src/share/vm/opto/addnode.cpp

Fri, 11 Mar 2011 07:50:51 -0800

author
kvn
date
Fri, 11 Mar 2011 07:50:51 -0800
changeset 2636
83f08886981c
parent 2314
f95d63e2154a
child 3241
a6eef545f1a2
permissions
-rw-r--r--

7026631: field _klass is incorrectly set for dual type of TypeAryPtr::OOPS
Summary: add missing check this->dual() != TypeAryPtr::OOPS into TypeAryPtr::klass().
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/cfgnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/machnode.hpp"
    31 #include "opto/mulnode.hpp"
    32 #include "opto/phaseX.hpp"
    33 #include "opto/subnode.hpp"
    35 // Portions of code courtesy of Clifford Click
    37 #define MAXFLOAT        ((float)3.40282346638528860e+38)
    39 // Classic Add functionality.  This covers all the usual 'add' behaviors for
    40 // an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
    41 // all inherited from this class.  The various identity values are supplied
    42 // by virtual functions.
    45 //=============================================================================
    46 //------------------------------hash-------------------------------------------
    47 // Hash function over AddNodes.  Needs to be commutative; i.e., I swap
    48 // (commute) inputs to AddNodes willy-nilly so the hash function must return
    49 // the same value in the presence of edge swapping.
    50 uint AddNode::hash() const {
    51   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
    52 }
    54 //------------------------------Identity---------------------------------------
    55 // If either input is a constant 0, return the other input.
    56 Node *AddNode::Identity( PhaseTransform *phase ) {
    57   const Type *zero = add_id();  // The additive identity
    58   if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
    59   if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
    60   return this;
    61 }
    63 //------------------------------commute----------------------------------------
    64 // Commute operands to move loads and constants to the right.
    65 static bool commute( Node *add, int con_left, int con_right ) {
    66   Node *in1 = add->in(1);
    67   Node *in2 = add->in(2);
    69   // Convert "1+x" into "x+1".
    70   // Right is a constant; leave it
    71   if( con_right ) return false;
    72   // Left is a constant; move it right.
    73   if( con_left ) {
    74     add->swap_edges(1, 2);
    75     return true;
    76   }
    78   // Convert "Load+x" into "x+Load".
    79   // Now check for loads
    80   if (in2->is_Load()) {
    81     if (!in1->is_Load()) {
    82       // already x+Load to return
    83       return false;
    84     }
    85     // both are loads, so fall through to sort inputs by idx
    86   } else if( in1->is_Load() ) {
    87     // Left is a Load and Right is not; move it right.
    88     add->swap_edges(1, 2);
    89     return true;
    90   }
    92   PhiNode *phi;
    93   // Check for tight loop increments: Loop-phi of Add of loop-phi
    94   if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
    95     return false;
    96   if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
    97     add->swap_edges(1, 2);
    98     return true;
    99   }
   101   // Otherwise, sort inputs (commutativity) to help value numbering.
   102   if( in1->_idx > in2->_idx ) {
   103     add->swap_edges(1, 2);
   104     return true;
   105   }
   106   return false;
   107 }
   109 //------------------------------Idealize---------------------------------------
   110 // If we get here, we assume we are associative!
   111 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   112   const Type *t1 = phase->type( in(1) );
   113   const Type *t2 = phase->type( in(2) );
   114   int con_left  = t1->singleton();
   115   int con_right = t2->singleton();
   117   // Check for commutative operation desired
   118   if( commute(this,con_left,con_right) ) return this;
   120   AddNode *progress = NULL;             // Progress flag
   122   // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
   123   // constant, and the left input is an add of a constant, flatten the
   124   // expression tree.
   125   Node *add1 = in(1);
   126   Node *add2 = in(2);
   127   int add1_op = add1->Opcode();
   128   int this_op = Opcode();
   129   if( con_right && t2 != Type::TOP && // Right input is a constant?
   130       add1_op == this_op ) { // Left input is an Add?
   132     // Type of left _in right input
   133     const Type *t12 = phase->type( add1->in(2) );
   134     if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
   135       // Check for rare case of closed data cycle which can happen inside
   136       // unreachable loops. In these cases the computation is undefined.
