src/share/vm/opto/addnode.cpp

Tue, 16 Apr 2013 10:08:41 +0200

author
neliasso
date
Tue, 16 Apr 2013 10:08:41 +0200
changeset 4949
8373c19be854
parent 4357
ad5dd04754ee
child 6876
710a3c8b516e
child 9610
f43f77de876a
permissions
-rw-r--r--

8011621: live_ranges_in_separate_class.patch
Reviewed-by: kvn, roland
Contributed-by: niclas.adlertz@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/cfgnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/machnode.hpp"
    31 #include "opto/mulnode.hpp"
    32 #include "opto/phaseX.hpp"
    33 #include "opto/subnode.hpp"
    35 // Portions of code courtesy of Clifford Click
    37 // Classic Add functionality.  This covers all the usual 'add' behaviors for
    38 // an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
    39 // all inherited from this class.  The various identity values are supplied
    40 // by virtual functions.
    43 //=============================================================================
    44 //------------------------------hash-------------------------------------------
    45 // Hash function over AddNodes.  Needs to be commutative; i.e., I swap
    46 // (commute) inputs to AddNodes willy-nilly so the hash function must return
    47 // the same value in the presence of edge swapping.
    48 uint AddNode::hash() const {
    49   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
    50 }
    52 //------------------------------Identity---------------------------------------
    53 // If either input is a constant 0, return the other input.
    54 Node *AddNode::Identity( PhaseTransform *phase ) {
    55   const Type *zero = add_id();  // The additive identity
    56   if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
    57   if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
    58   return this;
    59 }
    61 //------------------------------commute----------------------------------------
    62 // Commute operands to move loads and constants to the right.
    63 static bool commute( Node *add, int con_left, int con_right ) {
    64   Node *in1 = add->in(1);
    65   Node *in2 = add->in(2);
    67   // Convert "1+x" into "x+1".
    68   // Right is a constant; leave it
    69   if( con_right ) return false;
    70   // Left is a constant; move it right.
    71   if( con_left ) {
    72     add->swap_edges(1, 2);
    73     return true;
    74   }
    76   // Convert "Load+x" into "x+Load".
    77   // Now check for loads
    78   if (in2->is_Load()) {
    79     if (!in1->is_Load()) {
    80       // already x+Load to return
    81       return false;
    82     }
    83     // both are loads, so fall through to sort inputs by idx
    84   } else if( in1->is_Load() ) {
    85     // Left is a Load and Right is not; move it right.
    86     add->swap_edges(1, 2);
    87     return true;
    88   }
    90   PhiNode *phi;
    91   // Check for tight loop increments: Loop-phi of Add of loop-phi
    92   if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
    93     return false;
    94   if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
    95     add->swap_edges(1, 2);
    96     return true;
    97   }
    99   // Otherwise, sort inputs (commutativity) to help value numbering.
   100   if( in1->_idx > in2->_idx ) {
   101     add->swap_edges(1, 2);
   102     return true;
   103   }
   104   return false;
   105 }
   107 //------------------------------Idealize---------------------------------------
   108 // If we get here, we assume we are associative!
   109 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   110   const Type *t1 = phase->type( in(1) );
   111   const Type *t2 = phase->type( in(2) );
   112   int con_left  = t1->singleton();
   113   int con_right = t2->singleton();
   115   // Check for commutative operation desired
   116   if( commute(this,con_left,con_right) ) return this;
   118   AddNode *progress = NULL;             // Progress flag
   120   // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
   121   // constant, and the left input is an add of a constant, flatten the
   122   // expression tree.
   123   Node *add1 = in(1);
   124   Node *add2 = in(2);
   125   int add1_op = add1->Opcode();
   126   int this_op = Opcode();
   127   if( con_right && t2 != Type::TOP && // Right input is a constant?
   128       add1_op == this_op ) { // Left input is an Add?
   130     // Type of left _in right input
   131     const Type *t12 = phase->type( add1->in(2) );
   132     if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
   133       // Check for rare case of closed data cycle which can happen inside
   134       // unreachable loops. In these cases the computation is undefined.
