src/share/vm/opto/matcher.cpp

Tue, 16 Apr 2013 10:08:41 +0200

author
neliasso
date
Tue, 16 Apr 2013 10:08:41 +0200
changeset 4949
8373c19be854
parent 4479
b30b3c2a0cf2
child 5225
603ca7e51354
child 6441
d2907f74462e
permissions
-rw-r--r--

8011621: live_ranges_in_separate_class.patch
Reviewed-by: kvn, roland
Contributed-by: niclas.adlertz@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/idealGraphPrinter.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/opcodes.hpp"
    34 #include "opto/regmask.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "opto/runtime.hpp"
    37 #include "opto/type.hpp"
    38 #include "opto/vectornode.hpp"
    39 #include "runtime/atomic.hpp"
    40 #include "runtime/os.hpp"
    41 #ifdef TARGET_ARCH_MODEL_x86_32
    42 # include "adfiles/ad_x86_32.hpp"
    43 #endif
    44 #ifdef TARGET_ARCH_MODEL_x86_64
    45 # include "adfiles/ad_x86_64.hpp"
    46 #endif
    47 #ifdef TARGET_ARCH_MODEL_sparc
    48 # include "adfiles/ad_sparc.hpp"
    49 #endif
    50 #ifdef TARGET_ARCH_MODEL_zero
    51 # include "adfiles/ad_zero.hpp"
    52 #endif
    53 #ifdef TARGET_ARCH_MODEL_arm
    54 # include "adfiles/ad_arm.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_MODEL_ppc
    57 # include "adfiles/ad_ppc.hpp"
    58 #endif
    60 OptoReg::Name OptoReg::c_frame_pointer;
    62 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    63 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    64 RegMask Matcher::STACK_ONLY_mask;
    65 RegMask Matcher::c_frame_ptr_mask;
    66 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    67 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    69 //---------------------------Matcher-------------------------------------------
    70 Matcher::Matcher( Node_List &proj_list ) :
    71   PhaseTransform( Phase::Ins_Select ),
    72 #ifdef ASSERT
    73   _old2new_map(C->comp_arena()),
    74   _new2old_map(C->comp_arena()),
    75 #endif
    76   _shared_nodes(C->comp_arena()),
    77   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    78   _swallowed(swallowed),
    79   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    80   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    81   _must_clone(must_clone), _proj_list(proj_list),
    82   _register_save_policy(register_save_policy),
    83   _c_reg_save_policy(c_reg_save_policy),
    84   _register_save_type(register_save_type),
    85   _ruleName(ruleName),
    86   _allocation_started(false),
    87   _states_arena(Chunk::medium_size),
    88   _visited(&_states_arena),
    89   _shared(&_states_arena),
    90   _dontcare(&_states_arena) {
    91   C->set_matcher(this);
    93   idealreg2spillmask  [Op_RegI] = NULL;
    94   idealreg2spillmask  [Op_RegN] = NULL;
    95   idealreg2spillmask  [Op_RegL] = NULL;
    96   idealreg2spillmask  [Op_RegF] = NULL;
    97   idealreg2spillmask  [Op_RegD] = NULL;
    98   idealreg2spillmask  [Op_RegP] = NULL;
    99   idealreg2spillmask  [Op_VecS] = NULL;
   100   idealreg2spillmask  [Op_VecD] = NULL;
   101   idealreg2spillmask  [Op_VecX] = NULL;
   102   idealreg2spillmask  [Op_VecY] = NULL;
   104   idealreg2debugmask  [Op_RegI] = NULL;
   105   idealreg2debugmask  [Op_RegN] = NULL;
   106   idealreg2debugmask  [Op_RegL] = NULL;
   107   idealreg2debugmask  [Op_RegF] = NULL;
   108   idealreg2debugmask  [Op_RegD] = NULL;
   109   idealreg2debugmask  [Op_RegP] = NULL;
   110   idealreg2debugmask  [Op_VecS] = NULL;
   111   idealreg2debugmask  [Op_VecD] = NULL;
   112   idealreg2debugmask  [Op_VecX] = NULL;
   113   idealreg2debugmask  [Op_VecY] = NULL;
   115   idealreg2mhdebugmask[Op_RegI] = NULL;
   116   idealreg2mhdebugmask[Op_RegN] = NULL;
   117   idealreg2mhdebugmask[Op_RegL] = NULL;
   118   idealreg2mhdebugmask[Op_RegF] = NULL;
   119   idealreg2mhdebugmask[Op_RegD] = NULL;
   120   idealreg2mhdebugmask[Op_RegP] = NULL;
   121   idealreg2mhdebugmask[Op_VecS] = NULL;
   122   idealreg2mhdebugmask[Op_VecD] = NULL;
   123   idealreg2mhdebugmask[Op_VecX] = NULL;
   124   idealreg2mhdebugmask[Op_VecY] = NULL;
   126   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
   127 }
   129 //------------------------------warp_incoming_stk_arg------------------------
   130 // This warps a VMReg into an OptoReg::Name
   131 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
   132   OptoReg::Name warped;
   133   if( reg->is_stack() ) {  // Stack slot argument?
   134     warped = OptoReg::add(_old_SP, reg->reg2stack() );
   135     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
   136     if( warped >= _in_arg_limit )
   137       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
   138     if (!RegMask::can_represent_arg(warped)) {
   139       // the compiler cannot represent this method's calling sequence
   140       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
   141       return OptoReg::Bad;
   142     }
   143     return warped;
   144   }
   145   return OptoReg::as_OptoReg(reg);
   146 }
   148 //---------------------------compute_old_SP------------------------------------
   149 OptoReg::Name Compile::compute_old_SP() {
   150   int fixed    = fixed_slots();
   151   int preserve = in_preserve_stack_slots();
   152   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   153 }
   157 #ifdef ASSERT
   158 void Matcher::verify_new_nodes_only(Node* xroot) {
   159   // Make sure that the new graph only references new nodes
   160   ResourceMark rm;
   161   Unique_Node_List worklist;
   162   VectorSet visited(Thread::current()->resource_area());
   163   worklist.push(xroot);
   164   while (worklist.size() > 0) {
   165     Node* n = worklist.pop();
   166     visited <<= n->_idx;
   167     assert(C->node_arena()->contains(n), "dead node");
   168     for (uint j = 0; j < n->req(); j++) {
   169       Node* in = n->in(j);
   170       if (in != NULL) {
   171         assert(C->node_arena()->contains(in), "dead node");
   172         if (!visited.test(in->_idx)) {
   173           worklist.push(in);
   174         }
   175       }
   176     }
   177   }
   178 }
   179 #endif
   182 //---------------------------match---------------------------------------------
   183 void Matcher::match( ) {
   184   if( MaxLabelRootDepth < 100 ) { // Too small?
   185     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
   186     MaxLabelRootDepth = 100;
   187   }
   188   // One-time initialization of some register masks.
   189   init_spill_mask( C->root()->in(1) );
   190   _return_addr_mask = return_addr();
   191 #ifdef _LP64
   192   // Pointers take 2 slots in 64-bit land
   193   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   194 #endif
   196   // Map a Java-signature return type into return register-value
   197   // machine registers for 0, 1 and 2 returned values.
   198   const TypeTuple *range = C->tf()->range();
   199   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   200     // Get ideal-register return type
   201     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
   202     // Get machine return register
   203     uint sop = C->start()->Opcode();
   204     OptoRegPair regs = return_value(ireg, false);
   206     // And mask for same
   207     _return_value_mask = RegMask(regs.first());
   208     if( OptoReg::is_valid(regs.second()) )
   209       _return_value_mask.Insert(regs.second());
   210   }
   212   // ---------------
   213   // Frame Layout
   215   // Need the method signature to determine the incoming argument types,
   216   // because the types determine which registers the incoming arguments are
   217   // in, and this affects the matched code.
   218   const TypeTuple *domain = C->tf()->domain();
   219   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   220   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   221   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   222   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   223   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   224   uint i;
   225   for( i = 0; i<argcnt; i++ ) {
   226     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   227   }
   229   // Pass array of ideal registers and length to USER code (from the AD file)
   230   // that will convert this to an array of register numbers.
   231   const StartNode *start = C->start();
   232   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   233 #ifdef ASSERT
   234   // Sanity check users' calling convention.  Real handy while trying to
   235   // get the initial port correct.
   236   { for (uint i = 0; i<argcnt; i++) {
   237       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   238         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   239         _parm_regs[i].set_bad();
   240         continue;
   241       }
   242       VMReg parm_reg = vm_parm_regs[i].first();
   243       assert(parm_reg->is_valid(), "invalid arg?");
   244       if (parm_reg->is_reg()) {
   245         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   246         assert(can_be_java_arg(opto_parm_reg) ||
   247                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   248                opto_parm_reg == inline_cache_reg(),
   249                "parameters in register must be preserved by runtime stubs");
   250       }
   251       for (uint j = 0; j < i; j++) {
   252         assert(parm_reg != vm_parm_regs[j].first(),
   253                "calling conv. must produce distinct regs");
   254       }
   255     }
   256   }
   257 #endif
   259   // Do some initial frame layout.
   261   // Compute the old incoming SP (may be called FP) as
   262   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   263   _old_SP = C->compute_old_SP();
   264   assert( is_even(_old_SP), "must be even" );
   266   // Compute highest incoming stack argument as
   267   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   268   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   269   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   270   for( i = 0; i < argcnt; i++ ) {
   271     // Permit args to have no register
   272     _calling_convention_mask[i].Clear();
   273     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   274       continue;
   275     }
   276     // calling_convention returns stack arguments as a count of
   277     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   278     // the allocators point of view, taking into account all the
   279     // preserve area, locks & pad2.
   281     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   282     if( OptoReg::is_valid(reg1))
   283       _calling_convention_mask[i].Insert(reg1);
   285     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   286     if( OptoReg::is_valid(reg2))
   287       _calling_convention_mask[i].Insert(reg2);
   289     // Saved biased stack-slot register number
   290     _parm_regs[i].set_pair(reg2, reg1);
   291   }
   293   // Finally, make sure the incoming arguments take up an even number of
   294   // words, in case the arguments or locals need to contain doubleword stack
   295   // slots.  The rest of the system assumes that stack slot pairs (in
   296   // particular, in the spill area) which look aligned will in fact be
   297   // aligned relative to the stack pointer in the target machine.  Double
   298   // stack slots will always be allocated aligned.
