src/share/vm/services/mallocSiteTable.cpp

Wed, 27 Aug 2014 08:19:12 -0400

author
zgu
date
Wed, 27 Aug 2014 08:19:12 -0400
changeset 7074
833b0f92429a
child 9053
da59531e1fdf
permissions
-rw-r--r--

8046598: Scalable Native memory tracking development
Summary: Enhance scalability of native memory tracking
Reviewed-by: coleenp, ctornqvi, gtriantafill

     1 /*
     2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    24 #include "precompiled.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "runtime/atomic.hpp"
    29 #include "services/mallocSiteTable.hpp"
    31 /*
    32  * Early os::malloc() calls come from initializations of static variables, long before entering any
    33  * VM code. Upon the arrival of the first os::malloc() call, malloc site hashtable has to be
    34  * initialized, along with the allocation site for the hashtable entries.
    35  * To ensure that malloc site hashtable can be initialized without triggering any additional os::malloc()
    36  * call, the hashtable bucket array and hashtable entry allocation site have to be static.
    37  * It is not a problem for hashtable bucket, since it is an array of pointer type, C runtime just
    38  * allocates a block memory and zero the memory for it.
    39  * But for hashtable entry allocation site object, things get tricky. C runtime not only allocates
    40  * memory for it, but also calls its constructor at some later time. If we initialize the allocation site
    41  * at the first os::malloc() call, the object will be reinitialized when its constructor is called
    42  * by C runtime.
    43  * To workaround above issue, we declare a static size_t array with the size of the CallsiteHashtableEntry,
    44  * the memory is used to instantiate CallsiteHashtableEntry for the hashtable entry allocation site.
    45  * Given it is a primitive type array, C runtime will do nothing other than assign the memory block for the variable,
    46  * which is exactly what we want.
    47  * The same trick is also applied to create NativeCallStack object for CallsiteHashtableEntry memory allocation.
    48  *
    49  * Note: C++ object usually aligns to particular alignment, depends on compiler implementation, we declare
    50  * the memory as size_t arrays, to ensure the memory is aligned to native machine word alignment.
    51  */
    53 // Reserve enough memory for NativeCallStack and MallocSiteHashtableEntry objects
    54 size_t MallocSiteTable::_hash_entry_allocation_stack[CALC_OBJ_SIZE_IN_TYPE(NativeCallStack, size_t)];
    55 size_t MallocSiteTable::_hash_entry_allocation_site[CALC_OBJ_SIZE_IN_TYPE(MallocSiteHashtableEntry, size_t)];
    57 // Malloc site hashtable buckets
    58 MallocSiteHashtableEntry*  MallocSiteTable::_table[MallocSiteTable::table_size];
    60 // concurrent access counter
    61 volatile int MallocSiteTable::_access_count = 0;
    63 // Tracking hashtable contention
    64 NOT_PRODUCT(int MallocSiteTable::_peak_count = 0;)
    67 /*
    68  * Initialize malloc site table.
    69  * Hashtable entry is malloc'd, so it can cause infinite recursion.
    70  * To avoid above problem, we pre-initialize a hash entry for
    71  * this allocation site.
    72  * The method is called during C runtime static variable initialization
    73  * time, it is in single-threaded mode from JVM perspective.
    74  */
    75 bool MallocSiteTable::initialize() {
    76   assert(sizeof(_hash_entry_allocation_stack) >= sizeof(NativeCallStack), "Sanity Check");
    77   assert(sizeof(_hash_entry_allocation_site) >= sizeof(MallocSiteHashtableEntry),
    78     "Sanity Check");
    79   assert((size_t)table_size <= MAX_MALLOCSITE_TABLE_SIZE, "Hashtable overflow");
    81   // Fake the call stack for hashtable entry allocation
    82   assert(NMT_TrackingStackDepth > 1, "At least one tracking stack");
    84   // Create pseudo call stack for hashtable entry allocation
    85   address pc[3];
    86   if (NMT_TrackingStackDepth >= 3) {
    87     pc[2] = (address)MallocSiteTable::allocation_at;
    88   }
    89   if (NMT_TrackingStackDepth >= 2) {
    90     pc[1] = (address)MallocSiteTable::lookup_or_add;
    91   }
    92   pc[0] = (address)MallocSiteTable::new_entry;
    94   // Instantiate NativeCallStack object, have to use placement new operator. (see comments above)
    95   NativeCallStack* stack = ::new ((void*)_hash_entry_allocation_stack)
    96     NativeCallStack(pc, MIN2(((int)(sizeof(pc) / sizeof(address))), ((int)NMT_TrackingStackDepth)));
    98   // Instantiate hash entry for hashtable entry allocation callsite
    99   MallocSiteHashtableEntry* entry = ::new ((void*)_hash_entry_allocation_site)
   100     MallocSiteHashtableEntry(*stack);
   102   // Add the allocation site to hashtable.
   103   int index = hash_to_index(stack->hash());
   104   _table[index] = entry;
   106   return true;
   107 }
   109 // Walks entries in the hashtable.
   110 // It stops walk if the walker returns false.
   111 bool MallocSiteTable::walk(MallocSiteWalker* walker) {
   112   MallocSiteHashtableEntry* head;
   113   for (int index = 0; index < table_size; index ++) {
