src/share/vm/memory/collectorPolicy.cpp

Wed, 27 Aug 2014 08:19:12 -0400

author
zgu
date
Wed, 27 Aug 2014 08:19:12 -0400
changeset 7074
833b0f92429a
parent 6680
78bbf4d43a14
child 7301
d63ce76a0f0e
permissions
-rw-r--r--

8046598: Scalable Native memory tracking development
Summary: Enhance scalability of native memory tracking
Reviewed-by: coleenp, ctornqvi, gtriantafill

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/vmGCOperations.hpp"
    29 #include "memory/cardTableRS.hpp"
    30 #include "memory/collectorPolicy.hpp"
    31 #include "memory/gcLocker.inline.hpp"
    32 #include "memory/genCollectedHeap.hpp"
    33 #include "memory/generationSpec.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/universe.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/globals_extension.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/thread.inline.hpp"
    41 #include "runtime/vmThread.hpp"
    42 #include "utilities/macros.hpp"
    43 #if INCLUDE_ALL_GCS
    44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 // CollectorPolicy methods.
    50 CollectorPolicy::CollectorPolicy() :
    51     _space_alignment(0),
    52     _heap_alignment(0),
    53     _initial_heap_byte_size(InitialHeapSize),
    54     _max_heap_byte_size(MaxHeapSize),
    55     _min_heap_byte_size(Arguments::min_heap_size()),
    56     _max_heap_size_cmdline(false),
    57     _size_policy(NULL),
    58     _should_clear_all_soft_refs(false),
    59     _all_soft_refs_clear(false)
    60 {}
    62 #ifdef ASSERT
    63 void CollectorPolicy::assert_flags() {
    64   assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
    65   assert(InitialHeapSize % _heap_alignment == 0, "InitialHeapSize alignment");
    66   assert(MaxHeapSize % _heap_alignment == 0, "MaxHeapSize alignment");
    67 }
    69 void CollectorPolicy::assert_size_info() {
    70   assert(InitialHeapSize == _initial_heap_byte_size, "Discrepancy between InitialHeapSize flag and local storage");
    71   assert(MaxHeapSize == _max_heap_byte_size, "Discrepancy between MaxHeapSize flag and local storage");
    72   assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
    73   assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
    74   assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
    75   assert(_min_heap_byte_size % _heap_alignment == 0, "min_heap_byte_size alignment");
    76   assert(_initial_heap_byte_size % _heap_alignment == 0, "initial_heap_byte_size alignment");
    77   assert(_max_heap_byte_size % _heap_alignment == 0, "max_heap_byte_size alignment");
    78 }
    79 #endif // ASSERT
    81 void CollectorPolicy::initialize_flags() {
    82   assert(_space_alignment != 0, "Space alignment not set up properly");
    83   assert(_heap_alignment != 0, "Heap alignment not set up properly");
    84   assert(_heap_alignment >= _space_alignment,
    85          err_msg("heap_alignment: " SIZE_FORMAT " less than space_alignment: " SIZE_FORMAT,
    86                  _heap_alignment, _space_alignment));
    87   assert(_heap_alignment % _space_alignment == 0,
    88          err_msg("heap_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
    89                  _heap_alignment, _space_alignment));
    91   if (FLAG_IS_CMDLINE(MaxHeapSize)) {
    92     if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
    93       vm_exit_during_initialization("Initial heap size set to a larger value than the maximum heap size");
    94     }
    95     if (_min_heap_byte_size != 0 && MaxHeapSize < _min_heap_byte_size) {
    96       vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
    97     }
    98     _max_heap_size_cmdline = true;
    99   }
   101   // Check heap parameter properties
   102   if (InitialHeapSize < M) {
   103     vm_exit_during_initialization("Too small initial heap");
   104   }
   105   if (_min_heap_byte_size < M) {
   106     vm_exit_during_initialization("Too small minimum heap");
   107   }
   109   // User inputs from -Xmx and -Xms must be aligned
   110   _min_heap_byte_size = align_size_up(_min_heap_byte_size, _heap_alignment);
   111   uintx aligned_initial_heap_size = align_size_up(InitialHeapSize, _heap_alignment);
   112   uintx aligned_max_heap_size = align_size_up(MaxHeapSize, _heap_alignment);
   114   // Write back to flags if the values changed
   115   if (aligned_initial_heap_size != InitialHeapSize) {
   116     FLAG_SET_ERGO(uintx, InitialHeapSize, aligned_initial_heap_size);
   117   }
   118   if (aligned_max_heap_size != MaxHeapSize) {
   119     FLAG_SET_ERGO(uintx, MaxHeapSize, aligned_max_heap_size);
   120   }
   122   if (FLAG_IS_CMDLINE(InitialHeapSize) && _min_heap_byte_size != 0 &&
   123       InitialHeapSize < _min_heap_byte_size) {
   124     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
   125   }
   126   if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
   127     FLAG_SET_ERGO(uintx, MaxHeapSize, InitialHeapSize);
   128   } else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
   129     FLAG_SET_ERGO(uintx, InitialHeapSize, MaxHeapSize);
   130     if (InitialHeapSize < _min_heap_byte_size) {
   131       _min_heap_byte_size = InitialHeapSize;
   132     }
   133   }
   135   _initial_heap_byte_size = InitialHeapSize;
   136   _max_heap_byte_size = MaxHeapSize;
   138   FLAG_SET_ERGO(uintx, MinHeapDeltaBytes, align_size_up(MinHeapDeltaBytes, _space_alignment));
   140   DEBUG_ONLY(CollectorPolicy::assert_flags();)
   141 }
   143 void CollectorPolicy::initialize_size_info() {
   144   if (PrintGCDetails && Verbose) {
   145     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
   146       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
   147       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
   148   }
   150   DEBUG_ONLY(CollectorPolicy::assert_size_info();)
   151 }
   153 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
   154   bool result = _should_clear_all_soft_refs;
   155   set_should_clear_all_soft_refs(false);
   156   return result;
   157 }
   159 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
   160                                            int max_covered_regions) {
   161   return new CardTableRS(whole_heap, max_covered_regions);
   162 }
   164 void CollectorPolicy::cleared_all_soft_refs() {
   165   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
   166   // have been cleared in the last collection but if the gc overhear
   167   // limit continues to be near, SoftRefs should still be cleared.