   299   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   301   // Compute highest outgoing stack argument as
   302   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   303   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   304   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   306   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
   307     // the compiler cannot represent this method's calling sequence
   308     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   309   }
   311   if (C->failing())  return;  // bailed out on incoming arg failure
   313   // ---------------
   314   // Collect roots of matcher trees.  Every node for which
   315   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   316   // can be a valid interior of some tree.
   317   find_shared( C->root() );
   318   find_shared( C->top() );
   320   C->print_method("Before Matching");
   322   // Create new ideal node ConP #NULL even if it does exist in old space
   323   // to avoid false sharing if the corresponding mach node is not used.
   324   // The corresponding mach node is only used in rare cases for derived
   325   // pointers.
   326   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
   328   // Swap out to old-space; emptying new-space
   329   Arena *old = C->node_arena()->move_contents(C->old_arena());
   331   // Save debug and profile information for nodes in old space:
   332   _old_node_note_array = C->node_note_array();
   333   if (_old_node_note_array != NULL) {
   334     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   335                            (C->comp_arena(), _old_node_note_array->length(),
   336                             0, NULL));
   337   }
   339   // Pre-size the new_node table to avoid the need for range checks.
   340   grow_new_node_array(C->unique());
   342   // Reset node counter so MachNodes start with _idx at 0
   343   int nodes = C->unique(); // save value
   344   C->set_unique(0);
   345   C->reset_dead_node_list();
   347   // Recursively match trees from old space into new space.
   348   // Correct leaves of new-space Nodes; they point to old-space.
   349   _visited.Clear();             // Clear visit bits for xform call
   350   C->set_cached_top_node(xform( C->top(), nodes ));
   351   if (!C->failing()) {
   352     Node* xroot =        xform( C->root(), 1 );
   353     if (xroot == NULL) {
   354       Matcher::soft_match_failure();  // recursive matching process failed
   355       C->record_method_not_compilable("instruction match failed");
   356     } else {
   357       // During matching shared constants were attached to C->root()
   358       // because xroot wasn't available yet, so transfer the uses to
   359       // the xroot.
   360       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   361         Node* n = C->root()->fast_out(j);
   362         if (C->node_arena()->contains(n)) {
   363           assert(n->in(0) == C->root(), "should be control user");
   364           n->set_req(0, xroot);
   365           --j;
   366           --jmax;
   367         }
   368       }
   370       // Generate new mach node for ConP #NULL
   371       assert(new_ideal_null != NULL, "sanity");
   372       _mach_null = match_tree(new_ideal_null);
   373       // Don't set control, it will confuse GCM since there are no uses.
   374       // The control will be set when this node is used first time
   375       // in find_base_for_derived().
   376       assert(_mach_null != NULL, "");
   378       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   380 #ifdef ASSERT
   381       verify_new_nodes_only(xroot);
   382 #endif
   383     }
   384   }
   385   if (C->top() == NULL || C->root() == NULL) {
   386     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   387   }
   388   if (C->failing()) {
   389     // delete old;
   390     old->destruct_contents();
   391     return;
   392   }
   393   assert( C->top(), "" );
   394   assert( C->root(), "" );
   395   validate_null_checks();
   397   // Now smoke old-space
   398   NOT_DEBUG( old->destruct_contents() );
   400   // ------------------------
   401   // Set up save-on-entry registers
   402   Fixup_Save_On_Entry( );
   403 }
   406 //------------------------------Fixup_Save_On_Entry----------------------------
   407 // The stated purpose of this routine is to take care of save-on-entry
   408 // registers.  However, the overall goal of the Match phase is to convert into
   409 // machine-specific instructions which have RegMasks to guide allocation.
   410 // So what this procedure really does is put a valid RegMask on each input
   411 // to the machine-specific variations of all Return, TailCall and Halt
   412 // instructions.  It also adds edgs to define the save-on-entry values (and of
   413 // course gives them a mask).
   415 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   416   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   417   // Do all the pre-defined register masks
   418   rms[TypeFunc::Control  ] = RegMask::Empty;
   419   rms[TypeFunc::I_O      ] = RegMask::Empty;
   420   rms[TypeFunc::Memory   ] = RegMask::Empty;
   421   rms[TypeFunc::ReturnAdr] = ret_adr;
   422   rms[TypeFunc::FramePtr ] = fp;
   423   return rms;
   424 }
   426 //---------------------------init_first_stack_mask-----------------------------
   427 // Create the initial stack mask used by values spilling to the stack.
   428 // Disallow any debug info in outgoing argument areas by setting the
   429 // initial mask accordingly.
   430 void Matcher::init_first_stack_mask() {
   432   // Allocate storage for spill masks as masks for the appropriate load type.
   433   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
   435   idealreg2spillmask  [Op_RegN] = &rms[0];
   436   idealreg2spillmask  [Op_RegI] = &rms[1];
   437   idealreg2spillmask  [Op_RegL] = &rms[2];
   438   idealreg2spillmask  [Op_RegF] = &rms[3];
   439   idealreg2spillmask  [Op_RegD] = &rms[4];
   440   idealreg2spillmask  [Op_RegP] = &rms[5];
   442   idealreg2debugmask  [Op_RegN] = &rms[6];
   443   idealreg2debugmask  [Op_RegI] = &rms[7];
   444   idealreg2debugmask  [Op_RegL] = &rms[8];
   445   idealreg2debugmask  [Op_RegF] = &rms[9];
   446   idealreg2debugmask  [Op_RegD] = &rms[10];
   447   idealreg2debugmask  [Op_RegP] = &rms[11];
   449   idealreg2mhdebugmask[Op_RegN] = &rms[12];
   450   idealreg2mhdebugmask[Op_RegI] = &rms[13];
   451   idealreg2mhdebugmask[Op_RegL] = &rms[14];
   452   idealreg2mhdebugmask[Op_RegF] = &rms[15];
   453   idealreg2mhdebugmask[Op_RegD] = &rms[16];
   454   idealreg2mhdebugmask[Op_RegP] = &rms[17];
   456   idealreg2spillmask  [Op_VecS] = &rms[18];
   457   idealreg2spillmask  [Op_VecD] = &rms[19];
   458   idealreg2spillmask  [Op_VecX] = &rms[20];
   459   idealreg2spillmask  [Op_VecY] = &rms[21];
   461   OptoReg::Name i;
   463   // At first, start with the empty mask
   464   C->FIRST_STACK_mask().Clear();
   466   // Add in the incoming argument area
   467   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   468   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
   469     C->FIRST_STACK_mask().Insert(i);
   471   // Add in all bits past the outgoing argument area
   472   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
   473             "must be able to represent all call arguments in reg mask");
   474   init = _out_arg_limit;
   475   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   476     C->FIRST_STACK_mask().Insert(i);
   478   // Finally, set the "infinite stack" bit.
   479   C->FIRST_STACK_mask().set_AllStack();
   481   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   482   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
   483   // Keep spill masks aligned.
   484   aligned_stack_mask.clear_to_pairs();
   485   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   487   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   488 #ifdef _LP64
   489   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   490    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
   491    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
   492 #else
   493    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   494 #endif
   495   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   496    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   497   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   498    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
   499   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   500    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   501   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   502    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
   504   if (Matcher::vector_size_supported(T_BYTE,4)) {
   505     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
   506      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
   507   }
   508   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   509     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
   510      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
   511   }
   512   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   513      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
   514      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   515     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
   516      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
   517   }
   518   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   519      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
   520      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   521     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
   522      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
   523   }
   524    if (UseFPUForSpilling) {
   525      // This mask logic assumes that the spill operations are
   526      // symmetric and that the registers involved are the same size.
   527      // On sparc for instance we may have to use 64 bit moves will
   528      // kill 2 registers when used with F0-F31.
   529      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
   530      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
   531 #ifdef _LP64
   532      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
   533      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   534      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   535      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
   536 #else
   537      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
   538 #ifdef ARM
   539      // ARM has support for moving 64bit values between a pair of
   540      // integer registers and a double register
   541      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   542      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   543 #endif
   544 #endif
   545    }
   547   // Make up debug masks.  Any spill slot plus callee-save registers.
   548   // Caller-save registers are assumed to be trashable by the various
   549   // inline-cache fixup routines.
   550   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
   551   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
   552   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
   553   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
   554   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
   555   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
   557   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
   558   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   559   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   560   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   561   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   562   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   564   // Prevent stub compilations from attempting to reference
   565   // callee-saved registers from debug info
   566   bool exclude_soe = !Compile::current()->is_method_compilation();
   568   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   569     // registers the caller has to save do not work
   570     if( _register_save_policy[i] == 'C' ||
   571         _register_save_policy[i] == 'A' ||
   572         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   573       idealreg2debugmask  [Op_RegN]->Remove(i);
   574       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
   575       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
   576       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
   577       idealreg2debugmask  [Op_RegD]->Remove(i);
   578       idealreg2debugmask  [Op_RegP]->Remove(i);
   580       idealreg2mhdebugmask[Op_RegN]->Remove(i);
   581       idealreg2mhdebugmask[Op_RegI]->Remove(i);
   582       idealreg2mhdebugmask[Op_RegL]->Remove(i);
   583       idealreg2mhdebugmask[Op_RegF]->Remove(i);
   584       idealreg2mhdebugmask[Op_RegD]->Remove(i);
   585       idealreg2mhdebugmask[Op_RegP]->Remove(i);
   586     }
   587   }
   589   // Subtract the register we use to save the SP for MethodHandle
   590   // invokes to from the debug mask.
   591   const RegMask save_mask = method_handle_invoke_SP_save_mask();
   592   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
   593   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
   594   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
   595   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
   596   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
   597   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
   598 }
   600 //---------------------------is_save_on_entry----------------------------------
   601 bool Matcher::is_save_on_entry( int reg ) {
   602   return
   603     _register_save_policy[reg] == 'E' ||
   604     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   605     // Also save argument registers in the trampolining stubs
   606     (C->save_argument_registers() && is_spillable_arg(reg));
   607 }
   609 //---------------------------Fixup_Save_On_Entry-------------------------------
   610 void Matcher::Fixup_Save_On_Entry( ) {
   611   init_first_stack_mask();
   613   Node *root = C->root();       // Short name for root
   614   // Count number of save-on-entry registers.
   615   uint soe_cnt = number_of_saved_registers();
   616   uint i;
   618   // Find the procedure Start Node
   619   StartNode *start = C->start();
   620   assert( start, "Expect a start node" );
   622   // Save argument registers in the trampolining stubs
   623   if( C->save_argument_registers() )
   624     for( i = 0; i < _last_Mach_Reg; i++ )
   625       if( is_spillable_arg(i) )
   626         soe_cnt++;
   628   // Input RegMask array shared by all Returns.
