src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Thu, 30 Jul 2009 14:50:58 -0400

author
tonyp
date
Thu, 30 Jul 2009 14:50:58 -0400
changeset 1319
83b687ce3090
parent 1318
27f6a9b9c311
child 1324
15c5903cf9e1
permissions
-rw-r--r--

6866591: G1: print update buffer processing stats more often
Summary: It adds parameter -XX:+G1SummarizeRSetStatsPeriod that causes update buffer processing information to be printed periodically. It also includes two small formatting changes.
Reviewed-by: jmasa, jcoomes, ysr

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectedHeap.cpp.incl"
    28 // turn it on so that the contents of the young list (scan-only /
    29 // to-be-collected) are printed at "strategic" points before / during
    30 // / after the collection --- this is useful for debugging
    31 #define SCAN_ONLY_VERBOSE 0
    32 // CURRENT STATUS
    33 // This file is under construction.  Search for "FIXME".
    35 // INVARIANTS/NOTES
    36 //
    37 // All allocation activity covered by the G1CollectedHeap interface is
    38 //   serialized by acquiring the HeapLock.  This happens in
    39 //   mem_allocate_work, which all such allocation functions call.
    40 //   (Note that this does not apply to TLAB allocation, which is not part
    41 //   of this interface: it is done by clients of this interface.)
    43 // Local to this file.
    45 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    46   SuspendibleThreadSet* _sts;
    47   G1RemSet* _g1rs;
    48   ConcurrentG1Refine* _cg1r;
    49   bool _concurrent;
    50 public:
    51   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    52                               G1RemSet* g1rs,
    53                               ConcurrentG1Refine* cg1r) :
    54     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    55   {}
    56   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    57     _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
    58     if (_concurrent && _sts->should_yield()) {
    59       // Caller will actually yield.
    60       return false;
    61     }
    62     // Otherwise, we finished successfully; return true.
    63     return true;
    64   }
    65   void set_concurrent(bool b) { _concurrent = b; }
    66 };
    69 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    70   int _calls;
    71   G1CollectedHeap* _g1h;
    72   CardTableModRefBS* _ctbs;
    73   int _histo[256];
    74 public:
    75   ClearLoggedCardTableEntryClosure() :
    76     _calls(0)
    77   {
    78     _g1h = G1CollectedHeap::heap();
    79     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    80     for (int i = 0; i < 256; i++) _histo[i] = 0;
    81   }
    82   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    83     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
    84       _calls++;
    85       unsigned char* ujb = (unsigned char*)card_ptr;
    86       int ind = (int)(*ujb);
    87       _histo[ind]++;
    88       *card_ptr = -1;
    89     }
    90     return true;
    91   }
    92   int calls() { return _calls; }
    93   void print_histo() {
    94     gclog_or_tty->print_cr("Card table value histogram:");
    95     for (int i = 0; i < 256; i++) {
    96       if (_histo[i] != 0) {
    97         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
    98       }
    99     }
   100   }
   101 };
   103 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   104   int _calls;
   105   G1CollectedHeap* _g1h;
   106   CardTableModRefBS* _ctbs;
   107 public:
   108   RedirtyLoggedCardTableEntryClosure() :
   109     _calls(0)
   110   {
   111     _g1h = G1CollectedHeap::heap();
   112     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   113   }
   114   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   115     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   116       _calls++;
   117       *card_ptr = 0;
   118     }
   119     return true;
   120   }
   121   int calls() { return _calls; }
   122 };
   124 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   125 public:
   126   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   127     *card_ptr = CardTableModRefBS::dirty_card_val();
   128     return true;
   129   }
   130 };
   132 YoungList::YoungList(G1CollectedHeap* g1h)
   133   : _g1h(g1h), _head(NULL),
   134     _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
   135     _length(0), _scan_only_length(0),
   136     _last_sampled_rs_lengths(0),
   137     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   138 {
   139   guarantee( check_list_empty(false), "just making sure..." );
   140 }
   142 void YoungList::push_region(HeapRegion *hr) {
   143   assert(!hr->is_young(), "should not already be young");
   144   assert(hr->get_next_young_region() == NULL, "cause it should!");
   146   hr->set_next_young_region(_head);
   147   _head = hr;
   149   hr->set_young();
   150   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   151   ++_length;
   152 }
   154 void YoungList::add_survivor_region(HeapRegion* hr) {
   155   assert(hr->is_survivor(), "should be flagged as survivor region");
   156   assert(hr->get_next_young_region() == NULL, "cause it should!");
   158   hr->set_next_young_region(_survivor_head);
   159   if (_survivor_head == NULL) {
   160     _survivor_tail = hr;
   161   }
   162   _survivor_head = hr;
   164   ++_survivor_length;
   165 }
   167 HeapRegion* YoungList::pop_region() {
   168   while (_head != NULL) {
   169     assert( length() > 0, "list should not be empty" );
   170     HeapRegion* ret = _head;
   171     _head = ret->get_next_young_region();
   172     ret->set_next_young_region(NULL);
   173     --_length;
   174     assert(ret->is_young(), "region should be very young");
   176     // Replace 'Survivor' region type with 'Young'. So the region will
   177     // be treated as a young region and will not be 'confused' with
   178     // newly created survivor regions.
   179     if (ret->is_survivor()) {
   180       ret->set_young();
   181     }
   183     if (!ret->is_scan_only()) {
   184       return ret;
   185     }
   187     // scan-only, we'll add it to the scan-only list
   188     if (_scan_only_tail == NULL) {
   189       guarantee( _scan_only_head == NULL, "invariant" );
   191       _scan_only_head = ret;
   192       _curr_scan_only = ret;
   193     } else {
   194       guarantee( _scan_only_head != NULL, "invariant" );
   195       _scan_only_tail->set_next_young_region(ret);
   196     }
   197     guarantee( ret->get_next_young_region() == NULL, "invariant" );
   198     _scan_only_tail = ret;
   200     // no need to be tagged as scan-only any more
   201     ret->set_young();
   203     ++_scan_only_length;
   204   }
   205   assert( length() == 0, "list should be empty" );
   206   return NULL;
   207 }
   209 void YoungList::empty_list(HeapRegion* list) {
   210   while (list != NULL) {
   211     HeapRegion* next = list->get_next_young_region();
   212     list->set_next_young_region(NULL);
   213     list->uninstall_surv_rate_group();
   214     list->set_not_young();
   215     list = next;
   216   }
   217 }
   219 void YoungList::empty_list() {
   220   assert(check_list_well_formed(), "young list should be well formed");
   222   empty_list(_head);
   223   _head = NULL;
   224   _length = 0;
   226   empty_list(_scan_only_head);
   227   _scan_only_head = NULL;
   228   _scan_only_tail = NULL;
   229   _scan_only_length = 0;
   230   _curr_scan_only = NULL;
   232   empty_list(_survivor_head);
   233   _survivor_head = NULL;
   234   _survivor_tail = NULL;
   235   _survivor_length = 0;
   237   _last_sampled_rs_lengths = 0;
   239   assert(check_list_empty(false), "just making sure...");
   240 }
   242 bool YoungList::check_list_well_formed() {
   243   bool ret = true;
   245   size_t length = 0;
   246   HeapRegion* curr = _head;
   247   HeapRegion* last = NULL;
   248   while (curr != NULL) {
   249     if (!curr->is_young() || curr->is_scan_only()) {
   250       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   251                              "incorrectly tagged (%d, %d)",
   252                              curr->bottom(), curr->end(),
   253                              curr->is_young(), curr->is_scan_only());
   254       ret = false;
   255     }
   256     ++length;
   257     last = curr;
   258     curr = curr->get_next_young_region();
   259   }
   260   ret = ret && (length == _length);
   262   if (!ret) {
   263     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   264     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   265                            length, _length);
   266   }
   268   bool scan_only_ret = true;
   269   length = 0;
   270   curr = _scan_only_head;
   271   last = NULL;
   272   while (curr != NULL) {
   273     if (!curr->is_young() || curr->is_scan_only()) {
   274       gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
   275                              "incorrectly tagged (%d, %d)",
   276                              curr->bottom(), curr->end(),
   277                              curr->is_young(), curr->is_scan_only());
   278       scan_only_ret = false;
   279     }
   280     ++length;
   281     last = curr;
   282     curr = curr->get_next_young_region();
   283   }
   284   scan_only_ret = scan_only_ret && (length == _scan_only_length);
   286   if ( (last != _scan_only_tail) ||
   287        (_scan_only_head == NULL && _scan_only_tail != NULL) ||
   288        (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
   289      gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
   290      scan_only_ret = false;
   291   }
   293   if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
   294     gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
   295     scan_only_ret = false;
   296    }
   298   if (!scan_only_ret) {
   299     gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
   300     gclog_or_tty->print_cr("###   list has %d entries, _scan_only_length is %d",
   301                   length, _scan_only_length);
   302   }
   304   return ret && scan_only_ret;
   305 }
   307 bool YoungList::check_list_empty(bool ignore_scan_only_list,
   308                                  bool check_sample) {
   309   bool ret = true;
   311   if (_length != 0) {
   312     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   313                   _length);
   314     ret = false;
   315   }
   316   if (check_sample && _last_sampled_rs_lengths != 0) {
   317     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   318     ret = false;
   319   }
   320   if (_head != NULL) {
   321     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   322     ret = false;
   323   }
   324   if (!ret) {
   325     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   326   }
   328   if (ignore_scan_only_list)
   329     return ret;
   331   bool scan_only_ret = true;
   332   if (_scan_only_length != 0) {
   333     gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
   334                   _scan_only_length);
   335     scan_only_ret = false;
   336   }
   337   if (_scan_only_head != NULL) {
   338     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
   339      scan_only_ret = false;
   340   }
   341   if (_scan_only_tail != NULL) {
   342     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
   343     scan_only_ret = false;
   344   }
   345   if (!scan_only_ret) {
   346     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
   347   }
   349   return ret && scan_only_ret;
   350 }
   352 void
   353 YoungList::rs_length_sampling_init() {
   354   _sampled_rs_lengths = 0;
   355   _curr               = _head;
   356 }
   358 bool
   359 YoungList::rs_length_sampling_more() {
   360   return _curr != NULL;
   361 }
   363 void
   364 YoungList::rs_length_sampling_next() {
   365   assert( _curr != NULL, "invariant" );
   366   _sampled_rs_lengths += _curr->rem_set()->occupied();
   367   _curr = _curr->get_next_young_region();
   368   if (_curr == NULL) {
   369     _last_sampled_rs_lengths = _sampled_rs_lengths;
   370     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   371   }
   372 }
   374 void
   375 YoungList::reset_auxilary_lists() {
   376   // We could have just "moved" the scan-only list to the young list.
   377   // However, the scan-only list is ordered according to the region
   378   // age in descending order, so, by moving one entry at a time, we
   379   // ensure that it is recreated in ascending order.
   381   guarantee( is_empty(), "young list should be empty" );
   382   assert(check_list_well_formed(), "young list should be well formed");
   384   // Add survivor regions to SurvRateGroup.
   385   _g1h->g1_policy()->note_start_adding_survivor_regions();
   386   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   387   for (HeapRegion* curr = _survivor_head;
   388        curr != NULL;
   389        curr = curr->get_next_young_region()) {
   390     _g1h->g1_policy()->set_region_survivors(curr);
   391   }
   392   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   394   if (_survivor_head != NULL) {
   395     _head           = _survivor_head;
   396     _length         = _survivor_length + _scan_only_length;
   397     _survivor_tail->set_next_young_region(_scan_only_head);
   398   } else {
   399     _head           = _scan_only_head;
   400     _length         = _scan_only_length;
   401   }
   403   for (HeapRegion* curr = _scan_only_head;
   404        curr != NULL;
   405        curr = curr->get_next_young_region()) {
   406     curr->recalculate_age_in_surv_rate_group();
   407   }
   408   _scan_only_head   = NULL;
   409   _scan_only_tail   = NULL;
   410   _scan_only_length = 0;
   411   _curr_scan_only   = NULL;
   413   _survivor_head    = NULL;
   414   _survivor_tail   = NULL;
   415   _survivor_length  = 0;
   416   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   418   assert(check_list_well_formed(), "young list should be well formed");
   419 }
   421 void YoungList::print() {
   422   HeapRegion* lists[] = {_head,   _scan_only_head, _survivor_head};
   423   const char* names[] = {"YOUNG", "SCAN-ONLY",     "SURVIVOR"};
   425   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   426     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   427     HeapRegion *curr = lists[list];
   428     if (curr == NULL)
   429       gclog_or_tty->print_cr("  empty");
   430     while (curr != NULL) {
   431       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   432                              "age: %4d, y: %d, s-o: %d, surv: %d",
   433                              curr->bottom(), curr->end(),
   434                              curr->top(),
   435                              curr->prev_top_at_mark_start(),
   436                              curr->next_top_at_mark_start(),
   437                              curr->top_at_conc_mark_count(),
   438                              curr->age_in_surv_rate_group_cond(),
   439                              curr->is_young(),
   440                              curr->is_scan_only(),
   441                              curr->is_survivor());
   442       curr = curr->get_next_young_region();
   443     }
   444   }
   446   gclog_or_tty->print_cr("");
   447 }
   449 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   450 {
   451   // Claim the right to put the region on the dirty cards region list
   452   // by installing a self pointer.
   453   HeapRegion* next = hr->get_next_dirty_cards_region();
   454   if (next == NULL) {
   455     HeapRegion* res = (HeapRegion*)
   456       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   457                           NULL);
   458     if (res == NULL) {
   459       HeapRegion* head;
   460       do {
   461         // Put the region to the dirty cards region list.
   462         head = _dirty_cards_region_list;
   463         next = (HeapRegion*)
   464           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   465         if (next == head) {
   466           assert(hr->get_next_dirty_cards_region() == hr,
   467                  "hr->get_next_dirty_cards_region() != hr");
   468           if (next == NULL) {
   469             // The last region in the list points to itself.
   470             hr->set_next_dirty_cards_region(hr);
   471           } else {
   472             hr->set_next_dirty_cards_region(next);
   473           }
   474         }
   475       } while (next != head);
   476     }
   477   }
   478 }
   480 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   481 {
   482   HeapRegion* head;
   483   HeapRegion* hr;
   484   do {
   485     head = _dirty_cards_region_list;
   486     if (head == NULL) {
   487       return NULL;
   488     }
   489     HeapRegion* new_head = head->get_next_dirty_cards_region();
   490     if (head == new_head) {
   491       // The last region.
   492       new_head = NULL;
   493     }
   494     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   495                                           head);
   496   } while (hr != head);
   497   assert(hr != NULL, "invariant");
   498   hr->set_next_dirty_cards_region(NULL);
   499   return hr;
   500 }
   502 void G1CollectedHeap::stop_conc_gc_threads() {
   503   _cg1r->stop();
   504   _czft->stop();
   505   _cmThread->stop();
   506 }
   509 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   510   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   511   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   513   // Count the dirty cards at the start.
   514   CountNonCleanMemRegionClosure count1(this);
   515   ct_bs->mod_card_iterate(&count1);
   516   int orig_count = count1.n();
   518   // First clear the logged cards.
   519   ClearLoggedCardTableEntryClosure clear;
   520   dcqs.set_closure(&clear);
   521   dcqs.apply_closure_to_all_completed_buffers();
   522   dcqs.iterate_closure_all_threads(false);
   523   clear.print_histo();
   525   // Now ensure that there's no dirty cards.
   526   CountNonCleanMemRegionClosure count2(this);
   527   ct_bs->mod_card_iterate(&count2);
   528   if (count2.n() != 0) {
   529     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   530                            count2.n(), orig_count);
   531   }
   532   guarantee(count2.n() == 0, "Card table should be clean.");
   534   RedirtyLoggedCardTableEntryClosure redirty;
   535   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   536   dcqs.apply_closure_to_all_completed_buffers();
   537   dcqs.iterate_closure_all_threads(false);
   538   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   539                          clear.calls(), orig_count);
   540   guarantee(redirty.calls() == clear.calls(),
   541             "Or else mechanism is broken.");
   543   CountNonCleanMemRegionClosure count3(this);
   544   ct_bs->mod_card_iterate(&count3);
   545   if (count3.n() != orig_count) {
   546     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   547                            orig_count, count3.n());
   548     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   549   }
   551   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   552 }
   554 // Private class members.
   556 G1CollectedHeap* G1CollectedHeap::_g1h;
   558 // Private methods.
   560 // Finds a HeapRegion that can be used to allocate a given size of block.
   563 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
   564                                                  bool do_expand,
   565                                                  bool zero_filled) {
   566   ConcurrentZFThread::note_region_alloc();
   567   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
   568   if (res == NULL && do_expand) {
   569     expand(word_size * HeapWordSize);
   570     res = alloc_free_region_from_lists(zero_filled);
   571     assert(res == NULL ||
   572            (!res->isHumongous() &&
   573             (!zero_filled ||
   574              res->zero_fill_state() == HeapRegion::Allocated)),
   575            "Alloc Regions must be zero filled (and non-H)");
   576   }
   577   if (res != NULL && res->is_empty()) _free_regions--;
   578   assert(res == NULL ||
   579          (!res->isHumongous() &&
   580           (!zero_filled ||
   581            res->zero_fill_state() == HeapRegion::Allocated)),
   582          "Non-young alloc Regions must be zero filled (and non-H)");
   584   if (G1PrintRegions) {
   585     if (res != NULL) {
   586       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
   587                              "top "PTR_FORMAT,
   588                              res->hrs_index(), res->bottom(), res->end(), res->top());
   589     }
   590   }
   592   return res;
   593 }
   595 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
   596                                                          size_t word_size,
   597                                                          bool zero_filled) {
   598   HeapRegion* alloc_region = NULL;
   599   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   600     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
   601     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   602       alloc_region->set_survivor();
   603     }
   604     ++_gc_alloc_region_counts[purpose];
   605   } else {
   606     g1_policy()->note_alloc_region_limit_reached(purpose);
   607   }
   608   return alloc_region;
   609 }
   611 // If could fit into free regions w/o expansion, try.
   612 // Otherwise, if can expand, do so.
   613 // Otherwise, if using ex regions might help, try with ex given back.
   614 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
   615   assert(regions_accounted_for(), "Region leakage!");
   617   // We can't allocate H regions while cleanupComplete is running, since
   618   // some of the regions we find to be empty might not yet be added to the
   619   // unclean list.  (If we're already at a safepoint, this call is
   620   // unnecessary, not to mention wrong.)
   621   if (!SafepointSynchronize::is_at_safepoint())
   622     wait_for_cleanup_complete();
   624   size_t num_regions =
   625     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   627   // Special case if < one region???
   629   // Remember the ft size.
   630   size_t x_size = expansion_regions();
   632   HeapWord* res = NULL;
   633   bool eliminated_allocated_from_lists = false;
   635   // Can the allocation potentially fit in the free regions?
   636   if (free_regions() >= num_regions) {
   637     res = _hrs->obj_allocate(word_size);
   638   }
   639   if (res == NULL) {
   640     // Try expansion.
   641     size_t fs = _hrs->free_suffix();
   642     if (fs + x_size >= num_regions) {
   643       expand((num_regions - fs) * HeapRegion::GrainBytes);
   644       res = _hrs->obj_allocate(word_size);
   645       assert(res != NULL, "This should have worked.");
   646     } else {
   647       // Expansion won't help.  Are there enough free regions if we get rid
   648       // of reservations?
   649       size_t avail = free_regions();
   650       if (avail >= num_regions) {
   651         res = _hrs->obj_allocate(word_size);
   652         if (res != NULL) {
   653           remove_allocated_regions_from_lists();
   654           eliminated_allocated_from_lists = true;
   655         }
   656       }
   657     }
   658   }
   659   if (res != NULL) {
   660     // Increment by the number of regions allocated.
   661     // FIXME: Assumes regions all of size GrainBytes.
