src/share/vm/opto/mulnode.cpp

Thu, 05 Feb 2009 11:42:10 -0800

author
never
date
Thu, 05 Feb 2009 11:42:10 -0800
changeset 979
82a980778b92
parent 839
78c058bc5cdc
child 993
3b5ac9e7e6ea
permissions
-rw-r--r--

6793828: G1: invariant: queues are empty when activated
Reviewed-by: jrose, kvn

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_mulnode.cpp.incl"
    31 //=============================================================================
    32 //------------------------------hash-------------------------------------------
    33 // Hash function over MulNodes.  Needs to be commutative; i.e., I swap
    34 // (commute) inputs to MulNodes willy-nilly so the hash function must return
    35 // the same value in the presence of edge swapping.
    36 uint MulNode::hash() const {
    37   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
    38 }
    40 //------------------------------Identity---------------------------------------
    41 // Multiplying a one preserves the other argument
    42 Node *MulNode::Identity( PhaseTransform *phase ) {
    43   register const Type *one = mul_id();  // The multiplicative identity
    44   if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
    45   if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
    47   return this;
    48 }
    50 //------------------------------Ideal------------------------------------------
    51 // We also canonicalize the Node, moving constants to the right input,
    52 // and flatten expressions (so that 1+x+2 becomes x+3).
    53 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
    54   const Type *t1 = phase->type( in(1) );
    55   const Type *t2 = phase->type( in(2) );
    56   Node *progress = NULL;        // Progress flag
    57   // We are OK if right is a constant, or right is a load and
    58   // left is a non-constant.
    59   if( !(t2->singleton() ||
    60         (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
    61     if( t1->singleton() ||       // Left input is a constant?
    62         // Otherwise, sort inputs (commutativity) to help value numbering.
    63         (in(1)->_idx > in(2)->_idx) ) {
    64       swap_edges(1, 2);
    65       const Type *t = t1;
    66       t1 = t2;
    67       t2 = t;
    68       progress = this;            // Made progress
    69     }
    70   }
    72   // If the right input is a constant, and the left input is a product of a
    73   // constant, flatten the expression tree.
    74   uint op = Opcode();
    75   if( t2->singleton() &&        // Right input is a constant?
    76       op != Op_MulF &&          // Float & double cannot reassociate
    77       op != Op_MulD ) {
    78     if( t2 == Type::TOP ) return NULL;
    79     Node *mul1 = in(1);
    80 #ifdef ASSERT
    81     // Check for dead loop
    82     int   op1 = mul1->Opcode();
    83     if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
    84         ( op1 == mul_opcode() || op1 == add_opcode() ) &&
    85         ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
    86           phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
    87       assert(false, "dead loop in MulNode::Ideal");
    88 #endif
    90     if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
    91       // Mul of a constant?
    92       const Type *t12 = phase->type( mul1->in(2) );
    93       if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
    94         // Compute new constant; check for overflow
    95         const Type *tcon01 = mul1->as_Mul()->mul_ring(t2,t12);
    96         if( tcon01->singleton() ) {
    97           // The Mul of the flattened expression
    98           set_req(1, mul1->in(1));
    99           set_req(2, phase->makecon( tcon01 ));
   100           t2 = tcon01;
   101           progress = this;      // Made progress
   102         }
   103       }
   104     }
   105     // If the right input is a constant, and the left input is an add of a
   106     // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
   107     const Node *add1 = in(1);
   108     if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
   109       // Add of a constant?
   110       const Type *t12 = phase->type( add1->in(2) );
   111       if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
   112         assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
   113         // Compute new constant; check for overflow
   114         const Type *tcon01 = mul_ring(t2,t12);
   115         if( tcon01->singleton() ) {
   117         // Convert (X+con1)*con0 into X*con0
   118           Node *mul = clone();    // mul = ()*con0
   119           mul->set_req(1,add1->in(1));  // mul = X*con0
   120           mul = phase->transform(mul);
   122           Node *add2 = add1->clone();
   123           add2->set_req(1, mul);        // X*con0 + con0*con1
   124           add2->set_req(2, phase->makecon(tcon01) );
   125           progress = add2;
   126         }
   127       }
   128     } // End of is left input an add
   129   } // End of is right input a Mul
   131   return progress;
   132 }
   134 //------------------------------Value-----------------------------------------
   135 const Type *MulNode::Value( PhaseTransform *phase ) const {
   136   const Type *t1 = phase->type( in(1) );
   137   const Type *t2 = phase->type( in(2) );
   138   // Either input is TOP ==> the result is TOP
   139   if( t1 == Type::TOP ) return Type::TOP;
   140   if( t2 == Type::TOP ) return Type::TOP;
   142   // Either input is ZERO ==> the result is ZERO.
   143   // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
   144   int op = Opcode();
   145   if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
   146     const Type *zero = add_id();        // The multiplicative zero
   147     if( t1->higher_equal( zero ) ) return zero;
   148     if( t2->higher_equal( zero ) ) return zero;
   149   }
   151   // Either input is BOTTOM ==> the result is the local BOTTOM
   152   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
   153     return bottom_type();
   155 #if defined(IA32)
   156   // Can't trust native compilers to properly fold strict double
   157   // multiplication with round-to-zero on this platform.
   158   if (op == Op_MulD && phase->C->method()->is_strict()) {
   159     return TypeD::DOUBLE;
   160   }
   161 #endif
   163   return mul_ring(t1,t2);            // Local flavor of type multiplication
   164 }
   167 //=============================================================================
   168 //------------------------------Ideal------------------------------------------
   169 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
   170 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   171   // Swap constant to right
   172   jint con;
   173   if ((con = in(1)->find_int_con(0)) != 0) {
   174     swap_edges(1, 2);
   175     // Finish rest of method to use info in 'con'
   176   } else if ((con = in(2)->find_int_con(0)) == 0) {
   177     return MulNode::Ideal(phase, can_reshape);
   178   }
   180   // Now we have a constant Node on the right and the constant in con
   181   if( con == 0 ) return NULL;   // By zero is handled by Value call
   182   if( con == 1 ) return NULL;   // By one  is handled by Identity call
   184   // Check for negative constant; if so negate the final result
   185   bool sign_flip = false;
   186   if( con < 0 ) {
   187     con = -con;
   188     sign_flip = true;
   189   }
   191   // Get low bit; check for being the only bit
   192   Node *res = NULL;
   193   jint bit1 = con & -con;       // Extract low bit
   194   if( bit1 == con ) {           // Found a power of 2?