   629   // The type for doubles and longs has a count of 2, but
   630   // there is only 1 returned value
   631   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   632   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   633   // Returns have 0 or 1 returned values depending on call signature.
   634   // Return register is specified by return_value in the AD file.
   635   if (ret_edge_cnt > TypeFunc::Parms)
   636     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   638   // Input RegMask array shared by all Rethrows.
   639   uint reth_edge_cnt = TypeFunc::Parms+1;
   640   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   641   // Rethrow takes exception oop only, but in the argument 0 slot.
   642   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   643 #ifdef _LP64
   644   // Need two slots for ptrs in 64-bit land
   645   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   646 #endif
   648   // Input RegMask array shared by all TailCalls
   649   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   650   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   652   // Input RegMask array shared by all TailJumps
   653   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   654   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   656   // TailCalls have 2 returned values (target & moop), whose masks come
   657   // from the usual MachNode/MachOper mechanism.  Find a sample
   658   // TailCall to extract these masks and put the correct masks into
   659   // the tail_call_rms array.
   660   for( i=1; i < root->req(); i++ ) {
   661     MachReturnNode *m = root->in(i)->as_MachReturn();
   662     if( m->ideal_Opcode() == Op_TailCall ) {
   663       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   664       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   665       break;
   666     }
   667   }
   669   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   670   // from the usual MachNode/MachOper mechanism.  Find a sample
   671   // TailJump to extract these masks and put the correct masks into
   672   // the tail_jump_rms array.
   673   for( i=1; i < root->req(); i++ ) {
   674     MachReturnNode *m = root->in(i)->as_MachReturn();
   675     if( m->ideal_Opcode() == Op_TailJump ) {
   676       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   677       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   678       break;
   679     }
   680   }
   682   // Input RegMask array shared by all Halts
   683   uint halt_edge_cnt = TypeFunc::Parms;
   684   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   686   // Capture the return input masks into each exit flavor
   687   for( i=1; i < root->req(); i++ ) {
   688     MachReturnNode *exit = root->in(i)->as_MachReturn();
   689     switch( exit->ideal_Opcode() ) {
   690       case Op_Return   : exit->_in_rms = ret_rms;  break;
   691       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   692       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   693       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   694       case Op_Halt     : exit->_in_rms = halt_rms; break;
   695       default          : ShouldNotReachHere();
   696     }
   697   }
   699   // Next unused projection number from Start.
   700   int proj_cnt = C->tf()->domain()->cnt();
   702   // Do all the save-on-entry registers.  Make projections from Start for
   703   // them, and give them a use at the exit points.  To the allocator, they
   704   // look like incoming register arguments.
   705   for( i = 0; i < _last_Mach_Reg; i++ ) {
   706     if( is_save_on_entry(i) ) {
   708       // Add the save-on-entry to the mask array
   709       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   710       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   711       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   712       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   713       // Halts need the SOE registers, but only in the stack as debug info.
   714       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   715       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   717       Node *mproj;
   719       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   720       // into a single RegD.
   721       if( (i&1) == 0 &&
   722           _register_save_type[i  ] == Op_RegF &&
   723           _register_save_type[i+1] == Op_RegF &&
   724           is_save_on_entry(i+1) ) {
   725         // Add other bit for double
   726         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   727         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   728         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   729         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   730         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   731         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   732         proj_cnt += 2;          // Skip 2 for doubles
   733       }
   734       else if( (i&1) == 1 &&    // Else check for high half of double
   735                _register_save_type[i-1] == Op_RegF &&
   736                _register_save_type[i  ] == Op_RegF &&
   737                is_save_on_entry(i-1) ) {
   738         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   739         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   740         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   741         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   742         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   743         mproj = C->top();
   744       }
   745       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   746       // into a single RegL.
   747       else if( (i&1) == 0 &&
   748           _register_save_type[i  ] == Op_RegI &&
   749           _register_save_type[i+1] == Op_RegI &&
   750         is_save_on_entry(i+1) ) {
   751         // Add other bit for long
   752         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   753         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   754         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   755         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   756         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   757         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   758         proj_cnt += 2;          // Skip 2 for longs
   759       }
   760       else if( (i&1) == 1 &&    // Else check for high half of long
   761                _register_save_type[i-1] == Op_RegI &&
   762                _register_save_type[i  ] == Op_RegI &&
   763                is_save_on_entry(i-1) ) {
   764         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   765         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   766         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   767         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   768         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   769         mproj = C->top();
   770       } else {
   771         // Make a projection for it off the Start
   772         mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   773       }
   775       ret_edge_cnt ++;
   776       reth_edge_cnt ++;
   777       tail_call_edge_cnt ++;
   778       tail_jump_edge_cnt ++;
   779       halt_edge_cnt ++;
   781       // Add a use of the SOE register to all exit paths
   782       for( uint j=1; j < root->req(); j++ )
   783         root->in(j)->add_req(mproj);
   784     } // End of if a save-on-entry register
   785   } // End of for all machine registers
   786 }
   788 //------------------------------init_spill_mask--------------------------------
   789 void Matcher::init_spill_mask( Node *ret ) {
   790   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   792   OptoReg::c_frame_pointer = c_frame_pointer();
   793   c_frame_ptr_mask = c_frame_pointer();
   794 #ifdef _LP64
   795   // pointers are twice as big
   796   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   797 #endif
   799   // Start at OptoReg::stack0()
   800   STACK_ONLY_mask.Clear();
   801   OptoReg::Name init = OptoReg::stack2reg(0);
   802   // STACK_ONLY_mask is all stack bits
   803   OptoReg::Name i;
   804   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   805     STACK_ONLY_mask.Insert(i);
   806   // Also set the "infinite stack" bit.
   807   STACK_ONLY_mask.set_AllStack();
   809   // Copy the register names over into the shared world
   810   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   811     // SharedInfo::regName[i] = regName[i];
   812     // Handy RegMasks per machine register
   813     mreg2regmask[i].Insert(i);
   814   }
   816   // Grab the Frame Pointer
   817   Node *fp  = ret->in(TypeFunc::FramePtr);
   818   Node *mem = ret->in(TypeFunc::Memory);
   819   const TypePtr* atp = TypePtr::BOTTOM;
   820   // Share frame pointer while making spill ops
   821   set_shared(fp);
   823   // Compute generic short-offset Loads
   824 #ifdef _LP64
   825   MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   826 #endif
   827   MachNode *spillI  = match_tree(new (C) LoadINode(NULL,mem,fp,atp));
   828   MachNode *spillL  = match_tree(new (C) LoadLNode(NULL,mem,fp,atp));
   829   MachNode *spillF  = match_tree(new (C) LoadFNode(NULL,mem,fp,atp));
   830   MachNode *spillD  = match_tree(new (C) LoadDNode(NULL,mem,fp,atp));
   831   MachNode *spillP  = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   832   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   833          spillD != NULL && spillP != NULL, "");
   835   // Get the ADLC notion of the right regmask, for each basic type.
   836 #ifdef _LP64
   837   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
   838 #endif
   839   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   840   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   841   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   842   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   843   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   845   // Vector regmasks.
   846   if (Matcher::vector_size_supported(T_BYTE,4)) {
   847     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
   848     MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
   849     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
   850   }
   851   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   852     MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
   853     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
   854   }
   855   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   856     MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
   857     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
   858   }
   859   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   860     MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
   861     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
   862   }
   863 }
   865 #ifdef ASSERT
   866 static void match_alias_type(Compile* C, Node* n, Node* m) {
   867   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   868   const TypePtr* nat = n->adr_type();
   869   const TypePtr* mat = m->adr_type();
   870   int nidx = C->get_alias_index(nat);
   871   int midx = C->get_alias_index(mat);
   872   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   873   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   874     for (uint i = 1; i < n->req(); i++) {
   875       Node* n1 = n->in(i);
   876       const TypePtr* n1at = n1->adr_type();
   877       if (n1at != NULL) {
   878         nat = n1at;
   879         nidx = C->get_alias_index(n1at);
   880       }
   881     }
   882   }
   883   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   884   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   885     switch (n->Opcode()) {
   886     case Op_PrefetchRead:
   887     case Op_PrefetchWrite:
   888     case Op_PrefetchAllocation:
   889       nidx = Compile::AliasIdxRaw;
   890       nat = TypeRawPtr::BOTTOM;
   891       break;
   892     }
   893   }
   894   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   895     switch (n->Opcode()) {
   896     case Op_ClearArray:
   897       midx = Compile::AliasIdxRaw;
   898       mat = TypeRawPtr::BOTTOM;
   899       break;
   900     }
   901   }
   902   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   903     switch (n->Opcode()) {
   904     case Op_Return:
   905     case Op_Rethrow:
   906     case Op_Halt:
   907     case Op_TailCall:
   908     case Op_TailJump:
   909       nidx = Compile::AliasIdxBot;
   910       nat = TypePtr::BOTTOM;
   911       break;
   912     }
   913   }
   914   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   915     switch (n->Opcode()) {
   916     case Op_StrComp:
   917     case Op_StrEquals:
   918     case Op_StrIndexOf:
   919     case Op_AryEq:
   920     case Op_MemBarVolatile:
   921     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   922     case Op_EncodeISOArray:
   923       nidx = Compile::AliasIdxTop;
   924       nat = NULL;
   925       break;
   926     }
   927   }
   928   if (nidx != midx) {
   929     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   930       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   931       n->dump();
   932       m->dump();
   933     }
   934     assert(C->subsume_loads() && C->must_alias(nat, midx),
   935            "must not lose alias info when matching");
   936   }
   937 }
   938 #endif
   941 //------------------------------MStack-----------------------------------------
   942 // State and MStack class used in xform() and find_shared() iterative methods.
   943 enum Node_State { Pre_Visit,  // node has to be pre-visited
   944                       Visit,  // visit node
   945                  Post_Visit,  // post-visit node
   946              Alt_Post_Visit   // alternative post-visit path
   947                 };
   949 class MStack: public Node_Stack {
   950   public:
   951     MStack(int size) : Node_Stack(size) { }
   953     void push(Node *n, Node_State ns) {
   954       Node_Stack::push(n, (uint)ns);
   955     }
   956     void push(Node *n, Node_State ns, Node *parent, int indx) {
   957       ++_inode_top;
   958       if ((_inode_top + 1) >= _inode_max) grow();
   959       _inode_top->node = parent;
   960       _inode_top->indx = (uint)indx;
   961       ++_inode_top;
   962       _inode_top->node = n;
   963       _inode_top->indx = (uint)ns;
   964     }
   965     Node *parent() {
   966       pop();
   967       return node();
   968     }
   969     Node_State state() const {
   970       return (Node_State)index();
   971     }
   972     void set_state(Node_State ns) {
   973       set_index((uint)ns);
   974     }
   975 };
   978 //------------------------------xform------------------------------------------
   979 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
   980 // Node in new-space.  Given a new-space Node, recursively walk his children.