   135 #ifdef ASSERT
   136       Node *add11    = add1->in(1);
   137       int   add11_op = add11->Opcode();
   138       if( (add1 == add1->in(1))
   139          || (add11_op == this_op && add11->in(1) == add1) ) {
   140         assert(false, "dead loop in AddNode::Ideal");
   141       }
   142 #endif
   143       // The Add of the flattened expression
   144       Node *x1 = add1->in(1);
   145       Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
   146       PhaseIterGVN *igvn = phase->is_IterGVN();
   147       if( igvn ) {
   148         set_req_X(2,x2,igvn);
   149         set_req_X(1,x1,igvn);
   150       } else {
   151         set_req(2,x2);
   152         set_req(1,x1);
   153       }
   154       progress = this;            // Made progress
   155       add1 = in(1);
   156       add1_op = add1->Opcode();
   157     }
   158   }
   160   // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
   161   if( add1_op == this_op && !con_right ) {
   162     Node *a12 = add1->in(2);
   163     const Type *t12 = phase->type( a12 );
   164     if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
   165        !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
   166       assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
   167       add2 = add1->clone();
   168       add2->set_req(2, in(2));
   169       add2 = phase->transform(add2);
   170       set_req(1, add2);
   171       set_req(2, a12);
   172       progress = this;
   173       add2 = a12;
   174     }
   175   }
   177   // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
   178   int add2_op = add2->Opcode();
   179   if( add2_op == this_op && !con_left ) {
   180     Node *a22 = add2->in(2);
   181     const Type *t22 = phase->type( a22 );
   182     if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
   183        !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
   184       assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
   185       Node *addx = add2->clone();
   186       addx->set_req(1, in(1));
   187       addx->set_req(2, add2->in(1));
   188       addx = phase->transform(addx);
   189       set_req(1, addx);
   190       set_req(2, a22);
   191       progress = this;
   192       PhaseIterGVN *igvn = phase->is_IterGVN();
   193       if (add2->outcnt() == 0 && igvn) {
   194         // add disconnected.
   195         igvn->_worklist.push(add2);
   196       }
   197     }
   198   }
   200   return progress;
   201 }
   203 //------------------------------Value-----------------------------------------
   204 // An add node sums it's two _in.  If one input is an RSD, we must mixin
   205 // the other input's symbols.
   206 const Type *AddNode::Value( PhaseTransform *phase ) const {
   207   // Either input is TOP ==> the result is TOP
   208   const Type *t1 = phase->type( in(1) );
   209   const Type *t2 = phase->type( in(2) );
   210   if( t1 == Type::TOP ) return Type::TOP;
   211   if( t2 == Type::TOP ) return Type::TOP;
   213   // Either input is BOTTOM ==> the result is the local BOTTOM
   214   const Type *bot = bottom_type();
   215   if( (t1 == bot) || (t2 == bot) ||
   216       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   217     return bot;
   219   // Check for an addition involving the additive identity
   220   const Type *tadd = add_of_identity( t1, t2 );
   221   if( tadd ) return tadd;
   223   return add_ring(t1,t2);               // Local flavor of type addition
   224 }
   226 //------------------------------add_identity-----------------------------------
   227 // Check for addition of the identity
   228 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   229   const Type *zero = add_id();  // The additive identity
   230   if( t1->higher_equal( zero ) ) return t2;
   231   if( t2->higher_equal( zero ) ) return t1;
   233   return NULL;
   234 }
   237 //=============================================================================
   238 //------------------------------Idealize---------------------------------------
   239 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   240   Node* in1 = in(1);
   241   Node* in2 = in(2);
   242   int op1 = in1->Opcode();
   243   int op2 = in2->Opcode();
   244   // Fold (con1-x)+con2 into (con1+con2)-x
   245   if ( op1 == Op_AddI && op2 == Op_SubI ) {
   246     // Swap edges to try optimizations below
   247     in1 = in2;
   248     in2 = in(1);