   195     res = new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
   196   } else {
   198     // Check for constant with 2 bits set
   199     jint bit2 = con-bit1;
   200     bit2 = bit2 & -bit2;          // Extract 2nd bit
   201     if( bit2 + bit1 == con ) {    // Found all bits in con?
   202       Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
   203       Node *n2 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
   204       res = new (phase->C, 3) AddINode( n2, n1 );
   206     } else if (is_power_of_2(con+1)) {
   207       // Sleezy: power-of-2 -1.  Next time be generic.
   208       jint temp = (jint) (con + 1);
   209       Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
   210       res = new (phase->C, 3) SubINode( n1, in(1) );
   211     } else {
   212       return MulNode::Ideal(phase, can_reshape);
   213     }
   214   }
   216   if( sign_flip ) {             // Need to negate result?
   217     res = phase->transform(res);// Transform, before making the zero con
   218     res = new (phase->C, 3) SubINode(phase->intcon(0),res);
   219   }
   221   return res;                   // Return final result
   222 }
   224 //------------------------------mul_ring---------------------------------------
   225 // Compute the product type of two integer ranges into this node.
   226 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
   227   const TypeInt *r0 = t0->is_int(); // Handy access
   228   const TypeInt *r1 = t1->is_int();
   230   // Fetch endpoints of all ranges
   231   int32 lo0 = r0->_lo;
   232   double a = (double)lo0;
   233   int32 hi0 = r0->_hi;
   234   double b = (double)hi0;
   235   int32 lo1 = r1->_lo;
   236   double c = (double)lo1;
   237   int32 hi1 = r1->_hi;
   238   double d = (double)hi1;
   240   // Compute all endpoints & check for overflow
   241   int32 A = lo0*lo1;
   242   if( (double)A != a*c ) return TypeInt::INT; // Overflow?
   243   int32 B = lo0*hi1;
   244   if( (double)B != a*d ) return TypeInt::INT; // Overflow?
   245   int32 C = hi0*lo1;
   246   if( (double)C != b*c ) return TypeInt::INT; // Overflow?
   247   int32 D = hi0*hi1;
   248   if( (double)D != b*d ) return TypeInt::INT; // Overflow?
   250   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
   251   else { lo0 = B; hi0 = A; }
   252   if( C < D ) {
   253     if( C < lo0 ) lo0 = C;
   254     if( D > hi0 ) hi0 = D;
   255   } else {
   256     if( D < lo0 ) lo0 = D;
   257     if( C > hi0 ) hi0 = C;
   258   }
   259   return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
   260 }
   263 //=============================================================================
   264 //------------------------------Ideal------------------------------------------
   265 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
   266 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   267   // Swap constant to right
   268   jlong con;
   269   if ((con = in(1)->find_long_con(0)) != 0) {
   270     swap_edges(1, 2);
   271     // Finish rest of method to use info in 'con'
   272   } else if ((con = in(2)->find_long_con(0)) == 0) {
   273     return MulNode::Ideal(phase, can_reshape);
   274   }
   276   // Now we have a constant Node on the right and the constant in con
   277   if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
   278   if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
   280   // Check for negative constant; if so negate the final result
   281   bool sign_flip = false;
   282   if( con < 0 ) {
   283     con = -con;
   284     sign_flip = true;
   285   }
   287   // Get low bit; check for being the only bit
   288   Node *res = NULL;
   289   jlong bit1 = con & -con;      // Extract low bit
   290   if( bit1 == con ) {           // Found a power of 2?
   291     res = new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
   292   } else {
   294     // Check for constant with 2 bits set
   295     jlong bit2 = con-bit1;
   296     bit2 = bit2 & -bit2;          // Extract 2nd bit
   297     if( bit2 + bit1 == con ) {    // Found all bits in con?
   298       Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
   299       Node *n2 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
   300       res = new (phase->C, 3) AddLNode( n2, n1 );
   302     } else if (is_power_of_2_long(con+1)) {
   303       // Sleezy: power-of-2 -1.  Next time be generic.
   304       jlong temp = (jlong) (con + 1);
   305       Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
   306       res = new (phase->C, 3) SubLNode( n1, in(1) );
   307     } else {
   308       return MulNode::Ideal(phase, can_reshape);
   309     }
   310   }
   312   if( sign_flip ) {             // Need to negate result?
   313     res = phase->transform(res);// Transform, before making the zero con
   314     res = new (phase->C, 3) SubLNode(phase->longcon(0),res);
   315   }
   317   return res;                   // Return final result
   318 }
   320 //------------------------------mul_ring---------------------------------------
   321 // Compute the product type of two integer ranges into this node.
   322 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
   323   const TypeLong *r0 = t0->is_long(); // Handy access
   324   const TypeLong *r1 = t1->is_long();
   326   // Fetch endpoints of all ranges
   327   jlong lo0 = r0->_lo;
   328   double a = (double)lo0;
   329   jlong hi0 = r0->_hi;
   330   double b = (double)hi0;
   331   jlong lo1 = r1->_lo;
   332   double c = (double)lo1;
   333   jlong hi1 = r1->_hi;
   334   double d = (double)hi1;
   336   // Compute all endpoints & check for overflow
   337   jlong A = lo0*lo1;
   338   if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
   339   jlong B = lo0*hi1;
   340   if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
   341   jlong C = hi0*lo1;
   342   if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
   343   jlong D = hi0*hi1;
   344   if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
   346   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
   347   else { lo0 = B; hi0 = A; }
   348   if( C < D ) {
   349     if( C < lo0 ) lo0 = C;
   350     if( D > hi0 ) hi0 = D;
   351   } else {
   352     if( D < lo0 ) lo0 = D;
   353     if( C > hi0 ) hi0 = C;
   354   }
   355   return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
   356 }
   358 //=============================================================================
   359 //------------------------------mul_ring---------------------------------------
   360 // Compute the product type of two double ranges into this node.
   361 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
   362   if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
   363   return TypeF::make( t0->getf() * t1->getf() );
   364 }
   366 //=============================================================================
   367 //------------------------------mul_ring---------------------------------------
   368 // Compute the product type of two double ranges into this node.
   369 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
   370   if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
   371   // We must be multiplying 2 double constants.