   662 #ifndef PRODUCT
   663     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
   664                                            HeapRegion::GrainWords));
   665 #endif
   666     if (!eliminated_allocated_from_lists)
   667       remove_allocated_regions_from_lists();
   668     _summary_bytes_used += word_size * HeapWordSize;
   669     _free_regions -= num_regions;
   670     _num_humongous_regions += (int) num_regions;
   671   }
   672   assert(regions_accounted_for(), "Region Leakage");
   673   return res;
   674 }
   676 HeapWord*
   677 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   678                                          bool permit_collection_pause) {
   679   HeapWord* res = NULL;
   680   HeapRegion* allocated_young_region = NULL;
   682   assert( SafepointSynchronize::is_at_safepoint() ||
   683           Heap_lock->owned_by_self(), "pre condition of the call" );
   685   if (isHumongous(word_size)) {
   686     // Allocation of a humongous object can, in a sense, complete a
   687     // partial region, if the previous alloc was also humongous, and
   688     // caused the test below to succeed.
   689     if (permit_collection_pause)
   690       do_collection_pause_if_appropriate(word_size);
   691     res = humongousObjAllocate(word_size);
   692     assert(_cur_alloc_region == NULL
   693            || !_cur_alloc_region->isHumongous(),
   694            "Prevent a regression of this bug.");
   696   } else {
   697     // We may have concurrent cleanup working at the time. Wait for it
   698     // to complete. In the future we would probably want to make the
   699     // concurrent cleanup truly concurrent by decoupling it from the
   700     // allocation.
   701     if (!SafepointSynchronize::is_at_safepoint())
   702       wait_for_cleanup_complete();
   703     // If we do a collection pause, this will be reset to a non-NULL
   704     // value.  If we don't, nulling here ensures that we allocate a new
   705     // region below.
   706     if (_cur_alloc_region != NULL) {
   707       // We're finished with the _cur_alloc_region.
   708       _summary_bytes_used += _cur_alloc_region->used();
   709       _cur_alloc_region = NULL;
   710     }
   711     assert(_cur_alloc_region == NULL, "Invariant.");
   712     // Completion of a heap region is perhaps a good point at which to do
   713     // a collection pause.
   714     if (permit_collection_pause)
   715       do_collection_pause_if_appropriate(word_size);
   716     // Make sure we have an allocation region available.
   717     if (_cur_alloc_region == NULL) {
   718       if (!SafepointSynchronize::is_at_safepoint())
   719         wait_for_cleanup_complete();
   720       bool next_is_young = should_set_young_locked();
   721       // If the next region is not young, make sure it's zero-filled.
   722       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
   723       if (_cur_alloc_region != NULL) {
   724         _summary_bytes_used -= _cur_alloc_region->used();
   725         if (next_is_young) {
   726           set_region_short_lived_locked(_cur_alloc_region);
   727           allocated_young_region = _cur_alloc_region;
   728         }
   729       }
   730     }
   731     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
   732            "Prevent a regression of this bug.");
   734     // Now retry the allocation.
   735     if (_cur_alloc_region != NULL) {
   736       res = _cur_alloc_region->allocate(word_size);
   737     }
   738   }
   740   // NOTE: fails frequently in PRT
   741   assert(regions_accounted_for(), "Region leakage!");
   743   if (res != NULL) {
   744     if (!SafepointSynchronize::is_at_safepoint()) {
   745       assert( permit_collection_pause, "invariant" );
   746       assert( Heap_lock->owned_by_self(), "invariant" );
   747       Heap_lock->unlock();
   748     }
   750     if (allocated_young_region != NULL) {
   751       HeapRegion* hr = allocated_young_region;
   752       HeapWord* bottom = hr->bottom();
   753       HeapWord* end = hr->end();
   754       MemRegion mr(bottom, end);
   755       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
   756     }
   757   }
   759   assert( SafepointSynchronize::is_at_safepoint() ||
   760           (res == NULL && Heap_lock->owned_by_self()) ||
   761           (res != NULL && !Heap_lock->owned_by_self()),
   762           "post condition of the call" );
   764   return res;
   765 }
   767 HeapWord*
   768 G1CollectedHeap::mem_allocate(size_t word_size,
   769                               bool   is_noref,
   770                               bool   is_tlab,
   771                               bool* gc_overhead_limit_was_exceeded) {
   772   debug_only(check_for_valid_allocation_state());
   773   assert(no_gc_in_progress(), "Allocation during gc not allowed");
   774   HeapWord* result = NULL;
   776   // Loop until the allocation is satisified,
   777   // or unsatisfied after GC.
   778   for (int try_count = 1; /* return or throw */; try_count += 1) {
   779     int gc_count_before;
   780     {
   781       Heap_lock->lock();
   782       result = attempt_allocation(word_size);
   783       if (result != NULL) {
   784         // attempt_allocation should have unlocked the heap lock
   785         assert(is_in(result), "result not in heap");
   786         return result;
   787       }
   788       // Read the gc count while the heap lock is held.
   789       gc_count_before = SharedHeap::heap()->total_collections();
   790       Heap_lock->unlock();
   791     }
   793     // Create the garbage collection operation...
   794     VM_G1CollectForAllocation op(word_size,
   795                                  gc_count_before);
   797     // ...and get the VM thread to execute it.
   798     VMThread::execute(&op);
   799     if (op.prologue_succeeded()) {
   800       result = op.result();
   801       assert(result == NULL || is_in(result), "result not in heap");
   802       return result;
   803     }
   805     // Give a warning if we seem to be looping forever.
   806     if ((QueuedAllocationWarningCount > 0) &&
   807         (try_count % QueuedAllocationWarningCount == 0)) {
   808       warning("G1CollectedHeap::mem_allocate_work retries %d times",
   809               try_count);
   810     }
   811   }
   812 }
   814 void G1CollectedHeap::abandon_cur_alloc_region() {
   815   if (_cur_alloc_region != NULL) {
   816     // We're finished with the _cur_alloc_region.
   817     if (_cur_alloc_region->is_empty()) {
   818       _free_regions++;
   819       free_region(_cur_alloc_region);
   820     } else {
   821       _summary_bytes_used += _cur_alloc_region->used();
   822     }
   823     _cur_alloc_region = NULL;
   824   }
   825 }
   827 void G1CollectedHeap::abandon_gc_alloc_regions() {
   828   // first, make sure that the GC alloc region list is empty (it should!)
   829   assert(_gc_alloc_region_list == NULL, "invariant");
   830   release_gc_alloc_regions(true /* totally */);
   831 }
   833 class PostMCRemSetClearClosure: public HeapRegionClosure {
   834   ModRefBarrierSet* _mr_bs;
   835 public:
   836   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   837   bool doHeapRegion(HeapRegion* r) {
   838     r->reset_gc_time_stamp();
   839     if (r->continuesHumongous())
   840       return false;
   841     HeapRegionRemSet* hrrs = r->rem_set();
   842     if (hrrs != NULL) hrrs->clear();
   843     // You might think here that we could clear just the cards
   844     // corresponding to the used region.  But no: if we leave a dirty card
   845     // in a region we might allocate into, then it would prevent that card
   846     // from being enqueued, and cause it to be missed.
   847     // Re: the performance cost: we shouldn't be doing full GC anyway!
   848     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
   849     return false;
   850   }
   851 };
   854 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
   855   ModRefBarrierSet* _mr_bs;
   856 public:
   857   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   858   bool doHeapRegion(HeapRegion* r) {
   859     if (r->continuesHumongous()) return false;
   860     if (r->used_region().word_size() != 0) {
   861       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
   862     }
   863     return false;
   864   }
   865 };
   867 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
   868   G1CollectedHeap*   _g1h;
   869   UpdateRSOopClosure _cl;
   870   int                _worker_i;
   871 public:
   872   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
   873     _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
   874     _worker_i(worker_i),
   875     _g1h(g1)
   876   { }
   877   bool doHeapRegion(HeapRegion* r) {
   878     if (!r->continuesHumongous()) {
   879       _cl.set_from(r);
   880       r->oop_iterate(&_cl);
   881     }
   882     return false;
   883   }
   884 };
   886 class ParRebuildRSTask: public AbstractGangTask {
   887   G1CollectedHeap* _g1;
   888 public:
   889   ParRebuildRSTask(G1CollectedHeap* g1)
   890     : AbstractGangTask("ParRebuildRSTask"),
   891       _g1(g1)
   892   { }
   894   void work(int i) {
   895     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
   896     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
   897                                          HeapRegion::RebuildRSClaimValue);
   898   }
   899 };
   901 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
   902                                     size_t word_size) {
   903   ResourceMark rm;
   905   if (PrintHeapAtGC) {
   906     Universe::print_heap_before_gc();
   907   }
   909   if (full && DisableExplicitGC) {
   910     gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
   911     return;
   912   }
   914   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   915   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
   917   if (GC_locker::is_active()) {
   918     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   919   }
   921   {
   922     IsGCActiveMark x;
   924     // Timing
   925     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   926     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   927     TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
   929     double start = os::elapsedTime();
   930     GCOverheadReporter::recordSTWStart(start);
   931     g1_policy()->record_full_collection_start();
   933     gc_prologue(true);
   934     increment_total_collections(true /* full gc */);
   936     size_t g1h_prev_used = used();
   937     assert(used() == recalculate_used(), "Should be equal");
   939     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
   940       HandleMark hm;  // Discard invalid handles created during verification
   941       prepare_for_verify();
   942       gclog_or_tty->print(" VerifyBeforeGC:");
   943       Universe::verify(true);
   944     }
   945     assert(regions_accounted_for(), "Region leakage!");
   947     COMPILER2_PRESENT(DerivedPointerTable::clear());
   949     // We want to discover references, but not process them yet.
   950     // This mode is disabled in
   951     // instanceRefKlass::process_discovered_references if the
   952     // generation does some collection work, or
   953     // instanceRefKlass::enqueue_discovered_references if the
   954     // generation returns without doing any work.
   955     ref_processor()->disable_discovery();
   956     ref_processor()->abandon_partial_discovery();
   957     ref_processor()->verify_no_references_recorded();
   959     // Abandon current iterations of concurrent marking and concurrent
   960     // refinement, if any are in progress.
   961     concurrent_mark()->abort();
   963     // Make sure we'll choose a new allocation region afterwards.
   964     abandon_cur_alloc_region();
   965     abandon_gc_alloc_regions();
   966     assert(_cur_alloc_region == NULL, "Invariant.");
   967     g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
   968     tear_down_region_lists();
   969     set_used_regions_to_need_zero_fill();
   970     if (g1_policy()->in_young_gc_mode()) {
   971       empty_young_list();
   972       g1_policy()->set_full_young_gcs(true);
   973     }
   975     // Temporarily make reference _discovery_ single threaded (non-MT).
   976     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
   978     // Temporarily make refs discovery atomic
   979     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
   981     // Temporarily clear _is_alive_non_header
   982     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
   984     ref_processor()->enable_discovery();
   985     ref_processor()->setup_policy(clear_all_soft_refs);
   987     // Do collection work
   988     {
   989       HandleMark hm;  // Discard invalid handles created during gc
   990       G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
   991     }
   992     // Because freeing humongous regions may have added some unclean
   993     // regions, it is necessary to tear down again before rebuilding.
   994     tear_down_region_lists();
   995     rebuild_region_lists();
   997     _summary_bytes_used = recalculate_used();
   999     ref_processor()->enqueue_discovered_references();
  1001     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1003     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1004       HandleMark hm;  // Discard invalid handles created during verification
  1005       gclog_or_tty->print(" VerifyAfterGC:");
  1006       prepare_for_verify();
  1007       Universe::verify(false);
  1009     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  1011     reset_gc_time_stamp();
  1012     // Since everything potentially moved, we will clear all remembered
  1013     // sets, and clear all cards.  Later we will rebuild remebered
  1014     // sets. We will also reset the GC time stamps of the regions.
  1015     PostMCRemSetClearClosure rs_clear(mr_bs());
  1016     heap_region_iterate(&rs_clear);
  1018     // Resize the heap if necessary.
  1019     resize_if_necessary_after_full_collection(full ? 0 : word_size);
  1021     if (_cg1r->use_cache()) {
  1022       _cg1r->clear_and_record_card_counts();
  1023       _cg1r->clear_hot_cache();
  1026     // Rebuild remembered sets of all regions.
  1027     if (ParallelGCThreads > 0) {
  1028       ParRebuildRSTask rebuild_rs_task(this);
  1029       assert(check_heap_region_claim_values(
  1030              HeapRegion::InitialClaimValue), "sanity check");
  1031       set_par_threads(workers()->total_workers());
  1032       workers()->run_task(&rebuild_rs_task);
  1033       set_par_threads(0);
  1034       assert(check_heap_region_claim_values(
  1035              HeapRegion::RebuildRSClaimValue), "sanity check");
  1036       reset_heap_region_claim_values();
  1037     } else {
  1038       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1039       heap_region_iterate(&rebuild_rs);
  1042     if (PrintGC) {
  1043       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1046     if (true) { // FIXME
  1047       // Ask the permanent generation to adjust size for full collections
  1048       perm()->compute_new_size();
  1051     double end = os::elapsedTime();
  1052     GCOverheadReporter::recordSTWEnd(end);
  1053     g1_policy()->record_full_collection_end();
  1055 #ifdef TRACESPINNING
  1056     ParallelTaskTerminator::print_termination_counts();
  1057 #endif
  1059     gc_epilogue(true);
  1061     // Discard all rset updates
  1062     JavaThread::dirty_card_queue_set().abandon_logs();
  1063     assert(!G1DeferredRSUpdate
  1064            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1065     assert(regions_accounted_for(), "Region leakage!");
  1068   if (g1_policy()->in_young_gc_mode()) {
  1069     _young_list->reset_sampled_info();
  1070     assert( check_young_list_empty(false, false),
  1071             "young list should be empty at this point");
  1074   if (PrintHeapAtGC) {
  1075     Universe::print_heap_after_gc();
  1079 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1080   do_collection(true, clear_all_soft_refs, 0);
  1083 // This code is mostly copied from TenuredGeneration.
  1084 void
  1085 G1CollectedHeap::
  1086 resize_if_necessary_after_full_collection(size_t word_size) {
  1087   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1089   // Include the current allocation, if any, and bytes that will be
  1090   // pre-allocated to support collections, as "used".
  1091   const size_t used_after_gc = used();
  1092   const size_t capacity_after_gc = capacity();
  1093   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1095   // We don't have floating point command-line arguments
  1096   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
  1097   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1098   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
  1099   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1101   size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
  1102   size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
  1104   // Don't shrink less than the initial size.
  1105   minimum_desired_capacity =
  1106     MAX2(minimum_desired_capacity,
  1107          collector_policy()->initial_heap_byte_size());
  1108   maximum_desired_capacity =
  1109     MAX2(maximum_desired_capacity,
  1110          collector_policy()->initial_heap_byte_size());
  1112   // We are failing here because minimum_desired_capacity is
  1113   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
  1114   assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
  1116   if (PrintGC && Verbose) {
  1117     const double free_percentage = ((double)free_after_gc) / capacity();
  1118     gclog_or_tty->print_cr("Computing new size after full GC ");
  1119     gclog_or_tty->print_cr("  "
  1120                            "  minimum_free_percentage: %6.2f",
  1121                            minimum_free_percentage);
  1122     gclog_or_tty->print_cr("  "
  1123                            "  maximum_free_percentage: %6.2f",
  1124                            maximum_free_percentage);
  1125     gclog_or_tty->print_cr("  "
  1126                            "  capacity: %6.1fK"
  1127                            "  minimum_desired_capacity: %6.1fK"
  1128                            "  maximum_desired_capacity: %6.1fK",
  1129                            capacity() / (double) K,
  1130                            minimum_desired_capacity / (double) K,
  1131                            maximum_desired_capacity / (double) K);
  1132     gclog_or_tty->print_cr("  "
  1133                            "   free_after_gc   : %6.1fK"
  1134                            "   used_after_gc   : %6.1fK",
  1135                            free_after_gc / (double) K,
  1136                            used_after_gc / (double) K);
  1137     gclog_or_tty->print_cr("  "
  1138                            "   free_percentage: %6.2f",
  1139                            free_percentage);
  1141   if (capacity() < minimum_desired_capacity) {
  1142     // Don't expand unless it's significant
  1143     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1144     expand(expand_bytes);
  1145     if (PrintGC && Verbose) {
  1146       gclog_or_tty->print_cr("    expanding:"
  1147                              "  minimum_desired_capacity: %6.1fK"
  1148                              "  expand_bytes: %6.1fK",
  1149                              minimum_desired_capacity / (double) K,
  1150                              expand_bytes / (double) K);
  1153     // No expansion, now see if we want to shrink
  1154   } else if (capacity() > maximum_desired_capacity) {
  1155     // Capacity too large, compute shrinking size
  1156     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1157     shrink(shrink_bytes);
  1158     if (PrintGC && Verbose) {
  1159       gclog_or_tty->print_cr("  "
  1160                              "  shrinking:"
  1161                              "  initSize: %.1fK"
  1162                              "  maximum_desired_capacity: %.1fK",
  1163                              collector_policy()->initial_heap_byte_size() / (double) K,
  1164                              maximum_desired_capacity / (double) K);
  1165       gclog_or_tty->print_cr("  "
  1166                              "  shrink_bytes: %.1fK",
  1167                              shrink_bytes / (double) K);
  1173 HeapWord*
  1174 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
  1175   HeapWord* result = NULL;
  1177   // In a G1 heap, we're supposed to keep allocation from failing by
  1178   // incremental pauses.  Therefore, at least for now, we'll favor
  1179   // expansion over collection.  (This might change in the future if we can
  1180   // do something smarter than full collection to satisfy a failed alloc.)
  1182   result = expand_and_allocate(word_size);
  1183   if (result != NULL) {
  1184     assert(is_in(result), "result not in heap");
  1185     return result;
  1188   // OK, I guess we have to try collection.
  1190   do_collection(false, false, word_size);
  1192   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1194   if (result != NULL) {
  1195     assert(is_in(result), "result not in heap");
  1196     return result;
  1199   // Try collecting soft references.
  1200   do_collection(false, true, word_size);
  1201   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1202   if (result != NULL) {
  1203     assert(is_in(result), "result not in heap");
  1204     return result;
  1207   // What else?  We might try synchronous finalization later.  If the total
  1208   // space available is large enough for the allocation, then a more
  1209   // complete compaction phase than we've tried so far might be
  1210   // appropriate.
  1211   return NULL;
  1214 // Attempting to expand the heap sufficiently
  1215 // to support an allocation of the given "word_size".  If
  1216 // successful, perform the allocation and return the address of the
  1217 // allocated block, or else "NULL".
  1219 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1220   size_t expand_bytes = word_size * HeapWordSize;
  1221   if (expand_bytes < MinHeapDeltaBytes) {
  1222     expand_bytes = MinHeapDeltaBytes;
  1224   expand(expand_bytes);
  1225   assert(regions_accounted_for(), "Region leakage!");
  1226   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
  1227   return result;
  1230 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  1231   size_t pre_used = 0;
  1232   size_t cleared_h_regions = 0;
  1233   size_t freed_regions = 0;
  1234   UncleanRegionList local_list;
  1235   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
  1236                                     freed_regions, &local_list);
  1238   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  1239                           &local_list);
  1240   return pre_used;
  1243 void
  1244 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
  1245                                                    size_t& pre_used,
  1246                                                    size_t& cleared_h,
  1247                                                    size_t& freed_regions,
  1248                                                    UncleanRegionList* list,
  1249                                                    bool par) {
  1250   assert(!hr->continuesHumongous(), "should have filtered these out");
  1251   size_t res = 0;
  1252   if (hr->used() > 0 && hr->garbage_bytes() == hr->used() &&
  1253       !hr->is_young()) {
  1254     if (G1PolicyVerbose > 0)
  1255       gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
  1256                                                                                " during cleanup", hr, hr->used());
  1257     free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
  1261 // FIXME: both this and shrink could probably be more efficient by
  1262 // doing one "VirtualSpace::expand_by" call rather than several.
