src/share/vm/memory/allocation.hpp

Wed, 27 Aug 2014 08:19:12 -0400

author
zgu
date
Wed, 27 Aug 2014 08:19:12 -0400
changeset 7074
833b0f92429a
parent 6507
752ba2e5f6d0
child 7089
6e0cb14ce59b
permissions
-rw-r--r--

8046598: Scalable Native memory tracking development
Summary: Enhance scalability of native memory tracking
Reviewed-by: coleenp, ctornqvi, gtriantafill

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
    26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
    28 #include "runtime/globals.hpp"
    29 #include "utilities/globalDefinitions.hpp"
    30 #include "utilities/macros.hpp"
    31 #ifdef COMPILER1
    32 #include "c1/c1_globals.hpp"
    33 #endif
    34 #ifdef COMPILER2
    35 #include "opto/c2_globals.hpp"
    36 #endif
    38 #include <new>
    40 #define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1)
    41 #define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1))
    42 #define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK)
    45 // noinline attribute
    46 #ifdef _WINDOWS
    47   #define _NOINLINE_  __declspec(noinline)
    48 #else
    49   #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
    50     #define _NOINLINE_
    51   #else
    52     #define _NOINLINE_ __attribute__ ((noinline))
    53   #endif
    54 #endif
    56 class AllocFailStrategy {
    57 public:
    58   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
    59 };
    60 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
    62 // All classes in the virtual machine must be subclassed
    63 // by one of the following allocation classes:
    64 //
    65 // For objects allocated in the resource area (see resourceArea.hpp).
    66 // - ResourceObj
    67 //
    68 // For objects allocated in the C-heap (managed by: free & malloc).
    69 // - CHeapObj
    70 //
    71 // For objects allocated on the stack.
    72 // - StackObj
    73 //
    74 // For embedded objects.
    75 // - ValueObj
    76 //
    77 // For classes used as name spaces.
    78 // - AllStatic
    79 //
    80 // For classes in Metaspace (class data)
    81 // - MetaspaceObj
    82 //
    83 // The printable subclasses are used for debugging and define virtual
    84 // member functions for printing. Classes that avoid allocating the
    85 // vtbl entries in the objects should therefore not be the printable
    86 // subclasses.
    87 //
    88 // The following macros and function should be used to allocate memory
    89 // directly in the resource area or in the C-heap, The _OBJ variants
    90 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
    91 // objects which are not inherited from CHeapObj, note constructor and
    92 // destructor are not called. The preferable way to allocate objects
    93 // is using the new operator.
    94 //
    95 // WARNING: The array variant must only be used for a homogenous array
    96 // where all objects are of the exact type specified. If subtypes are
    97 // stored in the array then must pay attention to calling destructors
    98 // at needed.
    99 //
   100 //   NEW_RESOURCE_ARRAY(type, size)
   101 //   NEW_RESOURCE_OBJ(type)
   102 //   NEW_C_HEAP_ARRAY(type, size)
   103 //   NEW_C_HEAP_OBJ(type, memflags)
   104 //   FREE_C_HEAP_ARRAY(type, old, memflags)
   105 //   FREE_C_HEAP_OBJ(objname, type, memflags)
   106 //   char* AllocateHeap(size_t size, const char* name);
   107 //   void  FreeHeap(void* p);
   108 //
   109 // C-heap allocation can be traced using +PrintHeapAllocation.
   110 // malloc and free should therefore never called directly.
   112 // Base class for objects allocated in the C-heap.
   114 // In non product mode we introduce a super class for all allocation classes
   115 // that supports printing.
   116 // We avoid the superclass in product mode since some C++ compilers add
   117 // a word overhead for empty super classes.
   119 #ifdef PRODUCT
   120 #define ALLOCATION_SUPER_CLASS_SPEC
   121 #else
   122 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
   123 class AllocatedObj {
   124  public:
   125   // Printing support
   126   void print() const;
   127   void print_value() const;
   129   virtual void print_on(outputStream* st) const;
   130   virtual void print_value_on(outputStream* st) const;
   131 };
   132 #endif
   135 /*
   136  * Memory types
   137  */
   138 enum MemoryType {
   139   // Memory type by sub systems. It occupies lower byte.
