src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Fri, 12 Jun 2009 16:20:16 -0400

author
tonyp
date
Fri, 12 Jun 2009 16:20:16 -0400
changeset 1246
830ca2573896
parent 1229
315a5d70b295
child 1273
0316eac49d5a
permissions
-rw-r--r--

6850846: G1: extend G1 marking verification
Summary: extend G1 marking verification to use either the "prev" or "next" marking information, as appropriate.
Reviewed-by: johnc, ysr

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A G1CollectorPolicy makes policy decisions that determine the
    26 // characteristics of the collector.  Examples include:
    27 //   * choice of collection set.
    28 //   * when to collect.
    30 class HeapRegion;
    31 class CollectionSetChooser;
    33 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    34 // over and over again and introducing subtle problems through small typos and
    35 // cutting and pasting mistakes. The macros below introduces a number
    36 // sequnce into the following two classes and the methods that access it.
    38 #define define_num_seq(name)                                                  \
    39 private:                                                                      \
    40   NumberSeq _all_##name##_times_ms;                                           \
    41 public:                                                                       \
    42   void record_##name##_time_ms(double ms) {                                   \
    43     _all_##name##_times_ms.add(ms);                                           \
    44   }                                                                           \
    45   NumberSeq* get_##name##_seq() {                                             \
    46     return &_all_##name##_times_ms;                                           \
    47   }
    49 class MainBodySummary;
    51 class PauseSummary: public CHeapObj {
    52   define_num_seq(total)
    53     define_num_seq(other)
    55 public:
    56   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    57 };
    59 class MainBodySummary: public CHeapObj {
    60   define_num_seq(satb_drain) // optional
    61   define_num_seq(parallel) // parallel only
    62     define_num_seq(ext_root_scan)
    63     define_num_seq(mark_stack_scan)
    64     define_num_seq(scan_only)
    65     define_num_seq(update_rs)
    66     define_num_seq(scan_rs)
    67     define_num_seq(scan_new_refs) // Only for temp use; added to
    68                                   // in parallel case.
    69     define_num_seq(obj_copy)
    70     define_num_seq(termination) // parallel only
    71     define_num_seq(parallel_other) // parallel only
    72   define_num_seq(mark_closure)
    73   define_num_seq(clear_ct)  // parallel only
    74 };
    76 class Summary: public PauseSummary,
    77                public MainBodySummary {
    78 public:
    79   virtual MainBodySummary*    main_body_summary()    { return this; }
    80 };
    82 class AbandonedSummary: public PauseSummary {
    83 };
    85 class G1CollectorPolicy: public CollectorPolicy {
    86 protected:
    87   // The number of pauses during the execution.
    88   long _n_pauses;
    90   // either equal to the number of parallel threads, if ParallelGCThreads
    91   // has been set, or 1 otherwise
    92   int _parallel_gc_threads;
    94   enum SomePrivateConstants {
    95     NumPrevPausesForHeuristics = 10,
    96     NumPrevGCsForHeuristics = 10,
    97     NumAPIs = HeapRegion::MaxAge
    98   };
   100   G1MMUTracker* _mmu_tracker;
   102   void initialize_flags();
   104   void initialize_all() {
   105     initialize_flags();
   106     initialize_size_info();
   107     initialize_perm_generation(PermGen::MarkSweepCompact);
   108   }
   110   virtual size_t default_init_heap_size() {
   111     // Pick some reasonable default.
   112     return 8*M;
   113   }
   116   double _cur_collection_start_sec;
   117   size_t _cur_collection_pause_used_at_start_bytes;
   118   size_t _cur_collection_pause_used_regions_at_start;
   119   size_t _prev_collection_pause_used_at_end_bytes;
   120   double _cur_collection_par_time_ms;
   121   double _cur_satb_drain_time_ms;
   122   double _cur_clear_ct_time_ms;
   123   bool   _satb_drain_time_set;
   125   double _cur_CH_strong_roots_end_sec;
   126   double _cur_CH_strong_roots_dur_ms;
   127   double _cur_G1_strong_roots_end_sec;
   128   double _cur_G1_strong_roots_dur_ms;
   130   // Statistics for recent GC pauses.  See below for how indexed.
   131   TruncatedSeq* _recent_CH_strong_roots_times_ms;
   132   TruncatedSeq* _recent_G1_strong_roots_times_ms;
   133   TruncatedSeq* _recent_evac_times_ms;
   134   // These exclude marking times.