   137 #ifdef ASSERT
   138       Node *add11    = add1->in(1);
   139       int   add11_op = add11->Opcode();
   140       if( (add1 == add1->in(1))
   141          || (add11_op == this_op && add11->in(1) == add1) ) {
   142         assert(false, "dead loop in AddNode::Ideal");
   143       }
   144 #endif
   145       // The Add of the flattened expression
   146       Node *x1 = add1->in(1);
   147       Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
   148       PhaseIterGVN *igvn = phase->is_IterGVN();
   149       if( igvn ) {
   150         set_req_X(2,x2,igvn);
   151         set_req_X(1,x1,igvn);
   152       } else {
   153         set_req(2,x2);
   154         set_req(1,x1);
   155       }
   156       progress = this;            // Made progress
   157       add1 = in(1);
   158       add1_op = add1->Opcode();
   159     }
   160   }
   162   // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
   163   if( add1_op == this_op && !con_right ) {
   164     Node *a12 = add1->in(2);
   165     const Type *t12 = phase->type( a12 );
   166     if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
   167        !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
   168       assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
   169       add2 = add1->clone();
   170       add2->set_req(2, in(2));
   171       add2 = phase->transform(add2);
   172       set_req(1, add2);
   173       set_req(2, a12);
   174       progress = this;
   175       add2 = a12;
   176     }
   177   }
   179   // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
   180   int add2_op = add2->Opcode();
   181   if( add2_op == this_op && !con_left ) {
   182     Node *a22 = add2->in(2);
   183     const Type *t22 = phase->type( a22 );
   184     if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
   185        !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
   186       assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
   187       Node *addx = add2->clone();
   188       addx->set_req(1, in(1));
   189       addx->set_req(2, add2->in(1));
   190       addx = phase->transform(addx);
   191       set_req(1, addx);
   192       set_req(2, a22);
   193       progress = this;
   194     }
   195   }
   197   return progress;
   198 }
   200 //------------------------------Value-----------------------------------------
   201 // An add node sums it's two _in.  If one input is an RSD, we must mixin
   202 // the other input's symbols.
   203 const Type *AddNode::Value( PhaseTransform *phase ) const {
   204   // Either input is TOP ==> the result is TOP
   205   const Type *t1 = phase->type( in(1) );
   206   const Type *t2 = phase->type( in(2) );
   207   if( t1 == Type::TOP ) return Type::TOP;
   208   if( t2 == Type::TOP ) return Type::TOP;
   210   // Either input is BOTTOM ==> the result is the local BOTTOM
   211   const Type *bot = bottom_type();
   212   if( (t1 == bot) || (t2 == bot) ||
   213       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   214     return bot;
   216   // Check for an addition involving the additive identity
   217   const Type *tadd = add_of_identity( t1, t2 );
   218   if( tadd ) return tadd;
   220   return add_ring(t1,t2);               // Local flavor of type addition
   221 }
   223 //------------------------------add_identity-----------------------------------
   224 // Check for addition of the identity
   225 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   226   const Type *zero = add_id();  // The additive identity
   227   if( t1->higher_equal( zero ) ) return t2;
   228   if( t2->higher_equal( zero ) ) return t1;
   230   return NULL;
   231 }
   234 //=============================================================================
   235 //------------------------------Idealize---------------------------------------
   236 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   237   Node* in1 = in(1);
   238   Node* in2 = in(2);
   239   int op1 = in1->Opcode();
   240   int op2 = in2->Opcode();
   241   // Fold (con1-x)+con2 into (con1+con2)-x
   242   if ( op1 == Op_AddI && op2 == Op_SubI ) {
   243     // Swap edges to try optimizations below
   244     in1 = in2;
   245     in2 = in(1);
   246     op1 = op2;
   247     op2 = in2->Opcode();
   248   }
   249   if( op1 == Op_SubI ) {