   372   return TypeD::make( t0->getd() * t1->getd() );
   373 }
   375 //=============================================================================
   376 //------------------------------Value------------------------------------------
   377 const Type *MulHiLNode::Value( PhaseTransform *phase ) const {
   378   // Either input is TOP ==> the result is TOP
   379   const Type *t1 = phase->type( in(1) );
   380   const Type *t2 = phase->type( in(2) );
   381   if( t1 == Type::TOP ) return Type::TOP;
   382   if( t2 == Type::TOP ) return Type::TOP;
   384   // Either input is BOTTOM ==> the result is the local BOTTOM
   385   const Type *bot = bottom_type();
   386   if( (t1 == bot) || (t2 == bot) ||
   387       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   388     return bot;
   390   // It is not worth trying to constant fold this stuff!
   391   return TypeLong::LONG;
   392 }
   394 //=============================================================================
   395 //------------------------------mul_ring---------------------------------------
   396 // Supplied function returns the product of the inputs IN THE CURRENT RING.
   397 // For the logical operations the ring's MUL is really a logical AND function.
   398 // This also type-checks the inputs for sanity.  Guaranteed never to
   399 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   400 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
   401   const TypeInt *r0 = t0->is_int(); // Handy access
   402   const TypeInt *r1 = t1->is_int();
   403   int widen = MAX2(r0->_widen,r1->_widen);
   405   // If either input is a constant, might be able to trim cases
   406   if( !r0->is_con() && !r1->is_con() )
   407     return TypeInt::INT;        // No constants to be had
   409   // Both constants?  Return bits
   410   if( r0->is_con() && r1->is_con() )
   411     return TypeInt::make( r0->get_con() & r1->get_con() );
   413   if( r0->is_con() && r0->get_con() > 0 )
   414     return TypeInt::make(0, r0->get_con(), widen);
   416   if( r1->is_con() && r1->get_con() > 0 )
   417     return TypeInt::make(0, r1->get_con(), widen);
   419   if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
   420     return TypeInt::BOOL;
   421   }
   423   return TypeInt::INT;          // No constants to be had
   424 }
   426 //------------------------------Identity---------------------------------------
   427 // Masking off the high bits of an unsigned load is not required
   428 Node *AndINode::Identity( PhaseTransform *phase ) {
   430   // x & x => x
   431   if (phase->eqv(in(1), in(2))) return in(1);
   433   Node *load = in(1);
   434   const TypeInt *t2 = phase->type( in(2) )->isa_int();
   435   if( t2 && t2->is_con() ) {
   436     int con = t2->get_con();
   437     // Masking off high bits which are always zero is useless.
   438     const TypeInt* t1 = phase->type( in(1) )->isa_int();
   439     if (t1 != NULL && t1->_lo >= 0) {
   440       jint t1_support = ((jint)1 << (1 + log2_intptr(t1->_hi))) - 1;
   441       if ((t1_support & con) == t1_support)
   442         return load;
   443     }
   444     uint lop = load->Opcode();
   445     if( lop == Op_LoadC &&
   446         con == 0x0000FFFF )     // Already zero-extended
   447       return load;
   448     // Masking off the high bits of a unsigned-shift-right is not
   449     // needed either.
   450     if( lop == Op_URShiftI ) {
   451       const TypeInt *t12 = phase->type( load->in(2) )->isa_int();
   452       if( t12 && t12->is_con() ) {
   453         int shift_con = t12->get_con();
   454         int mask = max_juint >> shift_con;
   455         if( (mask&con) == mask )  // If AND is useless, skip it
   456           return load;
   457       }
   458     }
   459   }
   460   return MulNode::Identity(phase);
   461 }
   463 //------------------------------Ideal------------------------------------------
   464 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   465   // Special case constant AND mask
   466   const TypeInt *t2 = phase->type( in(2) )->isa_int();
   467   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
   468   const int mask = t2->get_con();
   469   Node *load = in(1);
   470   uint lop = load->Opcode();
   472   // Masking bits off of a Character?  Hi bits are already zero.
   473   if( lop == Op_LoadC &&
   474       (mask & 0xFFFF0000) )     // Can we make a smaller mask?
   475     return new (phase->C, 3) AndINode(load,phase->intcon(mask&0xFFFF));
   477   // Masking bits off of a Short?  Loading a Character does some masking
   478   if( lop == Op_LoadS &&
   479       (mask & 0xFFFF0000) == 0 ) {
   480     Node *ldc = new (phase->C, 3) LoadCNode(load->in(MemNode::Control),
   481                                   load->in(MemNode::Memory),
   482                                   load->in(MemNode::Address),
   483                                   load->adr_type());
   484     ldc = phase->transform(ldc);
   485     return new (phase->C, 3) AndINode(ldc,phase->intcon(mask&0xFFFF));
   486   }
   488   // Masking sign bits off of a Byte?  Let the matcher use an unsigned load
   489   if( lop == Op_LoadB &&
   490       (!in(0) && load->in(0)) &&
   491       (mask == 0x000000FF) ) {
   492     // Associate this node with the LoadB, so the matcher can see them together.
   493     // If we don't do this, it is common for the LoadB to have one control
   494     // edge, and the store or call containing this AndI to have a different
   495     // control edge.  This will cause Label_Root to group the AndI with
   496     // the encoding store or call, so the matcher has no chance to match
   497     // this AndI together with the LoadB.  Setting the control edge here
   498     // prevents Label_Root from grouping the AndI with the store or call,
   499     // if it has a control edge that is inconsistent with the LoadB.
   500     set_req(0, load->in(0));
   501     return this;
   502   }
   504   // Masking off sign bits?  Dont make them!
   505   if( lop == Op_RShiftI ) {
   506     const TypeInt *t12 = phase->type(load->in(2))->isa_int();
   507     if( t12 && t12->is_con() ) { // Shift is by a constant
   508       int shift = t12->get_con();
   509       shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
   510       const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
   511       // If the AND'ing of the 2 masks has no bits, then only original shifted
   512       // bits survive.  NO sign-extension bits survive the maskings.
   513       if( (sign_bits_mask & mask) == 0 ) {
   514         // Use zero-fill shift instead
   515         Node *zshift = phase->transform(new (phase->C, 3) URShiftINode(load->in(1),load->in(2)));
   516         return new (phase->C, 3) AndINode( zshift, in(2) );
   517       }
   518     }
   519   }
   521   // Check for 'negate/and-1', a pattern emitted when someone asks for
   522   // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
   523   // plus 1) and the mask is of the low order bit.  Skip the negate.