   135   TruncatedSeq* _recent_pause_times_ms;
   136   TruncatedSeq* _recent_gc_times_ms;
   138   TruncatedSeq* _recent_CS_bytes_used_before;
   139   TruncatedSeq* _recent_CS_bytes_surviving;
   141   TruncatedSeq* _recent_rs_sizes;
   143   TruncatedSeq* _concurrent_mark_init_times_ms;
   144   TruncatedSeq* _concurrent_mark_remark_times_ms;
   145   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   147   Summary*           _summary;
   148   AbandonedSummary*  _abandoned_summary;
   150   NumberSeq* _all_pause_times_ms;
   151   NumberSeq* _all_full_gc_times_ms;
   152   double _stop_world_start;
   153   NumberSeq* _all_stop_world_times_ms;
   154   NumberSeq* _all_yield_times_ms;
   156   size_t     _region_num_young;
   157   size_t     _region_num_tenured;
   158   size_t     _prev_region_num_young;
   159   size_t     _prev_region_num_tenured;
   161   NumberSeq* _all_mod_union_times_ms;
   163   int        _aux_num;
   164   NumberSeq* _all_aux_times_ms;
   165   double*    _cur_aux_start_times_ms;
   166   double*    _cur_aux_times_ms;
   167   bool*      _cur_aux_times_set;
   169   double* _par_last_ext_root_scan_times_ms;
   170   double* _par_last_mark_stack_scan_times_ms;
   171   double* _par_last_scan_only_times_ms;
   172   double* _par_last_scan_only_regions_scanned;
   173   double* _par_last_update_rs_start_times_ms;
   174   double* _par_last_update_rs_times_ms;
   175   double* _par_last_update_rs_processed_buffers;
   176   double* _par_last_scan_rs_start_times_ms;
   177   double* _par_last_scan_rs_times_ms;
   178   double* _par_last_scan_new_refs_times_ms;
   179   double* _par_last_obj_copy_times_ms;
   180   double* _par_last_termination_times_ms;
   182   // indicates that we are in young GC mode
   183   bool _in_young_gc_mode;
   185   // indicates whether we are in full young or partially young GC mode
   186   bool _full_young_gcs;
   188   // if true, then it tries to dynamically adjust the length of the
   189   // young list
   190   bool _adaptive_young_list_length;
   191   size_t _young_list_min_length;
   192   size_t _young_list_target_length;
   193   size_t _young_list_so_prefix_length;
   194   size_t _young_list_fixed_length;
   196   size_t _young_cset_length;
   197   bool   _last_young_gc_full;
   199   double _target_pause_time_ms;
   201   unsigned              _full_young_pause_num;
   202   unsigned              _partial_young_pause_num;
   204   bool                  _during_marking;
   205   bool                  _in_marking_window;
   206   bool                  _in_marking_window_im;
   208   SurvRateGroup*        _short_lived_surv_rate_group;
   209   SurvRateGroup*        _survivor_surv_rate_group;
   210   // add here any more surv rate groups
   212   bool during_marking() {
   213     return _during_marking;
   214   }
   216   // <NEW PREDICTION>
   218 private:
   219   enum PredictionConstants {
   220     TruncatedSeqLength = 10
   221   };
   223   TruncatedSeq* _alloc_rate_ms_seq;
   224   double        _prev_collection_pause_end_ms;
   226   TruncatedSeq* _pending_card_diff_seq;
   227   TruncatedSeq* _rs_length_diff_seq;
   228   TruncatedSeq* _cost_per_card_ms_seq;
   229   TruncatedSeq* _cost_per_scan_only_region_ms_seq;
   230   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   231   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   232   TruncatedSeq* _cost_per_entry_ms_seq;
   233   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   234   TruncatedSeq* _cost_per_byte_ms_seq;
   235   TruncatedSeq* _constant_other_time_ms_seq;
   236   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   237   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   239   TruncatedSeq* _pending_cards_seq;
   240   TruncatedSeq* _scanned_cards_seq;
   241   TruncatedSeq* _rs_lengths_seq;
   243   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   244   TruncatedSeq* _cost_per_scan_only_region_ms_during_cm_seq;
   246   TruncatedSeq* _young_gc_eff_seq;
   248   TruncatedSeq* _max_conc_overhead_seq;
   250   size_t _recorded_young_regions;
   251   size_t _recorded_scan_only_regions;
   252   size_t _recorded_non_young_regions;
   253   size_t _recorded_region_num;
   255   size_t _free_regions_at_end_of_collection;
   256   size_t _scan_only_regions_at_end_of_collection;
   258   size_t _recorded_rs_lengths;
   259   size_t _max_rs_lengths;
   261   size_t _recorded_marked_bytes;
   262   size_t _recorded_young_bytes;
   264   size_t _predicted_pending_cards;
   265   size_t _predicted_cards_scanned;
   266   size_t _predicted_rs_lengths;
   267   size_t _predicted_bytes_to_copy;
   269   double _predicted_survival_ratio;
   270   double _predicted_rs_update_time_ms;
   271   double _predicted_rs_scan_time_ms;
   272   double _predicted_scan_only_scan_time_ms;
   273   double _predicted_object_copy_time_ms;
   274   double _predicted_constant_other_time_ms;
   275   double _predicted_young_other_time_ms;
   276   double _predicted_non_young_other_time_ms;
   277   double _predicted_pause_time_ms;
   279   double _vtime_diff_ms;
   281   double _recorded_young_free_cset_time_ms;
   282   double _recorded_non_young_free_cset_time_ms;
   284   double _sigma;
   285   double _expensive_region_limit_ms;
   287   size_t _rs_lengths_prediction;
   289   size_t _known_garbage_bytes;
   290   double _known_garbage_ratio;
   292   double sigma() {
   293     return _sigma;
   294   }
   296   // A function that prevents us putting too much stock in small sample
   297   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   298   // of samples.  5 or more samples yields one; fewer scales linearly from
   299   // 2.0 at 1 sample to 1.0 at 5.