   249     op1 = op2;
   250     op2 = in2->Opcode();
   251   }
   252   if( op1 == Op_SubI ) {
   253     const Type *t_sub1 = phase->type( in1->in(1) );
   254     const Type *t_2    = phase->type( in2        );
   255     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
   256       return new (phase->C) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
   257                               in1->in(2) );
   258     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
   259     if( op2 == Op_SubI ) {
   260       // Check for dead cycle: d = (a-b)+(c-d)
   261       assert( in1->in(2) != this && in2->in(2) != this,
   262               "dead loop in AddINode::Ideal" );
   263       Node *sub  = new (phase->C) SubINode(NULL, NULL);
   264       sub->init_req(1, phase->transform(new (phase->C) AddINode(in1->in(1), in2->in(1) ) ));
   265       sub->init_req(2, phase->transform(new (phase->C) AddINode(in1->in(2), in2->in(2) ) ));
   266       return sub;
   267     }
   268     // Convert "(a-b)+(b+c)" into "(a+c)"
   269     if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
   270       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
   271       return new (phase->C) AddINode(in1->in(1), in2->in(2));
   272     }
   273     // Convert "(a-b)+(c+b)" into "(a+c)"
   274     if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
   275       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
   276       return new (phase->C) AddINode(in1->in(1), in2->in(1));
   277     }
   278     // Convert "(a-b)+(b-c)" into "(a-c)"
   279     if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
   280       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
   281       return new (phase->C) SubINode(in1->in(1), in2->in(2));
   282     }
   283     // Convert "(a-b)+(c-a)" into "(c-b)"
   284     if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
   285       assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
   286       return new (phase->C) SubINode(in2->in(1), in1->in(2));
   287     }
   288   }
   290   // Convert "x+(0-y)" into "(x-y)"
   291   if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
   292     return new (phase->C) SubINode(in1, in2->in(2) );
   294   // Convert "(0-y)+x" into "(x-y)"
   295   if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
   296     return new (phase->C) SubINode( in2, in1->in(2) );
   298   // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
   299   // Helps with array allocation math constant folding
   300   // See 4790063:
   301   // Unrestricted transformation is unsafe for some runtime values of 'x'
   302   // ( x ==  0, z == 1, y == -1 ) fails
   303   // ( x == -5, z == 1, y ==  1 ) fails
   304   // Transform works for small z and small negative y when the addition
   305   // (x + (y << z)) does not cross zero.
   306   // Implement support for negative y and (x >= -(y << z))
   307   // Have not observed cases where type information exists to support
   308   // positive y and (x <= -(y << z))
   309   if( op1 == Op_URShiftI && op2 == Op_ConI &&
   310       in1->in(2)->Opcode() == Op_ConI ) {
   311     jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
   312     jint y = phase->type( in2 )->is_int()->get_con();
   314     if( z < 5 && -5 < y && y < 0 ) {
   315       const Type *t_in11 = phase->type(in1->in(1));
   316       if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
   317         Node *a = phase->transform( new (phase->C) AddINode( in1->in(1), phase->intcon(y<<z) ) );
   318         return new (phase->C) URShiftINode( a, in1->in(2) );
   319       }
   320     }
   321   }
   323   return AddNode::Ideal(phase, can_reshape);
   324 }
   327 //------------------------------Identity---------------------------------------
   328 // Fold (x-y)+y  OR  y+(x-y)  into  x
   329 Node *AddINode::Identity( PhaseTransform *phase ) {
   330   if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
   331     return in(1)->in(1);
   332   }
   333   else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
   334     return in(2)->in(1);
   335   }
   336   return AddNode::Identity(phase);
   337 }
   340 //------------------------------add_ring---------------------------------------
   341 // Supplied function returns the sum of the inputs.  Guaranteed never
   342 // to be passed a TOP or BOTTOM type, these are filtered out by
   343 // pre-check.