   981 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
   982 Node *Matcher::xform( Node *n, int max_stack ) {
   983   // Use one stack to keep both: child's node/state and parent's node/index
   984   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
   985   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
   987   while (mstack.is_nonempty()) {
   988     n = mstack.node();          // Leave node on stack
   989     Node_State nstate = mstack.state();
   990     if (nstate == Visit) {
   991       mstack.set_state(Post_Visit);
   992       Node *oldn = n;
   993       // Old-space or new-space check
   994       if (!C->node_arena()->contains(n)) {
   995         // Old space!
   996         Node* m;
   997         if (has_new_node(n)) {  // Not yet Label/Reduced
   998           m = new_node(n);
   999         } else {
  1000           if (!is_dontcare(n)) { // Matcher can match this guy
  1001             // Calls match special.  They match alone with no children.
  1002             // Their children, the incoming arguments, match normally.
  1003             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
  1004             if (C->failing())  return NULL;
  1005             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
  1006           } else {                  // Nothing the matcher cares about
  1007             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
  1008               // Convert to machine-dependent projection
  1009               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
  1010 #ifdef ASSERT
  1011               _new2old_map.map(m->_idx, n);
  1012 #endif
  1013               if (m->in(0) != NULL) // m might be top
  1014                 collect_null_checks(m, n);
  1015             } else {                // Else just a regular 'ol guy
  1016               m = n->clone();       // So just clone into new-space
  1017 #ifdef ASSERT
  1018               _new2old_map.map(m->_idx, n);
  1019 #endif
  1020               // Def-Use edges will be added incrementally as Uses
  1021               // of this node are matched.
  1022               assert(m->outcnt() == 0, "no Uses of this clone yet");
  1026           set_new_node(n, m);       // Map old to new
  1027           if (_old_node_note_array != NULL) {
  1028             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
  1029                                                   n->_idx);
  1030             C->set_node_notes_at(m->_idx, nn);
  1032           debug_only(match_alias_type(C, n, m));
  1034         n = m;    // n is now a new-space node
  1035         mstack.set_node(n);
  1038       // New space!
  1039       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
  1041       int i;
  1042       // Put precedence edges on stack first (match them last).
  1043       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
  1044         Node *m = oldn->in(i);
  1045         if (m == NULL) break;
  1046         // set -1 to call add_prec() instead of set_req() during Step1
  1047         mstack.push(m, Visit, n, -1);
  1050       // For constant debug info, I'd rather have unmatched constants.
  1051       int cnt = n->req();
  1052       JVMState* jvms = n->jvms();
  1053       int debug_cnt = jvms ? jvms->debug_start() : cnt;
  1055       // Now do only debug info.  Clone constants rather than matching.
  1056       // Constants are represented directly in the debug info without
  1057       // the need for executable machine instructions.
  1058       // Monitor boxes are also represented directly.
  1059       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
  1060         Node *m = n->in(i);          // Get input
  1061         int op = m->Opcode();
  1062         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
  1063         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
  1064             op == Op_ConF || op == Op_ConD || op == Op_ConL
  1065             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
  1066             ) {
  1067           m = m->clone();
  1068 #ifdef ASSERT
  1069           _new2old_map.map(m->_idx, n);
  1070 #endif
  1071           mstack.push(m, Post_Visit, n, i); // Don't need to visit
  1072           mstack.push(m->in(0), Visit, m, 0);
  1073         } else {
  1074           mstack.push(m, Visit, n, i);
  1078       // And now walk his children, and convert his inputs to new-space.
  1079       for( ; i >= 0; --i ) { // For all normal inputs do
  1080         Node *m = n->in(i);  // Get input
  1081         if(m != NULL)
  1082           mstack.push(m, Visit, n, i);
  1086     else if (nstate == Post_Visit) {
  1087       // Set xformed input
  1088       Node *p = mstack.parent();
  1089       if (p != NULL) { // root doesn't have parent
  1090         int i = (int)mstack.index();
  1091         if (i >= 0)
  1092           p->set_req(i, n); // required input
  1093         else if (i == -1)
  1094           p->add_prec(n);   // precedence input
  1095         else
  1096           ShouldNotReachHere();
  1098       mstack.pop(); // remove processed node from stack
  1100     else {
  1101       ShouldNotReachHere();
  1103   } // while (mstack.is_nonempty())
  1104   return n; // Return new-space Node
  1107 //------------------------------warp_outgoing_stk_arg------------------------
  1108 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
  1109   // Convert outgoing argument location to a pre-biased stack offset
  1110   if (reg->is_stack()) {
  1111     OptoReg::Name warped = reg->reg2stack();
  1112     // Adjust the stack slot offset to be the register number used
  1113     // by the allocator.
  1114     warped = OptoReg::add(begin_out_arg_area, warped);
  1115     // Keep track of the largest numbered stack slot used for an arg.
  1116     // Largest used slot per call-site indicates the amount of stack
  1117     // that is killed by the call.
  1118     if( warped >= out_arg_limit_per_call )
  1119       out_arg_limit_per_call = OptoReg::add(warped,1);
  1120     if (!RegMask::can_represent_arg(warped)) {
  1121       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
  1122       return OptoReg::Bad;
  1124     return warped;
  1126   return OptoReg::as_OptoReg(reg);
  1130 //------------------------------match_sfpt-------------------------------------
  1131 // Helper function to match call instructions.  Calls match special.
  1132 // They match alone with no children.  Their children, the incoming
  1133 // arguments, match normally.
  1134 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
  1135   MachSafePointNode *msfpt = NULL;
  1136   MachCallNode      *mcall = NULL;
  1137   uint               cnt;
  1138   // Split out case for SafePoint vs Call
  1139   CallNode *call;
  1140   const TypeTuple *domain;
  1141   ciMethod*        method = NULL;
  1142   bool             is_method_handle_invoke = false;  // for special kill effects
  1143   if( sfpt->is_Call() ) {
  1144     call = sfpt->as_Call();
  1145     domain = call->tf()->domain();
  1146     cnt = domain->cnt();
  1148     // Match just the call, nothing else
  1149     MachNode *m = match_tree(call);
  1150     if (C->failing())  return NULL;
  1151     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
  1153     // Copy data from the Ideal SafePoint to the machine version
  1154     mcall = m->as_MachCall();
  1156     mcall->set_tf(         call->tf());
  1157     mcall->set_entry_point(call->entry_point());
  1158     mcall->set_cnt(        call->cnt());
  1160     if( mcall->is_MachCallJava() ) {
  1161       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
  1162       const CallJavaNode *call_java =  call->as_CallJava();
  1163       method = call_java->method();
  1164       mcall_java->_method = method;
  1165       mcall_java->_bci = call_java->_bci;
  1166       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
  1167       is_method_handle_invoke = call_java->is_method_handle_invoke();
  1168       mcall_java->_method_handle_invoke = is_method_handle_invoke;
  1169       if (is_method_handle_invoke) {
  1170         C->set_has_method_handle_invokes(true);
  1172       if( mcall_java->is_MachCallStaticJava() )
  1173         mcall_java->as_MachCallStaticJava()->_name =
  1174          call_java->as_CallStaticJava()->_name;
  1175       if( mcall_java->is_MachCallDynamicJava() )
  1176         mcall_java->as_MachCallDynamicJava()->_vtable_index =
  1177          call_java->as_CallDynamicJava()->_vtable_index;
  1179     else if( mcall->is_MachCallRuntime() ) {
  1180       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
  1182     msfpt = mcall;
  1184   // This is a non-call safepoint
  1185   else {
  1186     call = NULL;
  1187     domain = NULL;
  1188     MachNode *mn = match_tree(sfpt);
  1189     if (C->failing())  return NULL;
  1190     msfpt = mn->as_MachSafePoint();
  1191     cnt = TypeFunc::Parms;
  1194   // Advertise the correct memory effects (for anti-dependence computation).
  1195   msfpt->set_adr_type(sfpt->adr_type());
  1197   // Allocate a private array of RegMasks.  These RegMasks are not shared.
  1198   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  1199   // Empty them all.
  1200   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
  1202   // Do all the pre-defined non-Empty register masks
  1203   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  1204   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1206   // Place first outgoing argument can possibly be put.
  1207   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1208   assert( is_even(begin_out_arg_area), "" );
  1209   // Compute max outgoing register number per call site.
  1210   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1211   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1212   // These are usually backing store for register arguments for varargs.
  1213   if( call != NULL && call->is_CallRuntime() )
  1214     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1217   // Do the normal argument list (parameters) register masks
  1218   int argcnt = cnt - TypeFunc::Parms;
  1219   if( argcnt > 0 ) {          // Skip it all if we have no args
  1220     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1221     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1222     int i;
  1223     for( i = 0; i < argcnt; i++ ) {
  1224       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1226     // V-call to pick proper calling convention
  1227     call->calling_convention( sig_bt, parm_regs, argcnt );
  1229 #ifdef ASSERT
  1230     // Sanity check users' calling convention.  Really handy during
  1231     // the initial porting effort.  Fairly expensive otherwise.
  1232     { for (int i = 0; i<argcnt; i++) {
  1233       if( !parm_regs[i].first()->is_valid() &&
  1234           !parm_regs[i].second()->is_valid() ) continue;
  1235       VMReg reg1 = parm_regs[i].first();
  1236       VMReg reg2 = parm_regs[i].second();
  1237       for (int j = 0; j < i; j++) {
  1238         if( !parm_regs[j].first()->is_valid() &&
  1239             !parm_regs[j].second()->is_valid() ) continue;
  1240         VMReg reg3 = parm_regs[j].first();
  1241         VMReg reg4 = parm_regs[j].second();
  1242         if( !reg1->is_valid() ) {
  1243           assert( !reg2->is_valid(), "valid halvsies" );
  1244         } else if( !reg3->is_valid() ) {
  1245           assert( !reg4->is_valid(), "valid halvsies" );
  1246         } else {
  1247           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1248           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1249           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1250           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1251           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1252           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1257 #endif
  1259     // Visit each argument.  Compute its outgoing register mask.