   300   double confidence_factor(int samples) {
   301     if (samples > 4) return 1.0;
   302     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   303   }
   305   double get_new_neg_prediction(TruncatedSeq* seq) {
   306     return seq->davg() - sigma() * seq->dsd();
   307   }
   309 #ifndef PRODUCT
   310   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   311 #endif // PRODUCT
   313 protected:
   314   double _pause_time_target_ms;
   315   double _recorded_young_cset_choice_time_ms;
   316   double _recorded_non_young_cset_choice_time_ms;
   317   bool   _within_target;
   318   size_t _pending_cards;
   319   size_t _max_pending_cards;
   321 public:
   323   void set_region_short_lived(HeapRegion* hr) {
   324     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   325   }
   327   void set_region_survivors(HeapRegion* hr) {
   328     hr->install_surv_rate_group(_survivor_surv_rate_group);
   329   }
   331 #ifndef PRODUCT
   332   bool verify_young_ages();
   333 #endif // PRODUCT
   335   void tag_scan_only(size_t short_lived_scan_only_length);
   337   double get_new_prediction(TruncatedSeq* seq) {
   338     return MAX2(seq->davg() + sigma() * seq->dsd(),
   339                 seq->davg() * confidence_factor(seq->num()));
   340   }
   342   size_t young_cset_length() {
   343     return _young_cset_length;
   344   }
   346   void record_max_rs_lengths(size_t rs_lengths) {
   347     _max_rs_lengths = rs_lengths;
   348   }
   350   size_t predict_pending_card_diff() {
   351     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   352     if (prediction < 0.00001)
   353       return 0;
   354     else
   355       return (size_t) prediction;
   356   }
   358   size_t predict_pending_cards() {
   359     size_t max_pending_card_num = _g1->max_pending_card_num();
   360     size_t diff = predict_pending_card_diff();
   361     size_t prediction;
   362     if (diff > max_pending_card_num)
   363       prediction = max_pending_card_num;
   364     else
   365       prediction = max_pending_card_num - diff;
   367     return prediction;
   368   }
   370   size_t predict_rs_length_diff() {
   371     return (size_t) get_new_prediction(_rs_length_diff_seq);
   372   }
   374   double predict_alloc_rate_ms() {
   375     return get_new_prediction(_alloc_rate_ms_seq);
   376   }
   378   double predict_cost_per_card_ms() {
   379     return get_new_prediction(_cost_per_card_ms_seq);
   380   }
   382   double predict_rs_update_time_ms(size_t pending_cards) {
   383     return (double) pending_cards * predict_cost_per_card_ms();
   384   }
   386   double predict_fully_young_cards_per_entry_ratio() {
   387     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   388   }
   390   double predict_partially_young_cards_per_entry_ratio() {
   391     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   392       return predict_fully_young_cards_per_entry_ratio();
   393     else
   394       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   395   }
   397   size_t predict_young_card_num(size_t rs_length) {
   398     return (size_t) ((double) rs_length *
   399                      predict_fully_young_cards_per_entry_ratio());
   400   }
   402   size_t predict_non_young_card_num(size_t rs_length) {
   403     return (size_t) ((double) rs_length *
   404                      predict_partially_young_cards_per_entry_ratio());
   405   }
   407   double predict_rs_scan_time_ms(size_t card_num) {
   408     if (full_young_gcs())
   409       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   410     else
   411       return predict_partially_young_rs_scan_time_ms(card_num);
   412   }
   414   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   415     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   416       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   417     else
   418       return (double) card_num *
   419         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   420   }
   422   double predict_scan_only_time_ms_during_cm(size_t scan_only_region_num) {
   423     if (_cost_per_scan_only_region_ms_during_cm_seq->num() < 3)
   424       return 1.5 * (double) scan_only_region_num *
   425         get_new_prediction(_cost_per_scan_only_region_ms_seq);
   426     else
   427       return (double) scan_only_region_num *
   428         get_new_prediction(_cost_per_scan_only_region_ms_during_cm_seq);
   429   }
   431   double predict_scan_only_time_ms(size_t scan_only_region_num) {
   432     if (_in_marking_window_im)
   433       return predict_scan_only_time_ms_during_cm(scan_only_region_num);
   434     else
   435       return (double) scan_only_region_num *
   436         get_new_prediction(_cost_per_scan_only_region_ms_seq);
   437   }
   439   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   440     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   441       return 1.1 * (double) bytes_to_copy *
   442         get_new_prediction(_cost_per_byte_ms_seq);
   443     else
   444       return (double) bytes_to_copy *
   445         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   446   }
   448   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   449     if (_in_marking_window && !_in_marking_window_im)
   450       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   451     else
   452       return (double) bytes_to_copy *
   453         get_new_prediction(_cost_per_byte_ms_seq);
   454   }
   456   double predict_constant_other_time_ms() {
   457     return get_new_prediction(_constant_other_time_ms_seq);
   458   }
   460   double predict_young_other_time_ms(size_t young_num) {
   461     return
   462       (double) young_num *
   463       get_new_prediction(_young_other_cost_per_region_ms_seq);