   524   if( lop == Op_SubI && mask == 1 && load->in(1) &&
   525       phase->type(load->in(1)) == TypeInt::ZERO )
   526     return new (phase->C, 3) AndINode( load->in(2), in(2) );
   528   return MulNode::Ideal(phase, can_reshape);
   529 }
   531 //=============================================================================
   532 //------------------------------mul_ring---------------------------------------
   533 // Supplied function returns the product of the inputs IN THE CURRENT RING.
   534 // For the logical operations the ring's MUL is really a logical AND function.
   535 // This also type-checks the inputs for sanity.  Guaranteed never to
   536 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   537 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
   538   const TypeLong *r0 = t0->is_long(); // Handy access
   539   const TypeLong *r1 = t1->is_long();
   540   int widen = MAX2(r0->_widen,r1->_widen);
   542   // If either input is a constant, might be able to trim cases
   543   if( !r0->is_con() && !r1->is_con() )
   544     return TypeLong::LONG;      // No constants to be had
   546   // Both constants?  Return bits
   547   if( r0->is_con() && r1->is_con() )
   548     return TypeLong::make( r0->get_con() & r1->get_con() );
   550   if( r0->is_con() && r0->get_con() > 0 )
   551     return TypeLong::make(CONST64(0), r0->get_con(), widen);
   553   if( r1->is_con() && r1->get_con() > 0 )
   554     return TypeLong::make(CONST64(0), r1->get_con(), widen);
   556   return TypeLong::LONG;        // No constants to be had
   557 }
   559 //------------------------------Identity---------------------------------------
   560 // Masking off the high bits of an unsigned load is not required
   561 Node *AndLNode::Identity( PhaseTransform *phase ) {
   563   // x & x => x
   564   if (phase->eqv(in(1), in(2))) return in(1);
   566   Node *usr = in(1);
   567   const TypeLong *t2 = phase->type( in(2) )->isa_long();
   568   if( t2 && t2->is_con() ) {
   569     jlong con = t2->get_con();
   570     // Masking off high bits which are always zero is useless.
   571     const TypeLong* t1 = phase->type( in(1) )->isa_long();
   572     if (t1 != NULL && t1->_lo >= 0) {
   573       jlong t1_support = ((jlong)1 << (1 + log2_long(t1->_hi))) - 1;
   574       if ((t1_support & con) == t1_support)
   575         return usr;
   576     }
   577     uint lop = usr->Opcode();
   578     // Masking off the high bits of a unsigned-shift-right is not
   579     // needed either.
   580     if( lop == Op_URShiftL ) {
   581       const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
   582       if( t12 && t12->is_con() ) {
   583         int shift_con = t12->get_con();
   584         jlong mask = max_julong >> shift_con;
   585         if( (mask&con) == mask )  // If AND is useless, skip it
   586           return usr;
   587       }
   588     }
   589   }
   590   return MulNode::Identity(phase);
   591 }
   593 //------------------------------Ideal------------------------------------------
   594 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   595   // Special case constant AND mask
   596   const TypeLong *t2 = phase->type( in(2) )->isa_long();
   597   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
   598   const jlong mask = t2->get_con();
   600   Node *rsh = in(1);
   601   uint rop = rsh->Opcode();
   603   // Masking off sign bits?  Dont make them!
   604   if( rop == Op_RShiftL ) {
   605     const TypeInt *t12 = phase->type(rsh->in(2))->isa_int();
   606     if( t12 && t12->is_con() ) { // Shift is by a constant
   607       int shift = t12->get_con();
   608       shift &= (BitsPerJavaInteger*2)-1;  // semantics of Java shifts
   609       const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - shift)) -1);
   610       // If the AND'ing of the 2 masks has no bits, then only original shifted
   611       // bits survive.  NO sign-extension bits survive the maskings.
   612       if( (sign_bits_mask & mask) == 0 ) {
   613         // Use zero-fill shift instead
   614         Node *zshift = phase->transform(new (phase->C, 3) URShiftLNode(rsh->in(1),rsh->in(2)));
   615         return new (phase->C, 3) AndLNode( zshift, in(2) );
   616       }
   617     }
   618   }
   620   return MulNode::Ideal(phase, can_reshape);
   621 }
   623 //=============================================================================
   624 //------------------------------Identity---------------------------------------
   625 Node *LShiftINode::Identity( PhaseTransform *phase ) {
   626   const TypeInt *ti = phase->type( in(2) )->isa_int();  // shift count is an int
   627   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
   628 }
   630 //------------------------------Ideal------------------------------------------
   631 // If the right input is a constant, and the left input is an add of a
   632 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
   633 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   634   const Type *t  = phase->type( in(2) );
   635   if( t == Type::TOP ) return NULL;       // Right input is dead
   636   const TypeInt *t2 = t->isa_int();
   637   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
   638   const int con = t2->get_con() & ( BitsPerInt - 1 );  // masked shift count
   640   if ( con == 0 )  return NULL; // let Identity() handle 0 shift count
   642   // Left input is an add of a constant?
   643   Node *add1 = in(1);
   644   int add1_op = add1->Opcode();
   645   if( add1_op == Op_AddI ) {    // Left input is an add?
   646     assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
   647     const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
   648     if( t12 && t12->is_con() ){ // Left input is an add of a con?
   649       // Transform is legal, but check for profit.  Avoid breaking 'i2s'
   650       // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
   651       if( con < 16 ) {
   652         // Compute X << con0
   653         Node *lsh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(1), in(2) ) );
   654         // Compute X<<con0 + (con1<<con0)
   655         return new (phase->C, 3) AddINode( lsh, phase->intcon(t12->get_con() << con));
   656       }
   657     }
   658   }
   660   // Check for "(x>>c0)<<c0" which just masks off low bits
   661   if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
   662       add1->in(2) == in(2) )
   663     // Convert to "(x & -(1<<c0))"
   664     return new (phase->C, 3) AndINode(add1->in(1),phase->intcon( -(1<<con)));
   666   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
   667   if( add1_op == Op_AndI ) {
   668     Node *add2 = add1->in(1);
   669     int add2_op = add2->Opcode();
   670     if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
   671         add2->in(2) == in(2) ) {
   672       // Convert to "(x & (Y<<c0))"
   673       Node *y_sh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(2), in(2) ) );
   674       return new (phase->C, 3) AndINode( add2->in(1), y_sh );
   675     }
   676   }
   678   // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
   679   // before shifting them away.
   680   const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
   681   if( add1_op == Op_AndI &&
   682       phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
   683     return new (phase->C, 3) LShiftINode( add1->in(1), in(2) );
   685   return NULL;
   686 }
   688 //------------------------------Value------------------------------------------
   689 // A LShiftINode shifts its input2 left by input1 amount.