  1260     // Return results now can have 2 bits returned.
  1261     // Compute max over all outgoing arguments both per call-site
  1262     // and over the entire method.
  1263     for( i = 0; i < argcnt; i++ ) {
  1264       // Address of incoming argument mask to fill in
  1265       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1266       if( !parm_regs[i].first()->is_valid() &&
  1267           !parm_regs[i].second()->is_valid() ) {
  1268         continue;               // Avoid Halves
  1270       // Grab first register, adjust stack slots and insert in mask.
  1271       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1272       if (OptoReg::is_valid(reg1))
  1273         rm->Insert( reg1 );
  1274       // Grab second register (if any), adjust stack slots and insert in mask.
  1275       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1276       if (OptoReg::is_valid(reg2))
  1277         rm->Insert( reg2 );
  1278     } // End of for all arguments
  1280     // Compute number of stack slots needed to restore stack in case of
  1281     // Pascal-style argument popping.
  1282     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1285   if (is_method_handle_invoke) {
  1286     // Kill some extra stack space in case method handles want to do
  1287     // a little in-place argument insertion.
  1288     // FIXME: Is this still necessary?
  1289     int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
  1290     out_arg_limit_per_call += Method::extra_stack_entries() * regs_per_word;
  1291     // Do not update mcall->_argsize because (a) the extra space is not
  1292     // pushed as arguments and (b) _argsize is dead (not used anywhere).
  1295   // Compute the max stack slot killed by any call.  These will not be
  1296   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1297   // after all call sites have been visited.
  1298   if( _out_arg_limit < out_arg_limit_per_call)
  1299     _out_arg_limit = out_arg_limit_per_call;
  1301   if (mcall) {
  1302     // Kill the outgoing argument area, including any non-argument holes and
  1303     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1304     // Since the max-per-method covers the max-per-call-site and debug info
  1305     // is excluded on the max-per-method basis, debug info cannot land in
  1306     // this killed area.
  1307     uint r_cnt = mcall->tf()->range()->cnt();
  1308     MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1309     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
  1310       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1311     } else {
  1312       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1313         proj->_rout.Insert(OptoReg::Name(i));
  1315     if( proj->_rout.is_NotEmpty() )
  1316       _proj_list.push(proj);
  1318   // Transfer the safepoint information from the call to the mcall
  1319   // Move the JVMState list
  1320   msfpt->set_jvms(sfpt->jvms());
  1321   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1322     jvms->set_map(sfpt);
  1325   // Debug inputs begin just after the last incoming parameter
  1326   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
  1327           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
  1329   // Move the OopMap
  1330   msfpt->_oop_map = sfpt->_oop_map;
  1332   // Registers killed by the call are set in the local scheduling pass
  1333   // of Global Code Motion.
  1334   return msfpt;
  1337 //---------------------------match_tree----------------------------------------
  1338 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1339 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1340 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1341 // a Load's result RegMask for memoization in idealreg2regmask[]
  1342 MachNode *Matcher::match_tree( const Node *n ) {
  1343   assert( n->Opcode() != Op_Phi, "cannot match" );
  1344   assert( !n->is_block_start(), "cannot match" );
  1345   // Set the mark for all locally allocated State objects.
  1346   // When this call returns, the _states_arena arena will be reset
  1347   // freeing all State objects.
  1348   ResourceMark rm( &_states_arena );
  1350   LabelRootDepth = 0;
  1352   // StoreNodes require their Memory input to match any LoadNodes
  1353   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1354 #ifdef ASSERT
  1355   Node* save_mem_node = _mem_node;
  1356   _mem_node = n->is_Store() ? (Node*)n : NULL;
  1357 #endif
  1358   // State object for root node of match tree
  1359   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1360   State *s = new (&_states_arena) State;
  1361   s->_kids[0] = NULL;
  1362   s->_kids[1] = NULL;
  1363   s->_leaf = (Node*)n;
  1364   // Label the input tree, allocating labels from top-level arena
  1365   Label_Root( n, s, n->in(0), mem );
  1366   if (C->failing())  return NULL;
  1368   // The minimum cost match for the whole tree is found at the root State
  1369   uint mincost = max_juint;
  1370   uint cost = max_juint;
  1371   uint i;
  1372   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1373     if( s->valid(i) &&                // valid entry and
  1374         s->_cost[i] < cost &&         // low cost and
  1375         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1376       cost = s->_cost[mincost=i];
  1378   if (mincost == max_juint) {
  1379 #ifndef PRODUCT
  1380     tty->print("No matching rule for:");
  1381     s->dump();
  1382 #endif
  1383     Matcher::soft_match_failure();
  1384     return NULL;
  1386   // Reduce input tree based upon the state labels to machine Nodes
  1387   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1388 #ifdef ASSERT
  1389   _old2new_map.map(n->_idx, m);
  1390   _new2old_map.map(m->_idx, (Node*)n);
  1391 #endif
  1393   // Add any Matcher-ignored edges
  1394   uint cnt = n->req();
  1395   uint start = 1;
  1396   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1397   if( n->is_AddP() ) {
  1398     assert( mem == (Node*)1, "" );
  1399     start = AddPNode::Base+1;
  1401   for( i = start; i < cnt; i++ ) {
  1402     if( !n->match_edge(i) ) {
  1403       if( i < m->req() )
  1404         m->ins_req( i, n->in(i) );
  1405       else
  1406         m->add_req( n->in(i) );
  1410   debug_only( _mem_node = save_mem_node; )
  1411   return m;
  1415 //------------------------------match_into_reg---------------------------------
  1416 // Choose to either match this Node in a register or part of the current
  1417 // match tree.  Return true for requiring a register and false for matching
  1418 // as part of the current match tree.
  1419 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1421   const Type *t = m->bottom_type();
  1423   if (t->singleton()) {
  1424     // Never force constants into registers.  Allow them to match as
  1425     // constants or registers.  Copies of the same value will share
  1426     // the same register.  See find_shared_node.
  1427     return false;
  1428   } else {                      // Not a constant
  1429     // Stop recursion if they have different Controls.
  1430     Node* m_control = m->in(0);
  1431     // Control of load's memory can post-dominates load's control.
  1432     // So use it since load can't float above its memory.
  1433     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
  1434     if (control && m_control && control != m_control && control != mem_control) {
  1436       // Actually, we can live with the most conservative control we
  1437       // find, if it post-dominates the others.  This allows us to
  1438       // pick up load/op/store trees where the load can float a little
  1439       // above the store.
  1440       Node *x = control;
  1441       const uint max_scan = 6;  // Arbitrary scan cutoff
  1442       uint j;
  1443       for (j=0; j<max_scan; j++) {
  1444         if (x->is_Region())     // Bail out at merge points
  1445           return true;
  1446         x = x->in(0);
  1447         if (x == m_control)     // Does 'control' post-dominate
  1448           break;                // m->in(0)?  If so, we can use it
  1449         if (x == mem_control)   // Does 'control' post-dominate
  1450           break;                // mem_control?  If so, we can use it
  1452       if (j == max_scan)        // No post-domination before scan end?
  1453         return true;            // Then break the match tree up
  1455     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
  1456         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
  1457       // These are commonly used in address expressions and can
  1458       // efficiently fold into them on X64 in some cases.
  1459       return false;
  1463   // Not forceable cloning.  If shared, put it into a register.
  1464   return shared;
  1468 //------------------------------Instruction Selection--------------------------
  1469 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1470 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1471 // things the Matcher does not match (e.g., Memory), and things with different
  1472 // Controls (hence forced into different blocks).  We pass in the Control
  1473 // selected for this entire State tree.
  1475 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1476 // Store and the Load must have identical Memories (as well as identical
  1477 // pointers).  Since the Matcher does not have anything for Memory (and
  1478 // does not handle DAGs), I have to match the Memory input myself.  If the
  1479 // Tree root is a Store, I require all Loads to have the identical memory.
  1480 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1481   // Since Label_Root is a recursive function, its possible that we might run
  1482   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1483   LabelRootDepth++;
  1484   if (LabelRootDepth > MaxLabelRootDepth) {
  1485     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1486     return NULL;
  1488   uint care = 0;                // Edges matcher cares about
  1489   uint cnt = n->req();
  1490   uint i = 0;
  1492   // Examine children for memory state
  1493   // Can only subsume a child into your match-tree if that child's memory state
  1494   // is not modified along the path to another input.
  1495   // It is unsafe even if the other inputs are separate roots.
  1496   Node *input_mem = NULL;
  1497   for( i = 1; i < cnt; i++ ) {
  1498     if( !n->match_edge(i) ) continue;
  1499     Node *m = n->in(i);         // Get ith input
  1500     assert( m, "expect non-null children" );
  1501     if( m->is_Load() ) {
  1502       if( input_mem == NULL ) {
  1503         input_mem = m->in(MemNode::Memory);
  1504       } else if( input_mem != m->in(MemNode::Memory) ) {
  1505         input_mem = NodeSentinel;
  1510   for( i = 1; i < cnt; i++ ){// For my children
  1511     if( !n->match_edge(i) ) continue;
  1512     Node *m = n->in(i);         // Get ith input
  1513     // Allocate states out of a private arena
  1514     State *s = new (&_states_arena) State;
  1515     svec->_kids[care++] = s;
  1516     assert( care <= 2, "binary only for now" );
  1518     // Recursively label the State tree.
  1519     s->_kids[0] = NULL;
  1520     s->_kids[1] = NULL;
  1521     s->_leaf = m;
  1523     // Check for leaves of the State Tree; things that cannot be a part of
  1524     // the current tree.  If it finds any, that value is matched as a
  1525     // register operand.  If not, then the normal matching is used.
  1526     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1527         //
  1528         // Stop recursion if this is LoadNode and the root of this tree is a
  1529         // StoreNode and the load & store have different memories.
  1530         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1531         // Can NOT include the match of a subtree when its memory state
  1532         // is used by any of the other subtrees
  1533         (input_mem == NodeSentinel) ) {
  1534 #ifndef PRODUCT
  1535       // Print when we exclude matching due to different memory states at input-loads
  1536       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1537         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1538         tty->print_cr("invalid input_mem");
  1540 #endif
  1541       // Switch to a register-only opcode; this value must be in a register
  1542       // and cannot be subsumed as part of a larger instruction.
