_head->limit();
   917   Node *init  = loop_head->init_trip();
   918   Node *strid = loop_head->stride();
   920   Node *opaq = NULL;
   921   if( adjust_min_trip ) {       // If not maximally unrolling, need adjustment
   922     assert( loop_head->is_main_loop(), "" );
   923     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
   924     Node *iff = ctrl->in(0);
   925     assert( iff->Opcode() == Op_If, "" );
   926     Node *bol = iff->in(1);
   927     assert( bol->Opcode() == Op_Bool, "" );
   928     Node *cmp = bol->in(1);
   929     assert( cmp->Opcode() == Op_CmpI, "" );
   930     opaq = cmp->in(2);
   931     // Occasionally it's possible for a pre-loop Opaque1 node to be
   932     // optimized away and then another round of loop opts attempted.
   933     // We can not optimize this particular loop in that case.
   934     if( opaq->Opcode() != Op_Opaque1 )
   935       return;                   // Cannot find pre-loop!  Bail out!
   936   }
   938   C->set_major_progress();
   940   // Adjust max trip count. The trip count is intentionally rounded
   941   // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
   942   // the main, unrolled, part of the loop will never execute as it is protected
   943   // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
   944   // and later determined that part of the unrolled loop was dead.
   945   loop_head->set_trip_count(loop_head->trip_count() / 2);
   947   // Double the count of original iterations in the unrolled loop body.
   948   loop_head->double_unrolled_count();
   950   // -----------
   951   // Step 2: Cut back the trip counter for an unroll amount of 2.
   952   // Loop will normally trip (limit - init)/stride_con.  Since it's a
   953   // CountedLoop this is exact (stride divides limit-init exactly).
   954   // We are going to double the loop body, so we want to knock off any
   955   // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
   956   Node *span = new (C, 3) SubINode( limit, init );
   957   register_new_node( span, ctrl );
   958   Node *trip = new (C, 3) DivINode( 0, span, strid );
   959   register_new_node( trip, ctrl );
   960   Node *mtwo = _igvn.intcon(-2);
   961   set_ctrl(mtwo, C->root());
   962   Node *rond = new (C, 3) AndINode( trip, mtwo );
   963   register_new_node( rond, ctrl );
   964   Node *spn2 = new (C, 3) MulINode( rond, strid );
   965   register_new_node( spn2, ctrl );
   966   Node *lim2 = new (C, 3) AddINode( spn2, init );
   967   register_new_node( lim2, ctrl );
   969   // Hammer in the new limit
   970   Node *ctrl2 = loop_end->in(0);
   971   Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
   972   register_new_node( cmp2, ctrl2 );
   973   Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
   974   register_new_node( bol2, ctrl2 );
   975   _igvn.hash_delete(loop_end);
   976   loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
   978   // Step 3: Find the min-trip test guaranteed before a 'main' loop.
   979   // Make it a 1-trip test (means at least 2 trips).
   980   if( adjust_min_trip ) {
   981     // Guard test uses an 'opaque' node which is not shared.  Hence I
   982     // can edit it's inputs directly.  Hammer in the new limit for the
   983     // minimum-trip guard.
   984     assert( opaq->outcnt() == 1, "" );
   985     _igvn.hash_delete(opaq);
   986     opaq->set_req(1, lim2);
   987   }
   989   // ---------
   990   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
   991   // represents the odd iterations; since the loop trips an even number of
   992   // times its backedge is never taken.  Kill the backedge.
   993   uint dd = dom_depth(loop_head);
   994   clone_loop( loop, old_new, dd );
   996   // Make backedges of the clone equal to backedges of the original.
   997   // Make the fall-in from the original come from the fall-out of the clone.
   998   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
   999     Node* phi = loop_head->fast_out(j);
  1000     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
  1001       Node *newphi = old_new[phi->_idx];
  1002       _igvn.hash_delete( phi );
  1003       _igvn.hash_delete( newphi );
  1005       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
  1006       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
  1007       phi   ->set_req(LoopNode::LoopBackControl, C->top());
  1010   Node *clone_head = old_new[loop_head->_idx];
  1011   _igvn.hash_delete( clone_head );
  1012   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  1013   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  1014   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  1015   loop->_head = clone_head;     // New loop header
  1017   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  1018   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1020   // Kill the clone's backedge
  1021   Node *newcle = old_new[loop_end->_idx];
  1022   _igvn.hash_delete( newcle );
  1023   Node *one = _igvn.intcon(1);
  1024   set_ctrl(one, C->root());
  1025   newcle->set_req(1, one);
  1026   // Force clone into same loop body
  1027   uint max = loop->_body.size();
  1028   for( uint k = 0; k < max; k++ ) {
  1029     Node *old = loop->_body.at(k);
  1030     Node *nnn = old_new[old->_idx];
  1031     loop->_body.push(nnn);
  1032     if (!has_ctrl(old))
  1033       set_loop(nnn, loop);
  1036   loop->record_for_igvn();
  1039 //------------------------------do_maximally_unroll----------------------------
  1041 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1042   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1043   assert( cl->trip_count() > 0, "");
  1045   // If loop is tripping an odd number of times, peel odd iteration
  1046   if( (cl->trip_count() & 1) == 1 ) {
  1047     do_peeling( loop, old_new );
  1050   // Now its tripping an even number of times remaining.  Double loop body.
  1051   // Do not adjust pre-guards; they are not needed and do not exist.
  1052   if( cl->trip_count() > 0 ) {
  1053     do_unroll( loop, old_new, false );
  1057 //------------------------------dominates_backedge---------------------------------
  1058 // Returns true if ctrl is executed on every complete iteration
  1059 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1060   assert(ctrl->is_CFG(), "must be control");
  1061   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1062   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1065 //------------------------------add_constraint---------------------------------
  1066 // Constrain the main loop iterations so the condition:
  1067 //    scale_con * I + offset  <  limit
  1068 // always holds true.  That is, either increase the number of iterations in
  1069 // the pre-loop or the post-loop until the condition holds true in the main
  1070 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1071 // stride and scale are constants (offset and limit often are).
  1072 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1074   // Compute "I :: (limit-offset)/scale_con"
  1075   Node *con = new (C, 3) SubINode( limit, offset );
  1076   register_new_node( con, pre_ctrl );
  1077   Node *scale = _igvn.intcon(scale_con);
  1078   set_ctrl(scale, C->root());
  1079   Node *X = new (C, 3) DivINode( 0, con, scale );
  1080   register_new_node( X, pre_ctrl );
  1082   // For positive stride, the pre-loop limit always uses a MAX function
  1083   // and the main loop a MIN function.  For negative stride these are
  1084   // reversed.
  1086   // Also for positive stride*scale the affine function is increasing, so the
  1087   // pre-loop must check for underflow and the post-loop for overflow.
  1088   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1089   // post-loop for underflow.
  1090   if( stride_con*scale_con > 0 ) {
  1091     // Compute I < (limit-offset)/scale_con
  1092     // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
  1093     *main_limit = (stride_con > 0)
  1094       ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
  1095       : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
  1096     register_new_node( *main_limit, pre_ctrl );
  1098   } else {
  1099     // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
  1100     // Add the negation of the main-loop constraint to the pre-loop.
  1101     // See footnote [++] below for a derivation of the limit expression.