   168   if (size_policy() != NULL) {
   169     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
   170   }
   171   _all_soft_refs_clear = true;
   172 }
   174 size_t CollectorPolicy::compute_heap_alignment() {
   175   // The card marking array and the offset arrays for old generations are
   176   // committed in os pages as well. Make sure they are entirely full (to
   177   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
   178   // byte entry and the os page size is 4096, the maximum heap size should
   179   // be 512*4096 = 2MB aligned.
   181   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
   182   // is supported.
   183   // Requirements of any new remembered set implementations must be added here.
   184   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
   186   // Parallel GC does its own alignment of the generations to avoid requiring a
   187   // large page (256M on some platforms) for the permanent generation.  The
   188   // other collectors should also be updated to do their own alignment and then
   189   // this use of lcm() should be removed.
   190   if (UseLargePages && !UseParallelGC) {
   191       // in presence of large pages we have to make sure that our
   192       // alignment is large page aware
   193       alignment = lcm(os::large_page_size(), alignment);
   194   }
   196   return alignment;
   197 }
   199 // GenCollectorPolicy methods.
   201 GenCollectorPolicy::GenCollectorPolicy() :
   202     _min_gen0_size(0),
   203     _initial_gen0_size(0),
   204     _max_gen0_size(0),
   205     _gen_alignment(0),
   206     _generations(NULL)
   207 {}
   209 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
   210   return align_size_down_bounded(base_size / (NewRatio + 1), _gen_alignment);
   211 }
   213 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
   214                                                  size_t maximum_size) {
   215   size_t max_minus = maximum_size - _gen_alignment;
   216   return desired_size < max_minus ? desired_size : max_minus;
   217 }
   220 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
   221                                                 size_t init_promo_size,
   222                                                 size_t init_survivor_size) {
   223   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
   224   _size_policy = new AdaptiveSizePolicy(init_eden_size,
   225                                         init_promo_size,
   226                                         init_survivor_size,
   227                                         max_gc_pause_sec,
   228                                         GCTimeRatio);
   229 }
   231 size_t GenCollectorPolicy::young_gen_size_lower_bound() {
   232   // The young generation must be aligned and have room for eden + two survivors
   233   return align_size_up(3 * _space_alignment, _gen_alignment);
   234 }
   236 #ifdef ASSERT
   237 void GenCollectorPolicy::assert_flags() {
   238   CollectorPolicy::assert_flags();
   239   assert(NewSize >= _min_gen0_size, "Ergonomics decided on a too small young gen size");
   240   assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
   241   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
   242   assert(NewSize % _gen_alignment == 0, "NewSize alignment");
   243   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _gen_alignment == 0, "MaxNewSize alignment");
   244 }
   246 void TwoGenerationCollectorPolicy::assert_flags() {
   247   GenCollectorPolicy::assert_flags();
   248   assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
   249   assert(OldSize % _gen_alignment == 0, "OldSize alignment");
   250 }
   252 void GenCollectorPolicy::assert_size_info() {
   253   CollectorPolicy::assert_size_info();
   254   // GenCollectorPolicy::initialize_size_info may update the MaxNewSize
   255   assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
   256   assert(NewSize == _initial_gen0_size, "Discrepancy between NewSize flag and local storage");
   257   assert(MaxNewSize == _max_gen0_size, "Discrepancy between MaxNewSize flag and local storage");
   258   assert(_min_gen0_size <= _initial_gen0_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
   259   assert(_initial_gen0_size <= _max_gen0_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
   260   assert(_min_gen0_size % _gen_alignment == 0, "_min_gen0_size alignment");
   261   assert(_initial_gen0_size % _gen_alignment == 0, "_initial_gen0_size alignment");
   262   assert(_max_gen0_size % _gen_alignment == 0, "_max_gen0_size alignment");
   263 }
   265 void TwoGenerationCollectorPolicy::assert_size_info() {
   266   GenCollectorPolicy::assert_size_info();
   267   assert(OldSize == _initial_gen1_size, "Discrepancy between OldSize flag and local storage");
   268   assert(_min_gen1_size <= _initial_gen1_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
   269   assert(_initial_gen1_size <= _max_gen1_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
   270   assert(_max_gen1_size % _gen_alignment == 0, "_max_gen1_size alignment");
   271   assert(_initial_gen1_size % _gen_alignment == 0, "_initial_gen1_size alignment");