   250     const Type *t_sub1 = phase->type( in1->in(1) );
   251     const Type *t_2    = phase->type( in2        );
   252     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
   253       return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
   254                               in1->in(2) );
   255     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
   256     if( op2 == Op_SubI ) {
   257       // Check for dead cycle: d = (a-b)+(c-d)
   258       assert( in1->in(2) != this && in2->in(2) != this,
   259               "dead loop in AddINode::Ideal" );
   260       Node *sub  = new (phase->C, 3) SubINode(NULL, NULL);
   261       sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in1->in(1), in2->in(1) ) ));
   262       sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in1->in(2), in2->in(2) ) ));
   263       return sub;
   264     }
   265     // Convert "(a-b)+(b+c)" into "(a+c)"
   266     if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
   267       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
   268       return new (phase->C, 3) AddINode(in1->in(1), in2->in(2));
   269     }
   270     // Convert "(a-b)+(c+b)" into "(a+c)"
   271     if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
   272       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
   273       return new (phase->C, 3) AddINode(in1->in(1), in2->in(1));
   274     }
   275     // Convert "(a-b)+(b-c)" into "(a-c)"
   276     if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
   277       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
   278       return new (phase->C, 3) SubINode(in1->in(1), in2->in(2));
   279     }
   280     // Convert "(a-b)+(c-a)" into "(c-b)"
   281     if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
   282       assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
   283       return new (phase->C, 3) SubINode(in2->in(1), in1->in(2));
   284     }
   285   }
   287   // Convert "x+(0-y)" into "(x-y)"
   288   if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
   289     return new (phase->C, 3) SubINode(in1, in2->in(2) );
   291   // Convert "(0-y)+x" into "(x-y)"
   292   if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
   293     return new (phase->C, 3) SubINode( in2, in1->in(2) );
   295   // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
   296   // Helps with array allocation math constant folding
   297   // See 4790063:
   298   // Unrestricted transformation is unsafe for some runtime values of 'x'
   299   // ( x ==  0, z == 1, y == -1 ) fails
   300   // ( x == -5, z == 1, y ==  1 ) fails
   301   // Transform works for small z and small negative y when the addition
   302   // (x + (y << z)) does not cross zero.
   303   // Implement support for negative y and (x >= -(y << z))
   304   // Have not observed cases where type information exists to support
   305   // positive y and (x <= -(y << z))
   306   if( op1 == Op_URShiftI && op2 == Op_ConI &&
   307       in1->in(2)->Opcode() == Op_ConI ) {
   308     jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
   309     jint y = phase->type( in2 )->is_int()->get_con();
   311     if( z < 5 && -5 < y && y < 0 ) {
   312       const Type *t_in11 = phase->type(in1->in(1));
   313       if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
   314         Node *a = phase->transform( new (phase->C, 3) AddINode( in1->in(1), phase->intcon(y<<z) ) );
   315         return new (phase->C, 3) URShiftINode( a, in1->in(2) );
   316       }
   317     }
   318   }
   320   return AddNode::Ideal(phase, can_reshape);
   321 }
   324 //------------------------------Identity---------------------------------------
   325 // Fold (x-y)+y  OR  y+(x-y)  into  x
   326 Node *AddINode::Identity( PhaseTransform *phase ) {
   327   if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
   328     return in(1)->in(1);
   329   }
   330   else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
   331     return in(2)->in(1);
   332   }
   333   return AddNode::Identity(phase);
   334 }
   337 //------------------------------add_ring---------------------------------------
   338 // Supplied function returns the sum of the inputs.  Guaranteed never
   339 // to be passed a TOP or BOTTOM type, these are filtered out by
   340 // pre-check.