   140   mtJavaHeap          = 0x00,  // Java heap
   141   mtClass             = 0x01,  // memory class for Java classes
   142   mtThread            = 0x02,  // memory for thread objects
   143   mtThreadStack       = 0x03,
   144   mtCode              = 0x04,  // memory for generated code
   145   mtGC                = 0x05,  // memory for GC
   146   mtCompiler          = 0x06,  // memory for compiler
   147   mtInternal          = 0x07,  // memory used by VM, but does not belong to
   148                                  // any of above categories, and not used for
   149                                  // native memory tracking
   150   mtOther             = 0x08,  // memory not used by VM
   151   mtSymbol            = 0x09,  // symbol
   152   mtNMT               = 0x0A,  // memory used by native memory tracking
   153   mtClassShared       = 0x0B,  // class data sharing
   154   mtChunk             = 0x0C,  // chunk that holds content of arenas
   155   mtTest              = 0x0D,  // Test type for verifying NMT
   156   mtTracing           = 0x0E,  // memory used for Tracing
   157   mtNone              = 0x0F,  // undefined
   158   mt_number_of_types  = 0x10   // number of memory types (mtDontTrack
   159                                  // is not included as validate type)
   160 };
   162 typedef MemoryType MEMFLAGS;
   165 #if INCLUDE_NMT
   167 extern bool NMT_track_callsite;
   169 #else
   171 const bool NMT_track_callsite = false;
   173 #endif // INCLUDE_NMT
   175 class NativeCallStack;
   178 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
   179  public:
   180   _NOINLINE_ void* operator new(size_t size, const NativeCallStack& stack) throw();
   181   _NOINLINE_ void* operator new(size_t size) throw();
   182   _NOINLINE_ void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
   183                                const NativeCallStack& stack) throw();
   184   _NOINLINE_ void* operator new (size_t size, const std::nothrow_t&  nothrow_constant)
   185                                throw();
   186   _NOINLINE_ void* operator new [](size_t size, const NativeCallStack& stack) throw();
   187   _NOINLINE_ void* operator new [](size_t size) throw();
   188   _NOINLINE_ void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
   189                                const NativeCallStack& stack) throw();
   190   _NOINLINE_ void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant)
   191                                throw();
   192   void  operator delete(void* p);
   193   void  operator delete [] (void* p);
   194 };
   196 // Base class for objects allocated on the stack only.
   197 // Calling new or delete will result in fatal error.
   199 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
   200  private:
   201   void* operator new(size_t size) throw();
   202   void* operator new [](size_t size) throw();
   203 #ifdef __IBMCPP__
   204  public:
   205 #endif
   206   void  operator delete(void* p);
   207   void  operator delete [](void* p);
   208 };
   210 // Base class for objects used as value objects.
   211 // Calling new or delete will result in fatal error.
   212 //
   213 // Portability note: Certain compilers (e.g. gcc) will
   214 // always make classes bigger if it has a superclass, even
   215 // if the superclass does not have any virtual methods or
   216 // instance fields. The HotSpot implementation relies on this
   217 // not to happen. So never make a ValueObj class a direct subclass
   218 // of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
   219 // like this:
   220 //
   221 //   class A VALUE_OBJ_CLASS_SPEC {
   222 //     ...
   223 //   }
   224 //
   225 // With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
   226 // be defined as a an empty string "".
   227 //
   228 class _ValueObj {
   229  private:
   230   void* operator new(size_t size) throw();
   231   void  operator delete(void* p);
   232   void* operator new [](size_t size) throw();
   233   void  operator delete [](void* p);
   234 };
   237 // Base class for objects stored in Metaspace.
   238 // Calling delete will result in fatal error.
   239 //
   240 // Do not inherit from something with a vptr because this class does
   241 // not introduce one.  This class is used to allocate both shared read-only
   242 // and shared read-write classes.
