src/share/vm/gc_implementation/parallelScavenge/cardTableExtension.cpp

Fri, 28 Mar 2008 23:35:42 -0700

author
jcoomes
date
Fri, 28 Mar 2008 23:35:42 -0700
changeset 514
82db0859acbe
parent 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6642862: Code cache allocation fails with large pages after 6588638
Reviewed-by: apetrusenko

     1 /*
     2  * Copyright 2001-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_cardTableExtension.cpp.incl"
    28 // Checks an individual oop for missing precise marks. Mark
    29 // may be either dirty or newgen.
    30 class CheckForUnmarkedOops : public OopClosure {
    31   PSYoungGen* _young_gen;
    32   CardTableExtension* _card_table;
    33   HeapWord* _unmarked_addr;
    34   jbyte* _unmarked_card;
    36  public:
    37   CheckForUnmarkedOops( PSYoungGen* young_gen, CardTableExtension* card_table ) :
    38     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
    40   virtual void do_oop(oop* p) {
    41     if (_young_gen->is_in_reserved(*p) &&
    42         !_card_table->addr_is_marked_imprecise(p)) {
    43       // Don't overwrite the first missing card mark
    44       if (_unmarked_addr == NULL) {
    45         _unmarked_addr = (HeapWord*)p;
    46         _unmarked_card = _card_table->byte_for(p);
    47       }
    48     }
    49   }
    51   bool has_unmarked_oop() {
    52     return _unmarked_addr != NULL;
    53   }
    54 };
    56 // Checks all objects for the existance of some type of mark,
    57 // precise or imprecise, dirty or newgen.
    58 class CheckForUnmarkedObjects : public ObjectClosure {
    59   PSYoungGen* _young_gen;
    60   CardTableExtension* _card_table;
    62  public:
    63   CheckForUnmarkedObjects() {
    64     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    65     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    67     _young_gen = heap->young_gen();
    68     _card_table = (CardTableExtension*)heap->barrier_set();
    69     // No point in asserting barrier set type here. Need to make CardTableExtension
    70     // a unique barrier set type.
    71   }
    73   // Card marks are not precise. The current system can leave us with
    74   // a mismash of precise marks and begining of object marks. This means
    75   // we test for missing precise marks first. If any are found, we don't
    76   // fail unless the object head is also unmarked.
    77   virtual void do_object(oop obj) {
    78     CheckForUnmarkedOops object_check( _young_gen, _card_table );
    79     obj->oop_iterate(&object_check);
    80     if (object_check.has_unmarked_oop()) {
    81       assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
    82     }
    83   }
    84 };
    86 // Checks for precise marking of oops as newgen.
    87 class CheckForPreciseMarks : public OopClosure {
    88   PSYoungGen* _young_gen;
    89   CardTableExtension* _card_table;
    91  public:
    92   CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
    93     _young_gen(young_gen), _card_table(card_table) { }
    95   virtual void do_oop(oop* p) {
    96     if (_young_gen->is_in_reserved(*p)) {
    97       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
    98       _card_table->set_card_newgen(p);
    99     }
   100   }
   101 };
   103 // We get passed the space_top value to prevent us from traversing into
   104 // the old_gen promotion labs, which cannot be safely parsed.