  1263 void G1CollectedHeap::expand(size_t expand_bytes) {
  1264   size_t old_mem_size = _g1_storage.committed_size();
  1265   // We expand by a minimum of 1K.
  1266   expand_bytes = MAX2(expand_bytes, (size_t)K);
  1267   size_t aligned_expand_bytes =
  1268     ReservedSpace::page_align_size_up(expand_bytes);
  1269   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1270                                        HeapRegion::GrainBytes);
  1271   expand_bytes = aligned_expand_bytes;
  1272   while (expand_bytes > 0) {
  1273     HeapWord* base = (HeapWord*)_g1_storage.high();
  1274     // Commit more storage.
  1275     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
  1276     if (!successful) {
  1277         expand_bytes = 0;
  1278     } else {
  1279       expand_bytes -= HeapRegion::GrainBytes;
  1280       // Expand the committed region.
  1281       HeapWord* high = (HeapWord*) _g1_storage.high();
  1282       _g1_committed.set_end(high);
  1283       // Create a new HeapRegion.
  1284       MemRegion mr(base, high);
  1285       bool is_zeroed = !_g1_max_committed.contains(base);
  1286       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1288       // Now update max_committed if necessary.
  1289       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
  1291       // Add it to the HeapRegionSeq.
  1292       _hrs->insert(hr);
  1293       // Set the zero-fill state, according to whether it's already
  1294       // zeroed.
  1296         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  1297         if (is_zeroed) {
  1298           hr->set_zero_fill_complete();
  1299           put_free_region_on_list_locked(hr);
  1300         } else {
  1301           hr->set_zero_fill_needed();
  1302           put_region_on_unclean_list_locked(hr);
  1305       _free_regions++;
  1306       // And we used up an expansion region to create it.
  1307       _expansion_regions--;
  1308       // Tell the cardtable about it.
  1309       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1310       // And the offset table as well.
  1311       _bot_shared->resize(_g1_committed.word_size());
  1314   if (Verbose && PrintGC) {
  1315     size_t new_mem_size = _g1_storage.committed_size();
  1316     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
  1317                            old_mem_size/K, aligned_expand_bytes/K,
  1318                            new_mem_size/K);
  1322 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1324   size_t old_mem_size = _g1_storage.committed_size();
  1325   size_t aligned_shrink_bytes =
  1326     ReservedSpace::page_align_size_down(shrink_bytes);
  1327   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1328                                          HeapRegion::GrainBytes);
  1329   size_t num_regions_deleted = 0;
  1330   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1332   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1333   if (mr.byte_size() > 0)
  1334     _g1_storage.shrink_by(mr.byte_size());
  1335   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1337   _g1_committed.set_end(mr.start());
  1338   _free_regions -= num_regions_deleted;
  1339   _expansion_regions += num_regions_deleted;
  1341   // Tell the cardtable about it.
  1342   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1344   // And the offset table as well.
  1345   _bot_shared->resize(_g1_committed.word_size());
  1347   HeapRegionRemSet::shrink_heap(n_regions());
  1349   if (Verbose && PrintGC) {
  1350     size_t new_mem_size = _g1_storage.committed_size();
  1351     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1352                            old_mem_size/K, aligned_shrink_bytes/K,
  1353                            new_mem_size/K);
  1357 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1358   release_gc_alloc_regions(true /* totally */);
  1359   tear_down_region_lists();  // We will rebuild them in a moment.
  1360   shrink_helper(shrink_bytes);
  1361   rebuild_region_lists();
  1364 // Public methods.
  1366 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1367 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1368 #endif // _MSC_VER
  1371 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1372   SharedHeap(policy_),
  1373   _g1_policy(policy_),
  1374   _ref_processor(NULL),
  1375   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1376   _bot_shared(NULL),
  1377   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  1378   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1379   _evac_failure_scan_stack(NULL) ,
  1380   _mark_in_progress(false),
  1381   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  1382   _cur_alloc_region(NULL),
  1383   _refine_cte_cl(NULL),
  1384   _free_region_list(NULL), _free_region_list_size(0),
  1385   _free_regions(0),
  1386   _full_collection(false),
  1387   _unclean_region_list(),
  1388   _unclean_regions_coming(false),
  1389   _young_list(new YoungList(this)),
  1390   _gc_time_stamp(0),
  1391   _surviving_young_words(NULL),
  1392   _in_cset_fast_test(NULL),
  1393   _in_cset_fast_test_base(NULL),
  1394   _dirty_cards_region_list(NULL) {
  1395   _g1h = this; // To catch bugs.
  1396   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1397     vm_exit_during_initialization("Failed necessary allocation.");
  1399   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1400   _task_queues = new RefToScanQueueSet(n_queues);
  1402   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1403   assert(n_rem_sets > 0, "Invariant.");
  1405   HeapRegionRemSetIterator** iter_arr =
  1406     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1407   for (int i = 0; i < n_queues; i++) {
  1408     iter_arr[i] = new HeapRegionRemSetIterator();
  1410   _rem_set_iterator = iter_arr;
  1412   for (int i = 0; i < n_queues; i++) {
  1413     RefToScanQueue* q = new RefToScanQueue();
  1414     q->initialize();
  1415     _task_queues->register_queue(i, q);
  1418   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1419     _gc_alloc_regions[ap]          = NULL;
  1420     _gc_alloc_region_counts[ap]    = 0;
  1421     _retained_gc_alloc_regions[ap] = NULL;
  1422     // by default, we do not retain a GC alloc region for each ap;
  1423     // we'll override this, when appropriate, below
  1424     _retain_gc_alloc_region[ap]    = false;
  1427   // We will try to remember the last half-full tenured region we
  1428   // allocated to at the end of a collection so that we can re-use it
  1429   // during the next collection.
  1430   _retain_gc_alloc_region[GCAllocForTenured]  = true;
  1432   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1435 jint G1CollectedHeap::initialize() {
  1436   os::enable_vtime();
  1438   // Necessary to satisfy locking discipline assertions.
  1440   MutexLocker x(Heap_lock);
  1442   // While there are no constraints in the GC code that HeapWordSize
  1443   // be any particular value, there are multiple other areas in the
  1444   // system which believe this to be true (e.g. oop->object_size in some
  1445   // cases incorrectly returns the size in wordSize units rather than
  1446   // HeapWordSize).
  1447   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1449   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1450   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1452   // Ensure that the sizes are properly aligned.
  1453   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1454   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1456   // We allocate this in any case, but only do no work if the command line
  1457   // param is off.
  1458   _cg1r = new ConcurrentG1Refine();
  1460   // Reserve the maximum.
  1461   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1462   // Includes the perm-gen.
  1464   const size_t total_reserved = max_byte_size + pgs->max_size();
  1465   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1467   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  1468                         HeapRegion::GrainBytes,
  1469                         false /*ism*/, addr);
  1471   if (UseCompressedOops) {
  1472     if (addr != NULL && !heap_rs.is_reserved()) {
  1473       // Failed to reserve at specified address - the requested memory
  1474       // region is taken already, for example, by 'java' launcher.
  1475       // Try again to reserver heap higher.
  1476       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1477       ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1478                              false /*ism*/, addr);
  1479       if (addr != NULL && !heap_rs0.is_reserved()) {
  1480         // Failed to reserve at specified address again - give up.
  1481         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1482         assert(addr == NULL, "");
  1483         ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1484                                false /*ism*/, addr);
  1485         heap_rs = heap_rs1;
  1486       } else {
  1487         heap_rs = heap_rs0;
  1492   if (!heap_rs.is_reserved()) {
  1493     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1494     return JNI_ENOMEM;
  1497   // It is important to do this in a way such that concurrent readers can't
  1498   // temporarily think somethings in the heap.  (I've actually seen this
  1499   // happen in asserts: DLD.)
  1500   _reserved.set_word_size(0);
  1501   _reserved.set_start((HeapWord*)heap_rs.base());
  1502   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1504   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1506   _num_humongous_regions = 0;
  1508   // Create the gen rem set (and barrier set) for the entire reserved region.
  1509   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1510   set_barrier_set(rem_set()->bs());
  1511   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1512     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1513   } else {
  1514     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1515     return JNI_ENOMEM;
  1518   // Also create a G1 rem set.
  1519   if (G1UseHRIntoRS) {
  1520     if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1521       _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1522     } else {
  1523       vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1524       return JNI_ENOMEM;
  1526   } else {
  1527     _g1_rem_set = new StupidG1RemSet(this);
  1530   // Carve out the G1 part of the heap.
  1532   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1533   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1534                            g1_rs.size()/HeapWordSize);
  1535   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1537   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1539   _g1_storage.initialize(g1_rs, 0);
  1540   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1541   _g1_max_committed = _g1_committed;
  1542   _hrs = new HeapRegionSeq(_expansion_regions);
  1543   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  1544   guarantee(_cur_alloc_region == NULL, "from constructor");
  1546   // 6843694 - ensure that the maximum region index can fit
  1547   // in the remembered set structures.
  1548   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  1549   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  1551   const size_t cards_per_region = HeapRegion::GrainBytes >> CardTableModRefBS::card_shift;
  1552   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  1553   guarantee(cards_per_region < max_cards_per_region, "too many cards per region");
  1555   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1556                                              heap_word_size(init_byte_size));
  1558   _g1h = this;
  1560   // Create the ConcurrentMark data structure and thread.
  1561   // (Must do this late, so that "max_regions" is defined.)
  1562   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1563   _cmThread = _cm->cmThread();
  1565   // ...and the concurrent zero-fill thread, if necessary.
  1566   if (G1ConcZeroFill) {
  1567     _czft = new ConcurrentZFThread();
  1570   // Initialize the from_card cache structure of HeapRegionRemSet.
  1571   HeapRegionRemSet::init_heap(max_regions());
  1573   // Now expand into the initial heap size.
  1574   expand(init_byte_size);
  1576   // Perform any initialization actions delegated to the policy.
  1577   g1_policy()->init();
  1579   g1_policy()->note_start_of_mark_thread();
  1581   _refine_cte_cl =
  1582     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  1583                                     g1_rem_set(),
  1584                                     concurrent_g1_refine());
  1585   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  1587   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  1588                                                SATB_Q_FL_lock,
  1589                                                0,
  1590                                                Shared_SATB_Q_lock);
  1592   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1593                                                 DirtyCardQ_FL_lock,
  1594                                                 G1UpdateBufferQueueMaxLength,
  1595                                                 Shared_DirtyCardQ_lock);
  1597   if (G1DeferredRSUpdate) {
  1598     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1599                                       DirtyCardQ_FL_lock,
  1600                                       0,
  1601                                       Shared_DirtyCardQ_lock,
  1602                                       &JavaThread::dirty_card_queue_set());
  1604   // In case we're keeping closure specialization stats, initialize those
  1605   // counts and that mechanism.
  1606   SpecializationStats::clear();
  1608   _gc_alloc_region_list = NULL;
  1610   // Do later initialization work for concurrent refinement.
  1611   _cg1r->init();
  1613   const char* group_names[] = { "CR", "ZF", "CM", "CL" };
  1614   GCOverheadReporter::initGCOverheadReporter(4, group_names);
  1616   return JNI_OK;
  1619 void G1CollectedHeap::ref_processing_init() {
  1620   SharedHeap::ref_processing_init();
  1621   MemRegion mr = reserved_region();
  1622   _ref_processor = ReferenceProcessor::create_ref_processor(
  1623                                          mr,    // span
  1624                                          false, // Reference discovery is not atomic
  1625                                                 // (though it shouldn't matter here.)
  1626                                          true,  // mt_discovery
  1627                                          NULL,  // is alive closure: need to fill this in for efficiency
  1628                                          ParallelGCThreads,
  1629                                          ParallelRefProcEnabled,
  1630                                          true); // Setting next fields of discovered
  1631                                                 // lists requires a barrier.
  1634 size_t G1CollectedHeap::capacity() const {
  1635   return _g1_committed.byte_size();
  1638 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
  1639                                                  int worker_i) {
  1640   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1641   int n_completed_buffers = 0;
  1642   while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
  1643     n_completed_buffers++;
  1645   g1_policy()->record_update_rs_processed_buffers(worker_i,
  1646                                                   (double) n_completed_buffers);
  1647   dcqs.clear_n_completed_buffers();
  1648   // Finish up the queue...
  1649   if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i,
  1650                                                             g1_rem_set());
  1651   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  1655 // Computes the sum of the storage used by the various regions.
  1657 size_t G1CollectedHeap::used() const {
  1658   assert(Heap_lock->owner() != NULL,
  1659          "Should be owned on this thread's behalf.");
  1660   size_t result = _summary_bytes_used;
  1661   // Read only once in case it is set to NULL concurrently
  1662   HeapRegion* hr = _cur_alloc_region;
  1663   if (hr != NULL)
  1664     result += hr->used();
  1665   return result;
  1668 size_t G1CollectedHeap::used_unlocked() const {
  1669   size_t result = _summary_bytes_used;
  1670   return result;
  1673 class SumUsedClosure: public HeapRegionClosure {
  1674   size_t _used;
  1675 public:
  1676   SumUsedClosure() : _used(0) {}
  1677   bool doHeapRegion(HeapRegion* r) {
  1678     if (!r->continuesHumongous()) {
  1679       _used += r->used();
  1681     return false;
  1683   size_t result() { return _used; }
  1684 };
  1686 size_t G1CollectedHeap::recalculate_used() const {
  1687   SumUsedClosure blk;
  1688   _hrs->iterate(&blk);
  1689   return blk.result();
  1692 #ifndef PRODUCT
  1693 class SumUsedRegionsClosure: public HeapRegionClosure {
  1694   size_t _num;
  1695 public:
  1696   SumUsedRegionsClosure() : _num(0) {}
  1697   bool doHeapRegion(HeapRegion* r) {
  1698     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  1699       _num += 1;
  1701     return false;
  1703   size_t result() { return _num; }
  1704 };
  1706 size_t G1CollectedHeap::recalculate_used_regions() const {
  1707   SumUsedRegionsClosure blk;
  1708   _hrs->iterate(&blk);
  1709   return blk.result();
  1711 #endif // PRODUCT
  1713 size_t G1CollectedHeap::unsafe_max_alloc() {
  1714   if (_free_regions > 0) return HeapRegion::GrainBytes;
  1715   // otherwise, is there space in the current allocation region?
  1717   // We need to store the current allocation region in a local variable
  1718   // here. The problem is that this method doesn't take any locks and
  1719   // there may be other threads which overwrite the current allocation
  1720   // region field. attempt_allocation(), for example, sets it to NULL
  1721   // and this can happen *after* the NULL check here but before the call
  1722   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  1723   // to be a problem in the optimized build, since the two loads of the
  1724   // current allocation region field are optimized away.
  1725   HeapRegion* car = _cur_alloc_region;
  1727   // FIXME: should iterate over all regions?
  1728   if (car == NULL) {
  1729     return 0;
  1731   return car->free();
  1734 void G1CollectedHeap::collect(GCCause::Cause cause) {
  1735   // The caller doesn't have the Heap_lock
  1736   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  1737   MutexLocker ml(Heap_lock);
  1738   collect_locked(cause);
  1741 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  1742   assert(Thread::current()->is_VM_thread(), "Precondition#1");
  1743   assert(Heap_lock->is_locked(), "Precondition#2");
  1744   GCCauseSetter gcs(this, cause);
  1745   switch (cause) {
  1746     case GCCause::_heap_inspection:
  1747     case GCCause::_heap_dump: {
  1748       HandleMark hm;
  1749       do_full_collection(false);         // don't clear all soft refs
  1750       break;
  1752     default: // XXX FIX ME
  1753       ShouldNotReachHere(); // Unexpected use of this function
  1758 void G1CollectedHeap::collect_locked(GCCause::Cause cause) {
  1759   // Don't want to do a GC until cleanup is completed.
  1760   wait_for_cleanup_complete();
  1762   // Read the GC count while holding the Heap_lock
  1763   int gc_count_before = SharedHeap::heap()->total_collections();
  1765     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  1766     VM_G1CollectFull op(gc_count_before, cause);
  1767     VMThread::execute(&op);
  1771 bool G1CollectedHeap::is_in(const void* p) const {
  1772   if (_g1_committed.contains(p)) {
  1773     HeapRegion* hr = _hrs->addr_to_region(p);
  1774     return hr->is_in(p);
  1775   } else {
  1776     return _perm_gen->as_gen()->is_in(p);
  1780 // Iteration functions.
  1782 // Iterates an OopClosure over all ref-containing fields of objects
  1783 // within a HeapRegion.
  1785 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  1786   MemRegion _mr;
  1787   OopClosure* _cl;
  1788 public:
  1789   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  1790     : _mr(mr), _cl(cl) {}
  1791   bool doHeapRegion(HeapRegion* r) {
  1792     if (! r->continuesHumongous()) {
  1793       r->oop_iterate(_cl);
  1795     return false;
  1797 };
  1799 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  1800   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  1801   _hrs->iterate(&blk);
  1802   if (do_perm) {
  1803     perm_gen()->oop_iterate(cl);
  1807 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  1808   IterateOopClosureRegionClosure blk(mr, cl);
  1809   _hrs->iterate(&blk);
  1810   if (do_perm) {
  1811     perm_gen()->oop_iterate(cl);
  1815 // Iterates an ObjectClosure over all objects within a HeapRegion.
  1817 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  1818   ObjectClosure* _cl;
  1819 public:
  1820   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  1821   bool doHeapRegion(HeapRegion* r) {
  1822     if (! r->continuesHumongous()) {
  1823       r->object_iterate(_cl);
  1825     return false;
  1827 };
  1829 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  1830   IterateObjectClosureRegionClosure blk(cl);
  1831   _hrs->iterate(&blk);
  1832   if (do_perm) {
  1833     perm_gen()->object_iterate(cl);
  1837 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1838   // FIXME: is this right?
  1839   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  1842 // Calls a SpaceClosure on a HeapRegion.
  1844 class SpaceClosureRegionClosure: public HeapRegionClosure {
  1845   SpaceClosure* _cl;
  1846 public:
  1847   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  1848   bool doHeapRegion(HeapRegion* r) {
  1849     _cl->do_space(r);
  1850     return false;
  1852 };
  1854 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  1855   SpaceClosureRegionClosure blk(cl);
  1856   _hrs->iterate(&blk);
  1859 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  1860   _hrs->iterate(cl);
  1863 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  1864                                                HeapRegionClosure* cl) {
  1865   _hrs->iterate_from(r, cl);
  1868 void
  1869 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  1870   _hrs->iterate_from(idx, cl);
  1873 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  1875 void
  1876 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1877                                                  int worker,
  1878                                                  jint claim_value) {
  1879   const size_t regions = n_regions();
  1880   const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
  1881   // try to spread out the starting points of the workers
  1882   const size_t start_index = regions / worker_num * (size_t) worker;
  1884   // each worker will actually look at all regions
  1885   for (size_t count = 0; count < regions; ++count) {
  1886     const size_t index = (start_index + count) % regions;
  1887     assert(0 <= index && index < regions, "sanity");
  1888     HeapRegion* r = region_at(index);
  1889     // we'll ignore "continues humongous" regions (we'll process them
  1890     // when we come across their corresponding "start humongous"
  1891     // region) and regions already claimed
  1892     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  1893       continue;
  1895     // OK, try to claim it
  1896     if (r->claimHeapRegion(claim_value)) {
  1897       // success!
  1898       assert(!r->continuesHumongous(), "sanity");
  1899       if (r->startsHumongous()) {
  1900         // If the region is "starts humongous" we'll iterate over its
  1901         // "continues humongous" first; in fact we'll do them
  1902         // first. The order is important. In on case, calling the
  1903         // closure on the "starts humongous" region might de-allocate
  1904         // and clear all its "continues humongous" regions and, as a
  1905         // result, we might end up processing them twice. So, we'll do
  1906         // them first (notice: most closures will ignore them anyway) and
  1907         // then we'll do the "starts humongous" region.