   464   }
   466   double predict_non_young_other_time_ms(size_t non_young_num) {
   467     return
   468       (double) non_young_num *
   469       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   470   }
   472   void check_if_region_is_too_expensive(double predicted_time_ms);
   474   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   475   double predict_base_elapsed_time_ms(size_t pending_cards);
   476   double predict_base_elapsed_time_ms(size_t pending_cards,
   477                                       size_t scanned_cards);
   478   size_t predict_bytes_to_copy(HeapRegion* hr);
   479   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   481   // for use by: calculate_optimal_so_length(length)
   482   void predict_gc_eff(size_t young_region_num,
   483                       size_t so_length,
   484                       double base_time_ms,
   485                       double *gc_eff,
   486                       double *pause_time_ms);
   488   // for use by: calculate_young_list_target_config(rs_length)
   489   bool predict_gc_eff(size_t young_region_num,
   490                       size_t so_length,
   491                       double base_time_with_so_ms,
   492                       size_t init_free_regions,
   493                       double target_pause_time_ms,
   494                       double* gc_eff);
   496   void start_recording_regions();
   497   void record_cset_region(HeapRegion* hr, bool young);
   498   void record_scan_only_regions(size_t scan_only_length);
   499   void end_recording_regions();
   501   void record_vtime_diff_ms(double vtime_diff_ms) {
   502     _vtime_diff_ms = vtime_diff_ms;
   503   }
   505   void record_young_free_cset_time_ms(double time_ms) {
   506     _recorded_young_free_cset_time_ms = time_ms;
   507   }
   509   void record_non_young_free_cset_time_ms(double time_ms) {
   510     _recorded_non_young_free_cset_time_ms = time_ms;
   511   }
   513   double predict_young_gc_eff() {
   514     return get_new_neg_prediction(_young_gc_eff_seq);
   515   }
   517   double predict_survivor_regions_evac_time();
   519   // </NEW PREDICTION>
   521 public:
   522   void cset_regions_freed() {
   523     bool propagate = _last_young_gc_full && !_in_marking_window;
   524     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   525     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   526     // also call it on any more surv rate groups
   527   }
   529   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   530     _known_garbage_bytes = known_garbage_bytes;
   531     size_t heap_bytes = _g1->capacity();
   532     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   533   }
   535   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   536     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   538     _known_garbage_bytes -= known_garbage_bytes;
   539     size_t heap_bytes = _g1->capacity();
   540     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   541   }
   543   G1MMUTracker* mmu_tracker() {
   544     return _mmu_tracker;
   545   }
   547   double predict_init_time_ms() {
   548     return get_new_prediction(_concurrent_mark_init_times_ms);
   549   }
   551   double predict_remark_time_ms() {
   552     return get_new_prediction(_concurrent_mark_remark_times_ms);
   553   }
   555   double predict_cleanup_time_ms() {
   556     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   557   }
   559   // Returns an estimate of the survival rate of the region at yg-age
   560   // "yg_age".
   561   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   562     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   563     if (seq->num() == 0)
   564       gclog_or_tty->print("BARF! age is %d", age);
   565     guarantee( seq->num() > 0, "invariant" );
   566     double pred = get_new_prediction(seq);
   567     if (pred > 1.0)
   568       pred = 1.0;
   569     return pred;
   570   }
   572   double predict_yg_surv_rate(int age) {
   573     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   574   }
   576   double accum_yg_surv_rate_pred(int age) {
   577     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   578   }
   580 protected:
   581   void print_stats (int level, const char* str, double value);
   582   void print_stats (int level, const char* str, int value);
   583   void print_par_stats (int level, const char* str, double* data) {
   584     print_par_stats(level, str, data, true);
   585   }
   586   void print_par_stats (int level, const char* str, double* data, bool summary);
   587   void print_par_buffers (int level, const char* str, double* data, bool summary);
   589   void check_other_times(int level,
   590                          NumberSeq* other_times_ms,
   591                          NumberSeq* calc_other_times_ms) const;
   593   void print_summary (PauseSummary* stats) const;
   594   void print_abandoned_summary(PauseSummary* summary) const;
   596   void print_summary (int level, const char* str, NumberSeq* seq) const;
   597   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   599   double avg_value (double* data);
   600   double max_value (double* data);
   601   double sum_of_values (double* data);
   602   double max_sum (double* data1, double* data2);
   604   int _last_satb_drain_processed_buffers;
   605   int _last_update_rs_processed_buffers;
   606   double _last_pause_time_ms;
   608   size_t _bytes_in_to_space_before_gc;
   609   size_t _bytes_in_to_space_after_gc;
   610   size_t bytes_in_to_space_during_gc() {
   611     return
   612       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
   613   }
   614   size_t _bytes_in_collection_set_before_gc;
   615   // Used to count used bytes in CS.