  1543       s->DFA( m->ideal_reg(), m );
  1545     } else {
  1546       // If match tree has no control and we do, adopt it for entire tree
  1547       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1548         control = m->in(0);         // Pick up control
  1549       // Else match as a normal part of the match tree.
  1550       control = Label_Root(m,s,control,mem);
  1551       if (C->failing()) return NULL;
  1556   // Call DFA to match this node, and return
  1557   svec->DFA( n->Opcode(), n );
  1559 #ifdef ASSERT
  1560   uint x;
  1561   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1562     if( svec->valid(x) )
  1563       break;
  1565   if (x >= _LAST_MACH_OPER) {
  1566     n->dump();
  1567     svec->dump();
  1568     assert( false, "bad AD file" );
  1570 #endif
  1571   return control;
  1575 // Con nodes reduced using the same rule can share their MachNode
  1576 // which reduces the number of copies of a constant in the final
  1577 // program.  The register allocator is free to split uses later to
  1578 // split live ranges.
  1579 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
  1580   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
  1582   // See if this Con has already been reduced using this rule.
  1583   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
  1584   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
  1585   if (last != NULL && rule == last->rule()) {
  1586     // Don't expect control change for DecodeN
  1587     if (leaf->is_DecodeNarrowPtr())
  1588       return last;
  1589     // Get the new space root.
  1590     Node* xroot = new_node(C->root());
  1591     if (xroot == NULL) {
  1592       // This shouldn't happen give the order of matching.
  1593       return NULL;
  1596     // Shared constants need to have their control be root so they
  1597     // can be scheduled properly.
  1598     Node* control = last->in(0);
  1599     if (control != xroot) {
  1600       if (control == NULL || control == C->root()) {
  1601         last->set_req(0, xroot);
  1602       } else {
  1603         assert(false, "unexpected control");
  1604         return NULL;
  1607     return last;
  1609   return NULL;
  1613 //------------------------------ReduceInst-------------------------------------
  1614 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1615 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1616 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1617 // Each MachNode has a number of complicated MachOper operands; each
  1618 // MachOper also covers a further tree of Ideal Nodes.
  1620 // The root of the Ideal match tree is always an instruction, so we enter
  1621 // the recursion here.  After building the MachNode, we need to recurse
  1622 // the tree checking for these cases:
  1623 // (1) Child is an instruction -
  1624 //     Build the instruction (recursively), add it as an edge.
  1625 //     Build a simple operand (register) to hold the result of the instruction.
  1626 // (2) Child is an interior part of an instruction -
  1627 //     Skip over it (do nothing)
  1628 // (3) Child is the start of a operand -
  1629 //     Build the operand, place it inside the instruction
  1630 //     Call ReduceOper.
  1631 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1632   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1634   MachNode* shared_node = find_shared_node(s->_leaf, rule);
  1635   if (shared_node != NULL) {
  1636     return shared_node;
  1639   // Build the object to represent this state & prepare for recursive calls
  1640   MachNode *mach = s->MachNodeGenerator( rule, C );
  1641   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1642   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1643   Node *leaf = s->_leaf;
  1644   // Check for instruction or instruction chain rule
  1645   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1646     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
  1647            "duplicating node that's already been matched");
  1648     // Instruction
  1649     mach->add_req( leaf->in(0) ); // Set initial control
  1650     // Reduce interior of complex instruction
  1651     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1652   } else {
  1653     // Instruction chain rules are data-dependent on their inputs
  1654     mach->add_req(0);             // Set initial control to none
  1655     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1658   // If a Memory was used, insert a Memory edge
  1659   if( mem != (Node*)1 ) {
  1660     mach->ins_req(MemNode::Memory,mem);
  1661 #ifdef ASSERT
  1662     // Verify adr type after matching memory operation
  1663     const MachOper* oper = mach->memory_operand();
  1664     if (oper != NULL && oper != (MachOper*)-1) {
  1665       // It has a unique memory operand.  Find corresponding ideal mem node.
  1666       Node* m = NULL;
  1667       if (leaf->is_Mem()) {
  1668         m = leaf;
  1669       } else {
  1670         m = _mem_node;
  1671         assert(m != NULL && m->is_Mem(), "expecting memory node");
  1673       const Type* mach_at = mach->adr_type();
  1674       // DecodeN node consumed by an address may have different type
  1675       // then its input. Don't compare types for such case.
  1676       if (m->adr_type() != mach_at &&
  1677           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
  1678            m->in(MemNode::Address)->is_AddP() &&
  1679            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
  1680            m->in(MemNode::Address)->is_AddP() &&
  1681            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
  1682            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
  1683         mach_at = m->adr_type();
  1685       if (m->adr_type() != mach_at) {
  1686         m->dump();
  1687         tty->print_cr("mach:");
  1688         mach->dump(1);
  1690       assert(m->adr_type() == mach_at, "matcher should not change adr type");
  1692 #endif
  1695   // If the _leaf is an AddP, insert the base edge
  1696   if( leaf->is_AddP() )
  1697     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1699   uint num_proj = _proj_list.size();
  1701   // Perform any 1-to-many expansions required
  1702   MachNode *ex = mach->Expand(s,_proj_list, mem);
  1703   if( ex != mach ) {
  1704     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1705     if( ex->in(1)->is_Con() )
  1706       ex->in(1)->set_req(0, C->root());
  1707     // Remove old node from the graph
  1708     for( uint i=0; i<mach->req(); i++ ) {
  1709       mach->set_req(i,NULL);
  1711 #ifdef ASSERT
  1712     _new2old_map.map(ex->_idx, s->_leaf);
  1713 #endif
  1716   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1717   // via the matcher.  By the time, nodes have been wired into the CFG,
  1718   // and any further nodes generated by expand rules will be left hanging
  1719   // in space, and will not get emitted as output code.  Catch this.
  1720   // Also, catch any new register allocation constraints ("projections")
  1721   // generated belatedly during spill code generation.
  1722   if (_allocation_started) {
  1723     guarantee(ex == mach, "no expand rules during spill generation");
  1724     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
  1727   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
  1728     // Record the con for sharing
  1729     _shared_nodes.map(leaf->_idx, ex);
  1732   return ex;
  1735 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1736   // 'op' is what I am expecting to receive
  1737   int op = _leftOp[rule];
  1738   // Operand type to catch childs result
  1739   // This is what my child will give me.
  1740   int opnd_class_instance = s->_rule[op];
  1741   // Choose between operand class or not.
  1742   // This is what I will receive.
  1743   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1744   // New rule for child.  Chase operand classes to get the actual rule.
  1745   int newrule = s->_rule[catch_op];
  1747   if( newrule < NUM_OPERANDS ) {
  1748     // Chain from operand or operand class, may be output of shared node
  1749     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1750             "Bad AD file: Instruction chain rule must chain from operand");
  1751     // Insert operand into array of operands for this instruction
  1752     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1754     ReduceOper( s, newrule, mem, mach );
  1755   } else {
  1756     // Chain from the result of an instruction
  1757     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1758     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1759     Node *mem1 = (Node*)1;
  1760     debug_only(Node *save_mem_node = _mem_node;)
  1761     mach->add_req( ReduceInst(s, newrule, mem1) );
  1762     debug_only(_mem_node = save_mem_node;)
  1764   return;
  1768 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1769   if( s->_leaf->is_Load() ) {
  1770     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1771     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1772     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
  1773     mem = mem2;
  1775   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1776     if( mach->in(0) == NULL )
  1777       mach->set_req(0, s->_leaf->in(0));
  1780   // Now recursively walk the state tree & add operand list.
  1781   for( uint i=0; i<2; i++ ) {   // binary tree
  1782     State *newstate = s->_kids[i];
  1783     if( newstate == NULL ) break;      // Might only have 1 child
  1784     // 'op' is what I am expecting to receive
  1785     int op;
  1786     if( i == 0 ) {
  1787       op = _leftOp[rule];
  1788     } else {
  1789       op = _rightOp[rule];
  1791     // Operand type to catch childs result
  1792     // This is what my child will give me.
  1793     int opnd_class_instance = newstate->_rule[op];
  1794     // Choose between operand class or not.
  1795     // This is what I will receive.
  1796     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1797     // New rule for child.  Chase operand classes to get the actual rule.
  1798     int newrule = newstate->_rule[catch_op];
  1800     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1801       // Operand/operandClass
  1802       // Insert operand into array of operands for this instruction
  1803       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1804       ReduceOper( newstate, newrule, mem, mach );
  1806     } else {                    // Child is internal operand or new instruction
  1807       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1808         // internal operand --> call ReduceInst_Interior
  1809         // Interior of complex instruction.  Do nothing but recurse.
  1810         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1811       } else {
  1812         // instruction --> call build operand(  ) to catch result
  1813         //             --> ReduceInst( newrule )
  1814         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1815         Node *mem1 = (Node*)1;
  1816         debug_only(Node *save_mem_node = _mem_node;)
  1817         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1818         debug_only(_mem_node = save_mem_node;)
  1821     assert( mach->_opnds[num_opnds-1], "" );
  1823   return num_opnds;
  1826 // This routine walks the interior of possible complex operands.
  1827 // At each point we check our children in the match tree:
  1828 // (1) No children -
  1829 //     We are a leaf; add _leaf field as an input to the MachNode
  1830 // (2) Child is an internal operand -
  1831 //     Skip over it ( do nothing )
  1832 // (3) Child is an instruction -
  1833 //     Call ReduceInst recursively and
  1834 //     and instruction as an input to the MachNode
  1835 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1836   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1837   State *kid = s->_kids[0];
  1838   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1840   // Leaf?  And not subsumed?
  1841   if( kid == NULL && !_swallowed[rule] ) {
  1842     mach->add_req( s->_leaf );  // Add leaf pointer
  1843     return;                     // Bail out
  1846   if( s->_leaf->is_Load() ) {
  1847     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1848     mem = s->_leaf->in(MemNode::Memory);
  1849     debug_only(_mem_node = s->_leaf;)
  1851   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1852     if( !mach->in(0) )
  1853       mach->set_req(0,s->_leaf->in(0));
  1854     else {
  1855       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1859   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1860     int newrule;
  1861     if( i == 0 )
  1862       newrule = kid->_rule[_leftOp[rule]];
  1863     else
  1864       newrule = kid->_rule[_rightOp[rule]];
  1866     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1867       // Internal operand; recurse but do nothing else
  1868       ReduceOper( kid, newrule, mem, mach );
  1870     } else {                    // Child is a new instruction
  1871       // Reduce the instruction, and add a direct pointer from this
  1872       // machine instruction to the newly reduced one.