   272   assert(_max_heap_byte_size <= (_max_gen0_size + _max_gen1_size), "Total maximum heap sizes must be sum of generation maximum sizes");
   273 }
   274 #endif // ASSERT
   276 void GenCollectorPolicy::initialize_flags() {
   277   CollectorPolicy::initialize_flags();
   279   assert(_gen_alignment != 0, "Generation alignment not set up properly");
   280   assert(_heap_alignment >= _gen_alignment,
   281          err_msg("heap_alignment: " SIZE_FORMAT " less than gen_alignment: " SIZE_FORMAT,
   282                  _heap_alignment, _gen_alignment));
   283   assert(_gen_alignment % _space_alignment == 0,
   284          err_msg("gen_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
   285                  _gen_alignment, _space_alignment));
   286   assert(_heap_alignment % _gen_alignment == 0,
   287          err_msg("heap_alignment: " SIZE_FORMAT " not aligned by gen_alignment: " SIZE_FORMAT,
   288                  _heap_alignment, _gen_alignment));
   290   // All generational heaps have a youngest gen; handle those flags here
   292   // Make sure the heap is large enough for two generations
   293   uintx smallest_new_size = young_gen_size_lower_bound();
   294   uintx smallest_heap_size = align_size_up(smallest_new_size + align_size_up(_space_alignment, _gen_alignment),
   295                                            _heap_alignment);
   296   if (MaxHeapSize < smallest_heap_size) {
   297     FLAG_SET_ERGO(uintx, MaxHeapSize, smallest_heap_size);
   298     _max_heap_byte_size = MaxHeapSize;
   299   }
   300   // If needed, synchronize _min_heap_byte size and _initial_heap_byte_size
   301   if (_min_heap_byte_size < smallest_heap_size) {
   302     _min_heap_byte_size = smallest_heap_size;
   303     if (InitialHeapSize < _min_heap_byte_size) {
   304       FLAG_SET_ERGO(uintx, InitialHeapSize, smallest_heap_size);
   305       _initial_heap_byte_size = smallest_heap_size;
   306     }
   307   }
   309   // Now take the actual NewSize into account. We will silently increase NewSize
   310   // if the user specified a smaller or unaligned value.
   311   smallest_new_size = MAX2(smallest_new_size, (uintx)align_size_down(NewSize, _gen_alignment));
   312   if (smallest_new_size != NewSize) {
   313     // Do not use FLAG_SET_ERGO to update NewSize here, since this will override
   314     // if NewSize was set on the command line or not. This information is needed
   315     // later when setting the initial and minimum young generation size.
   316     NewSize = smallest_new_size;
   317   }
   318   _initial_gen0_size = NewSize;
   320   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
   321     uintx min_new_size = MAX2(_gen_alignment, _min_gen0_size);
   323     if (MaxNewSize >= MaxHeapSize) {
   324       // Make sure there is room for an old generation
   325       uintx smaller_max_new_size = MaxHeapSize - _gen_alignment;
   326       if (FLAG_IS_CMDLINE(MaxNewSize)) {
   327         warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
   328                 "heap (" SIZE_FORMAT "k).  A new max generation size of " SIZE_FORMAT "k will be used.",
   329                 MaxNewSize/K, MaxHeapSize/K, smaller_max_new_size/K);
   330       }
   331       FLAG_SET_ERGO(uintx, MaxNewSize, smaller_max_new_size);
   332       if (NewSize > MaxNewSize) {
   333         FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
   334         _initial_gen0_size = NewSize;
   335       }
   336     } else if (MaxNewSize < min_new_size) {
   337       FLAG_SET_ERGO(uintx, MaxNewSize, min_new_size);
   338     } else if (!is_size_aligned(MaxNewSize, _gen_alignment)) {
   339       FLAG_SET_ERGO(uintx, MaxNewSize, align_size_down(MaxNewSize, _gen_alignment));
   340     }
   341     _max_gen0_size = MaxNewSize;
   342   }
   344   if (NewSize > MaxNewSize) {
   345     // At this point this should only happen if the user specifies a large NewSize and/or
   346     // a small (but not too small) MaxNewSize.
   347     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   348       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
   349               "A new max generation size of " SIZE_FORMAT "k will be used.",
   350               NewSize/K, MaxNewSize/K, NewSize/K);
   351     }
   352     FLAG_SET_ERGO(uintx, MaxNewSize, NewSize);
   353     _max_gen0_size = MaxNewSize;
   354   }
   356   if (SurvivorRatio < 1 || NewRatio < 1) {
   357     vm_exit_during_initialization("Invalid young gen ratio specified");
   358   }
   360   DEBUG_ONLY(GenCollectorPolicy::assert_flags();)
   361 }
   363 void TwoGenerationCollectorPolicy::initialize_flags() {
   364   GenCollectorPolicy::initialize_flags();
   366   if (!is_size_aligned(OldSize, _gen_alignment)) {
   367     FLAG_SET_ERGO(uintx, OldSize, align_size_down(OldSize, _gen_alignment));
   368   }
   370   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
   371     // NewRatio will be used later to set the young generation size so we use
   372     // it to calculate how big the heap should be based on the requested OldSize
   373     // and NewRatio.