  1908         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  1909           HeapRegion* chr = region_at(ch_index);
  1911           // if the region has already been claimed or it's not
  1912           // "continues humongous" we're done
  1913           if (chr->claim_value() == claim_value ||
  1914               !chr->continuesHumongous()) {
  1915             break;
  1918           // Noone should have claimed it directly. We can given
  1919           // that we claimed its "starts humongous" region.
  1920           assert(chr->claim_value() != claim_value, "sanity");
  1921           assert(chr->humongous_start_region() == r, "sanity");
  1923           if (chr->claimHeapRegion(claim_value)) {
  1924             // we should always be able to claim it; noone else should
  1925             // be trying to claim this region
  1927             bool res2 = cl->doHeapRegion(chr);
  1928             assert(!res2, "Should not abort");
  1930             // Right now, this holds (i.e., no closure that actually
  1931             // does something with "continues humongous" regions
  1932             // clears them). We might have to weaken it in the future,
  1933             // but let's leave these two asserts here for extra safety.
  1934             assert(chr->continuesHumongous(), "should still be the case");
  1935             assert(chr->humongous_start_region() == r, "sanity");
  1936           } else {
  1937             guarantee(false, "we should not reach here");
  1942       assert(!r->continuesHumongous(), "sanity");
  1943       bool res = cl->doHeapRegion(r);
  1944       assert(!res, "Should not abort");
  1949 class ResetClaimValuesClosure: public HeapRegionClosure {
  1950 public:
  1951   bool doHeapRegion(HeapRegion* r) {
  1952     r->set_claim_value(HeapRegion::InitialClaimValue);
  1953     return false;
  1955 };
  1957 void
  1958 G1CollectedHeap::reset_heap_region_claim_values() {
  1959   ResetClaimValuesClosure blk;
  1960   heap_region_iterate(&blk);
  1963 #ifdef ASSERT
  1964 // This checks whether all regions in the heap have the correct claim
  1965 // value. I also piggy-backed on this a check to ensure that the
  1966 // humongous_start_region() information on "continues humongous"
  1967 // regions is correct.
  1969 class CheckClaimValuesClosure : public HeapRegionClosure {
  1970 private:
  1971   jint _claim_value;
  1972   size_t _failures;
  1973   HeapRegion* _sh_region;
  1974 public:
  1975   CheckClaimValuesClosure(jint claim_value) :
  1976     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  1977   bool doHeapRegion(HeapRegion* r) {
  1978     if (r->claim_value() != _claim_value) {
  1979       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1980                              "claim value = %d, should be %d",
  1981                              r->bottom(), r->end(), r->claim_value(),
  1982                              _claim_value);
  1983       ++_failures;
  1985     if (!r->isHumongous()) {
  1986       _sh_region = NULL;
  1987     } else if (r->startsHumongous()) {
  1988       _sh_region = r;
  1989     } else if (r->continuesHumongous()) {
  1990       if (r->humongous_start_region() != _sh_region) {
  1991         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1992                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  1993                                r->bottom(), r->end(),
  1994                                r->humongous_start_region(),
  1995                                _sh_region);
  1996         ++_failures;
  1999     return false;
  2001   size_t failures() {
  2002     return _failures;
  2004 };
  2006 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2007   CheckClaimValuesClosure cl(claim_value);
  2008   heap_region_iterate(&cl);
  2009   return cl.failures() == 0;
  2011 #endif // ASSERT
  2013 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2014   HeapRegion* r = g1_policy()->collection_set();
  2015   while (r != NULL) {
  2016     HeapRegion* next = r->next_in_collection_set();
  2017     if (cl->doHeapRegion(r)) {
  2018       cl->incomplete();
  2019       return;
  2021     r = next;
  2025 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2026                                                   HeapRegionClosure *cl) {
  2027   assert(r->in_collection_set(),
  2028          "Start region must be a member of the collection set.");
  2029   HeapRegion* cur = r;
  2030   while (cur != NULL) {
  2031     HeapRegion* next = cur->next_in_collection_set();
  2032     if (cl->doHeapRegion(cur) && false) {
  2033       cl->incomplete();
  2034       return;
  2036     cur = next;
  2038   cur = g1_policy()->collection_set();
  2039   while (cur != r) {
  2040     HeapRegion* next = cur->next_in_collection_set();
  2041     if (cl->doHeapRegion(cur) && false) {
  2042       cl->incomplete();
  2043       return;
  2045     cur = next;
  2049 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2050   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  2054 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2055   Space* res = heap_region_containing(addr);
  2056   if (res == NULL)
  2057     res = perm_gen()->space_containing(addr);
  2058   return res;
  2061 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2062   Space* sp = space_containing(addr);
  2063   if (sp != NULL) {
  2064     return sp->block_start(addr);
  2066   return NULL;
  2069 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2070   Space* sp = space_containing(addr);
  2071   assert(sp != NULL, "block_size of address outside of heap");
  2072   return sp->block_size(addr);
  2075 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2076   Space* sp = space_containing(addr);
  2077   return sp->block_is_obj(addr);
  2080 bool G1CollectedHeap::supports_tlab_allocation() const {
  2081   return true;
  2084 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2085   return HeapRegion::GrainBytes;
  2088 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2089   // Return the remaining space in the cur alloc region, but not less than
  2090   // the min TLAB size.
  2091   // Also, no more than half the region size, since we can't allow tlabs to
  2092   // grow big enough to accomodate humongous objects.
  2094   // We need to story it locally, since it might change between when we
  2095   // test for NULL and when we use it later.
  2096   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
  2097   if (cur_alloc_space == NULL) {
  2098     return HeapRegion::GrainBytes/2;
  2099   } else {
  2100     return MAX2(MIN2(cur_alloc_space->free(),
  2101                      (size_t)(HeapRegion::GrainBytes/2)),
  2102                 (size_t)MinTLABSize);
  2106 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
  2107   bool dummy;
  2108   return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
  2111 bool G1CollectedHeap::allocs_are_zero_filled() {
  2112   return false;
  2115 size_t G1CollectedHeap::large_typearray_limit() {
  2116   // FIXME
  2117   return HeapRegion::GrainBytes/HeapWordSize;
  2120 size_t G1CollectedHeap::max_capacity() const {
  2121   return _g1_committed.byte_size();
  2124 jlong G1CollectedHeap::millis_since_last_gc() {
  2125   // assert(false, "NYI");
  2126   return 0;
  2130 void G1CollectedHeap::prepare_for_verify() {
  2131   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2132     ensure_parsability(false);
  2134   g1_rem_set()->prepare_for_verify();
  2137 class VerifyLivenessOopClosure: public OopClosure {
  2138   G1CollectedHeap* g1h;
  2139 public:
  2140   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2141     g1h = _g1h;
  2143   void do_oop(narrowOop *p) { do_oop_work(p); }
  2144   void do_oop(      oop *p) { do_oop_work(p); }
  2146   template <class T> void do_oop_work(T *p) {
  2147     oop obj = oopDesc::load_decode_heap_oop(p);
  2148     guarantee(obj == NULL || !g1h->is_obj_dead(obj),
  2149               "Dead object referenced by a not dead object");
  2151 };
  2153 class VerifyObjsInRegionClosure: public ObjectClosure {
  2154 private:
  2155   G1CollectedHeap* _g1h;
  2156   size_t _live_bytes;
  2157   HeapRegion *_hr;
  2158   bool _use_prev_marking;
  2159 public:
  2160   // use_prev_marking == true  -> use "prev" marking information,
  2161   // use_prev_marking == false -> use "next" marking information
  2162   VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
  2163     : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
  2164     _g1h = G1CollectedHeap::heap();
  2166   void do_object(oop o) {
  2167     VerifyLivenessOopClosure isLive(_g1h);
  2168     assert(o != NULL, "Huh?");
  2169     if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
  2170       o->oop_iterate(&isLive);
  2171       if (!_hr->obj_allocated_since_prev_marking(o))
  2172         _live_bytes += (o->size() * HeapWordSize);
  2175   size_t live_bytes() { return _live_bytes; }
  2176 };
  2178 class PrintObjsInRegionClosure : public ObjectClosure {
  2179   HeapRegion *_hr;
  2180   G1CollectedHeap *_g1;
  2181 public:
  2182   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2183     _g1 = G1CollectedHeap::heap();
  2184   };
  2186   void do_object(oop o) {
  2187     if (o != NULL) {
  2188       HeapWord *start = (HeapWord *) o;
  2189       size_t word_sz = o->size();
  2190       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2191                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2192                           (void*) o, word_sz,
  2193                           _g1->isMarkedPrev(o),
  2194                           _g1->isMarkedNext(o),
  2195                           _hr->obj_allocated_since_prev_marking(o));
  2196       HeapWord *end = start + word_sz;
  2197       HeapWord *cur;
  2198       int *val;
  2199       for (cur = start; cur < end; cur++) {
  2200         val = (int *) cur;
  2201         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2205 };
  2207 class VerifyRegionClosure: public HeapRegionClosure {
  2208 private:
  2209   bool _allow_dirty;
  2210   bool _par;
  2211   bool _use_prev_marking;
  2212 public:
  2213   // use_prev_marking == true  -> use "prev" marking information,
  2214   // use_prev_marking == false -> use "next" marking information
  2215   VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
  2216     : _allow_dirty(allow_dirty),
  2217       _par(par),
  2218       _use_prev_marking(use_prev_marking) {}
  2220   bool doHeapRegion(HeapRegion* r) {
  2221     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2222               "Should be unclaimed at verify points.");
  2223     if (!r->continuesHumongous()) {
  2224       VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
  2225       r->verify(_allow_dirty, _use_prev_marking);
  2226       r->object_iterate(&not_dead_yet_cl);
  2227       guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
  2228                 "More live objects than counted in last complete marking.");
  2230     return false;
  2232 };
  2234 class VerifyRootsClosure: public OopsInGenClosure {
  2235 private:
  2236   G1CollectedHeap* _g1h;
  2237   bool             _failures;
  2238   bool             _use_prev_marking;
  2239 public:
  2240   // use_prev_marking == true  -> use "prev" marking information,
  2241   // use_prev_marking == false -> use "next" marking information
  2242   VerifyRootsClosure(bool use_prev_marking) :
  2243     _g1h(G1CollectedHeap::heap()),
  2244     _failures(false),
  2245     _use_prev_marking(use_prev_marking) { }
  2247   bool failures() { return _failures; }
  2249   template <class T> void do_oop_nv(T* p) {
  2250     T heap_oop = oopDesc::load_heap_oop(p);
  2251     if (!oopDesc::is_null(heap_oop)) {
  2252       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2253       if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
  2254         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2255                                "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2256         obj->print_on(gclog_or_tty);
  2257         _failures = true;
  2262   void do_oop(oop* p)       { do_oop_nv(p); }
  2263   void do_oop(narrowOop* p) { do_oop_nv(p); }
  2264 };
  2266 // This is the task used for parallel heap verification.
  2268 class G1ParVerifyTask: public AbstractGangTask {
  2269 private:
  2270   G1CollectedHeap* _g1h;
  2271   bool _allow_dirty;
  2272   bool _use_prev_marking;
  2274 public:
  2275   // use_prev_marking == true  -> use "prev" marking information,
  2276   // use_prev_marking == false -> use "next" marking information
  2277   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
  2278                   bool use_prev_marking) :
  2279     AbstractGangTask("Parallel verify task"),
  2280     _g1h(g1h),
  2281     _allow_dirty(allow_dirty),
  2282     _use_prev_marking(use_prev_marking) { }
  2284   void work(int worker_i) {
  2285     HandleMark hm;
  2286     VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
  2287     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2288                                           HeapRegion::ParVerifyClaimValue);
  2290 };
  2292 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2293   verify(allow_dirty, silent, /* use_prev_marking */ true);
  2296 void G1CollectedHeap::verify(bool allow_dirty,
  2297                              bool silent,
  2298                              bool use_prev_marking) {
  2299   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2300     if (!silent) { gclog_or_tty->print("roots "); }
  2301     VerifyRootsClosure rootsCl(use_prev_marking);
  2302     process_strong_roots(false,
  2303                          SharedHeap::SO_AllClasses,
  2304                          &rootsCl,
  2305                          &rootsCl);
  2306     rem_set()->invalidate(perm_gen()->used_region(), false);
  2307     if (!silent) { gclog_or_tty->print("heapRegions "); }
  2308     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2309       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2310              "sanity check");
  2312       G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
  2313       int n_workers = workers()->total_workers();
  2314       set_par_threads(n_workers);
  2315       workers()->run_task(&task);
  2316       set_par_threads(0);
  2318       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2319              "sanity check");
  2321       reset_heap_region_claim_values();
  2323       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2324              "sanity check");
  2325     } else {
  2326       VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
  2327       _hrs->iterate(&blk);
  2329     if (!silent) gclog_or_tty->print("remset ");
  2330     rem_set()->verify();
  2331     guarantee(!rootsCl.failures(), "should not have had failures");
  2332   } else {
  2333     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2337 class PrintRegionClosure: public HeapRegionClosure {
  2338   outputStream* _st;
  2339 public:
  2340   PrintRegionClosure(outputStream* st) : _st(st) {}
  2341   bool doHeapRegion(HeapRegion* r) {
  2342     r->print_on(_st);
  2343     return false;
  2345 };
  2347 void G1CollectedHeap::print() const { print_on(tty); }
  2349 void G1CollectedHeap::print_on(outputStream* st) const {
  2350   print_on(st, PrintHeapAtGCExtended);
  2353 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  2354   st->print(" %-20s", "garbage-first heap");
  2355   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  2356             capacity()/K, used_unlocked()/K);
  2357   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  2358             _g1_storage.low_boundary(),
  2359             _g1_storage.high(),
  2360             _g1_storage.high_boundary());
  2361   st->cr();
  2362   st->print("  region size " SIZE_FORMAT "K, ",
  2363             HeapRegion::GrainBytes/K);
  2364   size_t young_regions = _young_list->length();
  2365   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  2366             young_regions, young_regions * HeapRegion::GrainBytes / K);
  2367   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  2368   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  2369             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  2370   st->cr();
  2371   perm()->as_gen()->print_on(st);
  2372   if (extended) {
  2373     print_on_extended(st);
  2377 void G1CollectedHeap::print_on_extended(outputStream* st) const {
  2378   PrintRegionClosure blk(st);
  2379   _hrs->iterate(&blk);
  2382 class PrintOnThreadsClosure : public ThreadClosure {
  2383   outputStream* _st;
  2384 public:
  2385   PrintOnThreadsClosure(outputStream* st) : _st(st) { }
  2386   virtual void do_thread(Thread *t) {
  2387     t->print_on(_st);
  2389 };
  2391 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  2392   if (ParallelGCThreads > 0) {
  2393     workers()->print_worker_threads();
  2395   st->print("\"G1 concurrent mark GC Thread\" ");
  2396   _cmThread->print();
  2397   st->cr();
  2398   st->print("\"G1 concurrent refinement GC Threads\" ");
  2399   PrintOnThreadsClosure p(st);
  2400   _cg1r->threads_do(&p);
  2401   st->cr();
  2402   st->print("\"G1 zero-fill GC Thread\" ");
  2403   _czft->print_on(st);
  2404   st->cr();
  2407 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  2408   if (ParallelGCThreads > 0) {
  2409     workers()->threads_do(tc);
  2411   tc->do_thread(_cmThread);
  2412   _cg1r->threads_do(tc);
  2413   tc->do_thread(_czft);
  2416 void G1CollectedHeap::print_tracing_info() const {
  2417   concurrent_g1_refine()->print_final_card_counts();
  2419   // We'll overload this to mean "trace GC pause statistics."
  2420   if (TraceGen0Time || TraceGen1Time) {
  2421     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  2422     // to that.
  2423     g1_policy()->print_tracing_info();
  2425   if (G1SummarizeRSetStats) {
  2426     g1_rem_set()->print_summary_info();
  2428   if (G1SummarizeConcurrentMark) {
  2429     concurrent_mark()->print_summary_info();
  2431   if (G1SummarizeZFStats) {
  2432     ConcurrentZFThread::print_summary_info();
  2434   g1_policy()->print_yg_surv_rate_info();
  2436   GCOverheadReporter::printGCOverhead();
  2438   SpecializationStats::print();
  2442 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  2443   HeapRegion* hr = heap_region_containing(addr);
  2444   if (hr == NULL) {
  2445     return 0;
  2446   } else {
  2447     return 1;
  2451 G1CollectedHeap* G1CollectedHeap::heap() {
  2452   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  2453          "not a garbage-first heap");
  2454   return _g1h;
  2457 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  2458   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  2459   // Call allocation profiler
  2460   AllocationProfiler::iterate_since_last_gc();
  2461   // Fill TLAB's and such
  2462   ensure_parsability(true);
  2465 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  2466   // FIXME: what is this about?
  2467   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  2468   // is set.
  2469   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  2470                         "derived pointer present"));
  2473 void G1CollectedHeap::do_collection_pause() {
  2474   // Read the GC count while holding the Heap_lock
  2475   // we need to do this _before_ wait_for_cleanup_complete(), to
  2476   // ensure that we do not give up the heap lock and potentially
  2477   // pick up the wrong count
  2478   int gc_count_before = SharedHeap::heap()->total_collections();
  2480   // Don't want to do a GC pause while cleanup is being completed!
  2481   wait_for_cleanup_complete();
  2483   g1_policy()->record_stop_world_start();
  2485     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  2486     VM_G1IncCollectionPause op(gc_count_before);
  2487     VMThread::execute(&op);
  2491 void
  2492 G1CollectedHeap::doConcurrentMark() {
  2493   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2494   if (!_cmThread->in_progress()) {
  2495     _cmThread->set_started();
  2496     CGC_lock->notify();
  2500 class VerifyMarkedObjsClosure: public ObjectClosure {
  2501     G1CollectedHeap* _g1h;
  2502     public:
  2503     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  2504     void do_object(oop obj) {
  2505       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  2506              "markandsweep mark should agree with concurrent deadness");
  2508 };
  2510 void
  2511 G1CollectedHeap::checkConcurrentMark() {
  2512     VerifyMarkedObjsClosure verifycl(this);
  2513     //    MutexLockerEx x(getMarkBitMapLock(),
  2514     //              Mutex::_no_safepoint_check_flag);
  2515     object_iterate(&verifycl, false);
  2518 void G1CollectedHeap::do_sync_mark() {
  2519   _cm->checkpointRootsInitial();
  2520   _cm->markFromRoots();
  2521   _cm->checkpointRootsFinal(false);
  2524 // <NEW PREDICTION>
  2526 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  2527                                                        bool young) {
  2528   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  2531 void G1CollectedHeap::check_if_region_is_too_expensive(double
  2532                                                            predicted_time_ms) {
  2533   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  2536 size_t G1CollectedHeap::pending_card_num() {
  2537   size_t extra_cards = 0;
  2538   JavaThread *curr = Threads::first();
  2539   while (curr != NULL) {
  2540     DirtyCardQueue& dcq = curr->dirty_card_queue();
  2541     extra_cards += dcq.size();
  2542     curr = curr->next();
  2544   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2545   size_t buffer_size = dcqs.buffer_size();
  2546   size_t buffer_num = dcqs.completed_buffers_num();
  2547   return buffer_size * buffer_num + extra_cards;
  2550 size_t G1CollectedHeap::max_pending_card_num() {
  2551   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2552   size_t buffer_size = dcqs.buffer_size();
  2553   size_t buffer_num  = dcqs.completed_buffers_num();
  2554   int thread_num  = Threads::number_of_threads();
  2555   return (buffer_num + thread_num) * buffer_size;
  2558 size_t G1CollectedHeap::cards_scanned() {
  2559   HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
  2560   return g1_rset->cardsScanned();
  2563 void
  2564 G1CollectedHeap::setup_surviving_young_words() {
  2565   guarantee( _surviving_young_words == NULL, "pre-condition" );
  2566   size_t array_length = g1_policy()->young_cset_length();
  2567   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  2568   if (_surviving_young_words == NULL) {
  2569     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  2570                           "Not enough space for young surv words summary.");
  2572   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  2573 #ifdef ASSERT
  2574   for (size_t i = 0;  i < array_length; ++i) {
  2575     assert( _surviving_young_words[i] == 0, "memset above" );
  2577 #endif // !ASSERT
  2580 void
  2581 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  2582   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2583   size_t array_length = g1_policy()->young_cset_length();
  2584   for (size_t i = 0; i < array_length; ++i)
  2585     _surviving_young_words[i] += surv_young_words[i];
  2588 void
  2589 G1CollectedHeap::cleanup_surviving_young_words() {
  2590   guarantee( _surviving_young_words != NULL, "pre-condition" );
  2591   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  2592   _surviving_young_words = NULL;
  2595 // </NEW PREDICTION>
  2597 void
  2598 G1CollectedHeap::do_collection_pause_at_safepoint() {
  2599   if (PrintHeapAtGC) {
  2600     Universe::print_heap_before_gc();
  2604     char verbose_str[128];
  2605     sprintf(verbose_str, "GC pause ");
  2606     if (g1_policy()->in_young_gc_mode()) {
  2607       if (g1_policy()->full_young_gcs())
  2608         strcat(verbose_str, "(young)");
  2609       else
  2610         strcat(verbose_str, "(partial)");
  2612     if (g1_policy()->should_initiate_conc_mark())
  2613       strcat(verbose_str, " (initial-mark)");
  2615     GCCauseSetter x(this, GCCause::_g1_inc_collection_pause);
  2617     // if PrintGCDetails is on, we'll print long statistics information
  2618     // in the collector policy code, so let's not print this as the output
  2619     // is messy if we do.