  1102     Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
  1103     set_ctrl(incr, C->root());
  1104     Node *adj = new (C, 3) AddINode( X, incr );
  1105     register_new_node( adj, pre_ctrl );
  1106     *pre_limit = (scale_con > 0)
  1107       ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
  1108       : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
  1109     register_new_node( *pre_limit, pre_ctrl );
  1111 //   [++] Here's the algebra that justifies the pre-loop limit expression:
  1112 //
  1113 //   NOT( scale_con * I + offset  <  limit )
  1114 //      ==
  1115 //   scale_con * I + offset  >=  limit
  1116 //      ==
  1117 //   SGN(scale_con) * I  >=  (limit-offset)/|scale_con|
  1118 //      ==
  1119 //   (limit-offset)/|scale_con|   <=  I * SGN(scale_con)
  1120 //      ==
  1121 //   (limit-offset)/|scale_con|-1  <  I * SGN(scale_con)
  1122 //      ==
  1123 //   ( if (scale_con > 0) /*common case*/
  1124 //       (limit-offset)/scale_con - 1  <  I
  1125 //     else
  1126 //       (limit-offset)/scale_con + 1  >  I
  1127 //    )
  1128 //   ( if (scale_con > 0) /*common case*/
  1129 //       (limit-offset)/scale_con + SGN(-scale_con)  <  I
  1130 //     else
  1131 //       (limit-offset)/scale_con + SGN(-scale_con)  >  I
  1136 //------------------------------is_scaled_iv---------------------------------
  1137 // Return true if exp is a constant times an induction var
  1138 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1139   if (exp == iv) {
  1140     if (p_scale != NULL) {
  1141       *p_scale = 1;
  1143     return true;
  1145   int opc = exp->Opcode();
  1146   if (opc == Op_MulI) {
  1147     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1148       if (p_scale != NULL) {
  1149         *p_scale = exp->in(2)->get_int();
  1151       return true;
  1153     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1154       if (p_scale != NULL) {
  1155         *p_scale = exp->in(1)->get_int();
  1157       return true;
  1159   } else if (opc == Op_LShiftI) {
  1160     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1161       if (p_scale != NULL) {
  1162         *p_scale = 1 << exp->in(2)->get_int();
  1164       return true;
  1167   return false;
  1170 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1171 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1172 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1173   if (is_scaled_iv(exp, iv, p_scale)) {
  1174     if (p_offset != NULL) {
  1175       Node *zero = _igvn.intcon(0);
  1176       set_ctrl(zero, C->root());
  1177       *p_offset = zero;
  1179     return true;
  1181   int opc = exp->Opcode();
  1182   if (opc == Op_AddI) {
  1183     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1184       if (p_offset != NULL) {
  1185         *p_offset = exp->in(2);
  1187       return true;
  1189     if (exp->in(2)->is_Con()) {
  1190       Node* offset2 = NULL;
  1191       if (depth < 2 &&
  1192           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1193                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1194         if (p_offset != NULL) {
  1195           Node *ctrl_off2 = get_ctrl(offset2);
  1196           Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
  1197           register_new_node(offset, ctrl_off2);
  1198           *p_offset = offset;
  1200         return true;
  1203   } else if (opc == Op_SubI) {
  1204     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1205       if (p_offset != NULL) {
  1206         Node *zero = _igvn.intcon(0);
  1207         set_ctrl(zero, C->root());
  1208         Node *ctrl_off = get_ctrl(exp->in(2));
  1209         Node* offset = new (C, 3) SubINode(zero, exp->in(2));
  1210         register_new_node(offset, ctrl_off);
  1211         *p_offset = offset;
  1213       return true;
  1215     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1216       if (p_offset != NULL) {
  1217         *p_scale *= -1;
  1218         *p_offset = exp->in(1);
  1220       return true;
  1223   return false;
  1226 //------------------------------do_range_check---------------------------------
  1227 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1228 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1229 #ifndef PRODUCT
  1230   if( PrintOpto && VerifyLoopOptimizations ) {
  1231     tty->print("Range Check Elimination ");
  1232     loop->dump_head();
  1234 #endif
  1235   assert( RangeCheckElimination, "" );
  1236   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1237   assert( cl->is_main_loop(), "" );
  1239   // Find the trip counter; we are iteration splitting based on it
  1240   Node *trip_counter = cl->phi();
  1241   // Find the main loop limit; we will trim it's iterations
  1242   // to not ever trip end tests
  1243   Node *main_limit = cl->limit();
  1244   // Find the pre-loop limit; we will expand it's iterations to
  1245   // not ever trip low tests.
  1246   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1247   assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1248   Node *iffm = ctrl->in(0);
  1249   assert( iffm->Opcode() == Op_If, "" );
  1250   Node *p_f = iffm->in(0);
  1251   assert( p_f->Opcode() == Op_IfFalse, "" );
  1252   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1253   assert( pre_end->loopnode()->is_pre_loop(), "" );
  1254   Node *pre_opaq1 = pre_end->limit();
  1255   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1256   // optimized away and then another round of loop opts attempted.
  1257   // We can not optimize this particular loop in that case.
  1258   if( pre_opaq1->Opcode() != Op_Opaque1 )
  1259     return;
  1260   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1261   Node *pre_limit = pre_opaq->in(1);
  1263   // Where do we put new limit calculations
  1264   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1266   // Ensure the original loop limit is available from the
  1267   // pre-loop Opaque1 node.
  1268   Node *orig_limit = pre_opaq->original_loop_limit();
  1269   if( orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP )
  1270     return;
  1272   // Need to find the main-loop zero-trip guard
  1273   Node *bolzm = iffm->in(1);
  1274   assert( bolzm->Opcode() == Op_Bool, "" );
  1275   Node *cmpzm = bolzm->in(1);
  1276   assert( cmpzm->is_Cmp(), "" );
  1277   Node *opqzm = cmpzm->in(2);
  1278   if( opqzm->Opcode() != Op_Opaque1 )
  1279     return;
  1280   assert( opqzm->in(1) == main_limit, "do not understand situation" );
  1282   // Must know if its a count-up or count-down loop
  1284   // protect against stride not being a constant
  1285   if ( !cl->stride_is_con() ) {
  1286     return;
  1288   int stride_con = cl->stride_con();
  1289   Node *zero = _igvn.intcon(0);
  1290   Node *one  = _igvn.intcon(1);
  1291   set_ctrl(zero, C->root());
  1292   set_ctrl(one,  C->root());
  1294   // Range checks that do not dominate the loop backedge (ie.
  1295   // conditionally executed) can lengthen the pre loop limit beyond
  1296   // the original loop limit. To prevent this, the pre limit is
  1297   // (for stride > 0) MINed with the original loop limit (MAXed
  1298   // stride < 0) when some range_check (rc) is conditionally
  1299   // executed.
  1300   bool conditional_rc = false;
  1302   // Check loop body for tests of trip-counter plus loop-invariant vs
  1303   // loop-invariant.
  1304   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1305     Node *iff = loop->_body[i];
  1306     if( iff->Opcode() == Op_If ) { // Test?
  1308       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1309       // we need loop unswitching instead of iteration splitting.
  1310       Node *exit = loop->is_loop_exit(iff);
  1311       if( !exit ) continue;
  1312       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1314       // Get boolean condition to test
  1315       Node *i1 = iff->in(1);
  1316       if( !i1->is_Bool() ) continue;
  1317       BoolNode *bol = i1->as_Bool();
  1318       BoolTest b_test = bol->_test;
  1319       // Flip sense of test if exit condition is flipped
  1320       if( flip )
  1321         b_test = b_test.negate();
  1323       // Get compare
  1324       Node *cmp = bol->in(1);
  1326       // Look for trip_counter + offset vs limit
  1327       Node *rc_exp = cmp->in(1);
  1328       Node *limit  = cmp->in(2);
  1329       jint scale_con= 1;        // Assume trip counter not scaled
  1331       Node *limit_c = get_ctrl(limit);
  1332       if( loop->is_member(get_loop(limit_c) ) ) {
  1333         // Compare might have operands swapped; commute them
  1334         b_test = b_test.commute();
  1335         rc_exp = cmp->in(2);
  1336         limit  = cmp->in(1);
  1337         limit_c = get_ctrl(limit);
  1338         if( loop->is_member(get_loop(limit_c) ) )
  1339           continue;             // Both inputs are loop varying; cannot RCE
  1341       // Here we know 'limit' is loop invariant
  1343       // 'limit' maybe pinned below the zero trip test (probably from a
  1344       // previous round of rce), in which case, it can't be used in the
  1345       // zero trip test expression which must occur before the zero test's if.
  1346       if( limit_c == ctrl ) {
  1347         continue;  // Don't rce this check but continue looking for other candidates.
  1350       // Check for scaled induction variable plus an offset
  1351       Node *offset = NULL;
  1353       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1354         continue;
  1357       Node *offset_c = get_ctrl(offset);
  1358       if( loop->is_member( get_loop(offset_c) ) )
  1359         continue;               // Offset is not really loop invariant
  1360       // Here we know 'offset' is loop invariant.
  1362       // As above for the 'limit', the 'offset' maybe pinned below the
  1363       // zero trip test.
  1364       if( offset_c == ctrl ) {
  1365         continue; // Don't rce this check but continue looking for other candidates.
  1368       // At this point we have the expression as:
  1369       //   scale_con * trip_counter + offset :: limit
  1370       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1371       // monotonically increases by stride_con, a constant.  Both (or either)
  1372       // stride_con and scale_con can be negative which will flip about the
  1373       // sense of the test.
  1375       // Adjust pre and main loop limits to guard the correct iteration set
  1376       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1377         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1378           // The overflow limit: scale*I+offset < limit
  1379           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1380           // The underflow limit: 0 <= scale*I+offset.