   374     assert(NewRatio > 0, "NewRatio should have been set up earlier");
   375     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
   377     calculated_heapsize = align_size_up(calculated_heapsize, _heap_alignment);
   378     FLAG_SET_ERGO(uintx, MaxHeapSize, calculated_heapsize);
   379     _max_heap_byte_size = MaxHeapSize;
   380     FLAG_SET_ERGO(uintx, InitialHeapSize, calculated_heapsize);
   381     _initial_heap_byte_size = InitialHeapSize;
   382   }
   384   // adjust max heap size if necessary
   385   if (NewSize + OldSize > MaxHeapSize) {
   386     if (_max_heap_size_cmdline) {
   387       // somebody set a maximum heap size with the intention that we should not
   388       // exceed it. Adjust New/OldSize as necessary.
   389       uintx calculated_size = NewSize + OldSize;
   390       double shrink_factor = (double) MaxHeapSize / calculated_size;
   391       uintx smaller_new_size = align_size_down((uintx)(NewSize * shrink_factor), _gen_alignment);
   392       FLAG_SET_ERGO(uintx, NewSize, MAX2(young_gen_size_lower_bound(), smaller_new_size));
   393       _initial_gen0_size = NewSize;
   395       // OldSize is already aligned because above we aligned MaxHeapSize to
   396       // _heap_alignment, and we just made sure that NewSize is aligned to
   397       // _gen_alignment. In initialize_flags() we verified that _heap_alignment
   398       // is a multiple of _gen_alignment.
   399       FLAG_SET_ERGO(uintx, OldSize, MaxHeapSize - NewSize);
   400     } else {
   401       FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(NewSize + OldSize, _heap_alignment));
   402       _max_heap_byte_size = MaxHeapSize;
   403     }
   404   }
   406   always_do_update_barrier = UseConcMarkSweepGC;
   408   DEBUG_ONLY(TwoGenerationCollectorPolicy::assert_flags();)
   409 }
   411 // Values set on the command line win over any ergonomically
   412 // set command line parameters.
   413 // Ergonomic choice of parameters are done before this
   414 // method is called.  Values for command line parameters such as NewSize
   415 // and MaxNewSize feed those ergonomic choices into this method.
   416 // This method makes the final generation sizings consistent with
   417 // themselves and with overall heap sizings.
   418 // In the absence of explicitly set command line flags, policies
   419 // such as the use of NewRatio are used to size the generation.
   420 void GenCollectorPolicy::initialize_size_info() {
   421   CollectorPolicy::initialize_size_info();
   423   // _space_alignment is used for alignment within a generation.
   424   // There is additional alignment done down stream for some
   425   // collectors that sometimes causes unwanted rounding up of
   426   // generations sizes.
   428   // Determine maximum size of gen0
   430   size_t max_new_size = 0;
   431   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
   432     max_new_size = MaxNewSize;
   433   } else {
   434     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
   435     // Bound the maximum size by NewSize below (since it historically
   436     // would have been NewSize and because the NewRatio calculation could
   437     // yield a size that is too small) and bound it by MaxNewSize above.
   438     // Ergonomics plays here by previously calculating the desired
   439     // NewSize and MaxNewSize.
   440     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
   441   }
   442   assert(max_new_size > 0, "All paths should set max_new_size");
   444   // Given the maximum gen0 size, determine the initial and
   445   // minimum gen0 sizes.
   447   if (_max_heap_byte_size == _min_heap_byte_size) {
   448     // The maximum and minimum heap sizes are the same so
   449     // the generations minimum and initial must be the
   450     // same as its maximum.
   451     _min_gen0_size = max_new_size;
   452     _initial_gen0_size = max_new_size;
   453     _max_gen0_size = max_new_size;
   454   } else {
   455     size_t desired_new_size = 0;
   456     if (FLAG_IS_CMDLINE(NewSize)) {
   457       // If NewSize is set on the command line, we must use it as
   458       // the initial size and it also makes sense to use it as the
   459       // lower limit.
   460       _min_gen0_size = NewSize;
   461       desired_new_size = NewSize;
   462       max_new_size = MAX2(max_new_size, NewSize);
   463     } else if (FLAG_IS_ERGO(NewSize)) {
   464       // If NewSize is set ergonomically, we should use it as a lower
   465       // limit, but use NewRatio to calculate the initial size.
   466       _min_gen0_size = NewSize;
   467       desired_new_size =
   468         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
   469       max_new_size = MAX2(max_new_size, NewSize);
   470     } else {
   471       // For the case where NewSize is the default, use NewRatio
   472       // to size the minimum and initial generation sizes.
   473       // Use the default NewSize as the floor for these values.  If
   474       // NewRatio is overly large, the resulting sizes can be too
   475       // small.
   476       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
   477       desired_new_size =
   478         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
   479     }
   481     assert(_min_gen0_size > 0, "Sanity check");
   482     _initial_gen0_size = desired_new_size;
   483     _max_gen0_size = max_new_size;
   485     // At this point the desirable initial and minimum sizes have been
   486     // determined without regard to the maximum sizes.
   488     // Bound the sizes by the corresponding overall heap sizes.
   489     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
   490     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
   491     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
   493     // At this point all three sizes have been checked against the
   494     // maximum sizes but have not been checked for consistency
   495     // among the three.
   497     // Final check min <= initial <= max
   498     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
   499     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
   500     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
   501   }
   503   // Write back to flags if necessary
   504   if (NewSize != _initial_gen0_size) {
   505     FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
   506   }
   508   if (MaxNewSize != _max_gen0_size) {
   509     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
   510   }
   512   if (PrintGCDetails && Verbose) {
   513     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   514       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   515       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
   516   }
   518   DEBUG_ONLY(GenCollectorPolicy::assert_size_info();)
   519 }
   521 // Call this method during the sizing of the gen1 to make
   522 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
   523 // the most freedom in sizing because it is done before the
   524 // policy for gen1 is applied.  Once gen1 policies have been applied,
   525 // there may be conflicts in the shape of the heap and this method
   526 // is used to make the needed adjustments.  The application of the
   527 // policies could be more sophisticated (iterative for example) but
   528 // keeping it simple also seems a worthwhile goal.