   114     head = _table[index];
   115     while (head != NULL) {
   116       if (!walker->do_malloc_site(head->peek())) {
   117         return false;
   118       }
   119       head = (MallocSiteHashtableEntry*)head->next();
   120     }
   121   }
   122   return true;
   123 }
   125 /*
   126  *  The hashtable does not have deletion policy on individual entry,
   127  *  and each linked list node is inserted via compare-and-swap,
   128  *  so each linked list is stable, the contention only happens
   129  *  at the end of linked list.
   130  *  This method should not return NULL under normal circumstance.
   131  *  If NULL is returned, it indicates:
   132  *    1. Out of memory, it cannot allocate new hash entry.
   133  *    2. Overflow hash bucket.
   134  *  Under any of above circumstances, caller should handle the situation.
   135  */
   136 MallocSite* MallocSiteTable::lookup_or_add(const NativeCallStack& key, size_t* bucket_idx,
   137   size_t* pos_idx) {
   138   int index = hash_to_index(key.hash());
   139   assert(index >= 0, "Negative index");
   140   *bucket_idx = (size_t)index;
   141   *pos_idx = 0;
   143   // First entry for this hash bucket
   144   if (_table[index] == NULL) {
   145     MallocSiteHashtableEntry* entry = new_entry(key);
   146     // OOM check
   147     if (entry == NULL) return NULL;
   149     // swap in the head
   150     if (Atomic::cmpxchg_ptr((void*)entry, (volatile void *)&_table[index], NULL) == NULL) {
   151       return entry->data();
   152     }
   154     delete entry;
   155   }
   157   MallocSiteHashtableEntry* head = _table[index];
   158   while (head != NULL && (*pos_idx) <= MAX_BUCKET_LENGTH) {
   159     MallocSite* site = head->data();
   160     if (site->equals(key)) {
   161       // found matched entry
   162       return head->data();
   163     }
   165     if (head->next() == NULL && (*pos_idx) < MAX_BUCKET_LENGTH) {
   166       MallocSiteHashtableEntry* entry = new_entry(key);
   167       // OOM check
   168       if (entry == NULL) return NULL;
   169       if (head->atomic_insert(entry)) {
   170         (*pos_idx) ++;
   171         return entry->data();
   172       }
   173       // contended, other thread won
   174       delete entry;
   175     }
   176     head = (MallocSiteHashtableEntry*)head->next();
   177     (*pos_idx) ++;
   178   }
   179   return NULL;
   180 }
   182 // Access malloc site
   183 MallocSite* MallocSiteTable::malloc_site(size_t bucket_idx, size_t pos_idx) {
   184   assert(bucket_idx < table_size, "Invalid bucket index");
   185   MallocSiteHashtableEntry* head = _table[bucket_idx];
   186   for (size_t index = 0; index < pos_idx && head != NULL;
   187     index ++, head = (MallocSiteHashtableEntry*)head->next());
   188   assert(head != NULL, "Invalid position index");
   189   return head->data();
   190 }
   192 // Allocates MallocSiteHashtableEntry object. Special call stack
   193 // (pre-installed allocation site) has to be used to avoid infinite
   194 // recursion.
   195 MallocSiteHashtableEntry* MallocSiteTable::new_entry(const NativeCallStack& key) {
   196   void* p = AllocateHeap(sizeof(MallocSiteHashtableEntry), mtNMT,
   197     *hash_entry_allocation_stack(), AllocFailStrategy::RETURN_NULL);
   198   return ::new (p) MallocSiteHashtableEntry(key);
   199 }
   201 void MallocSiteTable::reset() {
   202   for (int index = 0; index < table_size; index ++) {
   203     MallocSiteHashtableEntry* head = _table[index];
   204     _table[index] = NULL;
   205     delete_linked_list(head);
   206   }
   207 }
   209 void MallocSiteTable::delete_linked_list(MallocSiteHashtableEntry* head) {
   210   MallocSiteHashtableEntry* p;
   211   while (head != NULL) {
   212     p = head;
   213     head = (MallocSiteHashtableEntry*)head->next();
   214     if (p != (MallocSiteHashtableEntry*)_hash_entry_allocation_site) {
   215       delete p;
   216     }
   217   }
   218 }
   220 void MallocSiteTable::shutdown() {
   221   AccessLock locker(&_access_count);
   222   locker.exclusiveLock();
   223   reset();
   224 }
   226 bool MallocSiteTable::walk_malloc_site(MallocSiteWalker* walker) {
   227   assert(walker != NULL, "NuLL walker");
   228   AccessLock locker(&_access_count);
   229   if (locker.sharedLock()) {
   230     NOT_PRODUCT(_peak_count = MAX2(_peak_count, _access_count);)
   231     return walk(walker);
   232   }
   233   return false;
   234 }
   237 void MallocSiteTable::AccessLock::exclusiveLock() {
   238   jint target;
   239   jint val;
   241   assert(_lock_state != ExclusiveLock, "Can only call once");
   242   assert(*_lock >= 0, "Can not content exclusive lock");
   244   // make counter negative to block out shared locks
   245   do {
   246     val = *_lock;
   247     target = _MAGIC_ + *_lock;
   248   } while (Atomic::cmpxchg(target, _lock, val) != val);
   250   // wait for all readers to exit
   251   while (*_lock != _MAGIC_) {
   252 #ifdef _WINDOWS
   253     os::naked_short_sleep(1);
   254 #else
   255     os::NakedYield();
   256 #endif
   257   }
   258   _lock_state = ExclusiveLock;
   259 }

mercurial