  1381           // Some math yields: -scale*I-(offset+1) < 0
  1382           Node *plus_one = new (C, 3) AddINode( offset, one );
  1383           register_new_node( plus_one, pre_ctrl );
  1384           Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
  1385           register_new_node( neg_offset, pre_ctrl );
  1386           add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
  1387           if (!conditional_rc) {
  1388             conditional_rc = !loop->dominates_backedge(iff);
  1390         } else {
  1391 #ifndef PRODUCT
  1392           if( PrintOpto )
  1393             tty->print_cr("missed RCE opportunity");
  1394 #endif
  1395           continue;             // In release mode, ignore it
  1397       } else {                  // Otherwise work on normal compares
  1398         switch( b_test._test ) {
  1399         case BoolTest::ge:      // Convert X >= Y to -X <= -Y
  1400           scale_con = -scale_con;
  1401           offset = new (C, 3) SubINode( zero, offset );
  1402           register_new_node( offset, pre_ctrl );
  1403           limit  = new (C, 3) SubINode( zero, limit  );
  1404           register_new_node( limit, pre_ctrl );
  1405           // Fall into LE case
  1406         case BoolTest::le:      // Convert X <= Y to X < Y+1
  1407           limit = new (C, 3) AddINode( limit, one );
  1408           register_new_node( limit, pre_ctrl );
  1409           // Fall into LT case
  1410         case BoolTest::lt:
  1411           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1412           if (!conditional_rc) {
  1413             conditional_rc = !loop->dominates_backedge(iff);
  1415           break;
  1416         default:
  1417 #ifndef PRODUCT
  1418           if( PrintOpto )
  1419             tty->print_cr("missed RCE opportunity");
  1420 #endif
  1421           continue;             // Unhandled case
  1425       // Kill the eliminated test
  1426       C->set_major_progress();
  1427       Node *kill_con = _igvn.intcon( 1-flip );
  1428       set_ctrl(kill_con, C->root());
  1429       _igvn.hash_delete(iff);
  1430       iff->set_req(1, kill_con);
  1431       _igvn._worklist.push(iff);
  1432       // Find surviving projection
  1433       assert(iff->is_If(), "");
  1434       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  1435       // Find loads off the surviving projection; remove their control edge
  1436       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  1437         Node* cd = dp->fast_out(i); // Control-dependent node
  1438         if( cd->is_Load() ) {   // Loads can now float around in the loop
  1439           _igvn.hash_delete(cd);
  1440           // Allow the load to float around in the loop, or before it
  1441           // but NOT before the pre-loop.
  1442           cd->set_req(0, ctrl);   // ctrl, not NULL
  1443           _igvn._worklist.push(cd);
  1444           --i;
  1445           --imax;
  1449     } // End of is IF
  1453   // Update loop limits
  1454   if (conditional_rc) {
  1455     pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
  1456                                  : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
  1457     register_new_node(pre_limit, pre_ctrl);
  1459   _igvn.hash_delete(pre_opaq);
  1460   pre_opaq->set_req(1, pre_limit);
  1462   // Note:: we are making the main loop limit no longer precise;
  1463   // need to round up based on stride.
  1464   if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
  1465     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  1466     // Hopefully, compiler will optimize for powers of 2.
  1467     Node *ctrl = get_ctrl(main_limit);
  1468     Node *stride = cl->stride();
  1469     Node *init = cl->init_trip();
  1470     Node *span = new (C, 3) SubINode(main_limit,init);
  1471     register_new_node(span,ctrl);
  1472     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  1473     Node *add = new (C, 3) AddINode(span,rndup);
  1474     register_new_node(add,ctrl);
  1475     Node *div = new (C, 3) DivINode(0,add,stride);
  1476     register_new_node(div,ctrl);
  1477     Node *mul = new (C, 3) MulINode(div,stride);
  1478     register_new_node(mul,ctrl);
  1479     Node *newlim = new (C, 3) AddINode(mul,init);
  1480     register_new_node(newlim,ctrl);
  1481     main_limit = newlim;
  1484   Node *main_cle = cl->loopexit();
  1485   Node *main_bol = main_cle->in(1);
  1486   // Hacking loop bounds; need private copies of exit test
  1487   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  1488     _igvn.hash_delete(main_cle);
  1489     main_bol = main_bol->clone();// Clone a private BoolNode
  1490     register_new_node( main_bol, main_cle->in(0) );
  1491     main_cle->set_req(1,main_bol);
  1493   Node *main_cmp = main_bol->in(1);
  1494   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  1495     _igvn.hash_delete(main_bol);
  1496     main_cmp = main_cmp->clone();// Clone a private CmpNode
  1497     register_new_node( main_cmp, main_cle->in(0) );
  1498     main_bol->set_req(1,main_cmp);
  1500   // Hack the now-private loop bounds
  1501   _igvn.hash_delete(main_cmp);
  1502   main_cmp->set_req(2, main_limit);
  1503   _igvn._worklist.push(main_cmp);
  1504   // The OpaqueNode is unshared by design
  1505   _igvn.hash_delete(opqzm);
  1506   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  1507   opqzm->set_req(1,main_limit);
  1508   _igvn._worklist.push(opqzm);
  1511 //------------------------------DCE_loop_body----------------------------------
  1512 // Remove simplistic dead code from loop body
  1513 void IdealLoopTree::DCE_loop_body() {
  1514   for( uint i = 0; i < _body.size(); i++ )
  1515     if( _body.at(i)->outcnt() == 0 )
  1516       _body.map( i--, _body.pop() );
  1520 //------------------------------adjust_loop_exit_prob--------------------------
  1521 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  1522 // Replace with a 1-in-10 exit guess.
  1523 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  1524   Node *test = tail();
  1525   while( test != _head ) {
  1526     uint top = test->Opcode();
  1527     if( top == Op_IfTrue || top == Op_IfFalse ) {
  1528       int test_con = ((ProjNode*)test)->_con;
  1529       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  1530       IfNode *iff = test->in(0)->as_If();
  1531       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  1532         Node *bol = iff->in(1);
  1533         if( bol && bol->req() > 1 && bol->in(1) &&
  1534             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  1535              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
  1536              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  1537              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  1538              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  1539              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  1540              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  1541           return;               // Allocation loops RARELY take backedge
  1542         // Find the OTHER exit path from the IF
  1543         Node* ex = iff->proj_out(1-test_con);
  1544         float p = iff->_prob;
  1545         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  1546           if( top == Op_IfTrue ) {
  1547             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  1548               iff->_prob = PROB_STATIC_FREQUENT;
  1550           } else {
  1551             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  1552               iff->_prob = PROB_STATIC_INFREQUENT;
  1558     test = phase->idom(test);
  1563 //------------------------------policy_do_remove_empty_loop--------------------
  1564 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  1565 // The 'DO' part is to replace the trip counter with the value it will
  1566 // have on the last iteration.  This will break the loop.
  1567 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  1568   // Minimum size must be empty loop
  1569   if( _body.size() > 7/*number of nodes in an empty loop*/ ) return false;
  1571   if( !_head->is_CountedLoop() ) return false;     // Dead loop
  1572   CountedLoopNode *cl = _head->as_CountedLoop();
  1573   if( !cl->loopexit() ) return false; // Malformed loop
  1574   if( !phase->is_member(this,phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue)) ) )
  1575     return false;             // Infinite loop
  1576 #ifndef PRODUCT
  1577   if( PrintOpto )
  1578     tty->print_cr("Removing empty loop");
  1579 #endif
  1580 #ifdef ASSERT
  1581   // Ensure only one phi which is the iv.
  1582   Node* iv = NULL;
  1583   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  1584     Node* n = cl->fast_out(i);
  1585     if (n->Opcode() == Op_Phi) {
  1586       assert(iv == NULL, "Too many phis" );
  1587       iv = n;
  1590   assert(iv == cl->phi(), "Wrong phi" );
  1591 #endif
  1592   // Replace the phi at loop head with the final value of the last
  1593   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  1594   // taken) and all loop-invariant uses of the exit values will be correct.
  1595   Node *phi = cl->phi();
  1596   Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
  1597   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  1598   phase->_igvn.replace_node(phi,final);
  1599   phase->C->set_major_progress();
  1600   return true;
  1604 //=============================================================================
  1605 //------------------------------iteration_split_impl---------------------------
  1606 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  1607   // Check and remove empty loops (spam micro-benchmarks)
  1608   if( policy_do_remove_empty_loop(phase) )
  1609     return true;  // Here we removed an empty loop
  1611   bool should_peel = policy_peeling(phase); // Should we peel?
  1613   bool should_unswitch = policy_unswitching(phase);
  1615   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  1616   // This removes loop-invariant tests (usually null checks).
  1617   if( !_head->is_CountedLoop() ) { // Non-counted loop
  1618     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  1619       // Partial peel succeeded so terminate this round of loop opts
  1620       return false;
  1622     if( should_peel ) {            // Should we peel?