   105 void CardTableExtension::scavenge_contents(ObjectStartArray* start_array,
   106                                            MutableSpace* sp,
   107                                            HeapWord* space_top,
   108                                            PSPromotionManager* pm)
   109 {
   110   assert(start_array != NULL && sp != NULL && pm != NULL, "Sanity");
   111   assert(start_array->covered_region().contains(sp->used_region()),
   112          "ObjectStartArray does not cover space");
   113   bool depth_first = pm->depth_first();
   115   if (sp->not_empty()) {
   116     oop* sp_top = (oop*)space_top;
   117     oop* prev_top = NULL;
   118     jbyte* current_card = byte_for(sp->bottom());
   119     jbyte* end_card     = byte_for(sp_top - 1);    // sp_top is exclusive
   120     // scan card marking array
   121     while (current_card <= end_card) {
   122       jbyte value = *current_card;
   123       // skip clean cards
   124       if (card_is_clean(value)) {
   125         current_card++;
   126       } else {
   127         // we found a non-clean card
   128         jbyte* first_nonclean_card = current_card++;
   129         oop* bottom = (oop*)addr_for(first_nonclean_card);
   130         // find object starting on card
   131         oop* bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
   132         // bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
   133         assert(bottom_obj <= bottom, "just checking");
   134         // make sure we don't scan oops we already looked at
   135         if (bottom < prev_top) bottom = prev_top;
   136         // figure out when to stop scanning
   137         jbyte* first_clean_card;
   138         oop* top;
   139         bool restart_scanning;
   140         do {
   141           restart_scanning = false;
   142           // find a clean card
   143           while (current_card <= end_card) {
   144             value = *current_card;
   145             if (card_is_clean(value)) break;
   146             current_card++;
   147           }
   148           // check if we reached the end, if so we are done
   149           if (current_card >= end_card) {
   150             first_clean_card = end_card + 1;
   151             current_card++;
   152             top = sp_top;
   153           } else {
   154             // we have a clean card, find object starting on that card
   155             first_clean_card = current_card++;
   156             top = (oop*)addr_for(first_clean_card);
   157             oop* top_obj = (oop*)start_array->object_start((HeapWord*)top);
   158             // top_obj = (oop*)start_array->object_start((HeapWord*)top);
   159             assert(top_obj <= top, "just checking");
   160             if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   161               // an arrayOop is starting on the clean card - since we do exact store
   162               // checks for objArrays we are done
   163             } else {
   164               // otherwise, it is possible that the object starting on the clean card
   165               // spans the entire card, and that the store happened on a later card.
   166               // figure out where the object ends
   167               top = top_obj + oop(top_obj)->size();
   168               jbyte* top_card = CardTableModRefBS::byte_for(top - 1);   // top is exclusive
   169               if (top_card > first_clean_card) {
   170                 // object ends a different card
   171                 current_card = top_card + 1;
   172                 if (card_is_clean(*top_card)) {
   173                   // the ending card is clean, we are done
   174                   first_clean_card = top_card;
   175                 } else {
   176                   // the ending card is not clean, continue scanning at start of do-while
   177                   restart_scanning = true;
   178                 }
   179               } else {
   180                 // object ends on the clean card, we are done.
   181                 assert(first_clean_card == top_card, "just checking");
   182               }
   183             }
   184           }
   185         } while (restart_scanning);
   186         // we know which cards to scan, now clear them
   187         while (first_nonclean_card < first_clean_card) {
   188           *first_nonclean_card++ = clean_card;
   189         }
   190         // scan oops in objects
   191         // hoisted the if (depth_first) check out of the loop
   192         if (depth_first){
   193           do {
   194             oop(bottom_obj)->push_contents(pm);
   195             bottom_obj += oop(bottom_obj)->size();
   196             assert(bottom_obj <= sp_top, "just checking");
   197           } while (bottom_obj < top);
   198           pm->drain_stacks_cond_depth();
   199         } else {
   200           do {
   201             oop(bottom_obj)->copy_contents(pm);
   202             bottom_obj += oop(bottom_obj)->size();
   203             assert(bottom_obj <= sp_top, "just checking");
   204           } while (bottom_obj < top);
   205         }
   206         // remember top oop* scanned
   207         prev_top = top;
   208       }
   209     }
   210   }
   211 }
   213 void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
   214                                                     MutableSpace* sp,
   215                                                     HeapWord* space_top,
   216                                                     PSPromotionManager* pm,
   217                                                     uint stripe_number) {
   218   int ssize = 128; // Naked constant!  Work unit = 64k.