  1873       Node *mem1 = (Node*)1;
  1874       debug_only(Node *save_mem_node = _mem_node;)
  1875       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1876       debug_only(_mem_node = save_mem_node;)
  1882 // -------------------------------------------------------------------------
  1883 // Java-Java calling convention
  1884 // (what you use when Java calls Java)
  1886 //------------------------------find_receiver----------------------------------
  1887 // For a given signature, return the OptoReg for parameter 0.
  1888 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1889   VMRegPair regs;
  1890   BasicType sig_bt = T_OBJECT;
  1891   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1892   // Return argument 0 register.  In the LP64 build pointers
  1893   // take 2 registers, but the VM wants only the 'main' name.
  1894   return OptoReg::as_OptoReg(regs.first());
  1897 // A method-klass-holder may be passed in the inline_cache_reg
  1898 // and then expanded into the inline_cache_reg and a method_oop register
  1899 //   defined in ad_<arch>.cpp
  1902 //------------------------------find_shared------------------------------------
  1903 // Set bits if Node is shared or otherwise a root
  1904 void Matcher::find_shared( Node *n ) {
  1905   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  1906   MStack mstack(C->unique() * 2);
  1907   // Mark nodes as address_visited if they are inputs to an address expression
  1908   VectorSet address_visited(Thread::current()->resource_area());
  1909   mstack.push(n, Visit);     // Don't need to pre-visit root node
  1910   while (mstack.is_nonempty()) {
  1911     n = mstack.node();       // Leave node on stack
  1912     Node_State nstate = mstack.state();
  1913     uint nop = n->Opcode();
  1914     if (nstate == Pre_Visit) {
  1915       if (address_visited.test(n->_idx)) { // Visited in address already?
  1916         // Flag as visited and shared now.
  1917         set_visited(n);
  1919       if (is_visited(n)) {   // Visited already?
  1920         // Node is shared and has no reason to clone.  Flag it as shared.
  1921         // This causes it to match into a register for the sharing.
  1922         set_shared(n);       // Flag as shared and
  1923         mstack.pop();        // remove node from stack
  1924         continue;
  1926       nstate = Visit; // Not already visited; so visit now
  1928     if (nstate == Visit) {
  1929       mstack.set_state(Post_Visit);
  1930       set_visited(n);   // Flag as visited now
  1931       bool mem_op = false;
  1933       switch( nop ) {  // Handle some opcodes special
  1934       case Op_Phi:             // Treat Phis as shared roots
  1935       case Op_Parm:
  1936       case Op_Proj:            // All handled specially during matching
  1937       case Op_SafePointScalarObject:
  1938         set_shared(n);
  1939         set_dontcare(n);
  1940         break;
  1941       case Op_If:
  1942       case Op_CountedLoopEnd:
  1943         mstack.set_state(Alt_Post_Visit); // Alternative way
  1944         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  1945         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  1946         // Bool and CmpX side-by-side, because it can only get at constants
  1947         // that are at the leaves of Match trees, and the Bool's condition acts
  1948         // as a constant here.
  1949         mstack.push(n->in(1), Visit);         // Clone the Bool
  1950         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  1951         continue; // while (mstack.is_nonempty())
  1952       case Op_ConvI2D:         // These forms efficiently match with a prior
  1953       case Op_ConvI2F:         //   Load but not a following Store
  1954         if( n->in(1)->is_Load() &&        // Prior load
  1955             n->outcnt() == 1 &&           // Not already shared
  1956             n->unique_out()->is_Store() ) // Following store
  1957           set_shared(n);       // Force it to be a root
  1958         break;
  1959       case Op_ReverseBytesI:
  1960       case Op_ReverseBytesL:
  1961         if( n->in(1)->is_Load() &&        // Prior load
  1962             n->outcnt() == 1 )            // Not already shared
  1963           set_shared(n);                  // Force it to be a root
  1964         break;
  1965       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  1966       case Op_IfFalse:
  1967       case Op_IfTrue:
  1968       case Op_MachProj:
  1969       case Op_MergeMem:
  1970       case Op_Catch:
  1971       case Op_CatchProj:
  1972       case Op_CProj:
  1973       case Op_JumpProj:
  1974       case Op_JProj:
  1975       case Op_NeverBranch:
  1976         set_dontcare(n);
  1977         break;
  1978       case Op_Jump:
  1979         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
  1980         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  1981         continue;                             // while (mstack.is_nonempty())
  1982       case Op_StrComp:
  1983       case Op_StrEquals:
  1984       case Op_StrIndexOf:
  1985       case Op_AryEq:
  1986       case Op_EncodeISOArray:
  1987         set_shared(n); // Force result into register (it will be anyways)
  1988         break;
  1989       case Op_ConP: {  // Convert pointers above the centerline to NUL
  1990         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1991         const TypePtr* tp = tn->type()->is_ptr();
  1992         if (tp->_ptr == TypePtr::AnyNull) {
  1993           tn->set_type(TypePtr::NULL_PTR);
  1995         break;
  1997       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
  1998         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1999         const TypePtr* tp = tn->type()->make_ptr();
  2000         if (tp && tp->_ptr == TypePtr::AnyNull) {
  2001           tn->set_type(TypeNarrowOop::NULL_PTR);
  2003         break;
  2005       case Op_Binary:         // These are introduced in the Post_Visit state.
  2006         ShouldNotReachHere();
  2007         break;
  2008       case Op_ClearArray:
  2009       case Op_SafePoint:
  2010         mem_op = true;
  2011         break;
  2012       default:
  2013         if( n->is_Store() ) {
  2014           // Do match stores, despite no ideal reg
  2015           mem_op = true;
  2016           break;
  2018         if( n->is_Mem() ) { // Loads and LoadStores
  2019           mem_op = true;
  2020           // Loads must be root of match tree due to prior load conflict
  2021           if( C->subsume_loads() == false )
  2022             set_shared(n);
  2024         // Fall into default case
  2025         if( !n->ideal_reg() )
  2026           set_dontcare(n);  // Unmatchable Nodes
  2027       } // end_switch
  2029       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  2030         Node *m = n->in(i); // Get ith input
  2031         if (m == NULL) continue;  // Ignore NULLs
  2032         uint mop = m->Opcode();
  2034         // Must clone all producers of flags, or we will not match correctly.
  2035         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  2036         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  2037         // are also there, so we may match a float-branch to int-flags and
  2038         // expect the allocator to haul the flags from the int-side to the
  2039         // fp-side.  No can do.
  2040         if( _must_clone[mop] ) {
  2041           mstack.push(m, Visit);
  2042           continue; // for(int i = ...)
  2045         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
  2046           // Bases used in addresses must be shared but since
  2047           // they are shared through a DecodeN they may appear
  2048           // to have a single use so force sharing here.
  2049           set_shared(m->in(AddPNode::Base)->in(1));
  2052         // Clone addressing expressions as they are "free" in memory access instructions
  2053         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  2054           // Some inputs for address expression are not put on stack
  2055           // to avoid marking them as shared and forcing them into register
  2056           // if they are used only in address expressions.
  2057           // But they should be marked as shared if there are other uses
  2058           // besides address expressions.
  2060           Node *off = m->in(AddPNode::Offset);
  2061           if( off->is_Con() &&
  2062               // When there are other uses besides address expressions
  2063               // put it on stack and mark as shared.
  2064               !is_visited(m) ) {
  2065             address_visited.test_set(m->_idx); // Flag as address_visited
  2066             Node *adr = m->in(AddPNode::Address);
  2068             // Intel, ARM and friends can handle 2 adds in addressing mode
  2069             if( clone_shift_expressions && adr->is_AddP() &&
  2070                 // AtomicAdd is not an addressing expression.
  2071                 // Cheap to find it by looking for screwy base.
  2072                 !adr->in(AddPNode::Base)->is_top() &&
  2073                 // Are there other uses besides address expressions?
  2074                 !is_visited(adr) ) {
  2075               address_visited.set(adr->_idx); // Flag as address_visited
  2076               Node *shift = adr->in(AddPNode::Offset);
  2077               // Check for shift by small constant as well
  2078               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  2079                   shift->in(2)->get_int() <= 3 &&
  2080                   // Are there other uses besides address expressions?
  2081                   !is_visited(shift) ) {
  2082                 address_visited.set(shift->_idx); // Flag as address_visited
  2083                 mstack.push(shift->in(2), Visit);
  2084                 Node *conv = shift->in(1);
  2085 #ifdef _LP64
  2086                 // Allow Matcher to match the rule which bypass
  2087                 // ConvI2L operation for an array index on LP64
  2088                 // if the index value is positive.
  2089                 if( conv->Opcode() == Op_ConvI2L &&
  2090                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
  2091                     // Are there other uses besides address expressions?
  2092                     !is_visited(conv) ) {
  2093                   address_visited.set(conv->_idx); // Flag as address_visited
  2094                   mstack.push(conv->in(1), Pre_Visit);
  2095                 } else
  2096 #endif
  2097                 mstack.push(conv, Pre_Visit);
  2098               } else {
  2099                 mstack.push(shift, Pre_Visit);
  2101               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  2102               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  2103             } else {  // Sparc, Alpha, PPC and friends
  2104               mstack.push(adr, Pre_Visit);
  2107             // Clone X+offset as it also folds into most addressing expressions
  2108             mstack.push(off, Visit);
  2109             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  2110             continue; // for(int i = ...)
  2111           } // if( off->is_Con() )
  2112         }   // if( mem_op &&
  2113         mstack.push(m, Pre_Visit);
  2114       }     // for(int i = ...)
  2116     else if (nstate == Alt_Post_Visit) {
  2117       mstack.pop(); // Remove node from stack
  2118       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  2119       // shared and all users of the Bool need to move the Cmp in parallel.
  2120       // This leaves both the Bool and the If pointing at the Cmp.  To
  2121       // prevent the Matcher from trying to Match the Cmp along both paths
  2122       // BoolNode::match_edge always returns a zero.
  2124       // We reorder the Op_If in a pre-order manner, so we can visit without
  2125       // accidentally sharing the Cmp (the Bool and the If make 2 users).