   690 const Type *LShiftINode::Value( PhaseTransform *phase ) const {
   691   const Type *t1 = phase->type( in(1) );
   692   const Type *t2 = phase->type( in(2) );
   693   // Either input is TOP ==> the result is TOP
   694   if( t1 == Type::TOP ) return Type::TOP;
   695   if( t2 == Type::TOP ) return Type::TOP;
   697   // Left input is ZERO ==> the result is ZERO.
   698   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
   699   // Shift by zero does nothing
   700   if( t2 == TypeInt::ZERO ) return t1;
   702   // Either input is BOTTOM ==> the result is BOTTOM
   703   if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
   704       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   705     return TypeInt::INT;
   707   const TypeInt *r1 = t1->is_int(); // Handy access
   708   const TypeInt *r2 = t2->is_int(); // Handy access
   710   if (!r2->is_con())
   711     return TypeInt::INT;
   713   uint shift = r2->get_con();
   714   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
   715   // Shift by a multiple of 32 does nothing:
   716   if (shift == 0)  return t1;
   718   // If the shift is a constant, shift the bounds of the type,
   719   // unless this could lead to an overflow.
   720   if (!r1->is_con()) {
   721     jint lo = r1->_lo, hi = r1->_hi;
   722     if (((lo << shift) >> shift) == lo &&
   723         ((hi << shift) >> shift) == hi) {
   724       // No overflow.  The range shifts up cleanly.
   725       return TypeInt::make((jint)lo << (jint)shift,
   726                            (jint)hi << (jint)shift,
   727                            MAX2(r1->_widen,r2->_widen));
   728     }
   729     return TypeInt::INT;
   730   }
   732   return TypeInt::make( (jint)r1->get_con() << (jint)shift );
   733 }
   735 //=============================================================================
   736 //------------------------------Identity---------------------------------------
   737 Node *LShiftLNode::Identity( PhaseTransform *phase ) {
   738   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
   739   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
   740 }
   742 //------------------------------Ideal------------------------------------------
   743 // If the right input is a constant, and the left input is an add of a
   744 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
   745 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   746   const Type *t  = phase->type( in(2) );
   747   if( t == Type::TOP ) return NULL;       // Right input is dead
   748   const TypeInt *t2 = t->isa_int();
   749   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
   750   const int con = t2->get_con() & ( BitsPerLong - 1 );  // masked shift count
   752   if ( con == 0 ) return NULL;  // let Identity() handle 0 shift count
   754   // Left input is an add of a constant?
   755   Node *add1 = in(1);
   756   int add1_op = add1->Opcode();
   757   if( add1_op == Op_AddL ) {    // Left input is an add?
   758     // Avoid dead data cycles from dead loops
   759     assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
   760     const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
   761     if( t12 && t12->is_con() ){ // Left input is an add of a con?
   762       // Compute X << con0
   763       Node *lsh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(1), in(2) ) );
   764       // Compute X<<con0 + (con1<<con0)
   765       return new (phase->C, 3) AddLNode( lsh, phase->longcon(t12->get_con() << con));
   766     }
   767   }
   769   // Check for "(x>>c0)<<c0" which just masks off low bits
   770   if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
   771       add1->in(2) == in(2) )
   772     // Convert to "(x & -(1<<c0))"
   773     return new (phase->C, 3) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
   775   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
   776   if( add1_op == Op_AndL ) {
   777     Node *add2 = add1->in(1);
   778     int add2_op = add2->Opcode();
   779     if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
   780         add2->in(2) == in(2) ) {
   781       // Convert to "(x & (Y<<c0))"
   782       Node *y_sh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(2), in(2) ) );
   783       return new (phase->C, 3) AndLNode( add2->in(1), y_sh );
   784     }
   785   }
   787   // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
   788   // before shifting them away.
   789   const jlong bits_mask = ((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - con)) - CONST64(1);
   790   if( add1_op == Op_AndL &&
   791       phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
   792     return new (phase->C, 3) LShiftLNode( add1->in(1), in(2) );
   794   return NULL;
   795 }
   797 //------------------------------Value------------------------------------------
   798 // A LShiftLNode shifts its input2 left by input1 amount.
   799 const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
   800   const Type *t1 = phase->type( in(1) );
   801   const Type *t2 = phase->type( in(2) );
   802   // Either input is TOP ==> the result is TOP
   803   if( t1 == Type::TOP ) return Type::TOP;
   804   if( t2 == Type::TOP ) return Type::TOP;
   806   // Left input is ZERO ==> the result is ZERO.
   807   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
   808   // Shift by zero does nothing
   809   if( t2 == TypeInt::ZERO ) return t1;
   811   // Either input is BOTTOM ==> the result is BOTTOM
   812   if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
   813       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   814     return TypeLong::LONG;
   816   const TypeLong *r1 = t1->is_long(); // Handy access
   817   const TypeInt  *r2 = t2->is_int();  // Handy access
   819   if (!r2->is_con())
   820     return TypeLong::LONG;
   822   uint shift = r2->get_con();
   823   shift &= (BitsPerJavaInteger*2)-1;  // semantics of Java shifts
   824   // Shift by a multiple of 64 does nothing:
   825   if (shift == 0)  return t1;
   827   // If the shift is a constant, shift the bounds of the type,
   828   // unless this could lead to an overflow.
   829   if (!r1->is_con()) {
   830     jlong lo = r1->_lo, hi = r1->_hi;
   831     if (((lo << shift) >> shift) == lo &&
   832         ((hi << shift) >> shift) == hi) {
   833       // No overflow.  The range shifts up cleanly.
   834       return TypeLong::make((jlong)lo << (jint)shift,
   835                             (jlong)hi << (jint)shift,
   836                             MAX2(r1->_widen,r2->_widen));
   837     }
   838     return TypeLong::LONG;
   839   }
   841   return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
   842 }
   844 //=============================================================================
   845 //------------------------------Identity---------------------------------------
   846 Node *RShiftINode::Identity( PhaseTransform *phase ) {
   847   const TypeInt *t2 = phase->type(in(2))->isa_int();
   848   if( !t2 ) return this;
   849   if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
   850     return in(1);
   852   // Check for useless sign-masking
   853   if( in(1)->Opcode() == Op_LShiftI &&
   854       in(1)->req() == 3 &&
   855       in(1)->in(2) == in(2) &&
   856       t2->is_con() ) {
   857     uint shift = t2->get_con();
   858     shift &= BitsPerJavaInteger-1; // semantics of Java shifts
   859     // Compute masks for which this shifting doesn't change
   860     int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
   861     int hi = ~lo;               // 00007FFF
   862     const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
   863     if( !t11 ) return this;
   864     // Does actual value fit inside of mask?