   219   int dirty_card_count = 0;
   220   bool depth_first = pm->depth_first();
   222   oop* sp_top = (oop*)space_top;
   223   jbyte* start_card = byte_for(sp->bottom());
   224   jbyte* end_card   = byte_for(sp_top - 1) + 1;
   225   oop* last_scanned = NULL; // Prevent scanning objects more than once
   226   for (jbyte* slice = start_card; slice < end_card; slice += ssize*ParallelGCThreads) {
   227     jbyte* worker_start_card = slice + stripe_number * ssize;
   228     if (worker_start_card >= end_card)
   229       return; // We're done.
   231     jbyte* worker_end_card = worker_start_card + ssize;
   232     if (worker_end_card > end_card)
   233       worker_end_card = end_card;
   235     // We do not want to scan objects more than once. In order to accomplish
   236     // this, we assert that any object with an object head inside our 'slice'
   237     // belongs to us. We may need to extend the range of scanned cards if the
   238     // last object continues into the next 'slice'.
   239     //
   240     // Note! ending cards are exclusive!
   241     HeapWord* slice_start = addr_for(worker_start_card);
   242     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
   244     // If there are not objects starting within the chunk, skip it.
   245     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
   246       continue;
   247     }
   248     // Update our begining addr
   249     HeapWord* first_object = start_array->object_start(slice_start);
   250     debug_only(oop* first_object_within_slice = (oop*) first_object;)
   251     if (first_object < slice_start) {
   252       last_scanned = (oop*)(first_object + oop(first_object)->size());
   253       debug_only(first_object_within_slice = last_scanned;)
   254       worker_start_card = byte_for(last_scanned);
   255     }
   257     // Update the ending addr
   258     if (slice_end < (HeapWord*)sp_top) {
   259       // The subtraction is important! An object may start precisely at slice_end.
   260       HeapWord* last_object = start_array->object_start(slice_end - 1);
   261       slice_end = last_object + oop(last_object)->size();
   262       // worker_end_card is exclusive, so bump it one past the end of last_object's
   263       // covered span.
   264       worker_end_card = byte_for(slice_end) + 1;
   266       if (worker_end_card > end_card)
   267         worker_end_card = end_card;
   268     }
   270     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
   271     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
   272     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
   273     // Note that worker_start_card >= worker_end_card is legal, and happens when
   274     // an object spans an entire slice.
   275     assert(worker_start_card <= end_card, "worker start card beyond end card");
   276     assert(worker_end_card <= end_card, "worker end card beyond end card");
   278     jbyte* current_card = worker_start_card;
   279     while (current_card < worker_end_card) {
   280       // Find an unclean card.
   281       while (current_card < worker_end_card && card_is_clean(*current_card)) {
   282         current_card++;
   283       }
   284       jbyte* first_unclean_card = current_card;
   286       // Find the end of a run of contiguous unclean cards
   287       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   288         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   289           current_card++;
   290         }
   292         if (current_card < worker_end_card) {
   293           // Some objects may be large enough to span several cards. If such
   294           // an object has more than one dirty card, separated by a clean card,
   295           // we will attempt to scan it twice. The test against "last_scanned"
   296           // prevents the redundant object scan, but it does not prevent newly
   297           // marked cards from being cleaned.
   298           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
   299           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
   300           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
   301           jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
   302           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
   303           if (ending_card_of_last_object > current_card) {
   304             // This means the object spans the next complete card.
   305             // We need to bump the current_card to ending_card_of_last_object
   306             current_card = ending_card_of_last_object;
   307           }
   308         }
   309       }
   310       jbyte* following_clean_card = current_card;
   312       if (first_unclean_card < worker_end_card) {
   313         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
   314         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
   315         // "p" should always be >= "last_scanned" because newly GC dirtied
   316         // cards are no longer scanned again (see comment at end
   317         // of loop on the increment of "current_card").  Test that
   318         // hypothesis before removing this code.
   319         // If this code is removed, deal with the first time through
   320         // the loop when the last_scanned is the object starting in
   321         // the previous slice.
   322         assert((p >= last_scanned) ||
   323                (last_scanned == first_object_within_slice),
   324                "Should no longer be possible");
   325         if (p < last_scanned) {
   326           // Avoid scanning more than once; this can happen because
   327           // newgen cards set by GC may a different set than the
   328           // originally dirty set
   329           p = last_scanned;
   330         }
   331         oop* to = (oop*)addr_for(following_clean_card);
   333         // Test slice_end first!