   616   friend class CountCSClosure;
   618   // Statistics kept per GC stoppage, pause or full.
   619   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   621   // We track markings.
   622   int _num_markings;
   623   double _mark_thread_startup_sec;       // Time at startup of marking thread
   625   // Add a new GC of the given duration and end time to the record.
   626   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   628   // The head of the list (via "next_in_collection_set()") representing the
   629   // current collection set.
   630   HeapRegion* _collection_set;
   631   size_t _collection_set_size;
   632   size_t _collection_set_bytes_used_before;
   634   // Info about marking.
   635   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   637   // The number of collection pauses at the end of the last mark.
   638   size_t _n_pauses_at_mark_end;
   640   // Stash a pointer to the g1 heap.
   641   G1CollectedHeap* _g1;
   643   // The average time in ms per collection pause, averaged over recent pauses.
   644   double recent_avg_time_for_pauses_ms();
   646   // The average time in ms for processing CollectedHeap strong roots, per
   647   // collection pause, averaged over recent pauses.
   648   double recent_avg_time_for_CH_strong_ms();
   650   // The average time in ms for processing the G1 remembered set, per
   651   // pause, averaged over recent pauses.
   652   double recent_avg_time_for_G1_strong_ms();
   654   // The average time in ms for "evacuating followers", per pause, averaged
   655   // over recent pauses.
   656   double recent_avg_time_for_evac_ms();
   658   // The number of "recent" GCs recorded in the number sequences
   659   int number_of_recent_gcs();
   661   // The average survival ratio, computed by the total number of bytes
   662   // suriviving / total number of bytes before collection over the last
   663   // several recent pauses.
   664   double recent_avg_survival_fraction();
   665   // The survival fraction of the most recent pause; if there have been no
   666   // pauses, returns 1.0.
   667   double last_survival_fraction();
   669   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   670   // one that may be higher than "recent_avg_survival_fraction".
   671   // This is conservative in several ways:
   672   //   If there have been few pauses, it will assume a potential high
   673   //     variance, and err on the side of caution.
   674   //   It puts a lower bound (currently 0.1) on the value it will return.
   675   //   To try to detect phase changes, if the most recent pause ("latest") has a
   676   //     higher-than average ("avg") survival rate, it returns that rate.
   677   // "work" version is a utility function; young is restricted to young regions.
   678   double conservative_avg_survival_fraction_work(double avg,
   679                                                  double latest);
   681   // The arguments are the two sequences that keep track of the number of bytes
   682   //   surviving and the total number of bytes before collection, resp.,
   683   //   over the last evereal recent pauses
   684   // Returns the survival rate for the category in the most recent pause.
   685   // If there have been no pauses, returns 1.0.
   686   double last_survival_fraction_work(TruncatedSeq* surviving,
   687                                      TruncatedSeq* before);
   689   // The arguments are the two sequences that keep track of the number of bytes
   690   //   surviving and the total number of bytes before collection, resp.,
   691   //   over the last several recent pauses
   692   // Returns the average survival ration over the last several recent pauses
   693   // If there have been no pauses, return 1.0
   694   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   695                                            TruncatedSeq* before);
   697   double conservative_avg_survival_fraction() {
   698     double avg = recent_avg_survival_fraction();
   699     double latest = last_survival_fraction();
   700     return conservative_avg_survival_fraction_work(avg, latest);
   701   }
   703   // The ratio of gc time to elapsed time, computed over recent pauses.
   704   double _recent_avg_pause_time_ratio;
   706   double recent_avg_pause_time_ratio() {
   707     return _recent_avg_pause_time_ratio;
   708   }
   710   // Number of pauses between concurrent marking.
   711   size_t _pauses_btwn_concurrent_mark;
   713   size_t _n_marks_since_last_pause;
   715   // True iff CM has been initiated.
   716   bool _conc_mark_initiated;
   718   // True iff CM should be initiated
   719   bool _should_initiate_conc_mark;
   720   bool _should_revert_to_full_young_gcs;
   721   bool _last_full_young_gc;
   723   // This set of variables tracks the collector efficiency, in order to
   724   // determine whether we should initiate a new marking.