  2126       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  2128     else if (nstate == Post_Visit) {
  2129       mstack.pop(); // Remove node from stack
  2131       // Now hack a few special opcodes
  2132       switch( n->Opcode() ) {       // Handle some opcodes special
  2133       case Op_StorePConditional:
  2134       case Op_StoreIConditional:
  2135       case Op_StoreLConditional:
  2136       case Op_CompareAndSwapI:
  2137       case Op_CompareAndSwapL:
  2138       case Op_CompareAndSwapP:
  2139       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
  2140         Node *newval = n->in(MemNode::ValueIn );
  2141         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
  2142         Node *pair = new (C) BinaryNode( oldval, newval );
  2143         n->set_req(MemNode::ValueIn,pair);
  2144         n->del_req(LoadStoreConditionalNode::ExpectedIn);
  2145         break;
  2147       case Op_CMoveD:              // Convert trinary to binary-tree
  2148       case Op_CMoveF:
  2149       case Op_CMoveI:
  2150       case Op_CMoveL:
  2151       case Op_CMoveN:
  2152       case Op_CMoveP: {
  2153         // Restructure into a binary tree for Matching.  It's possible that
  2154         // we could move this code up next to the graph reshaping for IfNodes
  2155         // or vice-versa, but I do not want to debug this for Ladybird.
  2156         // 10/2/2000 CNC.
  2157         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
  2158         n->set_req(1,pair1);
  2159         Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
  2160         n->set_req(2,pair2);
  2161         n->del_req(3);
  2162         break;
  2164       case Op_LoopLimit: {
  2165         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
  2166         n->set_req(1,pair1);
  2167         n->set_req(2,n->in(3));
  2168         n->del_req(3);
  2169         break;
  2171       case Op_StrEquals: {
  2172         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
  2173         n->set_req(2,pair1);
  2174         n->set_req(3,n->in(4));
  2175         n->del_req(4);
  2176         break;
  2178       case Op_StrComp:
  2179       case Op_StrIndexOf: {
  2180         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
  2181         n->set_req(2,pair1);
  2182         Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
  2183         n->set_req(3,pair2);
  2184         n->del_req(5);
  2185         n->del_req(4);
  2186         break;
  2188       case Op_EncodeISOArray: {
  2189         // Restructure into a binary tree for Matching.
  2190         Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
  2191         n->set_req(3, pair);
  2192         n->del_req(4);
  2193         break;
  2195       default:
  2196         break;
  2199     else {
  2200       ShouldNotReachHere();
  2202   } // end of while (mstack.is_nonempty())
  2205 #ifdef ASSERT
  2206 // machine-independent root to machine-dependent root
  2207 void Matcher::dump_old2new_map() {
  2208   _old2new_map.dump();
  2210 #endif
  2212 //---------------------------collect_null_checks-------------------------------
  2213 // Find null checks in the ideal graph; write a machine-specific node for
  2214 // it.  Used by later implicit-null-check handling.  Actually collects
  2215 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  2216 // value being tested.
  2217 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
  2218   Node *iff = proj->in(0);
  2219   if( iff->Opcode() == Op_If ) {
  2220     // During matching If's have Bool & Cmp side-by-side
  2221     BoolNode *b = iff->in(1)->as_Bool();
  2222     Node *cmp = iff->in(2);
  2223     int opc = cmp->Opcode();
  2224     if (opc != Op_CmpP && opc != Op_CmpN) return;
  2226     const Type* ct = cmp->in(2)->bottom_type();
  2227     if (ct == TypePtr::NULL_PTR ||
  2228         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
  2230       bool push_it = false;
  2231       if( proj->Opcode() == Op_IfTrue ) {
  2232         extern int all_null_checks_found;
  2233         all_null_checks_found++;
  2234         if( b->_test._test == BoolTest::ne ) {
  2235           push_it = true;
  2237       } else {
  2238         assert( proj->Opcode() == Op_IfFalse, "" );
  2239         if( b->_test._test == BoolTest::eq ) {
  2240           push_it = true;
  2243       if( push_it ) {
  2244         _null_check_tests.push(proj);
  2245         Node* val = cmp->in(1);
  2246 #ifdef _LP64
  2247         if (val->bottom_type()->isa_narrowoop() &&
  2248             !Matcher::narrow_oop_use_complex_address()) {
  2249           //
  2250           // Look for DecodeN node which should be pinned to orig_proj.
  2251           // On platforms (Sparc) which can not handle 2 adds
  2252           // in addressing mode we have to keep a DecodeN node and
  2253           // use it to do implicit NULL check in address.
  2254           //
  2255           // DecodeN node was pinned to non-null path (orig_proj) during
  2256           // CastPP transformation in final_graph_reshaping_impl().
  2257           //
  2258           uint cnt = orig_proj->outcnt();
  2259           for (uint i = 0; i < orig_proj->outcnt(); i++) {
  2260             Node* d = orig_proj->raw_out(i);
  2261             if (d->is_DecodeN() && d->in(1) == val) {
  2262               val = d;
  2263               val->set_req(0, NULL); // Unpin now.
  2264               // Mark this as special case to distinguish from
  2265               // a regular case: CmpP(DecodeN, NULL).
  2266               val = (Node*)(((intptr_t)val) | 1);
  2267               break;
  2271 #endif
  2272         _null_check_tests.push(val);
  2278 //---------------------------validate_null_checks------------------------------
  2279 // Its possible that the value being NULL checked is not the root of a match
  2280 // tree.  If so, I cannot use the value in an implicit null check.
  2281 void Matcher::validate_null_checks( ) {
  2282   uint cnt = _null_check_tests.size();
  2283   for( uint i=0; i < cnt; i+=2 ) {
  2284     Node *test = _null_check_tests[i];
  2285     Node *val = _null_check_tests[i+1];
  2286     bool is_decoden = ((intptr_t)val) & 1;
  2287     val = (Node*)(((intptr_t)val) & ~1);
  2288     if (has_new_node(val)) {
  2289       Node* new_val = new_node(val);
  2290       if (is_decoden) {
  2291         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
  2292         // Note: new_val may have a control edge if
  2293         // the original ideal node DecodeN was matched before
  2294         // it was unpinned in Matcher::collect_null_checks().
  2295         // Unpin the mach node and mark it.
  2296         new_val->set_req(0, NULL);
  2297         new_val = (Node*)(((intptr_t)new_val) | 1);
  2299       // Is a match-tree root, so replace with the matched value
  2300       _null_check_tests.map(i+1, new_val);
  2301     } else {
  2302       // Yank from candidate list
  2303       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  2304       _null_check_tests.map(i,_null_check_tests[--cnt]);
  2305       _null_check_tests.pop();
  2306       _null_check_tests.pop();
  2307       i-=2;
  2312 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2313 // atomic instruction acting as a store_load barrier without any
  2314 // intervening volatile load, and thus we don't need a barrier here.
  2315 // We retain the Node to act as a compiler ordering barrier.
  2316 bool Matcher::post_store_load_barrier(const Node *vmb) {
  2317   Compile *C = Compile::current();
  2318   assert( vmb->is_MemBar(), "" );
  2319   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
  2320   const MemBarNode *mem = (const MemBarNode*)vmb;
  2322   // Get the Proj node, ctrl, that can be used to iterate forward
  2323   Node *ctrl = NULL;
  2324   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2325   while( true ) {
  2326     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2327     assert( ctrl->is_Proj(), "only projections here" );
  2328     ProjNode *proj = (ProjNode*)ctrl;
  2329     if( proj->_con == TypeFunc::Control &&
  2330         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2331       break;
  2332     i++;
  2335   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2336     Node *x = ctrl->fast_out(j);
  2337     int xop = x->Opcode();
  2339     // We don't need current barrier if we see another or a lock
  2340     // before seeing volatile load.
  2341     //
  2342     // Op_Fastunlock previously appeared in the Op_* list below.
  2343     // With the advent of 1-0 lock operations we're no longer guaranteed
  2344     // that a monitor exit operation contains a serializing instruction.
  2346     if (xop == Op_MemBarVolatile ||
  2347         xop == Op_FastLock ||
  2348         xop == Op_CompareAndSwapL ||
  2349         xop == Op_CompareAndSwapP ||
  2350         xop == Op_CompareAndSwapN ||
  2351         xop == Op_CompareAndSwapI)
  2352       return true;
  2354     if (x->is_MemBar()) {
  2355       // We must retain this membar if there is an upcoming volatile
  2356       // load, which will be preceded by acquire membar.
  2357       if (xop == Op_MemBarAcquire)
  2358         return false;
  2359       // For other kinds of barriers, check by pretending we
  2360       // are them, and seeing if we can be removed.
  2361       else
  2362         return post_store_load_barrier((const MemBarNode*)x);
  2365     // Delicate code to detect case of an upcoming fastlock block
  2366     if( x->is_If() && x->req() > 1 &&
  2367         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2368       Node *iff = x;
  2369       Node *bol = iff->in(1);
  2370       // The iff might be some random subclass of If or bol might be Con-Top
  2371       if (!bol->is_Bool())  return false;
  2372       assert( bol->req() > 1, "" );
  2373       return (bol->in(1)->Opcode() == Op_FastUnlock);
  2375     // probably not necessary to check for these
  2376     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
  2377       return false;
  2379   return false;
  2382 //=============================================================================
  2383 //---------------------------State---------------------------------------------
  2384 State::State(void) {
  2385 #ifdef ASSERT
  2386   _id = 0;
  2387   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2388   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2389   //memset(_cost, -1, sizeof(_cost));
  2390   //memset(_rule, -1, sizeof(_rule));
  2391 #endif
  2392   memset(_valid, 0, sizeof(_valid));
  2395 #ifdef ASSERT
  2396 State::~State() {
  2397   _id = 99;
  2398   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2399   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2400   memset(_cost, -3, sizeof(_cost));
  2401   memset(_rule, -3, sizeof(_rule));
  2403 #endif
  2405 #ifndef PRODUCT
  2406 //---------------------------dump----------------------------------------------
  2407 void State::dump() {
  2408   tty->print("\n");
  2409   dump(0);
  2412 void State::dump(int depth) {
  2413   for( int j = 0; j < depth; j++ )
  2414     tty->print("   ");
  2415   tty->print("--N: ");
  2416   _leaf->dump();
  2417   uint i;
  2418   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2419     // Check for valid entry
  2420     if( valid(i) ) {
  2421       for( int j = 0; j < depth; j++ )
  2422         tty->print("   ");
  2423         assert(_cost[i] != max_juint, "cost must be a valid value");
  2424         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2425         tty->print_cr("%s  %d  %s",
  2426                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2428   tty->print_cr("");
  2430   for( i=0; i<2; i++ )
  2431     if( _kids[i] )
  2432       _kids[i]->dump(depth+1);
  2434 #endif

mercurial