  2620     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2621     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2622     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  2624     ResourceMark rm;
  2625     assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  2626     assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
  2627     guarantee(!is_gc_active(), "collection is not reentrant");
  2628     assert(regions_accounted_for(), "Region leakage!");
  2630     increment_gc_time_stamp();
  2632     if (g1_policy()->in_young_gc_mode()) {
  2633       assert(check_young_list_well_formed(),
  2634              "young list should be well formed");
  2637     if (GC_locker::is_active()) {
  2638       return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  2641     bool abandoned = false;
  2642     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  2643       IsGCActiveMark x;
  2645       gc_prologue(false);
  2646       increment_total_collections(false /* full gc */);
  2648 #if G1_REM_SET_LOGGING
  2649       gclog_or_tty->print_cr("\nJust chose CS, heap:");
  2650       print();
  2651 #endif
  2653       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  2654         HandleMark hm;  // Discard invalid handles created during verification
  2655         prepare_for_verify();
  2656         gclog_or_tty->print(" VerifyBeforeGC:");
  2657         Universe::verify(false);
  2660       COMPILER2_PRESENT(DerivedPointerTable::clear());
  2662       // We want to turn off ref discovery, if necessary, and turn it back on
  2663       // on again later if we do. XXX Dubious: why is discovery disabled?
  2664       bool was_enabled = ref_processor()->discovery_enabled();
  2665       if (was_enabled) ref_processor()->disable_discovery();
  2667       // Forget the current alloc region (we might even choose it to be part
  2668       // of the collection set!).
  2669       abandon_cur_alloc_region();
  2671       // The elapsed time induced by the start time below deliberately elides
  2672       // the possible verification above.
  2673       double start_time_sec = os::elapsedTime();
  2674       GCOverheadReporter::recordSTWStart(start_time_sec);
  2675       size_t start_used_bytes = used();
  2677       g1_policy()->record_collection_pause_start(start_time_sec,
  2678                                                  start_used_bytes);
  2680       guarantee(_in_cset_fast_test == NULL, "invariant");
  2681       guarantee(_in_cset_fast_test_base == NULL, "invariant");
  2682       _in_cset_fast_test_length = max_regions();
  2683       _in_cset_fast_test_base =
  2684                              NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  2685       memset(_in_cset_fast_test_base, false,
  2686                                      _in_cset_fast_test_length * sizeof(bool));
  2687       // We're biasing _in_cset_fast_test to avoid subtracting the
  2688       // beginning of the heap every time we want to index; basically
  2689       // it's the same with what we do with the card table.
  2690       _in_cset_fast_test = _in_cset_fast_test_base -
  2691               ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2693 #if SCAN_ONLY_VERBOSE
  2694       _young_list->print();
  2695 #endif // SCAN_ONLY_VERBOSE
  2697       if (g1_policy()->should_initiate_conc_mark()) {
  2698         concurrent_mark()->checkpointRootsInitialPre();
  2700       save_marks();
  2702       // We must do this before any possible evacuation that should propagate
  2703       // marks.
  2704       if (mark_in_progress()) {
  2705         double start_time_sec = os::elapsedTime();
  2707         _cm->drainAllSATBBuffers();
  2708         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  2709         g1_policy()->record_satb_drain_time(finish_mark_ms);
  2711       // Record the number of elements currently on the mark stack, so we
  2712       // only iterate over these.  (Since evacuation may add to the mark
  2713       // stack, doing more exposes race conditions.)  If no mark is in
  2714       // progress, this will be zero.
  2715       _cm->set_oops_do_bound();
  2717       assert(regions_accounted_for(), "Region leakage.");
  2719       if (mark_in_progress())
  2720         concurrent_mark()->newCSet();
  2722       // Now choose the CS.
  2723       g1_policy()->choose_collection_set();
  2725       // We may abandon a pause if we find no region that will fit in the MMU
  2726       // pause.
  2727       bool abandoned = (g1_policy()->collection_set() == NULL);
  2729       // Nothing to do if we were unable to choose a collection set.
  2730       if (!abandoned) {
  2731 #if G1_REM_SET_LOGGING
  2732         gclog_or_tty->print_cr("\nAfter pause, heap:");
  2733         print();
  2734 #endif
  2736         setup_surviving_young_words();
  2738         // Set up the gc allocation regions.
  2739         get_gc_alloc_regions();
  2741         // Actually do the work...
  2742         evacuate_collection_set();
  2743         free_collection_set(g1_policy()->collection_set());
  2744         g1_policy()->clear_collection_set();
  2746         FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
  2747         // this is more for peace of mind; we're nulling them here and
  2748         // we're expecting them to be null at the beginning of the next GC
  2749         _in_cset_fast_test = NULL;
  2750         _in_cset_fast_test_base = NULL;
  2752         release_gc_alloc_regions(false /* totally */);
  2754         cleanup_surviving_young_words();
  2756         if (g1_policy()->in_young_gc_mode()) {
  2757           _young_list->reset_sampled_info();
  2758           assert(check_young_list_empty(true),
  2759                  "young list should be empty");
  2761 #if SCAN_ONLY_VERBOSE
  2762           _young_list->print();
  2763 #endif // SCAN_ONLY_VERBOSE
  2765           g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  2766                                           _young_list->first_survivor_region(),
  2767                                           _young_list->last_survivor_region());
  2768           _young_list->reset_auxilary_lists();
  2770       } else {
  2771         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  2774       if (evacuation_failed()) {
  2775         _summary_bytes_used = recalculate_used();
  2776       } else {
  2777         // The "used" of the the collection set have already been subtracted
  2778         // when they were freed.  Add in the bytes evacuated.
  2779         _summary_bytes_used += g1_policy()->bytes_in_to_space();
  2782       if (g1_policy()->in_young_gc_mode() &&
  2783           g1_policy()->should_initiate_conc_mark()) {
  2784         concurrent_mark()->checkpointRootsInitialPost();
  2785         set_marking_started();
  2786         // CAUTION: after the doConcurrentMark() call below,
  2787         // the concurrent marking thread(s) could be running
  2788         // concurrently with us. Make sure that anything after
  2789         // this point does not assume that we are the only GC thread
  2790         // running. Note: of course, the actual marking work will
  2791         // not start until the safepoint itself is released in
  2792         // ConcurrentGCThread::safepoint_desynchronize().
  2793         doConcurrentMark();
  2796 #if SCAN_ONLY_VERBOSE
  2797       _young_list->print();
  2798 #endif // SCAN_ONLY_VERBOSE
  2800       double end_time_sec = os::elapsedTime();
  2801       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  2802       g1_policy()->record_pause_time_ms(pause_time_ms);
  2803       GCOverheadReporter::recordSTWEnd(end_time_sec);
  2804       g1_policy()->record_collection_pause_end(abandoned);
  2806       assert(regions_accounted_for(), "Region leakage.");
  2808       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  2809         HandleMark hm;  // Discard invalid handles created during verification
  2810         gclog_or_tty->print(" VerifyAfterGC:");
  2811         prepare_for_verify();
  2812         Universe::verify(false);
  2815       if (was_enabled) ref_processor()->enable_discovery();
  2818         size_t expand_bytes = g1_policy()->expansion_amount();
  2819         if (expand_bytes > 0) {
  2820           size_t bytes_before = capacity();
  2821           expand(expand_bytes);
  2825       if (mark_in_progress()) {
  2826         concurrent_mark()->update_g1_committed();
  2829 #ifdef TRACESPINNING
  2830       ParallelTaskTerminator::print_termination_counts();
  2831 #endif
  2833       gc_epilogue(false);
  2836     assert(verify_region_lists(), "Bad region lists.");
  2838     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  2839       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  2840       print_tracing_info();
  2841       vm_exit(-1);
  2845   if (PrintHeapAtGC) {
  2846     Universe::print_heap_after_gc();
  2848   if (G1SummarizeRSetStats &&
  2849       (G1SummarizeRSetStatsPeriod > 0) &&
  2850       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  2851     g1_rem_set()->print_summary_info();
  2855 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  2856   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  2857   // make sure we don't call set_gc_alloc_region() multiple times on
  2858   // the same region
  2859   assert(r == NULL || !r->is_gc_alloc_region(),
  2860          "shouldn't already be a GC alloc region");
  2861   HeapWord* original_top = NULL;
  2862   if (r != NULL)
  2863     original_top = r->top();
  2865   // We will want to record the used space in r as being there before gc.
  2866   // One we install it as a GC alloc region it's eligible for allocation.
  2867   // So record it now and use it later.
  2868   size_t r_used = 0;
  2869   if (r != NULL) {
  2870     r_used = r->used();
  2872     if (ParallelGCThreads > 0) {
  2873       // need to take the lock to guard against two threads calling
  2874       // get_gc_alloc_region concurrently (very unlikely but...)
  2875       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2876       r->save_marks();
  2879   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  2880   _gc_alloc_regions[purpose] = r;
  2881   if (old_alloc_region != NULL) {
  2882     // Replace aliases too.
  2883     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2884       if (_gc_alloc_regions[ap] == old_alloc_region) {
  2885         _gc_alloc_regions[ap] = r;
  2889   if (r != NULL) {
  2890     push_gc_alloc_region(r);
  2891     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  2892       // We are using a region as a GC alloc region after it has been used
  2893       // as a mutator allocation region during the current marking cycle.
  2894       // The mutator-allocated objects are currently implicitly marked, but
  2895       // when we move hr->next_top_at_mark_start() forward at the the end
  2896       // of the GC pause, they won't be.  We therefore mark all objects in
  2897       // the "gap".  We do this object-by-object, since marking densely
  2898       // does not currently work right with marking bitmap iteration.  This
  2899       // means we rely on TLAB filling at the start of pauses, and no
  2900       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  2901       // to fix the marking bitmap iteration.
  2902       HeapWord* curhw = r->next_top_at_mark_start();
  2903       HeapWord* t = original_top;
  2905       while (curhw < t) {
  2906         oop cur = (oop)curhw;
  2907         // We'll assume parallel for generality.  This is rare code.
  2908         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  2909         curhw = curhw + cur->size();
  2911       assert(curhw == t, "Should have parsed correctly.");
  2913     if (G1PolicyVerbose > 1) {
  2914       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  2915                           "for survivors:", r->bottom(), original_top, r->end());
  2916       r->print();
  2918     g1_policy()->record_before_bytes(r_used);
  2922 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  2923   assert(Thread::current()->is_VM_thread() ||
  2924          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  2925   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  2926          "Precondition.");
  2927   hr->set_is_gc_alloc_region(true);
  2928   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  2929   _gc_alloc_region_list = hr;
  2932 #ifdef G1_DEBUG
  2933 class FindGCAllocRegion: public HeapRegionClosure {
  2934 public:
  2935   bool doHeapRegion(HeapRegion* r) {
  2936     if (r->is_gc_alloc_region()) {
  2937       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  2938                              r->hrs_index(), r->bottom());
  2940     return false;
  2942 };
  2943 #endif // G1_DEBUG
  2945 void G1CollectedHeap::forget_alloc_region_list() {
  2946   assert(Thread::current()->is_VM_thread(), "Precondition");
  2947   while (_gc_alloc_region_list != NULL) {
  2948     HeapRegion* r = _gc_alloc_region_list;
  2949     assert(r->is_gc_alloc_region(), "Invariant.");
  2950     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
  2951     // newly allocated data in order to be able to apply deferred updates
  2952     // before the GC is done for verification purposes (i.e to allow
  2953     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
  2954     // collection.
  2955     r->ContiguousSpace::set_saved_mark();
  2956     _gc_alloc_region_list = r->next_gc_alloc_region();
  2957     r->set_next_gc_alloc_region(NULL);
  2958     r->set_is_gc_alloc_region(false);
  2959     if (r->is_survivor()) {
  2960       if (r->is_empty()) {
  2961         r->set_not_young();
  2962       } else {
  2963         _young_list->add_survivor_region(r);
  2966     if (r->is_empty()) {
  2967       ++_free_regions;
  2970 #ifdef G1_DEBUG
  2971   FindGCAllocRegion fa;
  2972   heap_region_iterate(&fa);
  2973 #endif // G1_DEBUG
  2977 bool G1CollectedHeap::check_gc_alloc_regions() {
  2978   // TODO: allocation regions check
  2979   return true;
  2982 void G1CollectedHeap::get_gc_alloc_regions() {
  2983   // First, let's check that the GC alloc region list is empty (it should)
  2984   assert(_gc_alloc_region_list == NULL, "invariant");
  2986   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2987     assert(_gc_alloc_regions[ap] == NULL, "invariant");
  2988     assert(_gc_alloc_region_counts[ap] == 0, "invariant");
  2990     // Create new GC alloc regions.
  2991     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
  2992     _retained_gc_alloc_regions[ap] = NULL;
  2994     if (alloc_region != NULL) {
  2995       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
  2997       // let's make sure that the GC alloc region is not tagged as such
  2998       // outside a GC operation
  2999       assert(!alloc_region->is_gc_alloc_region(), "sanity");
  3001       if (alloc_region->in_collection_set() ||
  3002           alloc_region->top() == alloc_region->end() ||
  3003           alloc_region->top() == alloc_region->bottom()) {
  3004         // we will discard the current GC alloc region if it's in the
  3005         // collection set (it can happen!), if it's already full (no
  3006         // point in using it), or if it's empty (this means that it
  3007         // was emptied during a cleanup and it should be on the free
  3008         // list now).
  3010         alloc_region = NULL;
  3014     if (alloc_region == NULL) {
  3015       // we will get a new GC alloc region
  3016       alloc_region = newAllocRegionWithExpansion(ap, 0);
  3017     } else {
  3018       // the region was retained from the last collection
  3019       ++_gc_alloc_region_counts[ap];
  3022     if (alloc_region != NULL) {
  3023       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
  3024       set_gc_alloc_region(ap, alloc_region);
  3027     assert(_gc_alloc_regions[ap] == NULL ||
  3028            _gc_alloc_regions[ap]->is_gc_alloc_region(),
  3029            "the GC alloc region should be tagged as such");
  3030     assert(_gc_alloc_regions[ap] == NULL ||
  3031            _gc_alloc_regions[ap] == _gc_alloc_region_list,
  3032            "the GC alloc region should be the same as the GC alloc list head");
  3034   // Set alternative regions for allocation purposes that have reached
  3035   // their limit.
  3036   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3037     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  3038     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  3039       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  3042   assert(check_gc_alloc_regions(), "alloc regions messed up");
  3045 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
  3046   // We keep a separate list of all regions that have been alloc regions in
  3047   // the current collection pause. Forget that now. This method will
  3048   // untag the GC alloc regions and tear down the GC alloc region
  3049   // list. It's desirable that no regions are tagged as GC alloc
  3050   // outside GCs.
  3051   forget_alloc_region_list();
  3053   // The current alloc regions contain objs that have survived
  3054   // collection. Make them no longer GC alloc regions.
  3055   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3056     HeapRegion* r = _gc_alloc_regions[ap];
  3057     _retained_gc_alloc_regions[ap] = NULL;
  3058     _gc_alloc_region_counts[ap] = 0;
  3060     if (r != NULL) {
  3061       // we retain nothing on _gc_alloc_regions between GCs
  3062       set_gc_alloc_region(ap, NULL);
  3064       if (r->is_empty()) {
  3065         // we didn't actually allocate anything in it; let's just put
  3066         // it on the free list
  3067         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  3068         r->set_zero_fill_complete();
  3069         put_free_region_on_list_locked(r);
  3070       } else if (_retain_gc_alloc_region[ap] && !totally) {
  3071         // retain it so that we can use it at the beginning of the next GC
  3072         _retained_gc_alloc_regions[ap] = r;
  3078 #ifndef PRODUCT
  3079 // Useful for debugging
  3081 void G1CollectedHeap::print_gc_alloc_regions() {
  3082   gclog_or_tty->print_cr("GC alloc regions");
  3083   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3084     HeapRegion* r = _gc_alloc_regions[ap];
  3085     if (r == NULL) {
  3086       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
  3087     } else {
  3088       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
  3089                              ap, r->bottom(), r->used());
  3093 #endif // PRODUCT
  3095 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3096   _drain_in_progress = false;
  3097   set_evac_failure_closure(cl);
  3098   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3101 void G1CollectedHeap::finalize_for_evac_failure() {
  3102   assert(_evac_failure_scan_stack != NULL &&
  3103          _evac_failure_scan_stack->length() == 0,
  3104          "Postcondition");
  3105   assert(!_drain_in_progress, "Postcondition");
  3106   // Don't have to delete, since the scan stack is a resource object.
  3107   _evac_failure_scan_stack = NULL;
  3112 // *** Sequential G1 Evacuation
  3114 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
  3115   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3116   // let the caller handle alloc failure
  3117   if (alloc_region == NULL) return NULL;
  3118   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
  3119          "Either the object is humongous or the region isn't");
  3120   HeapWord* block = alloc_region->allocate(word_size);
  3121   if (block == NULL) {
  3122     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
  3124   return block;
  3127 class G1IsAliveClosure: public BoolObjectClosure {
  3128   G1CollectedHeap* _g1;
  3129 public:
  3130   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3131   void do_object(oop p) { assert(false, "Do not call."); }
  3132   bool do_object_b(oop p) {
  3133     // It is reachable if it is outside the collection set, or is inside
  3134     // and forwarded.