   344 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
   345   const TypeInt *r0 = t0->is_int(); // Handy access
   346   const TypeInt *r1 = t1->is_int();
   347   int lo = r0->_lo + r1->_lo;
   348   int hi = r0->_hi + r1->_hi;
   349   if( !(r0->is_con() && r1->is_con()) ) {
   350     // Not both constants, compute approximate result
   351     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
   352       lo = min_jint; hi = max_jint; // Underflow on the low side
   353     }
   354     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
   355       lo = min_jint; hi = max_jint; // Overflow on the high side
   356     }
   357     if( lo > hi ) {               // Handle overflow
   358       lo = min_jint; hi = max_jint;
   359     }
   360   } else {
   361     // both constants, compute precise result using 'lo' and 'hi'
   362     // Semantics define overflow and underflow for integer addition
   363     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
   364   }
   365   return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
   366 }
   369 //=============================================================================
   370 //------------------------------Idealize---------------------------------------
   371 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   372   Node* in1 = in(1);
   373   Node* in2 = in(2);
   374   int op1 = in1->Opcode();
   375   int op2 = in2->Opcode();
   376   // Fold (con1-x)+con2 into (con1+con2)-x
   377   if ( op1 == Op_AddL && op2 == Op_SubL ) {
   378     // Swap edges to try optimizations below
   379     in1 = in2;
   380     in2 = in(1);
   381     op1 = op2;
   382     op2 = in2->Opcode();
   383   }
   384   // Fold (con1-x)+con2 into (con1+con2)-x
   385   if( op1 == Op_SubL ) {
   386     const Type *t_sub1 = phase->type( in1->in(1) );
   387     const Type *t_2    = phase->type( in2        );
   388     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
   389       return new (phase->C) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
   390                               in1->in(2) );
   391     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
   392     if( op2 == Op_SubL ) {
   393       // Check for dead cycle: d = (a-b)+(c-d)
   394       assert( in1->in(2) != this && in2->in(2) != this,
   395               "dead loop in AddLNode::Ideal" );
   396       Node *sub  = new (phase->C) SubLNode(NULL, NULL);
   397       sub->init_req(1, phase->transform(new (phase->C) AddLNode(in1->in(1), in2->in(1) ) ));
   398       sub->init_req(2, phase->transform(new (phase->C) AddLNode(in1->in(2), in2->in(2) ) ));
   399       return sub;
   400     }
   401     // Convert "(a-b)+(b+c)" into "(a+c)"
   402     if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
   403       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
   404       return new (phase->C) AddLNode(in1->in(1), in2->in(2));
   405     }
   406     // Convert "(a-b)+(c+b)" into "(a+c)"
   407     if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
   408       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
   409       return new (phase->C) AddLNode(in1->in(1), in2->in(1));
   410     }
   411     // Convert "(a-b)+(b-c)" into "(a-c)"
   412     if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
   413       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
   414       return new (phase->C) SubLNode(in1->in(1), in2->in(2));
   415     }
   416     // Convert "(a-b)+(c-a)" into "(c-b)"
   417     if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
   418       assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
   419       return new (phase->C) SubLNode(in2->in(1), in1->in(2));
   420     }
   421   }
   423   // Convert "x+(0-y)" into "(x-y)"
   424   if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
   425     return new (phase->C) SubLNode( in1, in2->in(2) );
   427   // Convert "(0-y)+x" into "(x-y)"
   428   if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
   429     return new (phase->C) SubLNode( in2, in1->in(2) );
   431   // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
   432   // into "(X<<1)+Y" and let shift-folding happen.
   433   if( op2 == Op_AddL &&
   434       in2->in(1) == in1 &&
   435       op1 != Op_ConL &&
   436       0 ) {
   437     Node *shift = phase->transform(new (phase->C) LShiftLNode(in1,phase->intcon(1)));
   438     return new (phase->C) AddLNode(shift,in2->in(2));
   439   }
   441   return AddNode::Ideal(phase, can_reshape);
   442 }
   445 //------------------------------Identity---------------------------------------
   446 // Fold (x-y)+y  OR  y+(x-y)  into  x
   447 Node *AddLNode::Identity( PhaseTransform *phase ) {
   448   if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
   449     return in(1)->in(1);
   450   }
   451   else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
   452     return in(2)->in(1);
   453   }
   454   return AddNode::Identity(phase);
   455 }
   458 //------------------------------add_ring---------------------------------------
   459 // Supplied function returns the sum of the inputs.  Guaranteed never
   460 // to be passed a TOP or BOTTOM type, these are filtered out by
   461 // pre-check.