   725   double _cur_mark_stop_world_time_ms;
   726   double _mark_init_start_sec;
   727   double _mark_remark_start_sec;
   728   double _mark_cleanup_start_sec;
   729   double _mark_closure_time_ms;
   731   void   calculate_young_list_min_length();
   732   void   calculate_young_list_target_config();
   733   void   calculate_young_list_target_config(size_t rs_lengths);
   734   size_t calculate_optimal_so_length(size_t young_list_length);
   736 public:
   738   G1CollectorPolicy();
   740   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   742   virtual CollectorPolicy::Name kind() {
   743     return CollectorPolicy::G1CollectorPolicyKind;
   744   }
   746   void check_prediction_validity();
   748   size_t bytes_in_collection_set() {
   749     return _bytes_in_collection_set_before_gc;
   750   }
   752   size_t bytes_in_to_space() {
   753     return bytes_in_to_space_during_gc();
   754   }
   756   unsigned calc_gc_alloc_time_stamp() {
   757     return _all_pause_times_ms->num() + 1;
   758   }
   760 protected:
   762   // Count the number of bytes used in the CS.
   763   void count_CS_bytes_used();
   765   // Together these do the base cleanup-recording work.  Subclasses might
   766   // want to put something between them.
   767   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   768                                                 size_t max_live_bytes);
   769   void record_concurrent_mark_cleanup_end_work2();
   771 public:
   773   virtual void init();
   775   // Create jstat counters for the policy.
   776   virtual void initialize_gc_policy_counters();
   778   virtual HeapWord* mem_allocate_work(size_t size,
   779                                       bool is_tlab,
   780                                       bool* gc_overhead_limit_was_exceeded);
   782   // This method controls how a collector handles one or more
   783   // of its generations being fully allocated.
   784   virtual HeapWord* satisfy_failed_allocation(size_t size,
   785                                               bool is_tlab);
   787   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   789   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   791   // The number of collection pauses so far.
   792   long n_pauses() const { return _n_pauses; }
   794   // Update the heuristic info to record a collection pause of the given
   795   // start time, where the given number of bytes were used at the start.
   796   // This may involve changing the desired size of a collection set.
   798   virtual void record_stop_world_start();
   800   virtual void record_collection_pause_start(double start_time_sec,
   801                                              size_t start_used);
   803   // Must currently be called while the world is stopped.
   804   virtual void record_concurrent_mark_init_start();
   805   virtual void record_concurrent_mark_init_end();
   806   void record_concurrent_mark_init_end_pre(double
   807                                            mark_init_elapsed_time_ms);
   809   void record_mark_closure_time(double mark_closure_time_ms);
   811   virtual void record_concurrent_mark_remark_start();
   812   virtual void record_concurrent_mark_remark_end();
   814   virtual void record_concurrent_mark_cleanup_start();
   815   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   816                                                   size_t max_live_bytes);
   817   virtual void record_concurrent_mark_cleanup_completed();
   819   virtual void record_concurrent_pause();
   820   virtual void record_concurrent_pause_end();
   822   virtual void record_collection_pause_end_CH_strong_roots();
   823   virtual void record_collection_pause_end_G1_strong_roots();
   825   virtual void record_collection_pause_end(bool abandoned);
   827   // Record the fact that a full collection occurred.
   828   virtual void record_full_collection_start();
   829   virtual void record_full_collection_end();
   831   void record_ext_root_scan_time(int worker_i, double ms) {
   832     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   833   }
   835   void record_mark_stack_scan_time(int worker_i, double ms) {
   836     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   837   }
   839   void record_scan_only_time(int worker_i, double ms, int n) {
   840     _par_last_scan_only_times_ms[worker_i] = ms;
   841     _par_last_scan_only_regions_scanned[worker_i] = (double) n;
   842   }
   844   void record_satb_drain_time(double ms) {
   845     _cur_satb_drain_time_ms = ms;
   846     _satb_drain_time_set    = true;
   847   }
   849   void record_satb_drain_processed_buffers (int processed_buffers) {
   850     _last_satb_drain_processed_buffers = processed_buffers;
   851   }
   853   void record_mod_union_time(double ms) {
   854     _all_mod_union_times_ms->add(ms);
   855   }
   857   void record_update_rs_start_time(int thread, double ms) {
   858     _par_last_update_rs_start_times_ms[thread] = ms;
   859   }
   861   void record_update_rs_time(int thread, double ms) {
   862     _par_last_update_rs_times_ms[thread] = ms;
   863   }
   865   void record_update_rs_processed_buffers (int thread,
   866                                            double processed_buffers) {
   867     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   868   }
   870   void record_scan_rs_start_time(int thread, double ms) {
   871     _par_last_scan_rs_start_times_ms[thread] = ms;
   872   }
   874   void record_scan_rs_time(int thread, double ms) {