   243 //
   245 class ClassLoaderData;
   247 class MetaspaceObj {
   248  public:
   249   bool is_metaspace_object() const;
   250   bool is_shared() const;
   251   void print_address_on(outputStream* st) const;  // nonvirtual address printing
   253 #define METASPACE_OBJ_TYPES_DO(f) \
   254   f(Unknown) \
   255   f(Class) \
   256   f(Symbol) \
   257   f(TypeArrayU1) \
   258   f(TypeArrayU2) \
   259   f(TypeArrayU4) \
   260   f(TypeArrayU8) \
   261   f(TypeArrayOther) \
   262   f(Method) \
   263   f(ConstMethod) \
   264   f(MethodData) \
   265   f(ConstantPool) \
   266   f(ConstantPoolCache) \
   267   f(Annotation) \
   268   f(MethodCounters)
   270 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
   271 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
   273   enum Type {
   274     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
   275     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
   276     _number_of_types
   277   };
   279   static const char * type_name(Type type) {
   280     switch(type) {
   281     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
   282     default:
   283       ShouldNotReachHere();
   284       return NULL;
   285     }
   286   }
   288   static MetaspaceObj::Type array_type(size_t elem_size) {
   289     switch (elem_size) {
   290     case 1: return TypeArrayU1Type;
   291     case 2: return TypeArrayU2Type;
   292     case 4: return TypeArrayU4Type;
   293     case 8: return TypeArrayU8Type;
   294     default:
   295       return TypeArrayOtherType;
   296     }
   297   }
   299   void* operator new(size_t size, ClassLoaderData* loader_data,
   300                      size_t word_size, bool read_only,
   301                      Type type, Thread* thread) throw();
   302                      // can't use TRAPS from this header file.
   303   void operator delete(void* p) { ShouldNotCallThis(); }
   304 };
   306 // Base class for classes that constitute name spaces.
   308 class AllStatic {
   309  public:
   310   AllStatic()  { ShouldNotCallThis(); }
   311   ~AllStatic() { ShouldNotCallThis(); }
   312 };
   315 //------------------------------Chunk------------------------------------------
   316 // Linked list of raw memory chunks
   317 class Chunk: CHeapObj<mtChunk> {
   318   friend class VMStructs;
   320  protected:
   321   Chunk*       _next;     // Next Chunk in list
   322   const size_t _len;      // Size of this Chunk
   323  public:
   324   void* operator new(size_t size, AllocFailType alloc_failmode, size_t length) throw();
   325   void  operator delete(void* p);
   326   Chunk(size_t length);
   328   enum {
   329     // default sizes; make them slightly smaller than 2**k to guard against
   330     // buddy-system style malloc implementations
   331 #ifdef _LP64
   332     slack      = 40,            // [RGV] Not sure if this is right, but make it
   333                                 //       a multiple of 8.
   334 #else
   335     slack      = 20,            // suspected sizeof(Chunk) + internal malloc headers
   336 #endif
   338     tiny_size  =  256  - slack, // Size of first chunk (tiny)
   339     init_size  =  1*K  - slack, // Size of first chunk (normal aka small)
   340     medium_size= 10*K  - slack, // Size of medium-sized chunk
   341     size       = 32*K  - slack, // Default size of an Arena chunk (following the first)
   342     non_pool_size = init_size + 32 // An initial size which is not one of above
   343   };
   345   void chop();                  // Chop this chunk
   346   void next_chop();             // Chop next chunk
   347   static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); }
   348   static size_t aligned_overhead_size(size_t byte_size) { return ARENA_ALIGN(byte_size); }
   350   size_t length() const         { return _len;  }
   351   Chunk* next() const           { return _next;  }
   352   void set_next(Chunk* n)       { _next = n;  }
   353   // Boundaries of data area (possibly unused)
   354   char* bottom() const          { return ((char*) this) + aligned_overhead_size();  }
   355   char* top()    const          { return bottom() + _len; }
   356   bool contains(char* p) const  { return bottom() <= p && p <= top(); }
   358   // Start the chunk_pool cleaner task
   359   static void start_chunk_pool_cleaner_task();