   462 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
   463   const TypeLong *r0 = t0->is_long(); // Handy access
   464   const TypeLong *r1 = t1->is_long();
   465   jlong lo = r0->_lo + r1->_lo;
   466   jlong hi = r0->_hi + r1->_hi;
   467   if( !(r0->is_con() && r1->is_con()) ) {
   468     // Not both constants, compute approximate result
   469     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
   470       lo =min_jlong; hi = max_jlong; // Underflow on the low side
   471     }
   472     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
   473       lo = min_jlong; hi = max_jlong; // Overflow on the high side
   474     }
   475     if( lo > hi ) {               // Handle overflow
   476       lo = min_jlong; hi = max_jlong;
   477     }
   478   } else {
   479     // both constants, compute precise result using 'lo' and 'hi'
   480     // Semantics define overflow and underflow for integer addition
   481     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
   482   }
   483   return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
   484 }
   487 //=============================================================================
   488 //------------------------------add_of_identity--------------------------------
   489 // Check for addition of the identity
   490 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   491   // x ADD 0  should return x unless 'x' is a -zero
   492   //
   493   // const Type *zero = add_id();     // The additive identity
   494   // jfloat f1 = t1->getf();
   495   // jfloat f2 = t2->getf();
   496   //
   497   // if( t1->higher_equal( zero ) ) return t2;
   498   // if( t2->higher_equal( zero ) ) return t1;
   500   return NULL;
   501 }
   503 //------------------------------add_ring---------------------------------------
   504 // Supplied function returns the sum of the inputs.
   505 // This also type-checks the inputs for sanity.  Guaranteed never to
   506 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   507 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
   508   // We must be adding 2 float constants.
   509   return TypeF::make( t0->getf() + t1->getf() );
   510 }
   512 //------------------------------Ideal------------------------------------------
   513 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   514   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   515     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
   516   }
   518   // Floating point additions are not associative because of boundary conditions (infinity)
   519   return commute(this,
   520                  phase->type( in(1) )->singleton(),
   521                  phase->type( in(2) )->singleton() ) ? this : NULL;
   522 }
   525 //=============================================================================
   526 //------------------------------add_of_identity--------------------------------
   527 // Check for addition of the identity
   528 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   529   // x ADD 0  should return x unless 'x' is a -zero
   530   //
   531   // const Type *zero = add_id();     // The additive identity
   532   // jfloat f1 = t1->getf();
   533   // jfloat f2 = t2->getf();
   534   //
   535   // if( t1->higher_equal( zero ) ) return t2;
   536   // if( t2->higher_equal( zero ) ) return t1;
   538   return NULL;
   539 }
   540 //------------------------------add_ring---------------------------------------
   541 // Supplied function returns the sum of the inputs.
   542 // This also type-checks the inputs for sanity.  Guaranteed never to
   543 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   544 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
   545   // We must be adding 2 double constants.
   546   return TypeD::make( t0->getd() + t1->getd() );
   547 }
   549 //------------------------------Ideal------------------------------------------
   550 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   551   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   552     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
   553   }
   555   // Floating point additions are not associative because of boundary conditions (infinity)
   556   return commute(this,
   557                  phase->type( in(1) )->singleton(),
   558                  phase->type( in(2) )->singleton() ) ? this : NULL;
   559 }
   562 //=============================================================================
   563 //------------------------------Identity---------------------------------------
   564 // If one input is a constant 0, return the other input.
   565 Node *AddPNode::Identity( PhaseTransform *phase ) {
   566   return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
   567 }
   569 //------------------------------Idealize---------------------------------------
   570 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   571   // Bail out if dead inputs
   572   if( phase->type( in(Address) ) == Type::TOP ) return NULL;
   574   // If the left input is an add of a constant, flatten the expression tree.
   575   const Node *n = in(Address);
   576   if (n->is_AddP() && n->in(Base) == in(Base)) {
   577     const AddPNode *addp = n->as_AddP(); // Left input is an AddP
   578     assert( !addp->in(Address)->is_AddP() ||
   579              addp->in(Address)->as_AddP() != addp,
   580             "dead loop in AddPNode::Ideal" );
   581     // Type of left input's right input
   582     const Type *t = phase->type( addp->in(Offset) );
   583     if( t == Type::TOP ) return NULL;
   584     const TypeX *t12 = t->is_intptr_t();
   585     if( t12->is_con() ) {       // Left input is an add of a constant?