   334         if ((HeapWord*)to > slice_end) {
   335           to = (oop*)slice_end;
   336         } else if (to > sp_top) {
   337           to = sp_top;
   338         }
   340         // we know which cards to scan, now clear them
   341         if (first_unclean_card <= worker_start_card+1)
   342           first_unclean_card = worker_start_card+1;
   343         if (following_clean_card >= worker_end_card-1)
   344           following_clean_card = worker_end_card-1;
   346         while (first_unclean_card < following_clean_card) {
   347           *first_unclean_card++ = clean_card;
   348         }
   350         const int interval = PrefetchScanIntervalInBytes;
   351         // scan all objects in the range
   352         if (interval != 0) {
   353           // hoisted the if (depth_first) check out of the loop
   354           if (depth_first) {
   355             while (p < to) {
   356               Prefetch::write(p, interval);
   357               oop m = oop(p);
   358               assert(m->is_oop_or_null(), "check for header");
   359               m->push_contents(pm);
   360               p += m->size();
   361             }
   362             pm->drain_stacks_cond_depth();
   363           } else {
   364             while (p < to) {
   365               Prefetch::write(p, interval);
   366               oop m = oop(p);
   367               assert(m->is_oop_or_null(), "check for header");
   368               m->copy_contents(pm);
   369               p += m->size();
   370             }
   371           }
   372         } else {
   373           // hoisted the if (depth_first) check out of the loop
   374           if (depth_first) {
   375             while (p < to) {
   376               oop m = oop(p);
   377               assert(m->is_oop_or_null(), "check for header");
   378               m->push_contents(pm);
   379               p += m->size();
   380             }
   381             pm->drain_stacks_cond_depth();
   382           } else {
   383             while (p < to) {
   384               oop m = oop(p);
   385               assert(m->is_oop_or_null(), "check for header");
   386               m->copy_contents(pm);
   387               p += m->size();
   388             }
   389           }
   390         }
   391         last_scanned = p;
   392       }
   393       // "current_card" is still the "following_clean_card" or
   394       // the current_card is >= the worker_end_card so the
   395       // loop will not execute again.
   396       assert((current_card == following_clean_card) ||
   397              (current_card >= worker_end_card),
   398         "current_card should only be incremented if it still equals "
   399         "following_clean_card");
   400       // Increment current_card so that it is not processed again.
   401       // It may now be dirty because a old-to-young pointer was
   402       // found on it an updated.  If it is now dirty, it cannot be
   403       // be safely cleaned in the next iteration.
   404       current_card++;
   405     }
   406   }
   407 }
   409 // This should be called before a scavenge.
   410 void CardTableExtension::verify_all_young_refs_imprecise() {
   411   CheckForUnmarkedObjects check;
   413   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   414   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   416   PSOldGen* old_gen = heap->old_gen();
   417   PSPermGen* perm_gen = heap->perm_gen();
   419   old_gen->object_iterate(&check);
   420   perm_gen->object_iterate(&check);
   421 }
   423 // This should be called immediately after a scavenge, before mutators resume.