   875     _par_last_scan_rs_times_ms[thread] = ms;
   876   }
   878   void record_scan_new_refs_time(int thread, double ms) {
   879     _par_last_scan_new_refs_times_ms[thread] = ms;
   880   }
   882   double get_scan_new_refs_time(int thread) {
   883     return _par_last_scan_new_refs_times_ms[thread];
   884   }
   886   void reset_obj_copy_time(int thread) {
   887     _par_last_obj_copy_times_ms[thread] = 0.0;
   888   }
   890   void reset_obj_copy_time() {
   891     reset_obj_copy_time(0);
   892   }
   894   void record_obj_copy_time(int thread, double ms) {
   895     _par_last_obj_copy_times_ms[thread] += ms;
   896   }
   898   void record_obj_copy_time(double ms) {
   899     record_obj_copy_time(0, ms);
   900   }
   902   void record_termination_time(int thread, double ms) {
   903     _par_last_termination_times_ms[thread] = ms;
   904   }
   906   void record_termination_time(double ms) {
   907     record_termination_time(0, ms);
   908   }
   910   void record_pause_time_ms(double ms) {
   911     _last_pause_time_ms = ms;
   912   }
   914   void record_clear_ct_time(double ms) {
   915     _cur_clear_ct_time_ms = ms;
   916   }
   918   void record_par_time(double ms) {
   919     _cur_collection_par_time_ms = ms;
   920   }
   922   void record_aux_start_time(int i) {
   923     guarantee(i < _aux_num, "should be within range");
   924     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   925   }
   927   void record_aux_end_time(int i) {
   928     guarantee(i < _aux_num, "should be within range");
   929     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   930     _cur_aux_times_set[i] = true;
   931     _cur_aux_times_ms[i] += ms;
   932   }
   934   // Record the fact that "bytes" bytes allocated in a region.
   935   void record_before_bytes(size_t bytes);
   936   void record_after_bytes(size_t bytes);
   938   // Returns "true" if this is a good time to do a collection pause.
   939   // The "word_size" argument, if non-zero, indicates the size of an
   940   // allocation request that is prompting this query.
   941   virtual bool should_do_collection_pause(size_t word_size) = 0;
   943   // Choose a new collection set.  Marks the chosen regions as being
   944   // "in_collection_set", and links them together.  The head and number of
   945   // the collection set are available via access methods.
   946   virtual void choose_collection_set() = 0;
   948   void clear_collection_set() { _collection_set = NULL; }
   950   // The head of the list (via "next_in_collection_set()") representing the
   951   // current collection set.
   952   HeapRegion* collection_set() { return _collection_set; }
   954   // The number of elements in the current collection set.
   955   size_t collection_set_size() { return _collection_set_size; }
   957   // Add "hr" to the CS.
   958   void add_to_collection_set(HeapRegion* hr);
   960   bool should_initiate_conc_mark()      { return _should_initiate_conc_mark; }
   961   void set_should_initiate_conc_mark()  { _should_initiate_conc_mark = true; }
   962   void unset_should_initiate_conc_mark(){ _should_initiate_conc_mark = false; }
   964   void checkpoint_conc_overhead();
   966   // If an expansion would be appropriate, because recent GC overhead had
   967   // exceeded the desired limit, return an amount to expand by.
   968   virtual size_t expansion_amount();
   970   // note start of mark thread
   971   void note_start_of_mark_thread();
   973   // The marked bytes of the "r" has changed; reclassify it's desirability
   974   // for marking.  Also asserts that "r" is eligible for a CS.
   975   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
   977 #ifndef PRODUCT
   978   // Check any appropriate marked bytes info, asserting false if
   979   // something's wrong, else returning "true".
   980   virtual bool assertMarkedBytesDataOK() = 0;
   981 #endif
   983   // Print tracing information.
   984   void print_tracing_info() const;
   986   // Print stats on young survival ratio
   987   void print_yg_surv_rate_info() const;
   989   void finished_recalculating_age_indexes(bool is_survivors) {
   990     if (is_survivors) {
   991       _survivor_surv_rate_group->finished_recalculating_age_indexes();
   992     } else {
   993       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
   994     }
   995     // do that for any other surv rate groups
   996   }
   998   bool should_add_next_region_to_young_list();
  1000   bool in_young_gc_mode() {
  1001     return _in_young_gc_mode;
  1003   void set_in_young_gc_mode(bool in_young_gc_mode) {
  1004     _in_young_gc_mode = in_young_gc_mode;
  1007   bool full_young_gcs() {
  1008     return _full_young_gcs;
  1010   void set_full_young_gcs(bool full_young_gcs) {
  1011     _full_young_gcs = full_young_gcs;
  1014   bool adaptive_young_list_length() {
  1015     return _adaptive_young_list_length;
  1017   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1018     _adaptive_young_list_length = adaptive_young_list_length;
  1021   inline double get_gc_eff_factor() {
  1022     double ratio = _known_garbage_ratio;
  1024     double square = ratio * ratio;
  1025     // square = square * square;
  1026     double ret = square * 9.0 + 1.0;
  1027 #if 0
  1028     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1029 #endif // 0
  1030     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1031     return ret;
  1034   //
  1035   // Survivor regions policy.