  3136 #ifdef G1_DEBUG
  3137     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  3138                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  3139                            !_g1->obj_in_cs(p) || p->is_forwarded());
  3140 #endif // G1_DEBUG
  3142     return !_g1->obj_in_cs(p) || p->is_forwarded();
  3144 };
  3146 class G1KeepAliveClosure: public OopClosure {
  3147   G1CollectedHeap* _g1;
  3148 public:
  3149   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3150   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  3151   void do_oop(      oop* p) {
  3152     oop obj = *p;
  3153 #ifdef G1_DEBUG
  3154     if (PrintGC && Verbose) {
  3155       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  3156                              p, (void*) obj, (void*) *p);
  3158 #endif // G1_DEBUG
  3160     if (_g1->obj_in_cs(obj)) {
  3161       assert( obj->is_forwarded(), "invariant" );
  3162       *p = obj->forwardee();
  3163 #ifdef G1_DEBUG
  3164       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  3165                              (void*) obj, (void*) *p);
  3166 #endif // G1_DEBUG
  3169 };
  3171 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
  3172 private:
  3173   G1CollectedHeap* _g1;
  3174   G1RemSet* _g1_rem_set;
  3175 public:
  3176   UpdateRSetImmediate(G1CollectedHeap* g1) :
  3177     _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
  3179   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3180   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3181   template <class T> void do_oop_work(T* p) {
  3182     assert(_from->is_in_reserved(p), "paranoia");
  3183     T heap_oop = oopDesc::load_heap_oop(p);
  3184     if (!oopDesc::is_null(heap_oop) && !_from->is_survivor()) {
  3185       _g1_rem_set->par_write_ref(_from, p, 0);
  3188 };
  3190 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3191 private:
  3192   G1CollectedHeap* _g1;
  3193   DirtyCardQueue *_dcq;
  3194   CardTableModRefBS* _ct_bs;
  3196 public:
  3197   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3198     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3200   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3201   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3202   template <class T> void do_oop_work(T* p) {
  3203     assert(_from->is_in_reserved(p), "paranoia");
  3204     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
  3205         !_from->is_survivor()) {
  3206       size_t card_index = _ct_bs->index_for(p);
  3207       if (_ct_bs->mark_card_deferred(card_index)) {
  3208         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3212 };
  3216 class RemoveSelfPointerClosure: public ObjectClosure {
  3217 private:
  3218   G1CollectedHeap* _g1;
  3219   ConcurrentMark* _cm;
  3220   HeapRegion* _hr;
  3221   size_t _prev_marked_bytes;
  3222   size_t _next_marked_bytes;
  3223   OopsInHeapRegionClosure *_cl;
  3224 public:
  3225   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
  3226     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3227     _next_marked_bytes(0), _cl(cl) {}
  3229   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3230   size_t next_marked_bytes() { return _next_marked_bytes; }
  3232   // The original idea here was to coalesce evacuated and dead objects.
  3233   // However that caused complications with the block offset table (BOT).
  3234   // In particular if there were two TLABs, one of them partially refined.
  3235   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3236   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3237   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3238   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3239   // would point into middle of the filler object.
  3240   //
  3241   // The current approach is to not coalesce and leave the BOT contents intact.
  3242   void do_object(oop obj) {
  3243     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3244       // The object failed to move.
  3245       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3246       _cm->markPrev(obj);
  3247       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3248       _prev_marked_bytes += (obj->size() * HeapWordSize);
  3249       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3250         _cm->markAndGrayObjectIfNecessary(obj);
  3252       obj->set_mark(markOopDesc::prototype());
  3253       // While we were processing RSet buffers during the
  3254       // collection, we actually didn't scan any cards on the
  3255       // collection set, since we didn't want to update remebered
  3256       // sets with entries that point into the collection set, given
  3257       // that live objects fromthe collection set are about to move
  3258       // and such entries will be stale very soon. This change also
  3259       // dealt with a reliability issue which involved scanning a
  3260       // card in the collection set and coming across an array that
  3261       // was being chunked and looking malformed. The problem is
  3262       // that, if evacuation fails, we might have remembered set
  3263       // entries missing given that we skipped cards on the
  3264       // collection set. So, we'll recreate such entries now.
  3265       obj->oop_iterate(_cl);
  3266       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3267     } else {
  3268       // The object has been either evacuated or is dead. Fill it with a
  3269       // dummy object.
  3270       MemRegion mr((HeapWord*)obj, obj->size());
  3271       CollectedHeap::fill_with_object(mr);
  3272       _cm->clearRangeBothMaps(mr);
  3275 };
  3277 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3278   UpdateRSetImmediate immediate_update(_g1h);
  3279   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3280   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3281   OopsInHeapRegionClosure *cl;
  3282   if (G1DeferredRSUpdate) {
  3283     cl = &deferred_update;
  3284   } else {
  3285     cl = &immediate_update;
  3287   HeapRegion* cur = g1_policy()->collection_set();
  3288   while (cur != NULL) {
  3289     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3291     RemoveSelfPointerClosure rspc(_g1h, cl);
  3292     if (cur->evacuation_failed()) {
  3293       assert(cur->in_collection_set(), "bad CS");
  3294       cl->set_region(cur);
  3295       cur->object_iterate(&rspc);
  3297       // A number of manipulations to make the TAMS be the current top,
  3298       // and the marked bytes be the ones observed in the iteration.
  3299       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3300         // The comments below are the postconditions achieved by the
  3301         // calls.  Note especially the last such condition, which says that
  3302         // the count of marked bytes has been properly restored.
  3303         cur->note_start_of_marking(false);
  3304         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3305         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3306         // _next_marked_bytes == prev_marked_bytes.
  3307         cur->note_end_of_marking();
  3308         // _prev_top_at_mark_start == top(),
  3309         // _prev_marked_bytes == prev_marked_bytes
  3311       // If there is no mark in progress, we modified the _next variables
  3312       // above needlessly, but harmlessly.
  3313       if (_g1h->mark_in_progress()) {
  3314         cur->note_start_of_marking(false);
  3315         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3316         // _next_marked_bytes == next_marked_bytes.
  3319       // Now make sure the region has the right index in the sorted array.
  3320       g1_policy()->note_change_in_marked_bytes(cur);
  3322     cur = cur->next_in_collection_set();
  3324   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3326   // Now restore saved marks, if any.
  3327   if (_objs_with_preserved_marks != NULL) {
  3328     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3329     assert(_objs_with_preserved_marks->length() ==
  3330            _preserved_marks_of_objs->length(), "Both or none.");
  3331     guarantee(_objs_with_preserved_marks->length() ==
  3332               _preserved_marks_of_objs->length(), "Both or none.");
  3333     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3334       oop obj   = _objs_with_preserved_marks->at(i);
  3335       markOop m = _preserved_marks_of_objs->at(i);
  3336       obj->set_mark(m);
  3338     // Delete the preserved marks growable arrays (allocated on the C heap).
  3339     delete _objs_with_preserved_marks;
  3340     delete _preserved_marks_of_objs;
  3341     _objs_with_preserved_marks = NULL;
  3342     _preserved_marks_of_objs = NULL;
  3346 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3347   _evac_failure_scan_stack->push(obj);
  3350 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3351   assert(_evac_failure_scan_stack != NULL, "precondition");
  3353   while (_evac_failure_scan_stack->length() > 0) {
  3354      oop obj = _evac_failure_scan_stack->pop();
  3355      _evac_failure_closure->set_region(heap_region_containing(obj));
  3356      obj->oop_iterate_backwards(_evac_failure_closure);
  3360 void G1CollectedHeap::handle_evacuation_failure(oop old) {
  3361   markOop m = old->mark();
  3362   // forward to self
  3363   assert(!old->is_forwarded(), "precondition");
  3365   old->forward_to(old);
  3366   handle_evacuation_failure_common(old, m);
  3369 oop
  3370 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3371                                                oop old) {
  3372   markOop m = old->mark();
  3373   oop forward_ptr = old->forward_to_atomic(old);
  3374   if (forward_ptr == NULL) {
  3375     // Forward-to-self succeeded.
  3376     if (_evac_failure_closure != cl) {
  3377       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3378       assert(!_drain_in_progress,
  3379              "Should only be true while someone holds the lock.");
  3380       // Set the global evac-failure closure to the current thread's.
  3381       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3382       set_evac_failure_closure(cl);
  3383       // Now do the common part.
  3384       handle_evacuation_failure_common(old, m);
  3385       // Reset to NULL.
  3386       set_evac_failure_closure(NULL);
  3387     } else {
  3388       // The lock is already held, and this is recursive.
  3389       assert(_drain_in_progress, "This should only be the recursive case.");
  3390       handle_evacuation_failure_common(old, m);
  3392     return old;
  3393   } else {
  3394     // Someone else had a place to copy it.
  3395     return forward_ptr;
  3399 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3400   set_evacuation_failed(true);
  3402   preserve_mark_if_necessary(old, m);
  3404   HeapRegion* r = heap_region_containing(old);
  3405   if (!r->evacuation_failed()) {
  3406     r->set_evacuation_failed(true);
  3407     if (G1PrintRegions) {
  3408       gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
  3409                           "["PTR_FORMAT","PTR_FORMAT")\n",
  3410                           r, r->bottom(), r->end());
  3414   push_on_evac_failure_scan_stack(old);
  3416   if (!_drain_in_progress) {
  3417     // prevent recursion in copy_to_survivor_space()
  3418     _drain_in_progress = true;
  3419     drain_evac_failure_scan_stack();
  3420     _drain_in_progress = false;
  3424 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  3425   if (m != markOopDesc::prototype()) {
  3426     if (_objs_with_preserved_marks == NULL) {
  3427       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  3428       _objs_with_preserved_marks =
  3429         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3430       _preserved_marks_of_objs =
  3431         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  3433     _objs_with_preserved_marks->push(obj);
  3434     _preserved_marks_of_objs->push(m);
  3438 // *** Parallel G1 Evacuation
  3440 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  3441                                                   size_t word_size) {
  3442   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3443   // let the caller handle alloc failure
  3444   if (alloc_region == NULL) return NULL;
  3446   HeapWord* block = alloc_region->par_allocate(word_size);
  3447   if (block == NULL) {
  3448     MutexLockerEx x(par_alloc_during_gc_lock(),
  3449                     Mutex::_no_safepoint_check_flag);
  3450     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  3452   return block;
  3455 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  3456                                             bool par) {
  3457   // Another thread might have obtained alloc_region for the given
  3458   // purpose, and might be attempting to allocate in it, and might
  3459   // succeed.  Therefore, we can't do the "finalization" stuff on the
  3460   // region below until we're sure the last allocation has happened.
  3461   // We ensure this by allocating the remaining space with a garbage
  3462   // object.
  3463   if (par) par_allocate_remaining_space(alloc_region);
  3464   // Now we can do the post-GC stuff on the region.
  3465   alloc_region->note_end_of_copying();
  3466   g1_policy()->record_after_bytes(alloc_region->used());
  3469 HeapWord*
  3470 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  3471                                          HeapRegion*    alloc_region,
  3472                                          bool           par,
  3473                                          size_t         word_size) {
  3474   HeapWord* block = NULL;
  3475   // In the parallel case, a previous thread to obtain the lock may have
  3476   // already assigned a new gc_alloc_region.
  3477   if (alloc_region != _gc_alloc_regions[purpose]) {
  3478     assert(par, "But should only happen in parallel case.");
  3479     alloc_region = _gc_alloc_regions[purpose];
  3480     if (alloc_region == NULL) return NULL;
  3481     block = alloc_region->par_allocate(word_size);
  3482     if (block != NULL) return block;
  3483     // Otherwise, continue; this new region is empty, too.
  3485   assert(alloc_region != NULL, "We better have an allocation region");
  3486   retire_alloc_region(alloc_region, par);
  3488   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  3489     // Cannot allocate more regions for the given purpose.
  3490     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  3491     // Is there an alternative?
  3492     if (purpose != alt_purpose) {
  3493       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  3494       // Has not the alternative region been aliased?
  3495       if (alloc_region != alt_region && alt_region != NULL) {
  3496         // Try to allocate in the alternative region.
  3497         if (par) {
  3498           block = alt_region->par_allocate(word_size);
  3499         } else {
  3500           block = alt_region->allocate(word_size);
  3502         // Make an alias.
  3503         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  3504         if (block != NULL) {
  3505           return block;
  3507         retire_alloc_region(alt_region, par);
  3509       // Both the allocation region and the alternative one are full
  3510       // and aliased, replace them with a new allocation region.
  3511       purpose = alt_purpose;
  3512     } else {
  3513       set_gc_alloc_region(purpose, NULL);
  3514       return NULL;
  3518   // Now allocate a new region for allocation.
  3519   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
  3521   // let the caller handle alloc failure
  3522   if (alloc_region != NULL) {
  3524     assert(check_gc_alloc_regions(), "alloc regions messed up");
  3525     assert(alloc_region->saved_mark_at_top(),
  3526            "Mark should have been saved already.");
  3527     // We used to assert that the region was zero-filled here, but no
  3528     // longer.
  3530     // This must be done last: once it's installed, other regions may
  3531     // allocate in it (without holding the lock.)
  3532     set_gc_alloc_region(purpose, alloc_region);
  3534     if (par) {
  3535       block = alloc_region->par_allocate(word_size);
  3536     } else {
  3537       block = alloc_region->allocate(word_size);
  3539     // Caller handles alloc failure.
  3540   } else {
  3541     // This sets other apis using the same old alloc region to NULL, also.
  3542     set_gc_alloc_region(purpose, NULL);
  3544   return block;  // May be NULL.
  3547 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  3548   HeapWord* block = NULL;
  3549   size_t free_words;
  3550   do {
  3551     free_words = r->free()/HeapWordSize;
  3552     // If there's too little space, no one can allocate, so we're done.
  3553     if (free_words < (size_t)oopDesc::header_size()) return;
  3554     // Otherwise, try to claim it.
  3555     block = r->par_allocate(free_words);
  3556   } while (block == NULL);
  3557   fill_with_object(block, free_words);
  3560 #ifndef PRODUCT
  3561 bool GCLabBitMapClosure::do_bit(size_t offset) {
  3562   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  3563   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  3564   return true;
  3566 #endif // PRODUCT
  3568 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  3569   : _g1h(g1h),
  3570     _refs(g1h->task_queue(queue_num)),
  3571     _dcq(&g1h->dirty_card_queue_set()),
  3572     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  3573     _g1_rem(g1h->g1_rem_set()),
  3574     _hash_seed(17), _queue_num(queue_num),
  3575     _term_attempts(0),
  3576     _age_table(false),
  3577 #if G1_DETAILED_STATS
  3578     _pushes(0), _pops(0), _steals(0),
  3579     _steal_attempts(0),  _overflow_pushes(0),
  3580 #endif
  3581     _strong_roots_time(0), _term_time(0),
  3582     _alloc_buffer_waste(0), _undo_waste(0)
  3584   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  3585   // we "sacrifice" entry 0 to keep track of surviving bytes for
  3586   // non-young regions (where the age is -1)
  3587   // We also add a few elements at the beginning and at the end in
  3588   // an attempt to eliminate cache contention
  3589   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  3590   size_t array_length = PADDING_ELEM_NUM +
  3591                         real_length +
  3592                         PADDING_ELEM_NUM;
  3593   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  3594   if (_surviving_young_words_base == NULL)
  3595     vm_exit_out_of_memory(array_length * sizeof(size_t),
  3596                           "Not enough space for young surv histo.");
  3597   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  3598   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  3600   _overflowed_refs = new OverflowQueue(10);
  3602   _start = os::elapsedTime();
  3605 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  3606   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  3607   _par_scan_state(par_scan_state) { }
  3609 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
  3610   // This is called _after_ do_oop_work has been called, hence after
  3611   // the object has been relocated to its new location and *p points
  3612   // to its new location.
  3614   T heap_oop = oopDesc::load_heap_oop(p);
  3615   if (!oopDesc::is_null(heap_oop)) {
  3616     oop obj = oopDesc::decode_heap_oop(heap_oop);
  3617     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
  3618            "shouldn't still be in the CSet if evacuation didn't fail.");
  3619     HeapWord* addr = (HeapWord*)obj;
  3620     if (_g1->is_in_g1_reserved(addr))
  3621       _cm->grayRoot(oop(addr));
  3625 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  3626   size_t    word_sz = old->size();
  3627   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  3628   // +1 to make the -1 indexes valid...
  3629   int       young_index = from_region->young_index_in_cset()+1;
  3630   assert( (from_region->is_young() && young_index > 0) ||
  3631           (!from_region->is_young() && young_index == 0), "invariant" );
  3632   G1CollectorPolicy* g1p = _g1->g1_policy();
  3633   markOop m = old->mark();
  3634   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  3635                                            : m->age();
  3636   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  3637                                                              word_sz);
  3638   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  3639   oop       obj     = oop(obj_ptr);
  3641   if (obj_ptr == NULL) {
  3642     // This will either forward-to-self, or detect that someone else has
  3643     // installed a forwarding pointer.
  3644     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  3645     return _g1->handle_evacuation_failure_par(cl, old);
  3648   // We're going to allocate linearly, so might as well prefetch ahead.
  3649   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  3651   oop forward_ptr = old->forward_to_atomic(obj);
  3652   if (forward_ptr == NULL) {
  3653     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  3654     if (g1p->track_object_age(alloc_purpose)) {
  3655       // We could simply do obj->incr_age(). However, this causes a
  3656       // performance issue. obj->incr_age() will first check whether
  3657       // the object has a displaced mark by checking its mark word;
  3658       // getting the mark word from the new location of the object
  3659       // stalls. So, given that we already have the mark word and we
  3660       // are about to install it anyway, it's better to increase the
  3661       // age on the mark word, when the object does not have a
  3662       // displaced mark word. We're not expecting many objects to have
  3663       // a displaced marked word, so that case is not optimized
  3664       // further (it could be...) and we simply call obj->incr_age().
  3666       if (m->has_displaced_mark_helper()) {
  3667         // in this case, we have to install the mark word first,
  3668         // otherwise obj looks to be forwarded (the old mark word,
  3669         // which contains the forward pointer, was copied)
  3670         obj->set_mark(m);
  3671         obj->incr_age();
  3672       } else {
  3673         m = m->incr_age();
  3674         obj->set_mark(m);
  3676       _par_scan_state->age_table()->add(obj, word_sz);
  3677     } else {
  3678       obj->set_mark(m);
  3681     // preserve "next" mark bit
  3682     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  3683       if (!use_local_bitmaps ||
  3684           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  3685         // if we couldn't mark it on the local bitmap (this happens when
  3686         // the object was not allocated in the GCLab), we have to bite
  3687         // the bullet and do the standard parallel mark
  3688         _cm->markAndGrayObjectIfNecessary(obj);
  3690 #if 1
  3691       if (_g1->isMarkedNext(old)) {
  3692         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  3694 #endif
  3697     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  3698     surv_young_words[young_index] += word_sz;
  3700     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  3701       arrayOop(old)->set_length(0);
  3702       oop* old_p = set_partial_array_mask(old);
  3703       _par_scan_state->push_on_queue(old_p);
  3704     } else {
  3705       // No point in using the slower heap_region_containing() method,
  3706       // given that we know obj is in the heap.
  3707       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  3708       obj->oop_iterate_backwards(_scanner);
  3710   } else {
  3711     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  3712     obj = forward_ptr;
  3714   return obj;
  3717 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee, bool skip_cset_test>
  3718 template <class T>
  3719 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee, skip_cset_test>
  3720 ::do_oop_work(T* p) {
  3721   oop obj = oopDesc::load_decode_heap_oop(p);
  3722   assert(barrier != G1BarrierRS || obj != NULL,
  3723          "Precondition: G1BarrierRS implies obj is nonNull");
  3725   // The only time we skip the cset test is when we're scanning
  3726   // references popped from the queue. And we only push on the queue
  3727   // references that we know point into the cset, so no point in
  3728   // checking again. But we'll leave an assert here for peace of mind.
  3729   assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant");
  3731   // here the null check is implicit in the cset_fast_test() test
  3732   if (skip_cset_test || _g1->in_cset_fast_test(obj)) {
  3733 #if G1_REM_SET_LOGGING
  3734     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  3735                            "into CS.", p, (void*) obj);
  3736 #endif
  3737     if (obj->is_forwarded()) {
  3738       oopDesc::encode_store_heap_oop(p, obj->forwardee());
  3739     } else {
  3740       oop copy_oop = copy_to_survivor_space(obj);
  3741       oopDesc::encode_store_heap_oop(p, copy_oop);
  3743     // When scanning the RS, we only care about objs in CS.
  3744     if (barrier == G1BarrierRS) {
  3745       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3749   // When scanning moved objs, must look at all oops.