   341 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
   342   const TypeInt *r0 = t0->is_int(); // Handy access
   343   const TypeInt *r1 = t1->is_int();
   344   int lo = r0->_lo + r1->_lo;
   345   int hi = r0->_hi + r1->_hi;
   346   if( !(r0->is_con() && r1->is_con()) ) {
   347     // Not both constants, compute approximate result
   348     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
   349       lo = min_jint; hi = max_jint; // Underflow on the low side
   350     }
   351     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
   352       lo = min_jint; hi = max_jint; // Overflow on the high side
   353     }
   354     if( lo > hi ) {               // Handle overflow
   355       lo = min_jint; hi = max_jint;
   356     }
   357   } else {
   358     // both constants, compute precise result using 'lo' and 'hi'
   359     // Semantics define overflow and underflow for integer addition
   360     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
   361   }
   362   return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
   363 }
   366 //=============================================================================
   367 //------------------------------Idealize---------------------------------------
   368 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   369   Node* in1 = in(1);
   370   Node* in2 = in(2);
   371   int op1 = in1->Opcode();
   372   int op2 = in2->Opcode();
   373   // Fold (con1-x)+con2 into (con1+con2)-x
   374   if ( op1 == Op_AddL && op2 == Op_SubL ) {
   375     // Swap edges to try optimizations below
   376     in1 = in2;
   377     in2 = in(1);
   378     op1 = op2;
   379     op2 = in2->Opcode();
   380   }
   381   // Fold (con1-x)+con2 into (con1+con2)-x
   382   if( op1 == Op_SubL ) {
   383     const Type *t_sub1 = phase->type( in1->in(1) );
   384     const Type *t_2    = phase->type( in2        );
   385     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
   386       return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
   387                               in1->in(2) );
   388     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
   389     if( op2 == Op_SubL ) {
   390       // Check for dead cycle: d = (a-b)+(c-d)
   391       assert( in1->in(2) != this && in2->in(2) != this,
   392               "dead loop in AddLNode::Ideal" );
   393       Node *sub  = new (phase->C, 3) SubLNode(NULL, NULL);
   394       sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in1->in(1), in2->in(1) ) ));
   395       sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in1->in(2), in2->in(2) ) ));
   396       return sub;
   397     }
   398     // Convert "(a-b)+(b+c)" into "(a+c)"
   399     if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
   400       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
   401       return new (phase->C, 3) AddLNode(in1->in(1), in2->in(2));
   402     }
   403     // Convert "(a-b)+(c+b)" into "(a+c)"
   404     if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
   405       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
   406       return new (phase->C, 3) AddLNode(in1->in(1), in2->in(1));
   407     }
   408     // Convert "(a-b)+(b-c)" into "(a-c)"
   409     if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
   410       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
   411       return new (phase->C, 3) SubLNode(in1->in(1), in2->in(2));
   412     }
   413     // Convert "(a-b)+(c-a)" into "(c-b)"
   414     if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
   415       assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
   416       return new (phase->C, 3) SubLNode(in2->in(1), in1->in(2));
   417     }
   418   }
   420   // Convert "x+(0-y)" into "(x-y)"
   421   if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
   422     return new (phase->C, 3) SubLNode( in1, in2->in(2) );
   424   // Convert "(0-y)+x" into "(x-y)"
   425   if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
   426     return new (phase->C, 3) SubLNode( in2, in1->in(2) );
   428   // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
   429   // into "(X<<1)+Y" and let shift-folding happen.
   430   if( op2 == Op_AddL &&
   431       in2->in(1) == in1 &&
   432       op1 != Op_ConL &&
   433       0 ) {
   434     Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in1,phase->intcon(1)));
   435     return new (phase->C, 3) AddLNode(shift,in2->in(2));
   436   }
   438   return AddNode::Ideal(phase, can_reshape);
   439 }
   442 //------------------------------Identity---------------------------------------
   443 // Fold (x-y)+y  OR  y+(x-y)  into  x
   444 Node *AddLNode::Identity( PhaseTransform *phase ) {
   445   if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
   446     return in(1)->in(1);
   447   }
   448   else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
   449     return in(2)->in(1);
   450   }
   451   return AddNode::Identity(phase);
   452 }
   455 //------------------------------add_ring---------------------------------------
   456 // Supplied function returns the sum of the inputs.  Guaranteed never
   457 // to be passed a TOP or BOTTOM type, these are filtered out by
   458 // pre-check.