   529 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
   530                                                      size_t* gen1_size_ptr,
   531                                                      const size_t heap_size) {
   532   bool result = false;
   534   if ((*gen0_size_ptr + *gen1_size_ptr) > heap_size) {
   535     uintx smallest_new_size = young_gen_size_lower_bound();
   536     if ((heap_size < (*gen0_size_ptr + _min_gen1_size)) &&
   537         (heap_size >= _min_gen1_size + smallest_new_size)) {
   538       // Adjust gen0 down to accommodate _min_gen1_size
   539       *gen0_size_ptr = align_size_down_bounded(heap_size - _min_gen1_size, _gen_alignment);
   540       result = true;
   541     } else {
   542       *gen1_size_ptr = align_size_down_bounded(heap_size - *gen0_size_ptr, _gen_alignment);
   543     }
   544   }
   545   return result;
   546 }
   548 // Minimum sizes of the generations may be different than
   549 // the initial sizes.  An inconsistently is permitted here
   550 // in the total size that can be specified explicitly by
   551 // command line specification of OldSize and NewSize and
   552 // also a command line specification of -Xms.  Issue a warning
   553 // but allow the values to pass.
   555 void TwoGenerationCollectorPolicy::initialize_size_info() {
   556   GenCollectorPolicy::initialize_size_info();
   558   // At this point the minimum, initial and maximum sizes
   559   // of the overall heap and of gen0 have been determined.
   560   // The maximum gen1 size can be determined from the maximum gen0
   561   // and maximum heap size since no explicit flags exits
   562   // for setting the gen1 maximum.
   563   _max_gen1_size = MAX2(_max_heap_byte_size - _max_gen0_size, _gen_alignment);
   565   // If no explicit command line flag has been set for the
   566   // gen1 size, use what is left for gen1.
   567   if (!FLAG_IS_CMDLINE(OldSize)) {
   568     // The user has not specified any value but the ergonomics
   569     // may have chosen a value (which may or may not be consistent
   570     // with the overall heap size).  In either case make
   571     // the minimum, maximum and initial sizes consistent
   572     // with the gen0 sizes and the overall heap sizes.
   573     _min_gen1_size = MAX2(_min_heap_byte_size - _min_gen0_size, _gen_alignment);
   574     _initial_gen1_size = MAX2(_initial_heap_byte_size - _initial_gen0_size, _gen_alignment);
   575     // _max_gen1_size has already been made consistent above
   576     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
   577   } else {
   578     // It's been explicitly set on the command line.  Use the
   579     // OldSize and then determine the consequences.
   580     _min_gen1_size = MIN2(OldSize, _min_heap_byte_size - _min_gen0_size);
   581     _initial_gen1_size = OldSize;
   583     // If the user has explicitly set an OldSize that is inconsistent
   584     // with other command line flags, issue a warning.
   585     // The generation minimums and the overall heap mimimum should
   586     // be within one generation alignment.
   587     if ((_min_gen1_size + _min_gen0_size + _gen_alignment) < _min_heap_byte_size) {
   588       warning("Inconsistency between minimum heap size and minimum "
   589               "generation sizes: using minimum heap = " SIZE_FORMAT,
   590               _min_heap_byte_size);
   591     }
   592     if (OldSize > _max_gen1_size) {
   593       warning("Inconsistency between maximum heap size and maximum "
   594               "generation sizes: using maximum heap = " SIZE_FORMAT
   595               " -XX:OldSize flag is being ignored",
   596               _max_heap_byte_size);
   597     }
   598     // If there is an inconsistency between the OldSize and the minimum and/or
   599     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
   600     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size, _min_heap_byte_size)) {
   601       if (PrintGCDetails && Verbose) {
   602         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   603               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   604               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
   605       }
   606     }
   607     // Initial size
   608     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
   609                           _initial_heap_byte_size)) {
   610       if (PrintGCDetails && Verbose) {
   611         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   612           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   613           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
   614       }
   615     }
   616   }
   617   // Enforce the maximum gen1 size.
   618   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
   620   // Check that min gen1 <= initial gen1 <= max gen1
   621   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
   622   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
   624   // Write back to flags if necessary
   625   if (NewSize != _initial_gen0_size) {
   626     FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
   627   }
   629   if (MaxNewSize != _max_gen0_size) {
   630     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
   631   }
   633   if (OldSize != _initial_gen1_size) {
   634     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
   635   }
   637   if (PrintGCDetails && Verbose) {
   638     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
   639       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
   640       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
   641   }
   643   DEBUG_ONLY(TwoGenerationCollectorPolicy::assert_size_info();)
   644 }
   646 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
   647                                         bool is_tlab,
   648                                         bool* gc_overhead_limit_was_exceeded) {
   649   GenCollectedHeap *gch = GenCollectedHeap::heap();
   651   debug_only(gch->check_for_valid_allocation_state());
   652   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
   654   // In general gc_overhead_limit_was_exceeded should be false so
   655   // set it so here and reset it to true only if the gc time
   656   // limit is being exceeded as checked below.