  3750   if (barrier == G1BarrierEvac && obj != NULL) {
  3751     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3754   if (do_gen_barrier && obj != NULL) {
  3755     par_do_barrier(p);
  3759 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(oop* p);
  3760 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(narrowOop* p);
  3762 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  3763   assert(has_partial_array_mask(p), "invariant");
  3764   oop old = clear_partial_array_mask(p);
  3765   assert(old->is_objArray(), "must be obj array");
  3766   assert(old->is_forwarded(), "must be forwarded");
  3767   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  3769   objArrayOop obj = objArrayOop(old->forwardee());
  3770   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  3771   // Process ParGCArrayScanChunk elements now
  3772   // and push the remainder back onto queue
  3773   int start     = arrayOop(old)->length();
  3774   int end       = obj->length();
  3775   int remainder = end - start;
  3776   assert(start <= end, "just checking");
  3777   if (remainder > 2 * ParGCArrayScanChunk) {
  3778     // Test above combines last partial chunk with a full chunk
  3779     end = start + ParGCArrayScanChunk;
  3780     arrayOop(old)->set_length(end);
  3781     // Push remainder.
  3782     oop* old_p = set_partial_array_mask(old);
  3783     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
  3784     _par_scan_state->push_on_queue(old_p);
  3785   } else {
  3786     // Restore length so that the heap remains parsable in
  3787     // case of evacuation failure.
  3788     arrayOop(old)->set_length(end);
  3790   _scanner.set_region(_g1->heap_region_containing_raw(obj));
  3791   // process our set of indices (include header in first chunk)
  3792   obj->oop_iterate_range(&_scanner, start, end);
  3795 class G1ParEvacuateFollowersClosure : public VoidClosure {
  3796 protected:
  3797   G1CollectedHeap*              _g1h;
  3798   G1ParScanThreadState*         _par_scan_state;
  3799   RefToScanQueueSet*            _queues;
  3800   ParallelTaskTerminator*       _terminator;
  3802   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  3803   RefToScanQueueSet*      queues()         { return _queues; }
  3804   ParallelTaskTerminator* terminator()     { return _terminator; }
  3806 public:
  3807   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  3808                                 G1ParScanThreadState* par_scan_state,
  3809                                 RefToScanQueueSet* queues,
  3810                                 ParallelTaskTerminator* terminator)
  3811     : _g1h(g1h), _par_scan_state(par_scan_state),
  3812       _queues(queues), _terminator(terminator) {}
  3814   void do_void() {
  3815     G1ParScanThreadState* pss = par_scan_state();
  3816     while (true) {
  3817       pss->trim_queue();
  3818       IF_G1_DETAILED_STATS(pss->note_steal_attempt());
  3820       StarTask stolen_task;
  3821       if (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  3822         IF_G1_DETAILED_STATS(pss->note_steal());
  3824         // slightly paranoid tests; I'm trying to catch potential
  3825         // problems before we go into push_on_queue to know where the
  3826         // problem is coming from
  3827         assert((oop*)stolen_task != NULL, "Error");
  3828         if (stolen_task.is_narrow()) {
  3829           assert(UseCompressedOops, "Error");
  3830           narrowOop* p = (narrowOop*) stolen_task;
  3831           assert(has_partial_array_mask(p) ||
  3832                  _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "Error");
  3833           pss->push_on_queue(p);
  3834         } else {
  3835           oop* p = (oop*) stolen_task;
  3836           assert(has_partial_array_mask(p) || _g1h->obj_in_cs(*p), "Error");
  3837           pss->push_on_queue(p);
  3839         continue;
  3841       pss->start_term_time();
  3842       if (terminator()->offer_termination()) break;
  3843       pss->end_term_time();
  3845     pss->end_term_time();
  3846     pss->retire_alloc_buffers();
  3848 };
  3850 class G1ParTask : public AbstractGangTask {
  3851 protected:
  3852   G1CollectedHeap*       _g1h;
  3853   RefToScanQueueSet      *_queues;
  3854   ParallelTaskTerminator _terminator;
  3855   int _n_workers;
  3857   Mutex _stats_lock;
  3858   Mutex* stats_lock() { return &_stats_lock; }
  3860   size_t getNCards() {
  3861     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  3862       / G1BlockOffsetSharedArray::N_bytes;
  3865 public:
  3866   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  3867     : AbstractGangTask("G1 collection"),
  3868       _g1h(g1h),
  3869       _queues(task_queues),
  3870       _terminator(workers, _queues),
  3871       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
  3872       _n_workers(workers)
  3873   {}
  3875   RefToScanQueueSet* queues() { return _queues; }
  3877   RefToScanQueue *work_queue(int i) {
  3878     return queues()->queue(i);
  3881   void work(int i) {
  3882     if (i >= _n_workers) return;  // no work needed this round
  3883     ResourceMark rm;
  3884     HandleMark   hm;
  3886     G1ParScanThreadState            pss(_g1h, i);
  3887     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  3888     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  3889     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  3891     pss.set_evac_closure(&scan_evac_cl);
  3892     pss.set_evac_failure_closure(&evac_failure_cl);
  3893     pss.set_partial_scan_closure(&partial_scan_cl);
  3895     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  3896     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  3897     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  3899     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  3900     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  3901     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  3903     OopsInHeapRegionClosure        *scan_root_cl;
  3904     OopsInHeapRegionClosure        *scan_perm_cl;
  3905     OopsInHeapRegionClosure        *scan_so_cl;
  3907     if (_g1h->g1_policy()->should_initiate_conc_mark()) {
  3908       scan_root_cl = &scan_mark_root_cl;
  3909       scan_perm_cl = &scan_mark_perm_cl;
  3910       scan_so_cl   = &scan_mark_heap_rs_cl;
  3911     } else {
  3912       scan_root_cl = &only_scan_root_cl;
  3913       scan_perm_cl = &only_scan_perm_cl;
  3914       scan_so_cl   = &only_scan_heap_rs_cl;
  3917     pss.start_strong_roots();
  3918     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  3919                                   SharedHeap::SO_AllClasses,
  3920                                   scan_root_cl,
  3921                                   &only_scan_heap_rs_cl,
  3922                                   scan_so_cl,
  3923                                   scan_perm_cl,
  3924                                   i);
  3925     pss.end_strong_roots();
  3927       double start = os::elapsedTime();
  3928       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  3929       evac.do_void();
  3930       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  3931       double term_ms = pss.term_time()*1000.0;
  3932       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  3933       _g1h->g1_policy()->record_termination_time(i, term_ms);
  3935     if (G1UseSurvivorSpaces) {
  3936       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  3938     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  3940     // Clean up any par-expanded rem sets.
  3941     HeapRegionRemSet::par_cleanup();
  3943     MutexLocker x(stats_lock());
  3944     if (ParallelGCVerbose) {
  3945       gclog_or_tty->print("Thread %d complete:\n", i);
  3946 #if G1_DETAILED_STATS
  3947       gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
  3948                           pss.pushes(),
  3949                           pss.pops(),
  3950                           pss.overflow_pushes(),
  3951                           pss.steals(),
  3952                           pss.steal_attempts());
  3953 #endif
  3954       double elapsed      = pss.elapsed();
  3955       double strong_roots = pss.strong_roots_time();
  3956       double term         = pss.term_time();
  3957       gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
  3958                           "    Strong roots: %7.2f ms (%6.2f%%)\n"
  3959                           "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
  3960                           elapsed * 1000.0,
  3961                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
  3962                           term * 1000.0, (term*100.0/elapsed),
  3963                           pss.term_attempts());
  3964       size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
  3965       gclog_or_tty->print("  Waste: %8dK\n"
  3966                  "    Alloc Buffer: %8dK\n"
  3967                  "    Undo: %8dK\n",
  3968                  (total_waste * HeapWordSize) / K,
  3969                  (pss.alloc_buffer_waste() * HeapWordSize) / K,
  3970                  (pss.undo_waste() * HeapWordSize) / K);
  3973     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
  3974     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
  3976 };
  3978 // *** Common G1 Evacuation Stuff
  3980 void
  3981 G1CollectedHeap::
  3982 g1_process_strong_roots(bool collecting_perm_gen,
  3983                         SharedHeap::ScanningOption so,
  3984                         OopClosure* scan_non_heap_roots,
  3985                         OopsInHeapRegionClosure* scan_rs,
  3986                         OopsInHeapRegionClosure* scan_so,
  3987                         OopsInGenClosure* scan_perm,
  3988                         int worker_i) {
  3989   // First scan the strong roots, including the perm gen.
  3990   double ext_roots_start = os::elapsedTime();
  3991   double closure_app_time_sec = 0.0;
  3993   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  3994   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  3995   buf_scan_perm.set_generation(perm_gen());
  3997   process_strong_roots(collecting_perm_gen, so,
  3998                        &buf_scan_non_heap_roots,
  3999                        &buf_scan_perm);
  4000   // Finish up any enqueued closure apps.
  4001   buf_scan_non_heap_roots.done();
  4002   buf_scan_perm.done();
  4003   double ext_roots_end = os::elapsedTime();
  4004   g1_policy()->reset_obj_copy_time(worker_i);
  4005   double obj_copy_time_sec =
  4006     buf_scan_non_heap_roots.closure_app_seconds() +
  4007     buf_scan_perm.closure_app_seconds();
  4008   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4009   double ext_root_time_ms =
  4010     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4011   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4013   // Scan strong roots in mark stack.
  4014   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4015     concurrent_mark()->oops_do(scan_non_heap_roots);
  4017   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4018   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4020   // XXX What should this be doing in the parallel case?
  4021   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4022   if (scan_so != NULL) {
  4023     scan_scan_only_set(scan_so, worker_i);
  4025   // Now scan the complement of the collection set.
  4026   if (scan_rs != NULL) {
  4027     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4029   // Finish with the ref_processor roots.
  4030   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4031     ref_processor()->oops_do(scan_non_heap_roots);
  4033   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4034   _process_strong_tasks->all_tasks_completed();
  4037 void
  4038 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
  4039                                        OopsInHeapRegionClosure* oc,
  4040                                        int worker_i) {
  4041   HeapWord* startAddr = r->bottom();
  4042   HeapWord* endAddr = r->used_region().end();
  4044   oc->set_region(r);
  4046   HeapWord* p = r->bottom();
  4047   HeapWord* t = r->top();
  4048   guarantee( p == r->next_top_at_mark_start(), "invariant" );
  4049   while (p < t) {
  4050     oop obj = oop(p);
  4051     p += obj->oop_iterate(oc);
  4055 void
  4056 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
  4057                                     int worker_i) {
  4058   double start = os::elapsedTime();
  4060   BufferingOopsInHeapRegionClosure boc(oc);
  4062   FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
  4063   FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
  4065   OopsInHeapRegionClosure *foc;
  4066   if (g1_policy()->should_initiate_conc_mark())
  4067     foc = &scan_and_mark;
  4068   else
  4069     foc = &scan_only;
  4071   HeapRegion* hr;
  4072   int n = 0;
  4073   while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
  4074     scan_scan_only_region(hr, foc, worker_i);
  4075     ++n;
  4077   boc.done();
  4079   double closure_app_s = boc.closure_app_seconds();
  4080   g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
  4081   double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
  4082   g1_policy()->record_scan_only_time(worker_i, ms, n);
  4085 void
  4086 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4087                                        OopClosure* non_root_closure) {
  4088   SharedHeap::process_weak_roots(root_closure, non_root_closure);
  4092 class SaveMarksClosure: public HeapRegionClosure {
  4093 public:
  4094   bool doHeapRegion(HeapRegion* r) {
  4095     r->save_marks();
  4096     return false;
  4098 };
  4100 void G1CollectedHeap::save_marks() {
  4101   if (ParallelGCThreads == 0) {
  4102     SaveMarksClosure sm;
  4103     heap_region_iterate(&sm);
  4105   // We do this even in the parallel case
  4106   perm_gen()->save_marks();
  4109 void G1CollectedHeap::evacuate_collection_set() {
  4110   set_evacuation_failed(false);
  4112   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4113   concurrent_g1_refine()->set_use_cache(false);
  4114   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4115   set_par_threads(n_workers);
  4116   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4118   init_for_evac_failure(NULL);
  4120   change_strong_roots_parity();  // In preparation for parallel strong roots.
  4121   rem_set()->prepare_for_younger_refs_iterate(true);
  4123   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4124   double start_par = os::elapsedTime();
  4125   if (ParallelGCThreads > 0) {
  4126     // The individual threads will set their evac-failure closures.
  4127     workers()->run_task(&g1_par_task);
  4128   } else {
  4129     g1_par_task.work(0);
  4132   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4133   g1_policy()->record_par_time(par_time);
  4134   set_par_threads(0);
  4135   // Is this the right thing to do here?  We don't save marks
  4136   // on individual heap regions when we allocate from
  4137   // them in parallel, so this seems like the correct place for this.
  4138   retire_all_alloc_regions();
  4140     G1IsAliveClosure is_alive(this);
  4141     G1KeepAliveClosure keep_alive(this);
  4142     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4144   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4146   concurrent_g1_refine()->set_use_cache(true);
  4148   finalize_for_evac_failure();
  4150   // Must do this before removing self-forwarding pointers, which clears
  4151   // the per-region evac-failure flags.
  4152   concurrent_mark()->complete_marking_in_collection_set();
  4154   if (evacuation_failed()) {
  4155     remove_self_forwarding_pointers();
  4156     if (PrintGCDetails) {
  4157       gclog_or_tty->print(" (evacuation failed)");
  4158     } else if (PrintGC) {
  4159       gclog_or_tty->print("--");
  4163   if (G1DeferredRSUpdate) {
  4164     RedirtyLoggedCardTableEntryFastClosure redirty;
  4165     dirty_card_queue_set().set_closure(&redirty);
  4166     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4167     JavaThread::dirty_card_queue_set().merge_bufferlists(&dirty_card_queue_set());
  4168     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4171   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4174 void G1CollectedHeap::free_region(HeapRegion* hr) {
  4175   size_t pre_used = 0;
  4176   size_t cleared_h_regions = 0;
  4177   size_t freed_regions = 0;
  4178   UncleanRegionList local_list;
  4180   HeapWord* start = hr->bottom();
  4181   HeapWord* end   = hr->prev_top_at_mark_start();
  4182   size_t used_bytes = hr->used();
  4183   size_t live_bytes = hr->max_live_bytes();
  4184   if (used_bytes > 0) {
  4185     guarantee( live_bytes <= used_bytes, "invariant" );
  4186   } else {
  4187     guarantee( live_bytes == 0, "invariant" );
  4190   size_t garbage_bytes = used_bytes - live_bytes;
  4191   if (garbage_bytes > 0)
  4192     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
  4194   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
  4195                    &local_list);
  4196   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  4197                           &local_list);
  4200 void
  4201 G1CollectedHeap::free_region_work(HeapRegion* hr,
  4202                                   size_t& pre_used,
  4203                                   size_t& cleared_h_regions,
  4204                                   size_t& freed_regions,
  4205                                   UncleanRegionList* list,
  4206                                   bool par) {
  4207   pre_used += hr->used();
  4208   if (hr->isHumongous()) {
  4209     assert(hr->startsHumongous(),
  4210            "Only the start of a humongous region should be freed.");
  4211     int ind = _hrs->find(hr);
  4212     assert(ind != -1, "Should have an index.");
  4213     // Clear the start region.
  4214     hr->hr_clear(par, true /*clear_space*/);
  4215     list->insert_before_head(hr);
  4216     cleared_h_regions++;
  4217     freed_regions++;
  4218     // Clear any continued regions.
  4219     ind++;
  4220     while ((size_t)ind < n_regions()) {
  4221       HeapRegion* hrc = _hrs->at(ind);
  4222       if (!hrc->continuesHumongous()) break;
  4223       // Otherwise, does continue the H region.
  4224       assert(hrc->humongous_start_region() == hr, "Huh?");
  4225       hrc->hr_clear(par, true /*clear_space*/);
  4226       cleared_h_regions++;
  4227       freed_regions++;
  4228       list->insert_before_head(hrc);
  4229       ind++;
  4231   } else {
  4232     hr->hr_clear(par, true /*clear_space*/);
  4233     list->insert_before_head(hr);
  4234     freed_regions++;
  4235     // If we're using clear2, this should not be enabled.
  4236     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  4240 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
  4241                                               size_t cleared_h_regions,
  4242                                               size_t freed_regions,
  4243                                               UncleanRegionList* list) {
  4244   if (list != NULL && list->sz() > 0) {
  4245     prepend_region_list_on_unclean_list(list);
  4247   // Acquire a lock, if we're parallel, to update possibly-shared
  4248   // variables.
  4249   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  4251     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4252     _summary_bytes_used -= pre_used;
  4253     _num_humongous_regions -= (int) cleared_h_regions;
  4254     _free_regions += freed_regions;
  4259 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  4260   while (list != NULL) {
  4261     guarantee( list->is_young(), "invariant" );
  4263     HeapWord* bottom = list->bottom();
  4264     HeapWord* end = list->end();
  4265     MemRegion mr(bottom, end);
  4266     ct_bs->dirty(mr);
  4268     list = list->get_next_young_region();
  4273 class G1ParCleanupCTTask : public AbstractGangTask {
  4274   CardTableModRefBS* _ct_bs;
  4275   G1CollectedHeap* _g1h;
  4276 public:
  4277   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  4278                      G1CollectedHeap* g1h) :
  4279     AbstractGangTask("G1 Par Cleanup CT Task"),
  4280     _ct_bs(ct_bs),
  4281     _g1h(g1h)
  4282   { }
  4284   void work(int i) {
  4285     HeapRegion* r;
  4286     while (r = _g1h->pop_dirty_cards_region()) {
  4287       clear_cards(r);
  4290   void clear_cards(HeapRegion* r) {
  4291     // Cards for Survivor and Scan-Only regions will be dirtied later.
  4292     if (!r->is_scan_only() && !r->is_survivor()) {
  4293       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  4296 };
  4299 void G1CollectedHeap::cleanUpCardTable() {
  4300   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4301   double start = os::elapsedTime();
  4303   // Iterate over the dirty cards region list.
  4304   G1ParCleanupCTTask cleanup_task(ct_bs, this);
  4305   if (ParallelGCThreads > 0) {
  4306     set_par_threads(workers()->total_workers());
  4307     workers()->run_task(&cleanup_task);
  4308     set_par_threads(0);
  4309   } else {
  4310     while (_dirty_cards_region_list) {
  4311       HeapRegion* r = _dirty_cards_region_list;
  4312       cleanup_task.clear_cards(r);
  4313       _dirty_cards_region_list = r->get_next_dirty_cards_region();
  4314       if (_dirty_cards_region_list == r) {
  4315         // The last region.
  4316         _dirty_cards_region_list = NULL;
  4318       r->set_next_dirty_cards_region(NULL);
  4321   // now, redirty the cards of the scan-only and survivor regions
  4322   // (it seemed faster to do it this way, instead of iterating over
  4323   // all regions and then clearing / dirtying as appropriate)
  4324   dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
  4325   dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  4327   double elapsed = os::elapsedTime() - start;
  4328   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4332 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
  4333   if (g1_policy()->should_do_collection_pause(word_size)) {
  4334     do_collection_pause();
  4338 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4339   double young_time_ms     = 0.0;
  4340   double non_young_time_ms = 0.0;
  4342   G1CollectorPolicy* policy = g1_policy();
  4344   double start_sec = os::elapsedTime();
  4345   bool non_young = true;
  4347   HeapRegion* cur = cs_head;
  4348   int age_bound = -1;
  4349   size_t rs_lengths = 0;
  4351   while (cur != NULL) {
  4352     if (non_young) {
  4353       if (cur->is_young()) {
  4354         double end_sec = os::elapsedTime();
  4355         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4356         non_young_time_ms += elapsed_ms;
  4358         start_sec = os::elapsedTime();
  4359         non_young = false;
  4361     } else {
  4362       if (!cur->is_on_free_list()) {
  4363         double end_sec = os::elapsedTime();
  4364         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4365         young_time_ms += elapsed_ms;
  4367         start_sec = os::elapsedTime();
  4368         non_young = true;
  4372     rs_lengths += cur->rem_set()->occupied();
  4374     HeapRegion* next = cur->next_in_collection_set();
  4375     assert(cur->in_collection_set(), "bad CS");
  4376     cur->set_next_in_collection_set(NULL);
  4377     cur->set_in_collection_set(false);
  4379     if (cur->is_young()) {
  4380       int index = cur->young_index_in_cset();
  4381       guarantee( index != -1, "invariant" );
  4382       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4383       size_t words_survived = _surviving_young_words[index];
  4384       cur->record_surv_words_in_group(words_survived);
  4385     } else {
  4386       int index = cur->young_index_in_cset();
  4387       guarantee( index == -1, "invariant" );
  4390     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4391             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4392             "invariant" );
  4394     if (!cur->evacuation_failed()) {
  4395       // And the region is empty.