  1623 #ifndef PRODUCT
  1624       if (PrintOpto) tty->print_cr("should_peel");
  1625 #endif
  1626       phase->do_peeling(this,old_new);
  1627     } else if( should_unswitch ) {
  1628       phase->do_unswitching(this, old_new);
  1630     return true;
  1632   CountedLoopNode *cl = _head->as_CountedLoop();
  1634   if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
  1636   // Do nothing special to pre- and post- loops
  1637   if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
  1639   // Compute loop trip count from profile data
  1640   compute_profile_trip_cnt(phase);
  1642   // Before attempting fancy unrolling, RCE or alignment, see if we want
  1643   // to completely unroll this loop or do loop unswitching.
  1644   if( cl->is_normal_loop() ) {
  1645     if (should_unswitch) {
  1646       phase->do_unswitching(this, old_new);
  1647       return true;
  1649     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  1650     if( should_maximally_unroll ) {
  1651       // Here we did some unrolling and peeling.  Eventually we will
  1652       // completely unroll this loop and it will no longer be a loop.
  1653       phase->do_maximally_unroll(this,old_new);
  1654       return true;
  1659   // Counted loops may be peeled, may need some iterations run up
  1660   // front for RCE, and may want to align loop refs to a cache
  1661   // line.  Thus we clone a full loop up front whose trip count is
  1662   // at least 1 (if peeling), but may be several more.
  1664   // The main loop will start cache-line aligned with at least 1
  1665   // iteration of the unrolled body (zero-trip test required) and
  1666   // will have some range checks removed.
  1668   // A post-loop will finish any odd iterations (leftover after
  1669   // unrolling), plus any needed for RCE purposes.
  1671   bool should_unroll = policy_unroll(phase);
  1673   bool should_rce = policy_range_check(phase);
  1675   bool should_align = policy_align(phase);
  1677   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  1678   // need a pre-loop.  We may still need to peel an initial iteration but
  1679   // we will not be needing an unknown number of pre-iterations.
  1680   //
  1681   // Basically, if may_rce_align reports FALSE first time through,
  1682   // we will not be able to later do RCE or Aligning on this loop.
  1683   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  1685   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  1686   // we switch to the pre-/main-/post-loop model.  This model also covers
  1687   // peeling.
  1688   if( should_rce || should_align || should_unroll ) {
  1689     if( cl->is_normal_loop() )  // Convert to 'pre/main/post' loops
  1690       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  1692     // Adjust the pre- and main-loop limits to let the pre and post loops run
  1693     // with full checks, but the main-loop with no checks.  Remove said
  1694     // checks from the main body.
  1695     if( should_rce )
  1696       phase->do_range_check(this,old_new);
  1698     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  1699     // twice as many iterations as before) and the main body limit (only do
  1700     // an even number of trips).  If we are peeling, we might enable some RCE
  1701     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  1702     // peeling.
  1703       if( should_unroll && !should_peel )
  1704         phase->do_unroll(this,old_new, true);
  1706     // Adjust the pre-loop limits to align the main body
  1707     // iterations.
  1708     if( should_align )
  1709       Unimplemented();
  1711   } else {                      // Else we have an unchanged counted loop
  1712     if( should_peel )           // Might want to peel but do nothing else
  1713       phase->do_peeling(this,old_new);
  1715   return true;
  1719 //=============================================================================
  1720 //------------------------------iteration_split--------------------------------
  1721 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  1722   // Recursively iteration split nested loops
  1723   if( _child && !_child->iteration_split( phase, old_new ))
  1724     return false;
  1726   // Clean out prior deadwood
  1727   DCE_loop_body();
  1730   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  1731   // Replace with a 1-in-10 exit guess.
  1732   if( _parent /*not the root loop*/ &&
  1733       !_irreducible &&
  1734       // Also ignore the occasional dead backedge
  1735       !tail()->is_top() ) {
  1736     adjust_loop_exit_prob(phase);
  1740   // Gate unrolling, RCE and peeling efforts.
  1741   if( !_child &&                // If not an inner loop, do not split
  1742       !_irreducible &&
  1743       _allow_optimizations &&
  1744       !tail()->is_top() ) {     // Also ignore the occasional dead backedge
  1745     if (!_has_call) {
  1746         if (!iteration_split_impl( phase, old_new )) {
  1747           return false;
  1749     } else if (policy_unswitching(phase)) {
  1750       phase->do_unswitching(this, old_new);
  1754   // Minor offset re-organization to remove loop-fallout uses of
  1755   // trip counter.
  1756   if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
  1757   if( _next && !_next->iteration_split( phase, old_new ))
  1758     return false;
  1759   return true;
  1762 //-------------------------------is_uncommon_trap_proj----------------------------
  1763 // Return true if proj is the form of "proj->[region->..]call_uct"
  1764 bool PhaseIdealLoop::is_uncommon_trap_proj(ProjNode* proj, bool must_reason_predicate) {
  1765   int path_limit = 10;
  1766   assert(proj, "invalid argument");
  1767   Node* out = proj;
  1768   for (int ct = 0; ct < path_limit; ct++) {
  1769     out = out->unique_ctrl_out();
  1770     if (out == NULL || out->is_Root() || out->is_Start())
  1771       return false;
  1772     if (out->is_CallStaticJava()) {
  1773       int req = out->as_CallStaticJava()->uncommon_trap_request();
  1774       if (req != 0) {
  1775         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(req);
  1776         if (!must_reason_predicate || reason == Deoptimization::Reason_predicate){
  1777            return true;
  1780       return false; // don't do further after call
  1783   return false;
  1786 //-------------------------------is_uncommon_trap_if_pattern-------------------------
  1787 // Return true  for "if(test)-> proj -> ...
  1788 //                          |
  1789 //                          V
  1790 //                      other_proj->[region->..]call_uct"
  1791 //
  1792 // "must_reason_predicate" means the uct reason must be Reason_predicate
  1793 bool PhaseIdealLoop::is_uncommon_trap_if_pattern(ProjNode *proj, bool must_reason_predicate) {
  1794   Node *in0 = proj->in(0);
  1795   if (!in0->is_If()) return false;
  1796   // Variation of a dead If node.
  1797   if (in0->outcnt() < 2)  return false;
  1798   IfNode* iff = in0->as_If();
  1800   // we need "If(Conv2B(Opaque1(...)))" pattern for must_reason_predicate
  1801   if (must_reason_predicate) {
  1802     if (iff->in(1)->Opcode() != Op_Conv2B ||
  1803        iff->in(1)->in(1)->Opcode() != Op_Opaque1) {
  1804       return false;
  1808   ProjNode* other_proj = iff->proj_out(1-proj->_con)->as_Proj();
  1809   return is_uncommon_trap_proj(other_proj, must_reason_predicate);
  1812 //------------------------------create_new_if_for_predicate------------------------
  1813 // create a new if above the uct_if_pattern for the predicate to be promoted.
  1814 //
  1815 //          before                                after
  1816 //        ----------                           ----------
  1817 //           ctrl                                 ctrl
  1818 //            |                                     |
  1819 //            |                                     |
  1820 //            v                                     v
  1821 //           iff                                 new_iff
  1822 //          /    \                                /      \
  1823 //         /      \                              /        \
  1824 //        v        v                            v          v
  1825 //  uncommon_proj cont_proj                   if_uct     if_cont
  1826 // \      |        |                           |          |
  1827 //  \     |        |                           |          |
  1828 //   v    v        v                           |          v
  1829 //     rgn       loop                          |         iff
  1830 //      |                                      |        /     \
  1831 //      |                                      |       /       \
  1832 //      v                                      |      v         v
  1833 // uncommon_trap                               | uncommon_proj cont_proj
  1834 //                                           \  \    |           |
  1835 //                                            \  \   |           |
  1836 //                                             v  v  v           v
  1837 //                                               rgn           loop
  1838 //                                                |
  1839 //                                                |
  1840 //                                                v
  1841 //                                           uncommon_trap
  1842 //
  1843 //
  1844 // We will create a region to guard the uct call if there is no one there.
  1845 // The true projecttion (if_cont) of the new_iff is returned.