   865     if( lo <= t11->_lo && t11->_hi <= hi )
   866       return in(1)->in(1);      // Then shifting is a nop
   867   }
   869   return this;
   870 }
   872 //------------------------------Ideal------------------------------------------
   873 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   874   // Inputs may be TOP if they are dead.
   875   const TypeInt *t1 = phase->type( in(1) )->isa_int();
   876   if( !t1 ) return NULL;        // Left input is an integer
   877   const TypeInt *t2 = phase->type( in(2) )->isa_int();
   878   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
   879   const TypeInt *t3;  // type of in(1).in(2)
   880   int shift = t2->get_con();
   881   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
   883   if ( shift == 0 ) return NULL;  // let Identity() handle 0 shift count
   885   // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
   886   // Such expressions arise normally from shift chains like (byte)(x >> 24).
   887   const Node *mask = in(1);
   888   if( mask->Opcode() == Op_AndI &&
   889       (t3 = phase->type(mask->in(2))->isa_int()) &&
   890       t3->is_con() ) {
   891     Node *x = mask->in(1);
   892     jint maskbits = t3->get_con();
   893     // Convert to "(x >> shift) & (mask >> shift)"
   894     Node *shr_nomask = phase->transform( new (phase->C, 3) RShiftINode(mask->in(1), in(2)) );
   895     return new (phase->C, 3) AndINode(shr_nomask, phase->intcon( maskbits >> shift));
   896   }
   898   // Check for "(short[i] <<16)>>16" which simply sign-extends
   899   const Node *shl = in(1);
   900   if( shl->Opcode() != Op_LShiftI ) return NULL;
   902   if( shift == 16 &&
   903       (t3 = phase->type(shl->in(2))->isa_int()) &&
   904       t3->is_con(16) ) {
   905     Node *ld = shl->in(1);
   906     if( ld->Opcode() == Op_LoadS ) {
   907       // Sign extension is just useless here.  Return a RShiftI of zero instead
   908       // returning 'ld' directly.  We cannot return an old Node directly as
   909       // that is the job of 'Identity' calls and Identity calls only work on
   910       // direct inputs ('ld' is an extra Node removed from 'this').  The
   911       // combined optimization requires Identity only return direct inputs.
   912       set_req(1, ld);
   913       set_req(2, phase->intcon(0));
   914       return this;
   915     }
   916     else if( ld->Opcode() == Op_LoadC )
   917       // Replace zero-extension-load with sign-extension-load
   918       return new (phase->C, 3) LoadSNode( ld->in(MemNode::Control),
   919                                 ld->in(MemNode::Memory),
   920                                 ld->in(MemNode::Address),
   921                                 ld->adr_type());
   922   }
   924   // Check for "(byte[i] <<24)>>24" which simply sign-extends
   925   if( shift == 24 &&
   926       (t3 = phase->type(shl->in(2))->isa_int()) &&
   927       t3->is_con(24) ) {
   928     Node *ld = shl->in(1);
   929     if( ld->Opcode() == Op_LoadB ) {
   930       // Sign extension is just useless here
   931       set_req(1, ld);
   932       set_req(2, phase->intcon(0));
   933       return this;
   934     }
   935   }
   937   return NULL;
   938 }
   940 //------------------------------Value------------------------------------------
   941 // A RShiftINode shifts its input2 right by input1 amount.
   942 const Type *RShiftINode::Value( PhaseTransform *phase ) const {
   943   const Type *t1 = phase->type( in(1) );
   944   const Type *t2 = phase->type( in(2) );
   945   // Either input is TOP ==> the result is TOP
   946   if( t1 == Type::TOP ) return Type::TOP;
   947   if( t2 == Type::TOP ) return Type::TOP;
   949   // Left input is ZERO ==> the result is ZERO.
   950   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
   951   // Shift by zero does nothing
   952   if( t2 == TypeInt::ZERO ) return t1;
   954   // Either input is BOTTOM ==> the result is BOTTOM
   955   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
   956     return TypeInt::INT;
   958   if (t2 == TypeInt::INT)
   959     return TypeInt::INT;
   961   const TypeInt *r1 = t1->is_int(); // Handy access
   962   const TypeInt *r2 = t2->is_int(); // Handy access
   964   // If the shift is a constant, just shift the bounds of the type.
   965   // For example, if the shift is 31, we just propagate sign bits.
   966   if (r2->is_con()) {
   967     uint shift = r2->get_con();
   968     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
   969     // Shift by a multiple of 32 does nothing:
   970     if (shift == 0)  return t1;
   971     // Calculate reasonably aggressive bounds for the result.
   972     // This is necessary if we are to correctly type things
   973     // like (x<<24>>24) == ((byte)x).
   974     jint lo = (jint)r1->_lo >> (jint)shift;
   975     jint hi = (jint)r1->_hi >> (jint)shift;
   976     assert(lo <= hi, "must have valid bounds");
   977     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
   978 #ifdef ASSERT
   979     // Make sure we get the sign-capture idiom correct.
   980     if (shift == BitsPerJavaInteger-1) {
   981       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
   982       if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
   983     }
   984 #endif
   985     return ti;
   986   }
   988   if( !r1->is_con() || !r2->is_con() )
   989     return TypeInt::INT;
   991   // Signed shift right
   992   return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
   993 }
   995 //=============================================================================
   996 //------------------------------Identity---------------------------------------
   997 Node *RShiftLNode::Identity( PhaseTransform *phase ) {
   998   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
   999   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
  1002 //------------------------------Value------------------------------------------
  1003 // A RShiftLNode shifts its input2 right by input1 amount.
  1004 const Type *RShiftLNode::Value( PhaseTransform *phase ) const {
  1005   const Type *t1 = phase->type( in(1) );
  1006   const Type *t2 = phase->type( in(2) );
  1007   // Either input is TOP ==> the result is TOP
  1008   if( t1 == Type::TOP ) return Type::TOP;
  1009   if( t2 == Type::TOP ) return Type::TOP;
  1011   // Left input is ZERO ==> the result is ZERO.
