src/share/vm/opto/memnode.cpp

Wed, 17 Sep 2008 08:29:17 -0700

author
rasbold
date
Wed, 17 Sep 2008 08:29:17 -0700
changeset 801
8261ee795323
parent 740
ab075d07f1ba
child 855
a1980da045cc
permissions
-rw-r--r--

6711100: 64bit fastdebug server vm crashes with assert(_base == Int,"Not an Int")
Summary: insert CastII nodes to narrow type of load_array_length() node
Reviewed-by: never, kvn

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    34 //=============================================================================
    35 uint MemNode::size_of() const { return sizeof(*this); }
    37 const TypePtr *MemNode::adr_type() const {
    38   Node* adr = in(Address);
    39   const TypePtr* cross_check = NULL;
    40   DEBUG_ONLY(cross_check = _adr_type);
    41   return calculate_adr_type(adr->bottom_type(), cross_check);
    42 }
    44 #ifndef PRODUCT
    45 void MemNode::dump_spec(outputStream *st) const {
    46   if (in(Address) == NULL)  return; // node is dead
    47 #ifndef ASSERT
    48   // fake the missing field
    49   const TypePtr* _adr_type = NULL;
    50   if (in(Address) != NULL)
    51     _adr_type = in(Address)->bottom_type()->isa_ptr();
    52 #endif
    53   dump_adr_type(this, _adr_type, st);
    55   Compile* C = Compile::current();
    56   if( C->alias_type(_adr_type)->is_volatile() )
    57     st->print(" Volatile!");
    58 }
    60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    61   st->print(" @");
    62   if (adr_type == NULL) {
    63     st->print("NULL");
    64   } else {
    65     adr_type->dump_on(st);
    66     Compile* C = Compile::current();
    67     Compile::AliasType* atp = NULL;
    68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    69     if (atp == NULL)
    70       st->print(", idx=?\?;");
    71     else if (atp->index() == Compile::AliasIdxBot)
    72       st->print(", idx=Bot;");
    73     else if (atp->index() == Compile::AliasIdxTop)
    74       st->print(", idx=Top;");
    75     else if (atp->index() == Compile::AliasIdxRaw)
    76       st->print(", idx=Raw;");
    77     else {
    78       ciField* field = atp->field();
    79       if (field) {
    80         st->print(", name=");
    81         field->print_name_on(st);
    82       }
    83       st->print(", idx=%d;", atp->index());
    84     }
    85   }
    86 }
    88 extern void print_alias_types();
    90 #endif
    92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
    93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
    94   if (tinst == NULL || !tinst->is_known_instance_field())
    95     return mchain;  // don't try to optimize non-instance types
    96   uint instance_id = tinst->instance_id();
    97   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
    98   Node *prev = NULL;
    99   Node *result = mchain;
   100   while (prev != result) {
   101     prev = result;
   102     if (result == start_mem)
   103       break;  // hit one of our sentinals
   104     // skip over a call which does not affect this memory slice
   105     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   106       Node *proj_in = result->in(0);
   107       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   108         break;  // hit one of our sentinals
   109       } else if (proj_in->is_Call()) {
   110         CallNode *call = proj_in->as_Call();
   111         if (!call->may_modify(t_adr, phase)) {
   112           result = call->in(TypeFunc::Memory);
   113         }
   114       } else if (proj_in->is_Initialize()) {
   115         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   116         // Stop if this is the initialization for the object instance which
   117         // which contains this memory slice, otherwise skip over it.
   118         if (alloc != NULL && alloc->_idx != instance_id) {
   119           result = proj_in->in(TypeFunc::Memory);
   120         }
   121       } else if (proj_in->is_MemBar()) {
   122         result = proj_in->in(TypeFunc::Memory);
   123       } else {
   124         assert(false, "unexpected projection");
   125       }
   126     } else if (result->is_MergeMem()) {
   127       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   128     }
   129   }
   130   return result;
   131 }
   133 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   134   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   135   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
   136   PhaseIterGVN *igvn = phase->is_IterGVN();
   137   Node *result = mchain;
   138   result = optimize_simple_memory_chain(result, t_adr, phase);
   139   if (is_instance && igvn != NULL  && result->is_Phi()) {
   140     PhiNode *mphi = result->as_Phi();
   141     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   142     const TypePtr *t = mphi->adr_type();
   143     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   144         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   145         t->is_oopptr()->cast_to_exactness(true)
   146          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   147          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   148       // clone the Phi with our address type
   149       result = mphi->split_out_instance(t_adr, igvn);
   150     } else {
   151       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   152     }
   153   }
   154   return result;
   155 }
   157 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   158   uint alias_idx = phase->C->get_alias_index(tp);
   159   Node *mem = mmem;
   160 #ifdef ASSERT
   161   {
   162     // Check that current type is consistent with the alias index used during graph construction
   163     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   164     bool consistent =  adr_check == NULL || adr_check->empty() ||
   165                        phase->C->must_alias(adr_check, alias_idx );
   166     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   167     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   168                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   169         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   170         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   171           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   172           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   173       // don't assert if it is dead code.
   174       consistent = true;
   175     }
   176     if( !consistent ) {
   177       st->print("alias_idx==%d, adr_check==", alias_idx);
   178       if( adr_check == NULL ) {
   179         st->print("NULL");