   361   static void clean_chunk_pool();
   362 };
   364 //------------------------------Arena------------------------------------------
   365 // Fast allocation of memory
   366 class Arena : public CHeapObj<mtNone> {
   367 protected:
   368   friend class ResourceMark;
   369   friend class HandleMark;
   370   friend class NoHandleMark;
   371   friend class VMStructs;
   373   MEMFLAGS    _flags;           // Memory tracking flags
   375   Chunk *_first;                // First chunk
   376   Chunk *_chunk;                // current chunk
   377   char *_hwm, *_max;            // High water mark and max in current chunk
   378   // Get a new Chunk of at least size x
   379   void* grow(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
   380   size_t _size_in_bytes;        // Size of arena (used for native memory tracking)
   382   NOT_PRODUCT(static julong _bytes_allocated;) // total #bytes allocated since start
   383   friend class AllocStats;
   384   debug_only(void* malloc(size_t size);)
   385   debug_only(void* internal_malloc_4(size_t x);)
   386   NOT_PRODUCT(void inc_bytes_allocated(size_t x);)
   388   void signal_out_of_memory(size_t request, const char* whence) const;
   390   bool check_for_overflow(size_t request, const char* whence,
   391       AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) const {
   392     if (UINTPTR_MAX - request < (uintptr_t)_hwm) {
   393       if (alloc_failmode == AllocFailStrategy::RETURN_NULL) {
   394         return false;
   395       }
   396       signal_out_of_memory(request, whence);
   397     }
   398     return true;
   399  }
   401  public:
   402   Arena(MEMFLAGS memflag);
   403   Arena(MEMFLAGS memflag, size_t init_size);
   404   ~Arena();
   405   void  destruct_contents();
   406   char* hwm() const             { return _hwm; }
   408   // new operators
   409   void* operator new (size_t size) throw();
   410   void* operator new (size_t size, const std::nothrow_t& nothrow_constant) throw();
   412   // dynamic memory type tagging
   413   void* operator new(size_t size, MEMFLAGS flags) throw();
   414   void* operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw();
   415   void  operator delete(void* p);
   417   // Fast allocate in the arena.  Common case is: pointer test + increment.
   418   void* Amalloc(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
   419     assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
   420     x = ARENA_ALIGN(x);
   421     debug_only(if (UseMallocOnly) return malloc(x);)
   422     if (!check_for_overflow(x, "Arena::Amalloc", alloc_failmode))
   423       return NULL;
   424     NOT_PRODUCT(inc_bytes_allocated(x);)
   425     if (_hwm + x > _max) {
   426       return grow(x, alloc_failmode);
   427     } else {
   428       char *old = _hwm;
   429       _hwm += x;
   430       return old;
   431     }
   432   }
   433   // Further assume size is padded out to words
   434   void *Amalloc_4(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
   435     assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   436     debug_only(if (UseMallocOnly) return malloc(x);)
   437     if (!check_for_overflow(x, "Arena::Amalloc_4", alloc_failmode))
   438       return NULL;
   439     NOT_PRODUCT(inc_bytes_allocated(x);)
   440     if (_hwm + x > _max) {
   441       return grow(x, alloc_failmode);
   442     } else {
   443       char *old = _hwm;
   444       _hwm += x;
   445       return old;
   446     }
   447   }
   449   // Allocate with 'double' alignment. It is 8 bytes on sparc.
   450   // In other cases Amalloc_D() should be the same as Amalloc_4().
   451   void* Amalloc_D(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
   452     assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   453     debug_only(if (UseMallocOnly) return malloc(x);)
   454 #if defined(SPARC) && !defined(_LP64)
   455 #define DALIGN_M1 7
   456     size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm;
   457     x += delta;
   458 #endif
   459     if (!check_for_overflow(x, "Arena::Amalloc_D", alloc_failmode))
   460       return NULL;
   461     NOT_PRODUCT(inc_bytes_allocated(x);)
   462     if (_hwm + x > _max) {
   463       return grow(x, alloc_failmode); // grow() returns a result aligned >= 8 bytes.