  1846 ProjNode* PhaseIdealLoop::create_new_if_for_predicate(ProjNode* cont_proj) {
  1847   assert(is_uncommon_trap_if_pattern(cont_proj, true), "must be a uct if pattern!");
  1848   IfNode* iff = cont_proj->in(0)->as_If();
  1850   ProjNode *uncommon_proj = iff->proj_out(1 - cont_proj->_con);
  1851   Node     *rgn   = uncommon_proj->unique_ctrl_out();
  1852   assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
  1854   if (!rgn->is_Region()) { // create a region to guard the call
  1855     assert(rgn->is_Call(), "must be call uct");
  1856     CallNode* call = rgn->as_Call();
  1857     rgn = new (C, 1) RegionNode(1);
  1858     _igvn.set_type(rgn, rgn->bottom_type());
  1859     rgn->add_req(uncommon_proj);
  1860     set_idom(rgn, idom(uncommon_proj), dom_depth(uncommon_proj)+1);
  1861     _igvn.hash_delete(call);
  1862     call->set_req(0, rgn);
  1865   // Create new_iff
  1866   uint  iffdd  = dom_depth(iff);
  1867   IdealLoopTree* lp = get_loop(iff);
  1868   IfNode *new_iff = new (C, 2) IfNode(iff->in(0), NULL, iff->_prob, iff->_fcnt);
  1869   register_node(new_iff, lp, idom(iff), iffdd);
  1870   Node *if_cont = new (C, 1) IfTrueNode(new_iff);
  1871   Node *if_uct  = new (C, 1) IfFalseNode(new_iff);
  1872   if (cont_proj->is_IfFalse()) {
  1873     // Swap
  1874     Node* tmp = if_uct; if_uct = if_cont; if_cont = tmp;
  1876   register_node(if_cont, lp, new_iff, iffdd);
  1877   register_node(if_uct, get_loop(rgn), new_iff, iffdd);
  1879   // if_cont to iff
  1880   _igvn.hash_delete(iff);
  1881   iff->set_req(0, if_cont);
  1882   set_idom(iff, if_cont, dom_depth(iff));
  1884   // if_uct to rgn
  1885   _igvn.hash_delete(rgn);
  1886   rgn->add_req(if_uct);
  1887   Node* ridom = idom(rgn);
  1888   Node* nrdom = dom_lca(ridom, new_iff);
  1889   set_idom(rgn, nrdom, dom_depth(rgn));
  1891   // rgn must have no phis
  1892   assert(!rgn->as_Region()->has_phi(), "region must have no phis");
  1894   return if_cont->as_Proj();
  1897 //------------------------------find_predicate_insertion_point--------------------------
  1898 // Find a good location to insert a predicate
  1899 ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c) {
  1900   if (start_c == C->root() || !start_c->is_Proj())
  1901     return NULL;
  1902   if (is_uncommon_trap_if_pattern(start_c->as_Proj(), true/*Reason_Predicate*/)) {
  1903     return start_c->as_Proj();
  1905   return NULL;
  1908 //------------------------------Invariance-----------------------------------
  1909 // Helper class for loop_predication_impl to compute invariance on the fly and
  1910 // clone invariants.
  1911 class Invariance : public StackObj {
  1912   VectorSet _visited, _invariant;
  1913   Node_Stack _stack;
  1914   VectorSet _clone_visited;
  1915   Node_List _old_new; // map of old to new (clone)
  1916   IdealLoopTree* _lpt;
  1917   PhaseIdealLoop* _phase;
  1919   // Helper function to set up the invariance for invariance computation
  1920   // If n is a known invariant, set up directly. Otherwise, look up the
  1921   // the possibility to push n onto the stack for further processing.
  1922   void visit(Node* use, Node* n) {
  1923     if (_lpt->is_invariant(n)) { // known invariant
  1924       _invariant.set(n->_idx);
  1925     } else if (!n->is_CFG()) {
  1926       Node *n_ctrl = _phase->ctrl_or_self(n);
  1927       Node *u_ctrl = _phase->ctrl_or_self(use); // self if use is a CFG
  1928       if (_phase->is_dominator(n_ctrl, u_ctrl)) {
  1929         _stack.push(n, n->in(0) == NULL ? 1 : 0);
  1934   // Compute invariance for "the_node" and (possibly) all its inputs recursively
  1935   // on the fly
  1936   void compute_invariance(Node* n) {
  1937     assert(_visited.test(n->_idx), "must be");
  1938     visit(n, n);
  1939     while (_stack.is_nonempty()) {
  1940       Node*  n = _stack.node();
  1941       uint idx = _stack.index();
  1942       if (idx == n->req()) { // all inputs are processed
  1943         _stack.pop();
  1944         // n is invariant if it's inputs are all invariant
  1945         bool all_inputs_invariant = true;
  1946         for (uint i = 0; i < n->req(); i++) {
  1947           Node* in = n->in(i);
  1948           if (in == NULL) continue;
  1949           assert(_visited.test(in->_idx), "must have visited input");
  1950           if (!_invariant.test(in->_idx)) { // bad guy
  1951             all_inputs_invariant = false;
  1952             break;
  1955         if (all_inputs_invariant) {
  1956           _invariant.set(n->_idx); // I am a invariant too
  1958       } else { // process next input
  1959         _stack.set_index(idx + 1);
  1960         Node* m = n->in(idx);
  1961         if (m != NULL && !_visited.test_set(m->_idx)) {
  1962           visit(n, m);
  1968   // Helper function to set up _old_new map for clone_nodes.
  1969   // If n is a known invariant, set up directly ("clone" of n == n).
  1970   // Otherwise, push n onto the stack for real cloning.
  1971   void clone_visit(Node* n) {
  1972     assert(_invariant.test(n->_idx), "must be invariant");
  1973     if (_lpt->is_invariant(n)) { // known invariant
  1974       _old_new.map(n->_idx, n);
  1975     } else{ // to be cloned
  1976       assert (!n->is_CFG(), "should not see CFG here");
  1977       _stack.push(n, n->in(0) == NULL ? 1 : 0);
  1981   // Clone "n" and (possibly) all its inputs recursively
  1982   void clone_nodes(Node* n, Node* ctrl) {
  1983     clone_visit(n);
  1984     while (_stack.is_nonempty()) {
  1985       Node*  n = _stack.node();
  1986       uint idx = _stack.index();
  1987       if (idx == n->req()) { // all inputs processed, clone n!
  1988         _stack.pop();
  1989         // clone invariant node
  1990         Node* n_cl = n->clone();
  1991         _old_new.map(n->_idx, n_cl);
  1992         _phase->register_new_node(n_cl, ctrl);
  1993         for (uint i = 0; i < n->req(); i++) {
  1994           Node* in = n_cl->in(i);
  1995           if (in == NULL) continue;
  1996           n_cl->set_req(i, _old_new[in->_idx]);
  1998       } else { // process next input
  1999         _stack.set_index(idx + 1);
  2000         Node* m = n->in(idx);
  2001         if (m != NULL && !_clone_visited.test_set(m->_idx)) {
  2002           clone_visit(m); // visit the input
  2008  public:
  2009   Invariance(Arena* area, IdealLoopTree* lpt) :
  2010     _lpt(lpt), _phase(lpt->_phase),
  2011     _visited(area), _invariant(area), _stack(area, 10 /* guess */),
  2012     _clone_visited(area), _old_new(area)
  2013   {}
  2015   // Map old to n for invariance computation and clone
  2016   void map_ctrl(Node* old, Node* n) {
  2017     assert(old->is_CFG() && n->is_CFG(), "must be");
  2018     _old_new.map(old->_idx, n); // "clone" of old is n
  2019     _invariant.set(old->_idx);  // old is invariant
  2020     _clone_visited.set(old->_idx);
  2023   // Driver function to compute invariance
  2024   bool is_invariant(Node* n) {
  2025     if (!_visited.test_set(n->_idx))
  2026       compute_invariance(n);
  2027     return (_invariant.test(n->_idx) != 0);
  2030   // Driver function to clone invariant
  2031   Node* clone(Node* n, Node* ctrl) {
  2032     assert(ctrl->is_CFG(), "must be");
  2033     assert(_invariant.test(n->_idx), "must be an invariant");
  2034     if (!_clone_visited.test(n->_idx))
  2035       clone_nodes(n, ctrl);
  2036     return _old_new[n->_idx];
  2038 };
  2040 //------------------------------is_range_check_if -----------------------------------
  2041 // Returns true if the predicate of iff is in "scale*iv + offset u< load_range(ptr)" format
  2042 // Note: this function is particularly designed for loop predication. We require load_range
  2043 //       and offset to be loop invariant computed on the fly by "invar"
  2044 bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const {
  2045   if (!is_loop_exit(iff)) {
  2046     return false;
  2048   if (!iff->in(1)->is_Bool()) {
  2049     return false;
  2051   const BoolNode *bol = iff->in(1)->as_Bool();
  2052   if (bol->_test._test != BoolTest::lt) {
  2053     return false;
  2055   if (!bol->in(1)->is_Cmp()) {
  2056     return false;
  2058   const CmpNode *cmp = bol->in(1)->as_Cmp();
  2059   if (cmp->Opcode() != Op_CmpU ) {
  2060     return false;
  2062   Node* range = cmp->in(2);
  2063   if (range->Opcode() != Op_LoadRange) {
  2064     const TypeInt* tint = phase->_igvn.type(range)->isa_int();
  2065     if (!OptimizeFill || tint == NULL || tint->empty() || tint->_lo < 0) {
  2066       // Allow predication on positive values that aren't LoadRanges.