   459 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
   460   const TypeLong *r0 = t0->is_long(); // Handy access
   461   const TypeLong *r1 = t1->is_long();
   462   jlong lo = r0->_lo + r1->_lo;
   463   jlong hi = r0->_hi + r1->_hi;
   464   if( !(r0->is_con() && r1->is_con()) ) {
   465     // Not both constants, compute approximate result
   466     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
   467       lo =min_jlong; hi = max_jlong; // Underflow on the low side
   468     }
   469     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
   470       lo = min_jlong; hi = max_jlong; // Overflow on the high side
   471     }
   472     if( lo > hi ) {               // Handle overflow
   473       lo = min_jlong; hi = max_jlong;
   474     }
   475   } else {
   476     // both constants, compute precise result using 'lo' and 'hi'
   477     // Semantics define overflow and underflow for integer addition
   478     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
   479   }
   480   return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
   481 }
   484 //=============================================================================
   485 //------------------------------add_of_identity--------------------------------
   486 // Check for addition of the identity
   487 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   488   // x ADD 0  should return x unless 'x' is a -zero
   489   //
   490   // const Type *zero = add_id();     // The additive identity
   491   // jfloat f1 = t1->getf();
   492   // jfloat f2 = t2->getf();
   493   //
   494   // if( t1->higher_equal( zero ) ) return t2;
   495   // if( t2->higher_equal( zero ) ) return t1;
   497   return NULL;
   498 }
   500 //------------------------------add_ring---------------------------------------
   501 // Supplied function returns the sum of the inputs.
   502 // This also type-checks the inputs for sanity.  Guaranteed never to
   503 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   504 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
   505   // We must be adding 2 float constants.
   506   return TypeF::make( t0->getf() + t1->getf() );
   507 }
   509 //------------------------------Ideal------------------------------------------
   510 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   511   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   512     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
   513   }
   515   // Floating point additions are not associative because of boundary conditions (infinity)
   516   return commute(this,
   517                  phase->type( in(1) )->singleton(),
   518                  phase->type( in(2) )->singleton() ) ? this : NULL;
   519 }
   522 //=============================================================================
   523 //------------------------------add_of_identity--------------------------------
   524 // Check for addition of the identity
   525 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   526   // x ADD 0  should return x unless 'x' is a -zero
   527   //
   528   // const Type *zero = add_id();     // The additive identity
   529   // jfloat f1 = t1->getf();
   530   // jfloat f2 = t2->getf();
   531   //
   532   // if( t1->higher_equal( zero ) ) return t2;
   533   // if( t2->higher_equal( zero ) ) return t1;
   535   return NULL;
   536 }
   537 //------------------------------add_ring---------------------------------------
   538 // Supplied function returns the sum of the inputs.
   539 // This also type-checks the inputs for sanity.  Guaranteed never to
   540 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   541 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
   542   // We must be adding 2 double constants.
   543   return TypeD::make( t0->getd() + t1->getd() );
   544 }
   546 //------------------------------Ideal------------------------------------------
   547 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   548   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   549     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
   550   }
   552   // Floating point additions are not associative because of boundary conditions (infinity)
   553   return commute(this,
   554                  phase->type( in(1) )->singleton(),
   555                  phase->type( in(2) )->singleton() ) ? this : NULL;
   556 }
   559 //=============================================================================
   560 //------------------------------Identity---------------------------------------
   561 // If one input is a constant 0, return the other input.
   562 Node *AddPNode::Identity( PhaseTransform *phase ) {
   563   return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
   564 }
   566 //------------------------------Idealize---------------------------------------
   567 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   568   // Bail out if dead inputs
   569   if( phase->type( in(Address) ) == Type::TOP ) return NULL;
   571   // If the left input is an add of a constant, flatten the expression tree.
   572   const Node *n = in(Address);
   573   if (n->is_AddP() && n->in(Base) == in(Base)) {
   574     const AddPNode *addp = n->as_AddP(); // Left input is an AddP
   575     assert( !addp->in(Address)->is_AddP() ||
   576              addp->in(Address)->as_AddP() != addp,
   577             "dead loop in AddPNode::Ideal" );
   578     // Type of left input's right input
   579     const Type *t = phase->type( addp->in(Offset) );
   580     if( t == Type::TOP ) return NULL;
   581     const TypeX *t12 = t->is_intptr_t();
   582     if( t12->is_con() ) {       // Left input is an add of a constant?