   424 void CardTableExtension::verify_all_young_refs_precise() {
   425   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   426   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   428   PSOldGen* old_gen = heap->old_gen();
   429   PSPermGen* perm_gen = heap->perm_gen();
   431   CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());
   433   old_gen->oop_iterate(&check);
   434   perm_gen->oop_iterate(&check);
   436   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
   437   verify_all_young_refs_precise_helper(perm_gen->object_space()->used_region());
   438 }
   440 void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
   441   CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
   442   // FIX ME ASSERT HERE
   444   jbyte* bot = card_table->byte_for(mr.start());
   445   jbyte* top = card_table->byte_for(mr.end());
   446   while(bot <= top) {
   447     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
   448     if (*bot == verify_card)
   449       *bot = youngergen_card;
   450     bot++;
   451   }
   452 }
   454 bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
   455   jbyte* p = byte_for(addr);
   456   jbyte val = *p;
   458   if (card_is_dirty(val))
   459     return true;
   461   if (card_is_newgen(val))
   462     return true;
   464   if (card_is_clean(val))
   465     return false;
   467   assert(false, "Found unhandled card mark type");
   469   return false;
   470 }
   472 // Also includes verify_card
   473 bool CardTableExtension::addr_is_marked_precise(void *addr) {
   474   jbyte* p = byte_for(addr);
   475   jbyte val = *p;
   477   if (card_is_newgen(val))
   478     return true;
   480   if (card_is_verify(val))
   481     return true;
   483   if (card_is_clean(val))
   484     return false;
   486   if (card_is_dirty(val))
   487     return false;
   489   assert(false, "Found unhandled card mark type");
   491   return false;
   492 }
   494 // Assumes that only the base or the end changes.  This allows indentification
   495 // of the region that is being resized.  The
   496 // CardTableModRefBS::resize_covered_region() is used for the normal case
   497 // where the covered regions are growing or shrinking at the high end.
   498 // The method resize_covered_region_by_end() is analogous to
   499 // CardTableModRefBS::resize_covered_region() but
   500 // for regions that grow or shrink at the low end.
   501 void CardTableExtension::resize_covered_region(MemRegion new_region) {
   503   for (int i = 0; i < _cur_covered_regions; i++) {
   504     if (_covered[i].start() == new_region.start()) {
   505       // Found a covered region with the same start as the
   506       // new region.  The region is growing or shrinking
   507       // from the start of the region.
   508       resize_covered_region_by_start(new_region);
   509       return;
   510     }
   511     if (_covered[i].start() > new_region.start()) {
   512       break;
   513     }
   514   }
   516   int changed_region = -1;
   517   for (int j = 0; j < _cur_covered_regions; j++) {
   518     if (_covered[j].end() == new_region.end()) {
   519       changed_region = j;
   520       // This is a case where the covered region is growing or shrinking
   521       // at the start of the region.
   522       assert(changed_region != -1, "Don't expect to add a covered region");
   523       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
   524         "The sizes should be different here");
   525       resize_covered_region_by_end(changed_region, new_region);
   526       return;
   527     }
   528   }
   529   // This should only be a new covered region (where no existing
   530   // covered region matches at the start or the end).
   531   assert(_cur_covered_regions < _max_covered_regions,
   532     "An existing region should have been found");
   533   resize_covered_region_by_start(new_region);
   534 }
   536 void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
   537   CardTableModRefBS::resize_covered_region(new_region);
   538   debug_only(verify_guard();)
   539 }
   541 void CardTableExtension::resize_covered_region_by_end(int changed_region,
   542                                                       MemRegion new_region) {
   543   assert(SafepointSynchronize::is_at_safepoint(),
   544     "Only expect an expansion at the low end at a GC");
   545   debug_only(verify_guard();)
   546 #ifdef ASSERT
   547   for (int k = 0; k < _cur_covered_regions; k++) {
   548     if (_covered[k].end() == new_region.end()) {
   549       assert(changed_region == k, "Changed region is incorrect");
   550       break;
   551     }
   552   }
   553 #endif
   555   // Commit new or uncommit old pages, if necessary.