  2067       // This allows optimization of loops where the length of the
  2068       // array is a known value and doesn't need to be loaded back
  2069       // from the array.
  2070       return false;
  2073   if (!invar.is_invariant(range)) {
  2074     return false;
  2076   Node *iv     = _head->as_CountedLoop()->phi();
  2077   int   scale  = 0;
  2078   Node *offset = NULL;
  2079   if (!phase->is_scaled_iv_plus_offset(cmp->in(1), iv, &scale, &offset)) {
  2080     return false;
  2082   if(offset && !invar.is_invariant(offset)) { // offset must be invariant
  2083     return false;
  2085   return true;
  2088 //------------------------------rc_predicate-----------------------------------
  2089 // Create a range check predicate
  2090 //
  2091 // for (i = init; i < limit; i += stride) {
  2092 //    a[scale*i+offset]
  2093 // }
  2094 //
  2095 // Compute max(scale*i + offset) for init <= i < limit and build the predicate
  2096 // as "max(scale*i + offset) u< a.length".
  2097 //
  2098 // There are two cases for max(scale*i + offset):
  2099 // (1) stride*scale > 0
  2100 //   max(scale*i + offset) = scale*(limit-stride) + offset
  2101 // (2) stride*scale < 0
  2102 //   max(scale*i + offset) = scale*init + offset
  2103 BoolNode* PhaseIdealLoop::rc_predicate(Node* ctrl,
  2104                                        int scale, Node* offset,
  2105                                        Node* init, Node* limit, Node* stride,
  2106                                        Node* range, bool upper) {
  2107   DEBUG_ONLY(ttyLocker ttyl);
  2108   if (TraceLoopPredicate) tty->print("rc_predicate ");
  2110   Node* max_idx_expr  = init;
  2111   int stride_con = stride->get_int();
  2112   if ((stride_con > 0) == (scale > 0) == upper) {
  2113     max_idx_expr = new (C, 3) SubINode(limit, stride);
  2114     register_new_node(max_idx_expr, ctrl);
  2115     if (TraceLoopPredicate) tty->print("(limit - stride) ");
  2116   } else {
  2117     if (TraceLoopPredicate) tty->print("init ");
  2120   if (scale != 1) {
  2121     ConNode* con_scale = _igvn.intcon(scale);
  2122     max_idx_expr = new (C, 3) MulINode(max_idx_expr, con_scale);
  2123     register_new_node(max_idx_expr, ctrl);
  2124     if (TraceLoopPredicate) tty->print("* %d ", scale);
  2127   if (offset && (!offset->is_Con() || offset->get_int() != 0)){
  2128     max_idx_expr = new (C, 3) AddINode(max_idx_expr, offset);
  2129     register_new_node(max_idx_expr, ctrl);
  2130     if (TraceLoopPredicate)
  2131       if (offset->is_Con()) tty->print("+ %d ", offset->get_int());
  2132       else tty->print("+ offset ");
  2135   CmpUNode* cmp = new (C, 3) CmpUNode(max_idx_expr, range);
  2136   register_new_node(cmp, ctrl);
  2137   BoolNode* bol = new (C, 2) BoolNode(cmp, BoolTest::lt);
  2138   register_new_node(bol, ctrl);
  2140   if (TraceLoopPredicate) tty->print_cr("<u range");
  2141   return bol;
  2144 //------------------------------ loop_predication_impl--------------------------
  2145 // Insert loop predicates for null checks and range checks
  2146 bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
  2147   if (!UseLoopPredicate) return false;
  2149   if (!loop->_head->is_Loop()) {
  2150     // Could be a simple region when irreducible loops are present.
  2151     return false;
  2154   CountedLoopNode *cl = NULL;
  2155   if (loop->_head->is_CountedLoop()) {
  2156     cl = loop->_head->as_CountedLoop();
  2157     // do nothing for iteration-splitted loops
  2158     if (!cl->is_normal_loop()) return false;
  2161   // Too many traps seen?
  2162   bool tmt = C->too_many_traps(C->method(), 0, Deoptimization::Reason_predicate);
  2163   int tc = C->trap_count(Deoptimization::Reason_predicate);
  2164   if (tmt || tc > 0) {
  2165     if (TraceLoopPredicate) {
  2166       tty->print_cr("too many predicate traps: %d", tc);
  2167       C->method()->print(); // which method has too many predicate traps
  2168       tty->print_cr("");
  2170     return false;
  2173   LoopNode *lpn  = loop->_head->as_Loop();
  2174   Node* entry = lpn->in(LoopNode::EntryControl);
  2176   ProjNode *predicate_proj = find_predicate_insertion_point(entry);
  2177   if (!predicate_proj){
  2178 #ifndef PRODUCT
  2179     if (TraceLoopPredicate) {
  2180       tty->print("missing predicate:");
  2181       loop->dump_head();
  2183 #endif
  2184     return false;
  2187   ConNode* zero = _igvn.intcon(0);
  2188   set_ctrl(zero, C->root());
  2189   Node *cond_false = new (C, 2) Conv2BNode(zero);
  2190   register_new_node(cond_false, C->root());
  2191   ConNode* one = _igvn.intcon(1);
  2192   set_ctrl(one, C->root());
  2193   Node *cond_true = new (C, 2) Conv2BNode(one);
  2194   register_new_node(cond_true, C->root());
  2196   ResourceArea *area = Thread::current()->resource_area();
  2197   Invariance invar(area, loop);
  2199   // Create list of if-projs such that a newer proj dominates all older
  2200   // projs in the list, and they all dominate loop->tail()
  2201   Node_List if_proj_list(area);
  2202   LoopNode *head  = loop->_head->as_Loop();
  2203   Node *current_proj = loop->tail(); //start from tail
  2204   while ( current_proj != head ) {
  2205     if (loop == get_loop(current_proj) && // still in the loop ?
  2206         current_proj->is_Proj()        && // is a projection  ?
  2207         current_proj->in(0)->Opcode() == Op_If) { // is a if projection ?
  2208       if_proj_list.push(current_proj);
  2210     current_proj = idom(current_proj);
  2213   bool hoisted = false; // true if at least one proj is promoted
  2214   while (if_proj_list.size() > 0) {
  2215     // Following are changed to nonnull when a predicate can be hoisted
  2216     ProjNode* new_predicate_proj = NULL;
  2218     ProjNode* proj = if_proj_list.pop()->as_Proj();
  2219     IfNode*   iff  = proj->in(0)->as_If();
  2221     if (!is_uncommon_trap_if_pattern(proj)) {
  2222       if (loop->is_loop_exit(iff)) {
  2223         // stop processing the remaining projs in the list because the execution of them
  2224         // depends on the condition of "iff" (iff->in(1)).
  2225         break;
  2226       } else {
  2227         // Both arms are inside the loop. There are two cases:
  2228         // (1) there is one backward branch. In this case, any remaining proj
  2229         //     in the if_proj list post-dominates "iff". So, the condition of "iff"
  2230         //     does not determine the execution the remining projs directly, and we
  2231         //     can safely continue.
  2232         // (2) both arms are forwarded, i.e. a diamond shape. In this case, "proj"
  2233         //     does not dominate loop->tail(), so it can not be in the if_proj list.
  2234         continue;
  2238     Node*     test = iff->in(1);
  2239     if (!test->is_Bool()){ //Conv2B, ...
  2240       continue;
  2242     BoolNode* bol = test->as_Bool();
  2243     if (invar.is_invariant(bol)) {
  2244       // Invariant test
  2245       new_predicate_proj = create_new_if_for_predicate(predicate_proj);
  2246       Node* ctrl = new_predicate_proj->in(0)->as_If()->in(0);
  2247       BoolNode* new_predicate_bol = invar.clone(bol, ctrl)->as_Bool();
  2249       // Negate test if necessary
  2250       bool negated = false;
  2251       if (proj->_con != predicate_proj->_con) {
  2252         new_predicate_bol = new (C, 2) BoolNode(new_predicate_bol->in(1), new_predicate_bol->_test.negate());
  2253         register_new_node(new_predicate_bol, ctrl);
  2254         negated = true;
  2256       IfNode* new_predicate_iff = new_predicate_proj->in(0)->as_If();
  2257       _igvn.hash_delete(new_predicate_iff);
  2258       new_predicate_iff->set_req(1, new_predicate_bol);
  2259       if (TraceLoopPredicate) tty->print_cr("invariant if%s: %d", negated ? " negated" : "", new_predicate_iff->_idx);
  2261     } else if (cl != NULL && loop->is_range_check_if(iff, this, invar)) {
  2262       assert(proj->_con == predicate_proj->_con, "must match");
  2264       // Range check for counted loops
  2265       const Node*    cmp    = bol->in(1)->as_Cmp();
  2266       Node*          idx    = cmp->in(1);
  2267       assert(!invar.is_invariant(idx), "index is variant");
  2268       assert(cmp->in(2)->Opcode() == Op_LoadRange || OptimizeFill, "must be");
  2269       Node* rng = cmp->in(2);
  2270       assert(invar.is_invariant(rng), "range must be invariant");
  2271       int scale    = 1;
  2272       Node* offset = zero;
  2273       bool ok = is_scaled_iv_plus_offset(idx, cl->phi(), &scale, &offset);
  2274       assert(ok, "must be index expression");
  2276       Node* init    = cl->init_trip();
  2277       Node* limit   = cl->limit();
  2278       Node* stride  = cl->stride();
  2280       // Build if's for the upper and lower bound tests.  The
  2281       // lower_bound test will dominate the upper bound test and all
  2282       // cloned or created nodes will use the lower bound test as
  2283       // their declared control.