   657   *gc_overhead_limit_was_exceeded = false;
   659   HeapWord* result = NULL;
   661   // Loop until the allocation is satisified,
   662   // or unsatisfied after GC.
   663   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
   664     HandleMark hm; // discard any handles allocated in each iteration
   666     // First allocation attempt is lock-free.
   667     Generation *gen0 = gch->get_gen(0);
   668     assert(gen0->supports_inline_contig_alloc(),
   669       "Otherwise, must do alloc within heap lock");
   670     if (gen0->should_allocate(size, is_tlab)) {
   671       result = gen0->par_allocate(size, is_tlab);
   672       if (result != NULL) {
   673         assert(gch->is_in_reserved(result), "result not in heap");
   674         return result;
   675       }
   676     }
   677     unsigned int gc_count_before;  // read inside the Heap_lock locked region
   678     {
   679       MutexLocker ml(Heap_lock);
   680       if (PrintGC && Verbose) {
   681         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
   682                       " attempting locked slow path allocation");
   683       }
   684       // Note that only large objects get a shot at being
   685       // allocated in later generations.
   686       bool first_only = ! should_try_older_generation_allocation(size);
   688       result = gch->attempt_allocation(size, is_tlab, first_only);
   689       if (result != NULL) {
   690         assert(gch->is_in_reserved(result), "result not in heap");
   691         return result;
   692       }
   694       if (GC_locker::is_active_and_needs_gc()) {
   695         if (is_tlab) {
   696           return NULL;  // Caller will retry allocating individual object
   697         }
   698         if (!gch->is_maximal_no_gc()) {
   699           // Try and expand heap to satisfy request
   700           result = expand_heap_and_allocate(size, is_tlab);
   701           // result could be null if we are out of space
   702           if (result != NULL) {
   703             return result;
   704           }
   705         }
   707         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
   708           return NULL; // we didn't get to do a GC and we didn't get any memory
   709         }
   711         // If this thread is not in a jni critical section, we stall
   712         // the requestor until the critical section has cleared and
   713         // GC allowed. When the critical section clears, a GC is
   714         // initiated by the last thread exiting the critical section; so
   715         // we retry the allocation sequence from the beginning of the loop,
   716         // rather than causing more, now probably unnecessary, GC attempts.
   717         JavaThread* jthr = JavaThread::current();
   718         if (!jthr->in_critical()) {
   719           MutexUnlocker mul(Heap_lock);
   720           // Wait for JNI critical section to be exited
   721           GC_locker::stall_until_clear();
   722           gclocker_stalled_count += 1;
   723           continue;
   724         } else {
   725           if (CheckJNICalls) {
   726             fatal("Possible deadlock due to allocating while"
   727                   " in jni critical section");
   728           }
   729           return NULL;
   730         }
   731       }
   733       // Read the gc count while the heap lock is held.
   734       gc_count_before = Universe::heap()->total_collections();
   735     }
   737     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
   738     VMThread::execute(&op);
   739     if (op.prologue_succeeded()) {
   740       result = op.result();
   741       if (op.gc_locked()) {
   742          assert(result == NULL, "must be NULL if gc_locked() is true");
   743          continue;  // retry and/or stall as necessary
   744       }
   746       // Allocation has failed and a collection
   747       // has been done.  If the gc time limit was exceeded the
   748       // this time, return NULL so that an out-of-memory
   749       // will be thrown.  Clear gc_overhead_limit_exceeded
   750       // so that the overhead exceeded does not persist.
   752       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   753       const bool softrefs_clear = all_soft_refs_clear();
   755       if (limit_exceeded && softrefs_clear) {
   756         *gc_overhead_limit_was_exceeded = true;
   757         size_policy()->set_gc_overhead_limit_exceeded(false);
   758         if (op.result() != NULL) {
   759           CollectedHeap::fill_with_object(op.result(), size);
   760         }
   761         return NULL;
   762       }
   763       assert(result == NULL || gch->is_in_reserved(result),
   764              "result not in heap");
   765       return result;
   766     }
   768     // Give a warning if we seem to be looping forever.
   769     if ((QueuedAllocationWarningCount > 0) &&
   770         (try_count % QueuedAllocationWarningCount == 0)) {
   771           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
   772                   " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
   773     }
   774   }
   775 }
   777 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
   778                                                        bool   is_tlab) {
   779   GenCollectedHeap *gch = GenCollectedHeap::heap();
   780   HeapWord* result = NULL;
   781   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
   782     Generation *gen = gch->get_gen(i);
   783     if (gen->should_allocate(size, is_tlab)) {
   784       result = gen->expand_and_allocate(size, is_tlab);
   785     }
   786   }
   787   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
   788   return result;
   789 }
   791 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
   792                                                         bool   is_tlab) {
   793   GenCollectedHeap *gch = GenCollectedHeap::heap();
   794   GCCauseSetter x(gch, GCCause::_allocation_failure);
   795   HeapWord* result = NULL;
   797   assert(size != 0, "Precondition violated");
   798   if (GC_locker::is_active_and_needs_gc()) {
   799     // GC locker is active; instead of a collection we will attempt
   800     // to expand the heap, if there's room for expansion.
   801     if (!gch->is_maximal_no_gc()) {
   802       result = expand_heap_and_allocate(size, is_tlab);
   803     }
   804     return result;   // could be null if we are out of space
   805   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
   806     // Do an incremental collection.