   586       // If the right input is a constant, combine constants
   587       const Type *temp_t2 = phase->type( in(Offset) );
   588       if( temp_t2 == Type::TOP ) return NULL;
   589       const TypeX *t2 = temp_t2->is_intptr_t();
   590       Node* address;
   591       Node* offset;
   592       if( t2->is_con() ) {
   593         // The Add of the flattened expression
   594         address = addp->in(Address);
   595         offset  = phase->MakeConX(t2->get_con() + t12->get_con());
   596       } else {
   597         // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
   598         address = phase->transform(new (phase->C) AddPNode(in(Base),addp->in(Address),in(Offset)));
   599         offset  = addp->in(Offset);
   600       }
   601       PhaseIterGVN *igvn = phase->is_IterGVN();
   602       if( igvn ) {
   603         set_req_X(Address,address,igvn);
   604         set_req_X(Offset,offset,igvn);
   605       } else {
   606         set_req(Address,address);
   607         set_req(Offset,offset);
   608       }
   609       return this;
   610     }
   611   }
   613   // Raw pointers?
   614   if( in(Base)->bottom_type() == Type::TOP ) {
   615     // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
   616     if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
   617       Node* offset = in(Offset);
   618       return new (phase->C) CastX2PNode(offset);
   619     }
   620   }
   622   // If the right is an add of a constant, push the offset down.
   623   // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
   624   // The idea is to merge array_base+scaled_index groups together,
   625   // and only have different constant offsets from the same base.
   626   const Node *add = in(Offset);
   627   if( add->Opcode() == Op_AddX && add->in(1) != add ) {
   628     const Type *t22 = phase->type( add->in(2) );
   629     if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
   630       set_req(Address, phase->transform(new (phase->C) AddPNode(in(Base),in(Address),add->in(1))));
   631       set_req(Offset, add->in(2));
   632       PhaseIterGVN *igvn = phase->is_IterGVN();
   633       if (add->outcnt() == 0 && igvn) {
   634         // add disconnected.
   635         igvn->_worklist.push((Node*)add);
   636       }
   637       return this;              // Made progress
   638     }
   639   }
   641   return NULL;                  // No progress
   642 }
   644 //------------------------------bottom_type------------------------------------
   645 // Bottom-type is the pointer-type with unknown offset.
   646 const Type *AddPNode::bottom_type() const {
   647   if (in(Address) == NULL)  return TypePtr::BOTTOM;
   648   const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
   649   if( !tp ) return Type::TOP;   // TOP input means TOP output
   650   assert( in(Offset)->Opcode() != Op_ConP, "" );
   651   const Type *t = in(Offset)->bottom_type();
   652   if( t == Type::TOP )
   653     return tp->add_offset(Type::OffsetTop);
   654   const TypeX *tx = t->is_intptr_t();
   655   intptr_t txoffset = Type::OffsetBot;
   656   if (tx->is_con()) {   // Left input is an add of a constant?
   657     txoffset = tx->get_con();
   658   }
   659   return tp->add_offset(txoffset);
   660 }
   662 //------------------------------Value------------------------------------------
   663 const Type *AddPNode::Value( PhaseTransform *phase ) const {
   664   // Either input is TOP ==> the result is TOP
   665   const Type *t1 = phase->type( in(Address) );
   666   const Type *t2 = phase->type( in(Offset) );
   667   if( t1 == Type::TOP ) return Type::TOP;
   668   if( t2 == Type::TOP ) return Type::TOP;
   670   // Left input is a pointer
   671   const TypePtr *p1 = t1->isa_ptr();
   672   // Right input is an int
   673   const TypeX *p2 = t2->is_intptr_t();
   674   // Add 'em
   675   intptr_t p2offset = Type::OffsetBot;
   676   if (p2->is_con()) {   // Left input is an add of a constant?
   677     p2offset = p2->get_con();
   678   }
   679   return p1->add_offset(p2offset);
   680 }
   682 //------------------------Ideal_base_and_offset--------------------------------
   683 // Split an oop pointer into a base and offset.
   684 // (The offset might be Type::OffsetBot in the case of an array.)
   685 // Return the base, or NULL if failure.