   583       // If the right input is a constant, combine constants
   584       const Type *temp_t2 = phase->type( in(Offset) );
   585       if( temp_t2 == Type::TOP ) return NULL;
   586       const TypeX *t2 = temp_t2->is_intptr_t();
   587       Node* address;
   588       Node* offset;
   589       if( t2->is_con() ) {
   590         // The Add of the flattened expression
   591         address = addp->in(Address);
   592         offset  = phase->MakeConX(t2->get_con() + t12->get_con());
   593       } else {
   594         // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
   595         address = phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset)));
   596         offset  = addp->in(Offset);
   597       }
   598       PhaseIterGVN *igvn = phase->is_IterGVN();
   599       if( igvn ) {
   600         set_req_X(Address,address,igvn);
   601         set_req_X(Offset,offset,igvn);
   602       } else {
   603         set_req(Address,address);
   604         set_req(Offset,offset);
   605       }
   606       return this;
   607     }
   608   }
   610   // Raw pointers?
   611   if( in(Base)->bottom_type() == Type::TOP ) {
   612     // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
   613     if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
   614       Node* offset = in(Offset);
   615       return new (phase->C, 2) CastX2PNode(offset);
   616     }
   617   }
   619   // If the right is an add of a constant, push the offset down.
   620   // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
   621   // The idea is to merge array_base+scaled_index groups together,
   622   // and only have different constant offsets from the same base.
   623   const Node *add = in(Offset);
   624   if( add->Opcode() == Op_AddX && add->in(1) != add ) {
   625     const Type *t22 = phase->type( add->in(2) );
   626     if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
   627       set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
   628       set_req(Offset, add->in(2));
   629       return this;              // Made progress
   630     }
   631   }
   633   return NULL;                  // No progress
   634 }
   636 //------------------------------bottom_type------------------------------------
   637 // Bottom-type is the pointer-type with unknown offset.
   638 const Type *AddPNode::bottom_type() const {
   639   if (in(Address) == NULL)  return TypePtr::BOTTOM;
   640   const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
   641   if( !tp ) return Type::TOP;   // TOP input means TOP output
   642   assert( in(Offset)->Opcode() != Op_ConP, "" );
   643   const Type *t = in(Offset)->bottom_type();
   644   if( t == Type::TOP )
   645     return tp->add_offset(Type::OffsetTop);
   646   const TypeX *tx = t->is_intptr_t();
   647   intptr_t txoffset = Type::OffsetBot;
   648   if (tx->is_con()) {   // Left input is an add of a constant?
   649     txoffset = tx->get_con();
   650   }
   651   return tp->add_offset(txoffset);
   652 }
   654 //------------------------------Value------------------------------------------
   655 const Type *AddPNode::Value( PhaseTransform *phase ) const {
   656   // Either input is TOP ==> the result is TOP
   657   const Type *t1 = phase->type( in(Address) );
   658   const Type *t2 = phase->type( in(Offset) );
   659   if( t1 == Type::TOP ) return Type::TOP;
   660   if( t2 == Type::TOP ) return Type::TOP;
   662   // Left input is a pointer
   663   const TypePtr *p1 = t1->isa_ptr();
   664   // Right input is an int
   665   const TypeX *p2 = t2->is_intptr_t();
   666   // Add 'em
   667   intptr_t p2offset = Type::OffsetBot;
   668   if (p2->is_con()) {   // Left input is an add of a constant?
   669     p2offset = p2->get_con();
   670   }
   671   return p1->add_offset(p2offset);
   672 }
   674 //------------------------Ideal_base_and_offset--------------------------------
   675 // Split an oop pointer into a base and offset.
   676 // (The offset might be Type::OffsetBot in the case of an array.)
   677 // Return the base, or NULL if failure.