   464     } else {
   465       char *old = _hwm;
   466       _hwm += x;
   467 #if defined(SPARC) && !defined(_LP64)
   468       old += delta; // align to 8-bytes
   469 #endif
   470       return old;
   471     }
   472   }
   474   // Fast delete in area.  Common case is: NOP (except for storage reclaimed)
   475   void Afree(void *ptr, size_t size) {
   476 #ifdef ASSERT
   477     if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory
   478     if (UseMallocOnly) return;
   479 #endif
   480     if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr;
   481   }
   483   void *Arealloc( void *old_ptr, size_t old_size, size_t new_size,
   484       AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
   486   // Move contents of this arena into an empty arena
   487   Arena *move_contents(Arena *empty_arena);
   489   // Determine if pointer belongs to this Arena or not.
   490   bool contains( const void *ptr ) const;
   492   // Total of all chunks in use (not thread-safe)
   493   size_t used() const;
   495   // Total # of bytes used
   496   size_t size_in_bytes() const         {  return _size_in_bytes; };
   497   void set_size_in_bytes(size_t size);
   499   static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2)  PRODUCT_RETURN;
   500   static void free_all(char** start, char** end)                                     PRODUCT_RETURN;
   502 private:
   503   // Reset this Arena to empty, access will trigger grow if necessary
   504   void   reset(void) {
   505     _first = _chunk = NULL;
   506     _hwm = _max = NULL;
   507     set_size_in_bytes(0);
   508   }
   509 };
   511 // One of the following macros must be used when allocating
   512 // an array or object from an arena
   513 #define NEW_ARENA_ARRAY(arena, type, size) \
   514   (type*) (arena)->Amalloc((size) * sizeof(type))
   516 #define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size)    \
   517   (type*) (arena)->Arealloc((char*)(old), (old_size) * sizeof(type), \
   518                             (new_size) * sizeof(type) )
   520 #define FREE_ARENA_ARRAY(arena, type, old, size) \
   521   (arena)->Afree((char*)(old), (size) * sizeof(type))
   523 #define NEW_ARENA_OBJ(arena, type) \
   524   NEW_ARENA_ARRAY(arena, type, 1)
   527 //%note allocation_1
   528 extern char* resource_allocate_bytes(size_t size,
   529     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
   530 extern char* resource_allocate_bytes(Thread* thread, size_t size,
   531     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
   532 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
   533     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
   534 extern void resource_free_bytes( char *old, size_t size );
   536 //----------------------------------------------------------------------
   537 // Base class for objects allocated in the resource area per default.
   538 // Optionally, objects may be allocated on the C heap with
   539 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
   540 // ResourceObj's can be allocated within other objects, but don't use
   541 // new or delete (allocation_type is unknown).  If new is used to allocate,
   542 // use delete to deallocate.
   543 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
   544  public:
   545   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
   546   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
   547 #ifdef ASSERT
   548  private:
   549   // When this object is allocated on stack the new() operator is not
   550   // called but garbage on stack may look like a valid allocation_type.
   551   // Store negated 'this' pointer when new() is called to distinguish cases.
   552   // Use second array's element for verification value to distinguish garbage.
   553   uintptr_t _allocation_t[2];
   554   bool is_type_set() const;
   555  public:
   556   allocation_type get_allocation_type() const;
   557   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
   558   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
   559   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
   560   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
   561   ResourceObj(); // default construtor
   562   ResourceObj(const ResourceObj& r); // default copy construtor
   563   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
   564   ~ResourceObj();
   565 #endif // ASSERT
   567  public:
   568   void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
   569   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
   570   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
   571       allocation_type type, MEMFLAGS flags) throw();
   572   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
   573       allocation_type type, MEMFLAGS flags) throw();
   575   void* operator new(size_t size, Arena *arena) throw() {
   576       address res = (address)arena->Amalloc(size);
   577       DEBUG_ONLY(set_allocation_type(res, ARENA);)
   578       return res;
   579   }
   581   void* operator new [](size_t size, Arena *arena) throw() {
   582       address res = (address)arena->Amalloc(size);
   583       DEBUG_ONLY(set_allocation_type(res, ARENA);)
   584       return res;
   585   }
   587   void* operator new(size_t size) throw() {
   588       address res = (address)resource_allocate_bytes(size);
   589       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
   590       return res;
   591   }
   593   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
   594       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
   595       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
   596       return res;
   597   }
   599   void* operator new [](size_t size) throw() {
   600       address res = (address)resource_allocate_bytes(size);
   601       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
   602       return res;
   603   }
   605   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
   606       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
   607       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
   608       return res;
   609   }
   611   void  operator delete(void* p);
   612   void  operator delete [](void* p);
   613 };
   615 // One of the following macros must be used when allocating an array
   616 // or object to determine whether it should reside in the C heap on in
   617 // the resource area.