  2284       ProjNode* lower_bound_proj = create_new_if_for_predicate(predicate_proj);
  2285       ProjNode* upper_bound_proj = create_new_if_for_predicate(predicate_proj);
  2286       assert(upper_bound_proj->in(0)->as_If()->in(0) == lower_bound_proj, "should dominate");
  2287       Node *ctrl = lower_bound_proj->in(0)->as_If()->in(0);
  2289       // Perform cloning to keep Invariance state correct since the
  2290       // late schedule will place invariant things in the loop.
  2291       rng = invar.clone(rng, ctrl);
  2292       if (offset && offset != zero) {
  2293         assert(invar.is_invariant(offset), "offset must be loop invariant");
  2294         offset = invar.clone(offset, ctrl);
  2297       // Test the lower bound
  2298       Node*  lower_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, false);
  2299       IfNode* lower_bound_iff = lower_bound_proj->in(0)->as_If();
  2300       _igvn.hash_delete(lower_bound_iff);
  2301       lower_bound_iff->set_req(1, lower_bound_bol);
  2302       if (TraceLoopPredicate) tty->print_cr("lower bound check if: %d", lower_bound_iff->_idx);
  2304       // Test the upper bound
  2305       Node* upper_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, true);
  2306       IfNode* upper_bound_iff = upper_bound_proj->in(0)->as_If();
  2307       _igvn.hash_delete(upper_bound_iff);
  2308       upper_bound_iff->set_req(1, upper_bound_bol);
  2309       if (TraceLoopPredicate) tty->print_cr("upper bound check if: %d", lower_bound_iff->_idx);
  2311       // Fall through into rest of the clean up code which will move
  2312       // any dependent nodes onto the upper bound test.
  2313       new_predicate_proj = upper_bound_proj;
  2314     } else {
  2315       // The other proj of the "iff" is a uncommon trap projection, and we can assume
  2316       // the other proj will not be executed ("executed" means uct raised).
  2317       continue;
  2320     // Success - attach condition (new_predicate_bol) to predicate if
  2321     invar.map_ctrl(proj, new_predicate_proj); // so that invariance test can be appropriate
  2323     // Eliminate the old if in the loop body
  2324     _igvn.hash_delete(iff);
  2325     iff->set_req(1, proj->is_IfFalse() ? cond_false : cond_true);
  2327     Node* ctrl = new_predicate_proj; // new control
  2328     ProjNode* dp = proj;     // old control
  2329     assert(get_loop(dp) == loop, "guaranteed at the time of collecting proj");
  2330     // Find nodes (depends only on the test) off the surviving projection;
  2331     // move them outside the loop with the control of proj_clone
  2332     for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  2333       Node* cd = dp->fast_out(i); // Control-dependent node
  2334       if (cd->depends_only_on_test()) {
  2335         assert(cd->in(0) == dp, "");
  2336         _igvn.hash_delete(cd);
  2337         cd->set_req(0, ctrl); // ctrl, not NULL
  2338         set_early_ctrl(cd);
  2339         _igvn._worklist.push(cd);
  2340         IdealLoopTree *new_loop = get_loop(get_ctrl(cd));
  2341         if (new_loop != loop) {
  2342           if (!loop->_child) loop->_body.yank(cd);
  2343           if (!new_loop->_child ) new_loop->_body.push(cd);
  2345         --i;
  2346         --imax;
  2350     hoisted = true;
  2351     C->set_major_progress();
  2352   } // end while
  2354 #ifndef PRODUCT
  2355   // report that the loop predication has been actually performed
  2356   // for this loop
  2357   if (TraceLoopPredicate && hoisted) {
  2358     tty->print("Loop Predication Performed:");
  2359     loop->dump_head();
  2361 #endif
  2363   return hoisted;
  2366 //------------------------------loop_predication--------------------------------
  2367 // driver routine for loop predication optimization
  2368 bool IdealLoopTree::loop_predication( PhaseIdealLoop *phase) {
  2369   bool hoisted = false;
  2370   // Recursively promote predicates
  2371   if ( _child ) {
  2372     hoisted = _child->loop_predication( phase);
  2375   // self
  2376   if (!_irreducible && !tail()->is_top()) {
  2377     hoisted |= phase->loop_predication_impl(this);
  2380   if ( _next ) { //sibling
  2381     hoisted |= _next->loop_predication( phase);
  2384   return hoisted;
  2388 // Process all the loops in the loop tree and replace any fill
  2389 // patterns with an intrisc version.
  2390 bool PhaseIdealLoop::do_intrinsify_fill() {
  2391   bool changed = false;
  2392   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2393     IdealLoopTree* lpt = iter.current();
  2394     changed |= intrinsify_fill(lpt);
  2396   return changed;
  2400 // Examine an inner loop looking for a a single store of an invariant
  2401 // value in a unit stride loop,
  2402 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
  2403                                      Node*& shift, Node*& con) {
  2404   const char* msg = NULL;
  2405   Node* msg_node = NULL;
  2407   store_value = NULL;
  2408   con = NULL;
  2409   shift = NULL;
  2411   // Process the loop looking for stores.  If there are multiple
  2412   // stores or extra control flow give at this point.
  2413   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2414   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2415     Node* n = lpt->_body.at(i);
  2416     if (n->outcnt() == 0) continue; // Ignore dead
  2417     if (n->is_Store()) {
  2418       if (store != NULL) {
  2419         msg = "multiple stores";
  2420         break;
  2422       int opc = n->Opcode();
  2423       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
  2424         msg = "oop fills not handled";
  2425         break;
  2427       Node* value = n->in(MemNode::ValueIn);
  2428       if (!lpt->is_invariant(value)) {
  2429         msg  = "variant store value";
  2430       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
  2431         msg = "not array address";
  2433       store = n;
  2434       store_value = value;
  2435     } else if (n->is_If() && n != head->loopexit()) {
  2436       msg = "extra control flow";
  2437       msg_node = n;
  2441   if (store == NULL) {
  2442     // No store in loop
  2443     return false;
  2446   if (msg == NULL && head->stride_con() != 1) {
  2447     // could handle negative strides too
  2448     if (head->stride_con() < 0) {
  2449       msg = "negative stride";
  2450     } else {
  2451       msg = "non-unit stride";
  2455   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
  2456     msg = "can't handle store address";
  2457     msg_node = store->in(MemNode::Address);
  2460   if (msg == NULL &&
  2461       (!store->in(MemNode::Memory)->is_Phi() ||
  2462        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
  2463     msg = "store memory isn't proper phi";
  2464     msg_node = store->in(MemNode::Memory);
  2467   // Make sure there is an appropriate fill routine
  2468   BasicType t = store->as_Mem()->memory_type();
  2469   const char* fill_name;
  2470   if (msg == NULL &&
  2471       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
  2472     msg = "unsupported store";
  2473     msg_node = store;
  2476   if (msg != NULL) {
  2477 #ifndef PRODUCT
  2478     if (TraceOptimizeFill) {
  2479       tty->print_cr("not fill intrinsic candidate: %s", msg);
  2480       if (msg_node != NULL) msg_node->dump();
  2482 #endif
  2483     return false;
  2486   // Make sure the address expression can be handled.  It should be
  2487   // head->phi * elsize + con.  head->phi might have a ConvI2L.