  1036   //
  1037 protected:
  1039   // Current tenuring threshold, set to 0 if the collector reaches the
  1040   // maximum amount of suvivors regions.
  1041   int _tenuring_threshold;
  1043   // The limit on the number of regions allocated for survivors.
  1044   size_t _max_survivor_regions;
  1046   // The amount of survor regions after a collection.
  1047   size_t _recorded_survivor_regions;
  1048   // List of survivor regions.
  1049   HeapRegion* _recorded_survivor_head;
  1050   HeapRegion* _recorded_survivor_tail;
  1052   ageTable _survivors_age_table;
  1054 public:
  1056   inline GCAllocPurpose
  1057     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1058       if (age < _tenuring_threshold && src_region->is_young()) {
  1059         return GCAllocForSurvived;
  1060       } else {
  1061         return GCAllocForTenured;
  1065   inline bool track_object_age(GCAllocPurpose purpose) {
  1066     return purpose == GCAllocForSurvived;
  1069   inline GCAllocPurpose alternative_purpose(int purpose) {
  1070     return GCAllocForTenured;
  1073   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1075   size_t max_regions(int purpose);
  1077   // The limit on regions for a particular purpose is reached.
  1078   void note_alloc_region_limit_reached(int purpose) {
  1079     if (purpose == GCAllocForSurvived) {
  1080       _tenuring_threshold = 0;
  1084   void note_start_adding_survivor_regions() {
  1085     _survivor_surv_rate_group->start_adding_regions();
  1088   void note_stop_adding_survivor_regions() {
  1089     _survivor_surv_rate_group->stop_adding_regions();
  1092   void record_survivor_regions(size_t      regions,
  1093                                HeapRegion* head,
  1094                                HeapRegion* tail) {
  1095     _recorded_survivor_regions = regions;
  1096     _recorded_survivor_head    = head;
  1097     _recorded_survivor_tail    = tail;
  1100   void record_thread_age_table(ageTable* age_table)
  1102     _survivors_age_table.merge_par(age_table);
  1105   // Calculates survivor space parameters.
  1106   void calculate_survivors_policy();
  1108 };
  1110 // This encapsulates a particular strategy for a g1 Collector.
  1111 //
  1112 //      Start a concurrent mark when our heap size is n bytes
  1113 //            greater then our heap size was at the last concurrent
  1114 //            mark.  Where n is a function of the CMSTriggerRatio
  1115 //            and the MinHeapFreeRatio.
  1116 //
  1117 //      Start a g1 collection pause when we have allocated the
  1118 //            average number of bytes currently being freed in
  1119 //            a collection, but only if it is at least one region
  1120 //            full
  1121 //
  1122 //      Resize Heap based on desired
  1123 //      allocation space, where desired allocation space is
  1124 //      a function of survival rate and desired future to size.
  1125 //
  1126 //      Choose collection set by first picking all older regions
  1127 //      which have a survival rate which beats our projected young
  1128 //      survival rate.  Then fill out the number of needed regions
  1129 //      with young regions.
  1131 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1132   CollectionSetChooser* _collectionSetChooser;
  1133   // If the estimated is less then desirable, resize if possible.
  1134   void expand_if_possible(size_t numRegions);
  1136   virtual void choose_collection_set();
  1137   virtual void record_collection_pause_start(double start_time_sec,
  1138                                              size_t start_used);
  1139   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1140                                                   size_t max_live_bytes);
  1141   virtual void record_full_collection_end();
  1143 public:
  1144   G1CollectorPolicy_BestRegionsFirst() {
  1145     _collectionSetChooser = new CollectionSetChooser();
  1147   void record_collection_pause_end(bool abandoned);
  1148   bool should_do_collection_pause(size_t word_size);
  1149   // This is not needed any more, after the CSet choosing code was
  1150   // changed to use the pause prediction work. But let's leave the
  1151   // hook in just in case.
  1152   void note_change_in_marked_bytes(HeapRegion* r) { }
  1153 #ifndef PRODUCT
  1154   bool assertMarkedBytesDataOK();
  1155 #endif
  1156 };
  1158 // This should move to some place more general...
  1160 // If we have "n" measurements, and we've kept track of their "sum" and the
  1161 // "sum_of_squares" of the measurements, this returns the variance of the
  1162 // sequence.
  1163 inline double variance(int n, double sum_of_squares, double sum) {
  1164   double n_d = (double)n;
  1165   double avg = sum/n_d;
  1166   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1169 // Local Variables: ***
  1170 // c-indentation-style: gnu ***
  1171 // End: ***

mercurial