   556   resize_commit_uncommit(changed_region, new_region);
   558   // Update card table entries
   559   resize_update_card_table_entries(changed_region, new_region);
   561   // Set the new start of the committed region
   562   resize_update_committed_table(changed_region, new_region);
   564   // Update the covered region
   565   resize_update_covered_table(changed_region, new_region);
   567   if (TraceCardTableModRefBS) {
   568     int ind = changed_region;
   569     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
   570     gclog_or_tty->print_cr("  "
   571                   "  _covered[%d].start(): " INTPTR_FORMAT
   572                   "  _covered[%d].last(): " INTPTR_FORMAT,
   573                   ind, _covered[ind].start(),
   574                   ind, _covered[ind].last());
   575     gclog_or_tty->print_cr("  "
   576                   "  _committed[%d].start(): " INTPTR_FORMAT
   577                   "  _committed[%d].last(): " INTPTR_FORMAT,
   578                   ind, _committed[ind].start(),
   579                   ind, _committed[ind].last());
   580     gclog_or_tty->print_cr("  "
   581                   "  byte_for(start): " INTPTR_FORMAT
   582                   "  byte_for(last): " INTPTR_FORMAT,
   583                   byte_for(_covered[ind].start()),
   584                   byte_for(_covered[ind].last()));
   585     gclog_or_tty->print_cr("  "
   586                   "  addr_for(start): " INTPTR_FORMAT
   587                   "  addr_for(last): " INTPTR_FORMAT,
   588                   addr_for((jbyte*) _committed[ind].start()),
   589                   addr_for((jbyte*) _committed[ind].last()));
   590   }
   591   debug_only(verify_guard();)
   592 }
   594 void CardTableExtension::resize_commit_uncommit(int changed_region,
   595                                                 MemRegion new_region) {
   596   // Commit new or uncommit old pages, if necessary.
   597   MemRegion cur_committed = _committed[changed_region];
   598   assert(_covered[changed_region].end() == new_region.end(),
   599     "The ends of the regions are expected to match");
   600   // Extend the start of this _committed region to
   601   // to cover the start of any previous _committed region.
   602   // This forms overlapping regions, but never interior regions.
   603   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
   604   if (min_prev_start < cur_committed.start()) {
   605     // Only really need to set start of "cur_committed" to
   606     // the new start (min_prev_start) but assertion checking code
   607     // below use cur_committed.end() so make it correct.
   608     MemRegion new_committed =
   609         MemRegion(min_prev_start, cur_committed.end());
   610     cur_committed = new_committed;
   611   }
   612 #ifdef ASSERT
   613   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   614   assert(cur_committed.start() ==
   615     (HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
   616                               os::vm_page_size()),
   617     "Starts should have proper alignment");
   618 #endif
   620   jbyte* new_start = byte_for(new_region.start());
   621   // Round down because this is for the start address
   622   HeapWord* new_start_aligned =
   623     (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
   624   // The guard page is always committed and should not be committed over.
   625   // This method is used in cases where the generation is growing toward
   626   // lower addresses but the guard region is still at the end of the
   627   // card table.  That still makes sense when looking for writes
   628   // off the end of the card table.
   629   if (new_start_aligned < cur_committed.start()) {
   630     // Expand the committed region
   631     //
   632     // Case A
   633     //                                          |+ guard +|
   634     //                          |+ cur committed +++++++++|
   635     //                  |+ new committed +++++++++++++++++|
   636     //
   637     // Case B
   638     //                                          |+ guard +|
   639     //                        |+ cur committed +|
   640     //                  |+ new committed +++++++|
   641     //
   642     // These are not expected because the calculation of the
   643     // cur committed region and the new committed region
   644     // share the same end for the covered region.