   678 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
   679                                       // second return value:
   680                                       intptr_t& offset) {
   681   if (ptr->is_AddP()) {
   682     Node* base = ptr->in(AddPNode::Base);
   683     Node* addr = ptr->in(AddPNode::Address);
   684     Node* offs = ptr->in(AddPNode::Offset);
   685     if (base == addr || base->is_top()) {
   686       offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
   687       if (offset != Type::OffsetBot) {
   688         return addr;
   689       }
   690     }
   691   }
   692   offset = Type::OffsetBot;
   693   return NULL;
   694 }
   696 //------------------------------unpack_offsets----------------------------------
   697 // Collect the AddP offset values into the elements array, giving up
   698 // if there are more than length.
   699 int AddPNode::unpack_offsets(Node* elements[], int length) {
   700   int count = 0;
   701   Node* addr = this;
   702   Node* base = addr->in(AddPNode::Base);
   703   while (addr->is_AddP()) {
   704     if (addr->in(AddPNode::Base) != base) {
   705       // give up
   706       return -1;
   707     }
   708     elements[count++] = addr->in(AddPNode::Offset);
   709     if (count == length) {
   710       // give up
   711       return -1;
   712     }
   713     addr = addr->in(AddPNode::Address);
   714   }
   715   if (addr != base) {
   716     return -1;
   717   }
   718   return count;
   719 }
   721 //------------------------------match_edge-------------------------------------
   722 // Do we Match on this edge index or not?  Do not match base pointer edge
   723 uint AddPNode::match_edge(uint idx) const {
   724   return idx > Base;
   725 }
   727 //=============================================================================
   728 //------------------------------Identity---------------------------------------
   729 Node *OrINode::Identity( PhaseTransform *phase ) {
   730   // x | x => x
   731   if (phase->eqv(in(1), in(2))) {
   732     return in(1);
   733   }
   735   return AddNode::Identity(phase);
   736 }
   738 //------------------------------add_ring---------------------------------------
   739 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
   740 // the logical operations the ring's ADD is really a logical OR function.
   741 // This also type-checks the inputs for sanity.  Guaranteed never to
   742 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   743 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
   744   const TypeInt *r0 = t0->is_int(); // Handy access
   745   const TypeInt *r1 = t1->is_int();
   747   // If both args are bool, can figure out better types
   748   if ( r0 == TypeInt::BOOL ) {
   749     if ( r1 == TypeInt::ONE) {
   750       return TypeInt::ONE;
   751     } else if ( r1 == TypeInt::BOOL ) {
   752       return TypeInt::BOOL;
   753     }
   754   } else if ( r0 == TypeInt::ONE ) {
   755     if ( r1 == TypeInt::BOOL ) {
   756       return TypeInt::ONE;
   757     }
   758   }
   760   // If either input is not a constant, just return all integers.
   761   if( !r0->is_con() || !r1->is_con() )
   762     return TypeInt::INT;        // Any integer, but still no symbols.
   764   // Otherwise just OR them bits.
   765   return TypeInt::make( r0->get_con() | r1->get_con() );
   766 }
   768 //=============================================================================
   769 //------------------------------Identity---------------------------------------
   770 Node *OrLNode::Identity( PhaseTransform *phase ) {
   771   // x | x => x
   772   if (phase->eqv(in(1), in(2))) {
   773     return in(1);
   774   }
   776   return AddNode::Identity(phase);
   777 }
   779 //------------------------------add_ring---------------------------------------
   780 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
   781   const TypeLong *r0 = t0->is_long(); // Handy access
   782   const TypeLong *r1 = t1->is_long();
   784   // If either input is not a constant, just return all integers.
   785   if( !r0->is_con() || !r1->is_con() )
   786     return TypeLong::LONG;      // Any integer, but still no symbols.
   788   // Otherwise just OR them bits.
   789   return TypeLong::make( r0->get_con() | r1->get_con() );
   790 }
   792 //=============================================================================
   793 //------------------------------add_ring---------------------------------------
   794 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
   795 // the logical operations the ring's ADD is really a logical OR function.
   796 // This also type-checks the inputs for sanity.  Guaranteed never to
   797 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   798 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
   799   const TypeInt *r0 = t0->is_int(); // Handy access
   800   const TypeInt *r1 = t1->is_int();
   802   // Complementing a boolean?