   619 #define NEW_RESOURCE_ARRAY(type, size)\
   620   (type*) resource_allocate_bytes((size) * sizeof(type))
   622 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
   623   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
   625 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
   626   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
   628 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
   629   (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
   631 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
   632   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
   634 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
   635   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
   636                                     (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
   638 #define FREE_RESOURCE_ARRAY(type, old, size)\
   639   resource_free_bytes((char*)(old), (size) * sizeof(type))
   641 #define FREE_FAST(old)\
   642     /* nop */
   644 #define NEW_RESOURCE_OBJ(type)\
   645   NEW_RESOURCE_ARRAY(type, 1)
   647 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
   648   NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
   650 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
   651   (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
   653 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
   654   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
   656 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
   657   (type*) (AllocateHeap((size) * sizeof(type), memflags))
   659 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
   660   NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
   662 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
   663   NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
   665 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
   666   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
   668 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
   669   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
   671 #define FREE_C_HEAP_ARRAY(type, old, memflags) \
   672   FreeHeap((char*)(old), memflags)
   674 // allocate type in heap without calling ctor
   675 #define NEW_C_HEAP_OBJ(type, memflags)\
   676   NEW_C_HEAP_ARRAY(type, 1, memflags)
   678 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
   679   NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
   681 // deallocate obj of type in heap without calling dtor
   682 #define FREE_C_HEAP_OBJ(objname, memflags)\
   683   FreeHeap((char*)objname, memflags);
   685 // for statistics
   686 #ifndef PRODUCT
   687 class AllocStats : StackObj {
   688   julong start_mallocs, start_frees;
   689   julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
   690  public:
   691   AllocStats();
   693   julong num_mallocs();    // since creation of receiver
   694   julong alloc_bytes();
   695   julong num_frees();
   696   julong free_bytes();
   697   julong resource_bytes();
   698   void   print();
   699 };
   700 #endif
   703 //------------------------------ReallocMark---------------------------------
   704 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
   705 // ReallocMark, which is declared in the same scope as the reallocated
   706 // pointer.  Any operation that could __potentially__ cause a reallocation
   707 // should check the ReallocMark.
   708 class ReallocMark: public StackObj {
   709 protected:
   710   NOT_PRODUCT(int _nesting;)
   712 public:
   713   ReallocMark()   PRODUCT_RETURN;
   714   void check()    PRODUCT_RETURN;
   715 };
   717 // Helper class to allocate arrays that may become large.
   718 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
   719 // and uses mapped memory for larger allocations.
   720 // Most OS mallocs do something similar but Solaris malloc does not revert
   721 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
   722 // is set so that we always use malloc except for Solaris where we set the
   723 // limit to get mapped memory.
   724 template <class E, MEMFLAGS F>
   725 class ArrayAllocator VALUE_OBJ_CLASS_SPEC {
   726   char* _addr;
   727   bool _use_malloc;
   728   size_t _size;
   729   bool _free_in_destructor;
   730  public:
   731   ArrayAllocator(bool free_in_destructor = true) :
   732     _addr(NULL), _use_malloc(false), _size(0), _free_in_destructor(free_in_destructor) { }
   734   ~ArrayAllocator() {
   735     if (_free_in_destructor) {
   736       free();
   737     }
   738   }
   740   E* allocate(size_t length);
   741   void free();
   742 };
   744 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP

mercurial