   686 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
   687                                       // second return value:
   688                                       intptr_t& offset) {
   689   if (ptr->is_AddP()) {
   690     Node* base = ptr->in(AddPNode::Base);
   691     Node* addr = ptr->in(AddPNode::Address);
   692     Node* offs = ptr->in(AddPNode::Offset);
   693     if (base == addr || base->is_top()) {
   694       offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
   695       if (offset != Type::OffsetBot) {
   696         return addr;
   697       }
   698     }
   699   }
   700   offset = Type::OffsetBot;
   701   return NULL;
   702 }
   704 //------------------------------unpack_offsets----------------------------------
   705 // Collect the AddP offset values into the elements array, giving up
   706 // if there are more than length.
   707 int AddPNode::unpack_offsets(Node* elements[], int length) {
   708   int count = 0;
   709   Node* addr = this;
   710   Node* base = addr->in(AddPNode::Base);
   711   while (addr->is_AddP()) {
   712     if (addr->in(AddPNode::Base) != base) {
   713       // give up
   714       return -1;
   715     }
   716     elements[count++] = addr->in(AddPNode::Offset);
   717     if (count == length) {
   718       // give up
   719       return -1;
   720     }
   721     addr = addr->in(AddPNode::Address);
   722   }
   723   if (addr != base) {
   724     return -1;
   725   }
   726   return count;
   727 }
   729 //------------------------------match_edge-------------------------------------
   730 // Do we Match on this edge index or not?  Do not match base pointer edge
   731 uint AddPNode::match_edge(uint idx) const {
   732   return idx > Base;
   733 }
   735 //=============================================================================
   736 //------------------------------Identity---------------------------------------
   737 Node *OrINode::Identity( PhaseTransform *phase ) {
   738   // x | x => x
   739   if (phase->eqv(in(1), in(2))) {
   740     return in(1);
   741   }
   743   return AddNode::Identity(phase);
   744 }
   746 //------------------------------add_ring---------------------------------------
   747 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
   748 // the logical operations the ring's ADD is really a logical OR function.
   749 // This also type-checks the inputs for sanity.  Guaranteed never to
   750 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   751 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
   752   const TypeInt *r0 = t0->is_int(); // Handy access
   753   const TypeInt *r1 = t1->is_int();
   755   // If both args are bool, can figure out better types
   756   if ( r0 == TypeInt::BOOL ) {
   757     if ( r1 == TypeInt::ONE) {
   758       return TypeInt::ONE;
   759     } else if ( r1 == TypeInt::BOOL ) {
   760       return TypeInt::BOOL;
   761     }
   762   } else if ( r0 == TypeInt::ONE ) {
   763     if ( r1 == TypeInt::BOOL ) {
   764       return TypeInt::ONE;
   765     }
   766   }
   768   // If either input is not a constant, just return all integers.
   769   if( !r0->is_con() || !r1->is_con() )
   770     return TypeInt::INT;        // Any integer, but still no symbols.
   772   // Otherwise just OR them bits.
   773   return TypeInt::make( r0->get_con() | r1->get_con() );
   774 }
   776 //=============================================================================
   777 //------------------------------Identity---------------------------------------
   778 Node *OrLNode::Identity( PhaseTransform *phase ) {
   779   // x | x => x
   780   if (phase->eqv(in(1), in(2))) {
   781     return in(1);
   782   }
   784   return AddNode::Identity(phase);
   785 }
   787 //------------------------------add_ring---------------------------------------
   788 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
   789   const TypeLong *r0 = t0->is_long(); // Handy access
   790   const TypeLong *r1 = t1->is_long();
   792   // If either input is not a constant, just return all integers.
   793   if( !r0->is_con() || !r1->is_con() )
   794     return TypeLong::LONG;      // Any integer, but still no symbols.
   796   // Otherwise just OR them bits.
   797   return TypeLong::make( r0->get_con() | r1->get_con() );
   798 }
   800 //=============================================================================
   801 //------------------------------add_ring---------------------------------------
   802 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
   803 // the logical operations the ring's ADD is really a logical OR function.
   804 // This also type-checks the inputs for sanity.  Guaranteed never to
   805 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   806 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
   807   const TypeInt *r0 = t0->is_int(); // Handy access
   808   const TypeInt *r1 = t1->is_int();
   810   // Complementing a boolean?
   811   if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
   812                                || r1 == TypeInt::BOOL))
   813     return TypeInt::BOOL;
   815   if( !r0->is_con() || !r1->is_con() ) // Not constants
   816     return TypeInt::INT;        // Any integer, but still no symbols.