  1012   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  1013   // Shift by zero does nothing
  1014   if( t2 == TypeInt::ZERO ) return t1;
  1016   // Either input is BOTTOM ==> the result is BOTTOM
  1017   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
  1018     return TypeLong::LONG;
  1020   if (t2 == TypeInt::INT)
  1021     return TypeLong::LONG;
  1023   const TypeLong *r1 = t1->is_long(); // Handy access
  1024   const TypeInt  *r2 = t2->is_int (); // Handy access
  1026   // If the shift is a constant, just shift the bounds of the type.
  1027   // For example, if the shift is 63, we just propagate sign bits.
  1028   if (r2->is_con()) {
  1029     uint shift = r2->get_con();
  1030     shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
  1031     // Shift by a multiple of 64 does nothing:
  1032     if (shift == 0)  return t1;
  1033     // Calculate reasonably aggressive bounds for the result.
  1034     // This is necessary if we are to correctly type things
  1035     // like (x<<24>>24) == ((byte)x).
  1036     jlong lo = (jlong)r1->_lo >> (jlong)shift;
  1037     jlong hi = (jlong)r1->_hi >> (jlong)shift;
  1038     assert(lo <= hi, "must have valid bounds");
  1039     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
  1040     #ifdef ASSERT
  1041     // Make sure we get the sign-capture idiom correct.
  1042     if (shift == (2*BitsPerJavaInteger)-1) {
  1043       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
  1044       if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
  1046     #endif
  1047     return tl;
  1050   return TypeLong::LONG;                // Give up
  1053 //=============================================================================
  1054 //------------------------------Identity---------------------------------------
  1055 Node *URShiftINode::Identity( PhaseTransform *phase ) {
  1056   const TypeInt *ti = phase->type( in(2) )->isa_int();
  1057   if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
  1059   // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
  1060   // Happens during new-array length computation.
  1061   // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
  1062   Node *add = in(1);
  1063   if( add->Opcode() == Op_AddI ) {
  1064     const TypeInt *t2  = phase->type(add->in(2))->isa_int();
  1065     if( t2 && t2->is_con(wordSize - 1) &&
  1066         add->in(1)->Opcode() == Op_LShiftI ) {
  1067       // Check that shift_counts are LogBytesPerWord
  1068       Node          *lshift_count   = add->in(1)->in(2);
  1069       const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
  1070       if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
  1071           t_lshift_count == phase->type(in(2)) ) {
  1072         Node          *x   = add->in(1)->in(1);
  1073         const TypeInt *t_x = phase->type(x)->isa_int();
  1074         if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
  1075           return x;
  1081   return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
  1084 //------------------------------Ideal------------------------------------------
  1085 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1086   const TypeInt *t2 = phase->type( in(2) )->isa_int();
  1087   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  1088   const int con = t2->get_con() & 31; // Shift count is always masked
  1089   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
  1090   // We'll be wanting the right-shift amount as a mask of that many bits
  1091   const int mask = right_n_bits(BitsPerJavaInteger - con);
  1093   int in1_op = in(1)->Opcode();
  1095   // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
  1096   if( in1_op == Op_URShiftI ) {
  1097     const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
  1098     if( t12 && t12->is_con() ) { // Right input is a constant
  1099       assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
  1100       const int con2 = t12->get_con() & 31; // Shift count is always masked
  1101       const int con3 = con+con2;
  1102       if( con3 < 32 )           // Only merge shifts if total is < 32
  1103         return new (phase->C, 3) URShiftINode( in(1)->in(1), phase->intcon(con3) );
  1107   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
  1108   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
  1109   // If Q is "X << z" the rounding is useless.  Look for patterns like
  1110   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
  1111   Node *add = in(1);
  1112   if( in1_op == Op_AddI ) {
  1113     Node *lshl = add->in(1);
  1114     if( lshl->Opcode() == Op_LShiftI &&
  1115         phase->type(lshl->in(2)) == t2 ) {
  1116       Node *y_z = phase->transform( new (phase->C, 3) URShiftINode(add->in(2),in(2)) );
  1117       Node *sum = phase->transform( new (phase->C, 3) AddINode( lshl->in(1), y_z ) );
  1118       return new (phase->C, 3) AndINode( sum, phase->intcon(mask) );
  1122   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
  1123   // This shortens the mask.  Also, if we are extracting a high byte and
  1124   // storing it to a buffer, the mask will be removed completely.
  1125   Node *andi = in(1);
  1126   if( in1_op == Op_AndI ) {
  1127     const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
  1128     if( t3 && t3->is_con() ) { // Right input is a constant
  1129       jint mask2 = t3->get_con();
  1130       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
  1131       Node *newshr = phase->transform( new (phase->C, 3) URShiftINode(andi->in(1), in(2)) );
  1132       return new (phase->C, 3) AndINode(newshr, phase->intcon(mask2));
  1133       // The negative values are easier to materialize than positive ones.
  1134       // A typical case from address arithmetic is ((x & ~15) >> 4).
  1135       // It's better to change that to ((x >> 4) & ~0) versus
  1136       // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
  1140   // Check for "(X << z ) >>> z" which simply zero-extends
  1141   Node *shl = in(1);
  1142   if( in1_op == Op_LShiftI &&
  1143       phase->type(shl->in(2)) == t2 )
  1144     return new (phase->C, 3) AndINode( shl->in(1), phase->intcon(mask) );
  1146   return NULL;
  1149 //------------------------------Value------------------------------------------
  1150 // A URShiftINode shifts its input2 right by input1 amount.
  1151 const Type *URShiftINode::Value( PhaseTransform *phase ) const {
  1152   // (This is a near clone of RShiftINode::Value.)
  1153   const Type *t1 = phase->type( in(1) );
  1154   const Type *t2 = phase->type( in(2) );
  1155   // Either input is TOP ==> the result is TOP
  1156   if( t1 == Type::TOP ) return Type::TOP;
  1157   if( t2 == Type::TOP ) return Type::TOP;
  1159   // Left input is ZERO ==> the result is ZERO.
  1160   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  1161   // Shift by zero does nothing
  1162   if( t2 == TypeInt::ZERO ) return t1;
  1164   // Either input is BOTTOM ==> the result is BOTTOM
  1165   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
  1166     return TypeInt::INT;
  1168   if (t2 == TypeInt::INT)
  1169     return TypeInt::INT;
  1171   const TypeInt *r1 = t1->is_int();     // Handy access
  1172   const TypeInt *r2 = t2->is_int();     // Handy access
  1174   if (r2->is_con()) {
  1175     uint shift = r2->get_con();
  1176     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
  1177     // Shift by a multiple of 32 does nothing:
  1178     if (shift == 0)  return t1;
  1179     // Calculate reasonably aggressive bounds for the result.