  4396       assert(!cur->is_empty(),
  4397              "Should not have empty regions in a CS.");
  4398       free_region(cur);
  4399     } else {
  4400       guarantee( !cur->is_scan_only(), "should not be scan only" );
  4401       cur->uninstall_surv_rate_group();
  4402       if (cur->is_young())
  4403         cur->set_young_index_in_cset(-1);
  4404       cur->set_not_young();
  4405       cur->set_evacuation_failed(false);
  4407     cur = next;
  4410   policy->record_max_rs_lengths(rs_lengths);
  4411   policy->cset_regions_freed();
  4413   double end_sec = os::elapsedTime();
  4414   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4415   if (non_young)
  4416     non_young_time_ms += elapsed_ms;
  4417   else
  4418     young_time_ms += elapsed_ms;
  4420   policy->record_young_free_cset_time_ms(young_time_ms);
  4421   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  4424 HeapRegion*
  4425 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  4426   assert(ZF_mon->owned_by_self(), "Precondition");
  4427   HeapRegion* res = pop_unclean_region_list_locked();
  4428   if (res != NULL) {
  4429     assert(!res->continuesHumongous() &&
  4430            res->zero_fill_state() != HeapRegion::Allocated,
  4431            "Only free regions on unclean list.");
  4432     if (zero_filled) {
  4433       res->ensure_zero_filled_locked();
  4434       res->set_zero_fill_allocated();
  4437   return res;
  4440 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  4441   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  4442   return alloc_region_from_unclean_list_locked(zero_filled);
  4445 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  4446   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4447   put_region_on_unclean_list_locked(r);
  4448   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4451 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  4452   MutexLockerEx x(Cleanup_mon);
  4453   set_unclean_regions_coming_locked(b);
  4456 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  4457   assert(Cleanup_mon->owned_by_self(), "Precondition");
  4458   _unclean_regions_coming = b;
  4459   // Wake up mutator threads that might be waiting for completeCleanup to
  4460   // finish.
  4461   if (!b) Cleanup_mon->notify_all();
  4464 void G1CollectedHeap::wait_for_cleanup_complete() {
  4465   MutexLockerEx x(Cleanup_mon);
  4466   wait_for_cleanup_complete_locked();
  4469 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  4470   assert(Cleanup_mon->owned_by_self(), "precondition");
  4471   while (_unclean_regions_coming) {
  4472     Cleanup_mon->wait();
  4476 void
  4477 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  4478   assert(ZF_mon->owned_by_self(), "precondition.");
  4479   _unclean_region_list.insert_before_head(r);
  4482 void
  4483 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  4484   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4485   prepend_region_list_on_unclean_list_locked(list);
  4486   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4489 void
  4490 G1CollectedHeap::
  4491 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  4492   assert(ZF_mon->owned_by_self(), "precondition.");
  4493   _unclean_region_list.prepend_list(list);
  4496 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  4497   assert(ZF_mon->owned_by_self(), "precondition.");
  4498   HeapRegion* res = _unclean_region_list.pop();
  4499   if (res != NULL) {
  4500     // Inform ZF thread that there's a new unclean head.
  4501     if (_unclean_region_list.hd() != NULL && should_zf())
  4502       ZF_mon->notify_all();
  4504   return res;
  4507 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  4508   assert(ZF_mon->owned_by_self(), "precondition.");
  4509   return _unclean_region_list.hd();
  4513 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  4514   assert(ZF_mon->owned_by_self(), "Precondition");
  4515   HeapRegion* r = peek_unclean_region_list_locked();
  4516   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
  4517     // Result of below must be equal to "r", since we hold the lock.
  4518     (void)pop_unclean_region_list_locked();
  4519     put_free_region_on_list_locked(r);
  4520     return true;
  4521   } else {
  4522     return false;
  4526 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  4527   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4528   return move_cleaned_region_to_free_list_locked();
  4532 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  4533   assert(ZF_mon->owned_by_self(), "precondition.");
  4534   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4535   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
  4536         "Regions on free list must be zero filled");
  4537   assert(!r->isHumongous(), "Must not be humongous.");
  4538   assert(r->is_empty(), "Better be empty");
  4539   assert(!r->is_on_free_list(),
  4540          "Better not already be on free list");
  4541   assert(!r->is_on_unclean_list(),
  4542          "Better not already be on unclean list");
  4543   r->set_on_free_list(true);
  4544   r->set_next_on_free_list(_free_region_list);
  4545   _free_region_list = r;
  4546   _free_region_list_size++;
  4547   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4550 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  4551   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4552   put_free_region_on_list_locked(r);
  4555 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  4556   assert(ZF_mon->owned_by_self(), "precondition.");
  4557   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4558   HeapRegion* res = _free_region_list;
  4559   if (res != NULL) {
  4560     _free_region_list = res->next_from_free_list();
  4561     _free_region_list_size--;
  4562     res->set_on_free_list(false);
  4563     res->set_next_on_free_list(NULL);
  4564     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4566   return res;
  4570 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  4571   // By self, or on behalf of self.
  4572   assert(Heap_lock->is_locked(), "Precondition");
  4573   HeapRegion* res = NULL;
  4574   bool first = true;
  4575   while (res == NULL) {
  4576     if (zero_filled || !first) {
  4577       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4578       res = pop_free_region_list_locked();
  4579       if (res != NULL) {
  4580         assert(!res->zero_fill_is_allocated(),
  4581                "No allocated regions on free list.");
  4582         res->set_zero_fill_allocated();
  4583       } else if (!first) {
  4584         break;  // We tried both, time to return NULL.
  4588     if (res == NULL) {
  4589       res = alloc_region_from_unclean_list(zero_filled);
  4591     assert(res == NULL ||
  4592            !zero_filled ||
  4593            res->zero_fill_is_allocated(),
  4594            "We must have allocated the region we're returning");
  4595     first = false;
  4597   return res;
  4600 void G1CollectedHeap::remove_allocated_regions_from_lists() {
  4601   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4603     HeapRegion* prev = NULL;
  4604     HeapRegion* cur = _unclean_region_list.hd();
  4605     while (cur != NULL) {
  4606       HeapRegion* next = cur->next_from_unclean_list();
  4607       if (cur->zero_fill_is_allocated()) {
  4608         // Remove from the list.
  4609         if (prev == NULL) {
  4610           (void)_unclean_region_list.pop();
  4611         } else {
  4612           _unclean_region_list.delete_after(prev);
  4614         cur->set_on_unclean_list(false);
  4615         cur->set_next_on_unclean_list(NULL);
  4616       } else {
  4617         prev = cur;
  4619       cur = next;
  4621     assert(_unclean_region_list.sz() == unclean_region_list_length(),
  4622            "Inv");
  4626     HeapRegion* prev = NULL;
  4627     HeapRegion* cur = _free_region_list;
  4628     while (cur != NULL) {
  4629       HeapRegion* next = cur->next_from_free_list();
  4630       if (cur->zero_fill_is_allocated()) {
  4631         // Remove from the list.
  4632         if (prev == NULL) {
  4633           _free_region_list = cur->next_from_free_list();
  4634         } else {
  4635           prev->set_next_on_free_list(cur->next_from_free_list());
  4637         cur->set_on_free_list(false);
  4638         cur->set_next_on_free_list(NULL);
  4639         _free_region_list_size--;
  4640       } else {
  4641         prev = cur;
  4643       cur = next;
  4645     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4649 bool G1CollectedHeap::verify_region_lists() {
  4650   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4651   return verify_region_lists_locked();
  4654 bool G1CollectedHeap::verify_region_lists_locked() {
  4655   HeapRegion* unclean = _unclean_region_list.hd();
  4656   while (unclean != NULL) {
  4657     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
  4658     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
  4659     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
  4660               "Everything else is possible.");
  4661     unclean = unclean->next_from_unclean_list();
  4663   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
  4665   HeapRegion* free_r = _free_region_list;
  4666   while (free_r != NULL) {
  4667     assert(free_r->is_on_free_list(), "Well, it is!");
  4668     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
  4669     switch (free_r->zero_fill_state()) {
  4670     case HeapRegion::NotZeroFilled:
  4671     case HeapRegion::ZeroFilling:
  4672       guarantee(false, "Should not be on free list.");
  4673       break;
  4674     default:
  4675       // Everything else is possible.
  4676       break;
  4678     free_r = free_r->next_from_free_list();
  4680   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  4681   // If we didn't do an assertion...
  4682   return true;
  4685 size_t G1CollectedHeap::free_region_list_length() {
  4686   assert(ZF_mon->owned_by_self(), "precondition.");
  4687   size_t len = 0;
  4688   HeapRegion* cur = _free_region_list;
  4689   while (cur != NULL) {
  4690     len++;
  4691     cur = cur->next_from_free_list();
  4693   return len;
  4696 size_t G1CollectedHeap::unclean_region_list_length() {
  4697   assert(ZF_mon->owned_by_self(), "precondition.");
  4698   return _unclean_region_list.length();
  4701 size_t G1CollectedHeap::n_regions() {
  4702   return _hrs->length();
  4705 size_t G1CollectedHeap::max_regions() {
  4706   return
  4707     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
  4708     HeapRegion::GrainBytes;
  4711 size_t G1CollectedHeap::free_regions() {
  4712   /* Possibly-expensive assert.
  4713   assert(_free_regions == count_free_regions(),
  4714          "_free_regions is off.");
  4715   */
  4716   return _free_regions;
  4719 bool G1CollectedHeap::should_zf() {
  4720   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
  4723 class RegionCounter: public HeapRegionClosure {
  4724   size_t _n;
  4725 public:
  4726   RegionCounter() : _n(0) {}
  4727   bool doHeapRegion(HeapRegion* r) {
  4728     if (r->is_empty()) {
  4729       assert(!r->isHumongous(), "H regions should not be empty.");
  4730       _n++;
  4732     return false;
  4734   int res() { return (int) _n; }
  4735 };
  4737 size_t G1CollectedHeap::count_free_regions() {
  4738   RegionCounter rc;
  4739   heap_region_iterate(&rc);
  4740   size_t n = rc.res();
  4741   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
  4742     n--;
  4743   return n;
  4746 size_t G1CollectedHeap::count_free_regions_list() {
  4747   size_t n = 0;
  4748   size_t o = 0;
  4749   ZF_mon->lock_without_safepoint_check();
  4750   HeapRegion* cur = _free_region_list;
  4751   while (cur != NULL) {
  4752     cur = cur->next_from_free_list();
  4753     n++;
  4755   size_t m = unclean_region_list_length();
  4756   ZF_mon->unlock();
  4757   return n + m;
  4760 bool G1CollectedHeap::should_set_young_locked() {
  4761   assert(heap_lock_held_for_gc(),
  4762               "the heap lock should already be held by or for this thread");
  4763   return  (g1_policy()->in_young_gc_mode() &&
  4764            g1_policy()->should_add_next_region_to_young_list());
  4767 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  4768   assert(heap_lock_held_for_gc(),
  4769               "the heap lock should already be held by or for this thread");
  4770   _young_list->push_region(hr);
  4771   g1_policy()->set_region_short_lived(hr);
  4774 class NoYoungRegionsClosure: public HeapRegionClosure {
  4775 private:
  4776   bool _success;
  4777 public:
  4778   NoYoungRegionsClosure() : _success(true) { }
  4779   bool doHeapRegion(HeapRegion* r) {
  4780     if (r->is_young()) {
  4781       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  4782                              r->bottom(), r->end());
  4783       _success = false;
  4785     return false;
  4787   bool success() { return _success; }
  4788 };
  4790 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
  4791                                              bool check_sample) {
  4792   bool ret = true;
  4794   ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
  4795   if (!ignore_scan_only_list) {
  4796     NoYoungRegionsClosure closure;
  4797     heap_region_iterate(&closure);
  4798     ret = ret && closure.success();
  4801   return ret;
  4804 void G1CollectedHeap::empty_young_list() {
  4805   assert(heap_lock_held_for_gc(),
  4806               "the heap lock should already be held by or for this thread");
  4807   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  4809   _young_list->empty_list();
  4812 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  4813   bool no_allocs = true;
  4814   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  4815     HeapRegion* r = _gc_alloc_regions[ap];
  4816     no_allocs = r == NULL || r->saved_mark_at_top();
  4818   return no_allocs;
  4821 void G1CollectedHeap::retire_all_alloc_regions() {
  4822   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  4823     HeapRegion* r = _gc_alloc_regions[ap];
  4824     if (r != NULL) {
  4825       // Check for aliases.
  4826       bool has_processed_alias = false;
  4827       for (int i = 0; i < ap; ++i) {
  4828         if (_gc_alloc_regions[i] == r) {
  4829           has_processed_alias = true;
  4830           break;
  4833       if (!has_processed_alias) {
  4834         retire_alloc_region(r, false /* par */);
  4841 // Done at the start of full GC.
  4842 void G1CollectedHeap::tear_down_region_lists() {
  4843   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4844   while (pop_unclean_region_list_locked() != NULL) ;
  4845   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
  4846          "Postconditions of loop.")
  4847   while (pop_free_region_list_locked() != NULL) ;
  4848   assert(_free_region_list == NULL, "Postcondition of loop.");
  4849   if (_free_region_list_size != 0) {
  4850     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
  4851     print_on(gclog_or_tty, true /* extended */);
  4853   assert(_free_region_list_size == 0, "Postconditions of loop.");
  4857 class RegionResetter: public HeapRegionClosure {
  4858   G1CollectedHeap* _g1;
  4859   int _n;
  4860 public:
  4861   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  4862   bool doHeapRegion(HeapRegion* r) {
  4863     if (r->continuesHumongous()) return false;
  4864     if (r->top() > r->bottom()) {
  4865       if (r->top() < r->end()) {
  4866         Copy::fill_to_words(r->top(),
  4867                           pointer_delta(r->end(), r->top()));
  4869       r->set_zero_fill_allocated();
  4870     } else {
  4871       assert(r->is_empty(), "tautology");
  4872       _n++;
  4873       switch (r->zero_fill_state()) {
  4874         case HeapRegion::NotZeroFilled:
  4875         case HeapRegion::ZeroFilling:
  4876           _g1->put_region_on_unclean_list_locked(r);
  4877           break;
  4878         case HeapRegion::Allocated:
  4879           r->set_zero_fill_complete();
  4880           // no break; go on to put on free list.
  4881         case HeapRegion::ZeroFilled:
  4882           _g1->put_free_region_on_list_locked(r);
  4883           break;
  4886     return false;
  4889   int getFreeRegionCount() {return _n;}
  4890 };
  4892 // Done at the end of full GC.
  4893 void G1CollectedHeap::rebuild_region_lists() {
  4894   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4895   // This needs to go at the end of the full GC.
  4896   RegionResetter rs;
  4897   heap_region_iterate(&rs);
  4898   _free_regions = rs.getFreeRegionCount();
  4899   // Tell the ZF thread it may have work to do.
  4900   if (should_zf()) ZF_mon->notify_all();
  4903 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  4904   G1CollectedHeap* _g1;
  4905   int _n;
  4906 public:
  4907   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  4908   bool doHeapRegion(HeapRegion* r) {
  4909     if (r->continuesHumongous()) return false;
  4910     if (r->top() > r->bottom()) {
  4911       // There are assertions in "set_zero_fill_needed()" below that
  4912       // require top() == bottom(), so this is technically illegal.
  4913       // We'll skirt the law here, by making that true temporarily.
  4914       DEBUG_ONLY(HeapWord* save_top = r->top();
  4915                  r->set_top(r->bottom()));
  4916       r->set_zero_fill_needed();
  4917       DEBUG_ONLY(r->set_top(save_top));
  4919     return false;
  4921 };
  4923 // Done at the start of full GC.
  4924 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  4925   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4926   // This needs to go at the end of the full GC.
  4927   UsedRegionsNeedZeroFillSetter rs;
  4928   heap_region_iterate(&rs);
  4931 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  4932   _refine_cte_cl->set_concurrent(concurrent);
  4935 #ifndef PRODUCT
  4937 class PrintHeapRegionClosure: public HeapRegionClosure {
  4938 public:
  4939   bool doHeapRegion(HeapRegion *r) {
  4940     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
  4941     if (r != NULL) {
  4942       if (r->is_on_free_list())
  4943         gclog_or_tty->print("Free ");
  4944       if (r->is_young())
  4945         gclog_or_tty->print("Young ");
  4946       if (r->isHumongous())
  4947         gclog_or_tty->print("Is Humongous ");
  4948       r->print();
  4950     return false;
  4952 };
  4954 class SortHeapRegionClosure : public HeapRegionClosure {
  4955   size_t young_regions,free_regions, unclean_regions;
  4956   size_t hum_regions, count;
  4957   size_t unaccounted, cur_unclean, cur_alloc;
  4958   size_t total_free;
  4959   HeapRegion* cur;
  4960 public:
  4961   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
  4962     free_regions(0), unclean_regions(0),
  4963     hum_regions(0),
  4964     count(0), unaccounted(0),
  4965     cur_alloc(0), total_free(0)
  4966   {}
  4967   bool doHeapRegion(HeapRegion *r) {
  4968     count++;
  4969     if (r->is_on_free_list()) free_regions++;
  4970     else if (r->is_on_unclean_list()) unclean_regions++;
  4971     else if (r->isHumongous())  hum_regions++;
  4972     else if (r->is_young()) young_regions++;
  4973     else if (r == cur) cur_alloc++;
  4974     else unaccounted++;
  4975     return false;
  4977   void print() {
  4978     total_free = free_regions + unclean_regions;
  4979     gclog_or_tty->print("%d regions\n", count);
  4980     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
  4981                         total_free, free_regions, unclean_regions);
  4982     gclog_or_tty->print("%d humongous %d young\n",
  4983                         hum_regions, young_regions);
  4984     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
  4985     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  4987 };
  4989 void G1CollectedHeap::print_region_counts() {
  4990   SortHeapRegionClosure sc(_cur_alloc_region);
  4991   PrintHeapRegionClosure cl;
  4992   heap_region_iterate(&cl);
  4993   heap_region_iterate(&sc);
  4994   sc.print();
  4995   print_region_accounting_info();
  4996 };
  4998 bool G1CollectedHeap::regions_accounted_for() {
  4999   // TODO: regions accounting for young/survivor/tenured
  5000   return true;
  5003 bool G1CollectedHeap::print_region_accounting_info() {
  5004   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
  5005                          free_regions(),
  5006                          count_free_regions(), count_free_regions_list(),
  5007                          _free_region_list_size, _unclean_region_list.sz());
  5008   gclog_or_tty->print_cr("cur_alloc: %d.",
  5009                          (_cur_alloc_region == NULL ? 0 : 1));
  5010   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
  5012   // TODO: check regions accounting for young/survivor/tenured
  5013   return true;
  5016 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5017   HeapRegion* hr = heap_region_containing(p);
  5018   if (hr == NULL) {
  5019     return is_in_permanent(p);
  5020   } else {
  5021     return hr->is_in(p);
  5024 #endif // PRODUCT
  5026 void G1CollectedHeap::g1_unimplemented() {
  5027   // Unimplemented();

mercurial