  2488   Node* elements[4];
  2489   Node* conv = NULL;
  2490   bool found_index = false;
  2491   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  2492   for (int e = 0; e < count; e++) {
  2493     Node* n = elements[e];
  2494     if (n->is_Con() && con == NULL) {
  2495       con = n;
  2496     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
  2497       Node* value = n->in(1);
  2498 #ifdef _LP64
  2499       if (value->Opcode() == Op_ConvI2L) {
  2500         conv = value;
  2501         value = value->in(1);
  2503 #endif
  2504       if (value != head->phi()) {
  2505         msg = "unhandled shift in address";
  2506       } else {
  2507         found_index = true;
  2508         shift = n;
  2509         assert(type2aelembytes(store->as_Mem()->memory_type(), true) == 1 << shift->in(2)->get_int(), "scale should match");
  2511     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
  2512       if (n->in(1) == head->phi()) {
  2513         found_index = true;
  2514         conv = n;
  2515       } else {
  2516         msg = "unhandled input to ConvI2L";
  2518     } else if (n == head->phi()) {
  2519       // no shift, check below for allowed cases
  2520       found_index = true;
  2521     } else {
  2522       msg = "unhandled node in address";
  2523       msg_node = n;
  2527   if (count == -1) {
  2528     msg = "malformed address expression";
  2529     msg_node = store;
  2532   if (!found_index) {
  2533     msg = "missing use of index";
  2536   // byte sized items won't have a shift
  2537   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
  2538     msg = "can't find shift";
  2539     msg_node = store;
  2542   if (msg != NULL) {
  2543 #ifndef PRODUCT
  2544     if (TraceOptimizeFill) {
  2545       tty->print_cr("not fill intrinsic: %s", msg);
  2546       if (msg_node != NULL) msg_node->dump();
  2548 #endif
  2549     return false;
  2552   // No make sure all the other nodes in the loop can be handled
  2553   VectorSet ok(Thread::current()->resource_area());
  2555   // store related values are ok
  2556   ok.set(store->_idx);
  2557   ok.set(store->in(MemNode::Memory)->_idx);
  2559   // Loop structure is ok
  2560   ok.set(head->_idx);
  2561   ok.set(head->loopexit()->_idx);
  2562   ok.set(head->phi()->_idx);
  2563   ok.set(head->incr()->_idx);
  2564   ok.set(head->loopexit()->cmp_node()->_idx);
  2565   ok.set(head->loopexit()->in(1)->_idx);
  2567   // Address elements are ok
  2568   if (con)   ok.set(con->_idx);
  2569   if (shift) ok.set(shift->_idx);
  2570   if (conv)  ok.set(conv->_idx);
  2572   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2573     Node* n = lpt->_body.at(i);
  2574     if (n->outcnt() == 0) continue; // Ignore dead
  2575     if (ok.test(n->_idx)) continue;
  2576     // Backedge projection is ok
  2577     if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
  2578     if (!n->is_AddP()) {
  2579       msg = "unhandled node";
  2580       msg_node = n;
  2581       break;
  2585   // Make sure no unexpected values are used outside the loop
  2586   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2587     Node* n = lpt->_body.at(i);
  2588     // These values can be replaced with other nodes if they are used
  2589     // outside the loop.
  2590     if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
  2591     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
  2592       Node* use = iter.get();
  2593       if (!lpt->_body.contains(use)) {
  2594         msg = "node is used outside loop";
  2595         // lpt->_body.dump();
  2596         msg_node = n;
  2597         break;
  2602 #ifdef ASSERT
  2603   if (TraceOptimizeFill) {
  2604     if (msg != NULL) {
  2605       tty->print_cr("no fill intrinsic: %s", msg);
  2606       if (msg_node != NULL) msg_node->dump();
  2607     } else {
  2608       tty->print_cr("fill intrinsic for:");
  2610     store->dump();
  2611     if (Verbose) {
  2612       lpt->_body.dump();
  2615 #endif
  2617   return msg == NULL;
  2622 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
  2623   // Only for counted inner loops
  2624   if (!lpt->is_counted() || !lpt->is_inner()) {
  2625     return false;
  2628   // Must have constant stride
  2629   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2630   if (!head->stride_is_con() || !head->is_normal_loop()) {
  2631     return false;
  2634   // Check that the body only contains a store of a loop invariant
  2635   // value that is indexed by the loop phi.
  2636   Node* store = NULL;
  2637   Node* store_value = NULL;
  2638   Node* shift = NULL;
  2639   Node* offset = NULL;
  2640   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
  2641     return false;
  2644   // Now replace the whole loop body by a call to a fill routine that
  2645   // covers the same region as the loop.
  2646   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
  2648   // Build an expression for the beginning of the copy region
  2649   Node* index = head->init_trip();
  2650 #ifdef _LP64
  2651   index = new (C, 2) ConvI2LNode(index);
  2652   _igvn.register_new_node_with_optimizer(index);
  2653 #endif
  2654   if (shift != NULL) {
  2655     // byte arrays don't require a shift but others do.
  2656     index = new (C, 3) LShiftXNode(index, shift->in(2));
  2657     _igvn.register_new_node_with_optimizer(index);
  2659   index = new (C, 4) AddPNode(base, base, index);
  2660   _igvn.register_new_node_with_optimizer(index);
  2661   Node* from = new (C, 4) AddPNode(base, index, offset);
  2662   _igvn.register_new_node_with_optimizer(from);
  2663   // Compute the number of elements to copy
  2664   Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
  2665   _igvn.register_new_node_with_optimizer(len);
  2667   BasicType t = store->as_Mem()->memory_type();
  2668   bool aligned = false;
  2669   if (offset != NULL && head->init_trip()->is_Con()) {
  2670     int element_size = type2aelembytes(t);
  2671     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
  2674   // Build a call to the fill routine
  2675   const char* fill_name;
  2676   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
  2677   assert(fill != NULL, "what?");
  2679   // Convert float/double to int/long for fill routines
  2680   if (t == T_FLOAT) {
  2681     store_value = new (C, 2) MoveF2INode(store_value);
  2682     _igvn.register_new_node_with_optimizer(store_value);
  2683   } else if (t == T_DOUBLE) {
  2684     store_value = new (C, 2) MoveD2LNode(store_value);
  2685     _igvn.register_new_node_with_optimizer(store_value);
  2688   Node* mem_phi = store->in(MemNode::Memory);
  2689   Node* result_ctrl;
  2690   Node* result_mem;
  2691   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
  2692   int size = call_type->domain()->cnt();
  2693   CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
  2694                                                       fill_name, TypeAryPtr::get_array_body_type(t));
  2695   call->init_req(TypeFunc::Parms+0, from);
  2696   call->init_req(TypeFunc::Parms+1, store_value);
  2697 #ifdef _LP64
  2698   len = new (C, 2) ConvI2LNode(len);
  2699   _igvn.register_new_node_with_optimizer(len);
  2700 #endif
  2701   call->init_req(TypeFunc::Parms+2, len);
  2702 #ifdef _LP64
  2703   call->init_req(TypeFunc::Parms+3, C->top());
  2704 #endif
  2705   call->init_req( TypeFunc::Control, head->init_control());
  2706   call->init_req( TypeFunc::I_O    , C->top() )        ;   // does no i/o
  2707   call->init_req( TypeFunc::Memory ,  mem_phi->in(LoopNode::EntryControl) );
  2708   call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
  2709   call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
  2710   _igvn.register_new_node_with_optimizer(call);
  2711   result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  2712   _igvn.register_new_node_with_optimizer(result_ctrl);
  2713   result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  2714   _igvn.register_new_node_with_optimizer(result_mem);
  2716   // If this fill is tightly coupled to an allocation and overwrites
  2717   // the whole body, allow it to take over the zeroing.
  2718   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
  2719   if (alloc != NULL && alloc->is_AllocateArray()) {
  2720     Node* length = alloc->as_AllocateArray()->Ideal_length();
  2721     if (head->limit() == length &&
  2722         head->init_trip() == _igvn.intcon(0)) {
  2723       if (TraceOptimizeFill) {
  2724         tty->print_cr("Eliminated zeroing in allocation");
  2726       alloc->maybe_set_complete(&_igvn);
  2727     } else {
  2728 #ifdef ASSERT
  2729       if (TraceOptimizeFill) {
  2730         tty->print_cr("filling array but bounds don't match");
  2731         alloc->dump();
  2732         head->init_trip()->dump();
  2733         head->limit()->dump();
  2734         length->dump();
  2736 #endif
  2740   // Redirect the old control and memory edges that are outside the loop.
  2741   Node* exit = head->loopexit()->proj_out(0);
  2742   // Sometimes the memory phi of the head is used as the outgoing
  2743   // state of the loop.  It's safe in this case to replace it with the
  2744   // result_mem.
  2745   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
  2746   _igvn.replace_node(exit, result_ctrl);
  2747   _igvn.replace_node(store, result_mem);
  2748   // Any uses the increment outside of the loop become the loop limit.
  2749   _igvn.replace_node(head->incr(), head->limit());
  2751   // Disconnect the head from the loop.
  2752   for (uint i = 0; i < lpt->_body.size(); i++) {
  2753     Node* n = lpt->_body.at(i);
  2754     _igvn.replace_node(n, C->top());
  2757   return true;

mercurial