  1180     jint lo = (juint)r1->_lo >> (juint)shift;
  1181     jint hi = (juint)r1->_hi >> (juint)shift;
  1182     if (r1->_hi >= 0 && r1->_lo < 0) {
  1183       // If the type has both negative and positive values,
  1184       // there are two separate sub-domains to worry about:
  1185       // The positive half and the negative half.
  1186       jint neg_lo = lo;
  1187       jint neg_hi = (juint)-1 >> (juint)shift;
  1188       jint pos_lo = (juint) 0 >> (juint)shift;
  1189       jint pos_hi = hi;
  1190       lo = MIN2(neg_lo, pos_lo);  // == 0
  1191       hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
  1193     assert(lo <= hi, "must have valid bounds");
  1194     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
  1195     #ifdef ASSERT
  1196     // Make sure we get the sign-capture idiom correct.
  1197     if (shift == BitsPerJavaInteger-1) {
  1198       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
  1199       if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
  1201     #endif
  1202     return ti;
  1205   //
  1206   // Do not support shifted oops in info for GC
  1207   //
  1208   // else if( t1->base() == Type::InstPtr ) {
  1209   //
  1210   //   const TypeInstPtr *o = t1->is_instptr();
  1211   //   if( t1->singleton() )
  1212   //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
  1213   // }
  1214   // else if( t1->base() == Type::KlassPtr ) {
  1215   //   const TypeKlassPtr *o = t1->is_klassptr();
  1216   //   if( t1->singleton() )
  1217   //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
  1218   // }
  1220   return TypeInt::INT;
  1223 //=============================================================================
  1224 //------------------------------Identity---------------------------------------
  1225 Node *URShiftLNode::Identity( PhaseTransform *phase ) {
  1226   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
  1227   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
  1230 //------------------------------Ideal------------------------------------------
  1231 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1232   const TypeInt *t2 = phase->type( in(2) )->isa_int();
  1233   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  1234   const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
  1235   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
  1236                               // note: mask computation below does not work for 0 shift count
  1237   // We'll be wanting the right-shift amount as a mask of that many bits
  1238   const jlong mask = (((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - con)) -1);
  1240   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
  1241   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
  1242   // If Q is "X << z" the rounding is useless.  Look for patterns like
  1243   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
  1244   Node *add = in(1);
  1245   if( add->Opcode() == Op_AddL ) {
  1246     Node *lshl = add->in(1);
  1247     if( lshl->Opcode() == Op_LShiftL &&
  1248         phase->type(lshl->in(2)) == t2 ) {
  1249       Node *y_z = phase->transform( new (phase->C, 3) URShiftLNode(add->in(2),in(2)) );
  1250       Node *sum = phase->transform( new (phase->C, 3) AddLNode( lshl->in(1), y_z ) );
  1251       return new (phase->C, 3) AndLNode( sum, phase->longcon(mask) );
  1255   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
  1256   // This shortens the mask.  Also, if we are extracting a high byte and
  1257   // storing it to a buffer, the mask will be removed completely.
  1258   Node *andi = in(1);
  1259   if( andi->Opcode() == Op_AndL ) {
  1260     const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
  1261     if( t3 && t3->is_con() ) { // Right input is a constant
  1262       jlong mask2 = t3->get_con();
  1263       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
  1264       Node *newshr = phase->transform( new (phase->C, 3) URShiftLNode(andi->in(1), in(2)) );
  1265       return new (phase->C, 3) AndLNode(newshr, phase->longcon(mask2));
  1269   // Check for "(X << z ) >>> z" which simply zero-extends
  1270   Node *shl = in(1);
  1271   if( shl->Opcode() == Op_LShiftL &&
  1272       phase->type(shl->in(2)) == t2 )
  1273     return new (phase->C, 3) AndLNode( shl->in(1), phase->longcon(mask) );
  1275   return NULL;
  1278 //------------------------------Value------------------------------------------
  1279 // A URShiftINode shifts its input2 right by input1 amount.
  1280 const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
  1281   // (This is a near clone of RShiftLNode::Value.)
  1282   const Type *t1 = phase->type( in(1) );
  1283   const Type *t2 = phase->type( in(2) );
  1284   // Either input is TOP ==> the result is TOP
  1285   if( t1 == Type::TOP ) return Type::TOP;
  1286   if( t2 == Type::TOP ) return Type::TOP;
  1288   // Left input is ZERO ==> the result is ZERO.
  1289   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  1290   // Shift by zero does nothing
  1291   if( t2 == TypeInt::ZERO ) return t1;
  1293   // Either input is BOTTOM ==> the result is BOTTOM
  1294   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
  1295     return TypeLong::LONG;
  1297   if (t2 == TypeInt::INT)
  1298     return TypeLong::LONG;
  1300   const TypeLong *r1 = t1->is_long(); // Handy access
  1301   const TypeInt  *r2 = t2->is_int (); // Handy access
  1303   if (r2->is_con()) {
  1304     uint shift = r2->get_con();
  1305     shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
  1306     // Shift by a multiple of 64 does nothing:
  1307     if (shift == 0)  return t1;
  1308     // Calculate reasonably aggressive bounds for the result.
  1309     jlong lo = (julong)r1->_lo >> (juint)shift;
  1310     jlong hi = (julong)r1->_hi >> (juint)shift;
  1311     if (r1->_hi >= 0 && r1->_lo < 0) {
  1312       // If the type has both negative and positive values,
  1313       // there are two separate sub-domains to worry about:
  1314       // The positive half and the negative half.
  1315       jlong neg_lo = lo;
  1316       jlong neg_hi = (julong)-1 >> (juint)shift;
  1317       jlong pos_lo = (julong) 0 >> (juint)shift;
  1318       jlong pos_hi = hi;
  1319       //lo = MIN2(neg_lo, pos_lo);  // == 0
  1320       lo = neg_lo < pos_lo ? neg_lo : pos_lo;
  1321       //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
  1322       hi = neg_hi > pos_hi ? neg_hi : pos_hi;
  1324     assert(lo <= hi, "must have valid bounds");
  1325     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
  1326     #ifdef ASSERT
  1327     // Make sure we get the sign-capture idiom correct.
  1328     if (shift == (2*BitsPerJavaInteger)-1) {
  1329       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
  1330       if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
  1332     #endif
  1333     return tl;
  1336   return TypeLong::LONG;                // Give up

mercurial