   807     gch->do_collection(false            /* full */,
   808                        false            /* clear_all_soft_refs */,
   809                        size             /* size */,
   810                        is_tlab          /* is_tlab */,
   811                        number_of_generations() - 1 /* max_level */);
   812   } else {
   813     if (Verbose && PrintGCDetails) {
   814       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
   815     }
   816     // Try a full collection; see delta for bug id 6266275
   817     // for the original code and why this has been simplified
   818     // with from-space allocation criteria modified and
   819     // such allocation moved out of the safepoint path.
   820     gch->do_collection(true             /* full */,
   821                        false            /* clear_all_soft_refs */,
   822                        size             /* size */,
   823                        is_tlab          /* is_tlab */,
   824                        number_of_generations() - 1 /* max_level */);
   825   }
   827   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
   829   if (result != NULL) {
   830     assert(gch->is_in_reserved(result), "result not in heap");
   831     return result;
   832   }
   834   // OK, collection failed, try expansion.
   835   result = expand_heap_and_allocate(size, is_tlab);
   836   if (result != NULL) {
   837     return result;
   838   }
   840   // If we reach this point, we're really out of memory. Try every trick
   841   // we can to reclaim memory. Force collection of soft references. Force
   842   // a complete compaction of the heap. Any additional methods for finding
   843   // free memory should be here, especially if they are expensive. If this
   844   // attempt fails, an OOM exception will be thrown.
   845   {
   846     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
   848     gch->do_collection(true             /* full */,
   849                        true             /* clear_all_soft_refs */,
   850                        size             /* size */,
   851                        is_tlab          /* is_tlab */,
   852                        number_of_generations() - 1 /* max_level */);
   853   }
   855   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
   856   if (result != NULL) {
   857     assert(gch->is_in_reserved(result), "result not in heap");
   858     return result;
   859   }
   861   assert(!should_clear_all_soft_refs(),
   862     "Flag should have been handled and cleared prior to this point");
   864   // What else?  We might try synchronous finalization later.  If the total
   865   // space available is large enough for the allocation, then a more
   866   // complete compaction phase than we've tried so far might be
   867   // appropriate.
   868   return NULL;
   869 }
   871 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
   872                                                  ClassLoaderData* loader_data,
   873                                                  size_t word_size,
   874                                                  Metaspace::MetadataType mdtype) {
   875   uint loop_count = 0;
   876   uint gc_count = 0;
   877   uint full_gc_count = 0;
   879   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
   881   do {
   882     MetaWord* result = NULL;
   883     if (GC_locker::is_active_and_needs_gc()) {
   884       // If the GC_locker is active, just expand and allocate.
   885       // If that does not succeed, wait if this thread is not
   886       // in a critical section itself.
   887       result =
   888         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
   889                                                                mdtype);
   890       if (result != NULL) {
   891         return result;
   892       }
   893       JavaThread* jthr = JavaThread::current();
   894       if (!jthr->in_critical()) {
   895         // Wait for JNI critical section to be exited
   896         GC_locker::stall_until_clear();
   897         // The GC invoked by the last thread leaving the critical
   898         // section will be a young collection and a full collection
   899         // is (currently) needed for unloading classes so continue
   900         // to the next iteration to get a full GC.
   901         continue;
   902       } else {
   903         if (CheckJNICalls) {
   904           fatal("Possible deadlock due to allocating while"
   905                 " in jni critical section");
   906         }
   907         return NULL;
   908       }
   909     }
   911     {  // Need lock to get self consistent gc_count's
   912       MutexLocker ml(Heap_lock);
   913       gc_count      = Universe::heap()->total_collections();
   914       full_gc_count = Universe::heap()->total_full_collections();
   915     }
   917     // Generate a VM operation
   918     VM_CollectForMetadataAllocation op(loader_data,
   919                                        word_size,
   920                                        mdtype,
   921                                        gc_count,
   922                                        full_gc_count,
   923                                        GCCause::_metadata_GC_threshold);
   924     VMThread::execute(&op);
   926     // If GC was locked out, try again.  Check
   927     // before checking success because the prologue
   928     // could have succeeded and the GC still have
   929     // been locked out.
   930     if (op.gc_locked()) {
   931       continue;
   932     }
   934     if (op.prologue_succeeded()) {
   935       return op.result();
   936     }
   937     loop_count++;
   938     if ((QueuedAllocationWarningCount > 0) &&
   939         (loop_count % QueuedAllocationWarningCount == 0)) {
   940       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
   941               " size=" SIZE_FORMAT, loop_count, word_size);
   942     }
   943   } while (true);  // Until a GC is done
   944 }
   946 // Return true if any of the following is true:
   947 // . the allocation won't fit into the current young gen heap
   948 // . gc locker is occupied (jni critical section)
   949 // . heap memory is tight -- the most recent previous collection
   950 //   was a full collection because a partial collection (would
   951 //   have) failed and is likely to fail again
   952 bool GenCollectorPolicy::should_try_older_generation_allocation(
   953         size_t word_size) const {
   954   GenCollectedHeap* gch = GenCollectedHeap::heap();
   955   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
   956   return    (word_size > heap_word_size(gen0_capacity))
   957          || GC_locker::is_active_and_needs_gc()
   958          || gch->incremental_collection_failed();
   959 }
   962 //
   963 // MarkSweepPolicy methods
   964 //
   966 void MarkSweepPolicy::initialize_alignments() {
   967   _space_alignment = _gen_alignment = (uintx)Generation::GenGrain;
   968   _heap_alignment = compute_heap_alignment();
   969 }
   971 void MarkSweepPolicy::initialize_generations() {
   972   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, CURRENT_PC,
   973     AllocFailStrategy::RETURN_NULL);
   974   if (_generations == NULL) {
   975     vm_exit_during_initialization("Unable to allocate gen spec");
   976   }
   978   if (UseParNewGC) {
   979     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
   980   } else {
   981     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
   982   }
   983   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
   985   if (_generations[0] == NULL || _generations[1] == NULL) {
   986     vm_exit_during_initialization("Unable to allocate gen spec");
   987   }
   988 }
   990 void MarkSweepPolicy::initialize_gc_policy_counters() {
   991   // initialize the policy counters - 2 collectors, 3 generations
   992   if (UseParNewGC) {
   993     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
   994   } else {
   995     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
   996   }
   997 }
   999 /////////////// Unit tests ///////////////
  1001 #ifndef PRODUCT
  1002 // Testing that the NewSize flag is handled correct is hard because it
  1003 // depends on so many other configurable variables. This test only tries to
  1004 // verify that there are some basic rules for NewSize honored by the policies.