   645     // Case C
   646     //                                          |+ guard +|
   647     //                        |+ cur committed +|
   648     //                  |+ new committed +++++++++++++++++|
   649     // Case D
   650     //                                          |+ guard +|
   651     //                        |+ cur committed +++++++++++|
   652     //                  |+ new committed +++++++|
   654     HeapWord* new_end_for_commit =
   655       MIN2(cur_committed.end(), _guard_region.start());
   656     MemRegion new_committed =
   657       MemRegion(new_start_aligned, new_end_for_commit);
   658     if(!new_committed.is_empty()) {
   659       if (!os::commit_memory((char*)new_committed.start(),
   660                              new_committed.byte_size())) {
   661         vm_exit_out_of_memory(new_committed.byte_size(),
   662                               "card table expansion");
   663       }
   664     }
   665   } else if (new_start_aligned > cur_committed.start()) {
   666     // Shrink the committed region
   667     MemRegion uncommit_region = committed_unique_to_self(changed_region,
   668       MemRegion(cur_committed.start(), new_start_aligned));
   669     if (!uncommit_region.is_empty()) {
   670       if (!os::uncommit_memory((char*)uncommit_region.start(),
   671                                uncommit_region.byte_size())) {
   672         vm_exit_out_of_memory(uncommit_region.byte_size(),
   673           "card table contraction");
   674       }
   675     }
   676   }
   677   assert(_committed[changed_region].end() == cur_committed.end(),
   678     "end should not change");
   679 }
   681 void CardTableExtension::resize_update_committed_table(int changed_region,
   682                                                        MemRegion new_region) {
   684   jbyte* new_start = byte_for(new_region.start());
   685   // Set the new start of the committed region
   686   HeapWord* new_start_aligned =
   687     (HeapWord*)align_size_down((uintptr_t)new_start,
   688                              os::vm_page_size());
   689   MemRegion new_committed = MemRegion(new_start_aligned,
   690     _committed[changed_region].end());
   691   _committed[changed_region] = new_committed;
   692   _committed[changed_region].set_start(new_start_aligned);
   693 }
   695 void CardTableExtension::resize_update_card_table_entries(int changed_region,
   696                                                           MemRegion new_region) {
   697   debug_only(verify_guard();)
   698   MemRegion original_covered = _covered[changed_region];
   699   // Initialize the card entries.  Only consider the
   700   // region covered by the card table (_whole_heap)
   701   jbyte* entry;
   702   if (new_region.start() < _whole_heap.start()) {
   703     entry = byte_for(_whole_heap.start());
   704   } else {
   705     entry = byte_for(new_region.start());
   706   }
   707   jbyte* end = byte_for(original_covered.start());
   708   // If _whole_heap starts at the original covered regions start,
   709   // this loop will not execute.
   710   while (entry < end) { *entry++ = clean_card; }
   711 }
   713 void CardTableExtension::resize_update_covered_table(int changed_region,
   714                                                      MemRegion new_region) {
   715   // Update the covered region
   716   _covered[changed_region].set_start(new_region.start());
   717   _covered[changed_region].set_word_size(new_region.word_size());
   719   // reorder regions.  There should only be at most 1 out
   720   // of order.
   721   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
   722     if (_covered[i].start() < _covered[i-1].start()) {
   723         MemRegion covered_mr = _covered[i-1];
   724         _covered[i-1] = _covered[i];
   725         _covered[i] = covered_mr;
   726         MemRegion committed_mr = _committed[i-1];
   727       _committed[i-1] = _committed[i];
   728       _committed[i] = committed_mr;
   729       break;
   730     }
   731   }
   732 #ifdef ASSERT
   733   for (int m = 0; m < _cur_covered_regions-1; m++) {
   734     assert(_covered[m].start() <= _covered[m+1].start(),
   735       "Covered regions out of order");
   736     assert(_committed[m].start() <= _committed[m+1].start(),
   737       "Committed regions out of order");
   738   }
   739 #endif
   740 }
   742 // Returns the start of any committed region that is lower than
   743 // the target committed region (index ind) and that intersects the
   744 // target region.  If none, return start of target region.
   745 //
   746 //      -------------
   747 //      |           |
   748 //      -------------
   749 //              ------------
   750 //              | target   |
   751 //              ------------
   752 //                               -------------
   753 //                               |           |
   754 //                               -------------
   755 //      ^ returns this
   756 //
   757 //      -------------
   758 //      |           |
   759 //      -------------
   760 //                      ------------
   761 //                      | target   |
   762 //                      ------------
   763 //                               -------------
   764 //                               |           |
   765 //                               -------------
   766 //                      ^ returns this
   768 HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
   769   assert(_cur_covered_regions >= 0, "Expecting at least on region");
   770   HeapWord* min_start = _committed[ind].start();
   771   for (int j = 0; j < ind; j++) {
   772     HeapWord* this_start = _committed[j].start();
   773     if ((this_start < min_start) &&
   774         !(_committed[j].intersection(_committed[ind])).is_empty()) {
   775        min_start = this_start;
   776     }
   777   }
   778   return min_start;
   779 }

mercurial