   803   if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
   804                                || r1 == TypeInt::BOOL))
   805     return TypeInt::BOOL;
   807   if( !r0->is_con() || !r1->is_con() ) // Not constants
   808     return TypeInt::INT;        // Any integer, but still no symbols.
   810   // Otherwise just XOR them bits.
   811   return TypeInt::make( r0->get_con() ^ r1->get_con() );
   812 }
   814 //=============================================================================
   815 //------------------------------add_ring---------------------------------------
   816 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
   817   const TypeLong *r0 = t0->is_long(); // Handy access
   818   const TypeLong *r1 = t1->is_long();
   820   // If either input is not a constant, just return all integers.
   821   if( !r0->is_con() || !r1->is_con() )
   822     return TypeLong::LONG;      // Any integer, but still no symbols.
   824   // Otherwise just OR them bits.
   825   return TypeLong::make( r0->get_con() ^ r1->get_con() );
   826 }
   828 //=============================================================================
   829 //------------------------------add_ring---------------------------------------
   830 // Supplied function returns the sum of the inputs.
   831 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
   832   const TypeInt *r0 = t0->is_int(); // Handy access
   833   const TypeInt *r1 = t1->is_int();
   835   // Otherwise just MAX them bits.
   836   return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
   837 }
   839 //=============================================================================
   840 //------------------------------Idealize---------------------------------------
   841 // MINs show up in range-check loop limit calculations.  Look for
   842 // "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
   843 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   844   Node *progress = NULL;
   845   // Force a right-spline graph
   846   Node *l = in(1);
   847   Node *r = in(2);
   848   // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
   849   // to force a right-spline graph for the rest of MinINode::Ideal().
   850   if( l->Opcode() == Op_MinI ) {
   851     assert( l != l->in(1), "dead loop in MinINode::Ideal" );
   852     r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
   853     l = l->in(1);
   854     set_req(1, l);
   855     set_req(2, r);
   856     return this;
   857   }
   859   // Get left input & constant
   860   Node *x = l;
   861   int x_off = 0;
   862   if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
   863       x->in(2)->is_Con() ) {
   864     const Type *t = x->in(2)->bottom_type();
   865     if( t == Type::TOP ) return NULL;  // No progress
   866     x_off = t->is_int()->get_con();
   867     x = x->in(1);
   868   }
   870   // Scan a right-spline-tree for MINs
   871   Node *y = r;
   872   int y_off = 0;
   873   // Check final part of MIN tree
   874   if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
   875       y->in(2)->is_Con() ) {
   876     const Type *t = y->in(2)->bottom_type();
   877     if( t == Type::TOP ) return NULL;  // No progress
   878     y_off = t->is_int()->get_con();
   879     y = y->in(1);
   880   }
   881   if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
   882     swap_edges(1, 2);
   883     return this;
   884   }
   887   if( r->Opcode() == Op_MinI ) {
   888     assert( r != r->in(2), "dead loop in MinINode::Ideal" );
   889     y = r->in(1);
   890     // Check final part of MIN tree
   891     if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
   892         y->in(2)->is_Con() ) {
   893       const Type *t = y->in(2)->bottom_type();
   894       if( t == Type::TOP ) return NULL;  // No progress
   895       y_off = t->is_int()->get_con();
   896       y = y->in(1);
   897     }
   899     if( x->_idx > y->_idx )
   900       return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
   902     // See if covers: MIN2(x+c0,MIN2(y+c1,z))
   903     if( !phase->eqv(x,y) ) return NULL;
   904     // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
   905     // MIN2(x+c0 or x+c1 which less, z).
   906     return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
   907   } else {
   908     // See if covers: MIN2(x+c0,y+c1)
   909     if( !phase->eqv(x,y) ) return NULL;
   910     // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
   911     return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
   912   }
   914 }
   916 //------------------------------add_ring---------------------------------------
   917 // Supplied function returns the sum of the inputs.
   918 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
   919   const TypeInt *r0 = t0->is_int(); // Handy access
   920   const TypeInt *r1 = t1->is_int();
   922   // Otherwise just MIN them bits.
   923   return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
   924 }

mercurial