   818   // Otherwise just XOR them bits.
   819   return TypeInt::make( r0->get_con() ^ r1->get_con() );
   820 }
   822 //=============================================================================
   823 //------------------------------add_ring---------------------------------------
   824 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
   825   const TypeLong *r0 = t0->is_long(); // Handy access
   826   const TypeLong *r1 = t1->is_long();
   828   // If either input is not a constant, just return all integers.
   829   if( !r0->is_con() || !r1->is_con() )
   830     return TypeLong::LONG;      // Any integer, but still no symbols.
   832   // Otherwise just OR them bits.
   833   return TypeLong::make( r0->get_con() ^ r1->get_con() );
   834 }
   836 //=============================================================================
   837 //------------------------------add_ring---------------------------------------
   838 // Supplied function returns the sum of the inputs.
   839 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
   840   const TypeInt *r0 = t0->is_int(); // Handy access
   841   const TypeInt *r1 = t1->is_int();
   843   // Otherwise just MAX them bits.
   844   return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
   845 }
   847 //=============================================================================
   848 //------------------------------Idealize---------------------------------------
   849 // MINs show up in range-check loop limit calculations.  Look for
   850 // "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
   851 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   852   Node *progress = NULL;
   853   // Force a right-spline graph
   854   Node *l = in(1);
   855   Node *r = in(2);
   856   // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
   857   // to force a right-spline graph for the rest of MinINode::Ideal().
   858   if( l->Opcode() == Op_MinI ) {
   859     assert( l != l->in(1), "dead loop in MinINode::Ideal" );
   860     r = phase->transform(new (phase->C) MinINode(l->in(2),r));
   861     l = l->in(1);
   862     set_req(1, l);
   863     set_req(2, r);
   864     return this;
   865   }
   867   // Get left input & constant
   868   Node *x = l;
   869   int x_off = 0;
   870   if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
   871       x->in(2)->is_Con() ) {
   872     const Type *t = x->in(2)->bottom_type();
   873     if( t == Type::TOP ) return NULL;  // No progress
   874     x_off = t->is_int()->get_con();
   875     x = x->in(1);
   876   }
   878   // Scan a right-spline-tree for MINs
   879   Node *y = r;
   880   int y_off = 0;
   881   // Check final part of MIN tree
   882   if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
   883       y->in(2)->is_Con() ) {
   884     const Type *t = y->in(2)->bottom_type();
   885     if( t == Type::TOP ) return NULL;  // No progress
   886     y_off = t->is_int()->get_con();
   887     y = y->in(1);
   888   }
   889   if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
   890     swap_edges(1, 2);
   891     return this;
   892   }
   895   if( r->Opcode() == Op_MinI ) {
   896     assert( r != r->in(2), "dead loop in MinINode::Ideal" );
   897     y = r->in(1);
   898     // Check final part of MIN tree
   899     if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
   900         y->in(2)->is_Con() ) {
   901       const Type *t = y->in(2)->bottom_type();
   902       if( t == Type::TOP ) return NULL;  // No progress
   903       y_off = t->is_int()->get_con();
   904       y = y->in(1);
   905     }
   907     if( x->_idx > y->_idx )
   908       return new (phase->C) MinINode(r->in(1),phase->transform(new (phase->C) MinINode(l,r->in(2))));
   910     // See if covers: MIN2(x+c0,MIN2(y+c1,z))
   911     if( !phase->eqv(x,y) ) return NULL;
   912     // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
   913     // MIN2(x+c0 or x+c1 which less, z).
   914     return new (phase->C) MinINode(phase->transform(new (phase->C) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
   915   } else {
   916     // See if covers: MIN2(x+c0,y+c1)
   917     if( !phase->eqv(x,y) ) return NULL;
   918     // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
   919     return new (phase->C) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
   920   }
   922 }
   924 //------------------------------add_ring---------------------------------------
   925 // Supplied function returns the sum of the inputs.
   926 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
   927   const TypeInt *r0 = t0->is_int(); // Handy access
   928   const TypeInt *r1 = t1->is_int();
   930   // Otherwise just MIN them bits.
   931   return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
   932 }

mercurial