  1005 class TestGenCollectorPolicy {
  1006 public:
  1007   static void test() {
  1008     size_t flag_value;
  1010     save_flags();
  1012     // Set some limits that makes the math simple.
  1013     FLAG_SET_ERGO(uintx, MaxHeapSize, 180 * M);
  1014     FLAG_SET_ERGO(uintx, InitialHeapSize, 120 * M);
  1015     Arguments::set_min_heap_size(40 * M);
  1017     // If NewSize is set on the command line, it should be used
  1018     // for both min and initial young size if less than min heap.
  1019     flag_value = 20 * M;
  1020     FLAG_SET_CMDLINE(uintx, NewSize, flag_value);
  1021     verify_min(flag_value);
  1022     verify_initial(flag_value);
  1024     // If NewSize is set on command line, but is larger than the min
  1025     // heap size, it should only be used for initial young size.
  1026     flag_value = 80 * M;
  1027     FLAG_SET_CMDLINE(uintx, NewSize, flag_value);
  1028     verify_initial(flag_value);
  1030     // If NewSize has been ergonomically set, the collector policy
  1031     // should use it for min but calculate the initial young size
  1032     // using NewRatio.
  1033     flag_value = 20 * M;
  1034     FLAG_SET_ERGO(uintx, NewSize, flag_value);
  1035     verify_min(flag_value);
  1036     verify_scaled_initial(InitialHeapSize);
  1038     restore_flags();
  1042   static void verify_min(size_t expected) {
  1043     MarkSweepPolicy msp;
  1044     msp.initialize_all();
  1046     assert(msp.min_gen0_size() <= expected, err_msg("%zu  > %zu", msp.min_gen0_size(), expected));
  1049   static void verify_initial(size_t expected) {
  1050     MarkSweepPolicy msp;
  1051     msp.initialize_all();
  1053     assert(msp.initial_gen0_size() == expected, err_msg("%zu != %zu", msp.initial_gen0_size(), expected));
  1056   static void verify_scaled_initial(size_t initial_heap_size) {
  1057     MarkSweepPolicy msp;
  1058     msp.initialize_all();
  1060     size_t expected = msp.scale_by_NewRatio_aligned(initial_heap_size);
  1061     assert(msp.initial_gen0_size() == expected, err_msg("%zu != %zu", msp.initial_gen0_size(), expected));
  1062     assert(FLAG_IS_ERGO(NewSize) && NewSize == expected,
  1063         err_msg("NewSize should have been set ergonomically to %zu, but was %zu", expected, NewSize));
  1066 private:
  1067   static size_t original_InitialHeapSize;
  1068   static size_t original_MaxHeapSize;
  1069   static size_t original_MaxNewSize;
  1070   static size_t original_MinHeapDeltaBytes;
  1071   static size_t original_NewSize;
  1072   static size_t original_OldSize;
  1074   static void save_flags() {
  1075     original_InitialHeapSize   = InitialHeapSize;
  1076     original_MaxHeapSize       = MaxHeapSize;
  1077     original_MaxNewSize        = MaxNewSize;
  1078     original_MinHeapDeltaBytes = MinHeapDeltaBytes;
  1079     original_NewSize           = NewSize;
  1080     original_OldSize           = OldSize;
  1083   static void restore_flags() {
  1084     InitialHeapSize   = original_InitialHeapSize;
  1085     MaxHeapSize       = original_MaxHeapSize;
  1086     MaxNewSize        = original_MaxNewSize;
  1087     MinHeapDeltaBytes = original_MinHeapDeltaBytes;
  1088     NewSize           = original_NewSize;
  1089     OldSize           = original_OldSize;
  1091 };
  1093 size_t TestGenCollectorPolicy::original_InitialHeapSize   = 0;
  1094 size_t TestGenCollectorPolicy::original_MaxHeapSize       = 0;
  1095 size_t TestGenCollectorPolicy::original_MaxNewSize        = 0;
  1096 size_t TestGenCollectorPolicy::original_MinHeapDeltaBytes = 0;
  1097 size_t TestGenCollectorPolicy::original_NewSize           = 0;
  1098 size_t TestGenCollectorPolicy::original_OldSize           = 0;
  1100 void TestNewSize_test() {
  1101   TestGenCollectorPolicy::test();
  1104 #endif

mercurial