   180       } else {
   181         adr_check->dump();
   182       }
   183       st->cr();
   184       print_alias_types();
   185       assert(consistent, "adr_check must match alias idx");
   186     }
   187   }
   188 #endif
   189   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   190   // means an array I have not precisely typed yet.  Do not do any
   191   // alias stuff with it any time soon.
   192   const TypeOopPtr *tinst = tp->isa_oopptr();
   193   if( tp->base() != Type::AnyPtr &&
   194       !(tinst &&
   195         tinst->klass()->is_java_lang_Object() &&
   196         tinst->offset() == Type::OffsetBot) ) {
   197     // compress paths and change unreachable cycles to TOP
   198     // If not, we can update the input infinitely along a MergeMem cycle
   199     // Equivalent code in PhiNode::Ideal
   200     Node* m  = phase->transform(mmem);
   201     // If tranformed to a MergeMem, get the desired slice
   202     // Otherwise the returned node represents memory for every slice
   203     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   204     // Update input if it is progress over what we have now
   205   }
   206   return mem;
   207 }
   209 //--------------------------Ideal_common---------------------------------------
   210 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   211 // Unhook non-raw memories from complete (macro-expanded) initializations.
   212 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   213   // If our control input is a dead region, kill all below the region
   214   Node *ctl = in(MemNode::Control);
   215   if (ctl && remove_dead_region(phase, can_reshape))
   216     return this;
   217   ctl = in(MemNode::Control);
   218   // Don't bother trying to transform a dead node
   219   if( ctl && ctl->is_top() )  return NodeSentinel;
   221   // Ignore if memory is dead, or self-loop
   222   Node *mem = in(MemNode::Memory);
   223   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   224   assert( mem != this, "dead loop in MemNode::Ideal" );
   226   Node *address = in(MemNode::Address);
   227   const Type *t_adr = phase->type( address );
   228   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   230   // Avoid independent memory operations
   231   Node* old_mem = mem;
   233   // The code which unhooks non-raw memories from complete (macro-expanded)
   234   // initializations was removed. After macro-expansion all stores catched
   235   // by Initialize node became raw stores and there is no information
   236   // which memory slices they modify. So it is unsafe to move any memory
   237   // operation above these stores. Also in most cases hooked non-raw memories
   238   // were already unhooked by using information from detect_ptr_independence()
   239   // and find_previous_store().
   241   if (mem->is_MergeMem()) {
   242     MergeMemNode* mmem = mem->as_MergeMem();
   243     const TypePtr *tp = t_adr->is_ptr();
   245     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   246   }
   248   if (mem != old_mem) {
   249     set_req(MemNode::Memory, mem);
   250     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   251     return this;
   252   }
   254   // let the subclass continue analyzing...
   255   return NULL;
   256 }
   258 // Helper function for proving some simple control dominations.
   259 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   260 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   261 // is not a constant (dominated by the method's StartNode).
   262 // Used by MemNode::find_previous_store to prove that the
   263 // control input of a memory operation predates (dominates)
   264 // an allocation it wants to look past.
   265 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   266   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   267     return false; // Conservative answer for dead code
   269   // Check 'dom'. Skip Proj and CatchProj nodes.
   270   dom = dom->find_exact_control(dom);
   271   if (dom == NULL || dom->is_top())
   272     return false; // Conservative answer for dead code
   274   if (dom == sub) {
   275     // For the case when, for example, 'sub' is Initialize and the original
   276     // 'dom' is Proj node of the 'sub'.
   277     return false;
   278   }
   280   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   281     return true;
   283   // 'dom' dominates 'sub' if its control edge and control edges
   284   // of all its inputs dominate or equal to sub's control edge.
   286   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   287   // Or Region for the check in LoadNode::Ideal();
   288   // 'sub' should have sub->in(0) != NULL.
   289   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   290          sub->is_Region(), "expecting only these nodes");
   292   // Get control edge of 'sub'.
   293   Node* orig_sub = sub;
   294   sub = sub->find_exact_control(sub->in(0));
   295   if (sub == NULL || sub->is_top())
   296     return false; // Conservative answer for dead code
   298   assert(sub->is_CFG(), "expecting control");
   300   if (sub == dom)
   301     return true;
   303   if (sub->is_Start() || sub->is_Root())
   304     return false;
   306   {
   307     // Check all control edges of 'dom'.
   309     ResourceMark rm;
   310     Arena* arena = Thread::current()->resource_area();
   311     Node_List nlist(arena);
   312     Unique_Node_List dom_list(arena);
   314     dom_list.push(dom);
   315     bool only_dominating_controls = false;
   317     for (uint next = 0; next < dom_list.size(); next++) {
   318       Node* n = dom_list.at(next);
   319       if (n == orig_sub)
   320         return false; // One of dom's inputs dominated by sub.
   321       if (!n->is_CFG() && n->pinned()) {
   322         // Check only own control edge for pinned non-control nodes.
   323         n = n->find_exact_control(n->in(0));
   324         if (n == NULL || n->is_top())
   325           return false; // Conservative answer for dead code
   326         assert(n->is_CFG(), "expecting control");
   327         dom_list.push(n);
   328       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   329         only_dominating_controls = true;
   330       } else if (n->is_CFG()) {
   331         if (n->dominates(sub, nlist))
   332           only_dominating_controls = true;
   333         else
   334           return false;
   335       } else {
   336         // First, own control edge.
   337         Node* m = n->find_exact_control(n->in(0));
   338         if (m != NULL) {
   339           if (m->is_top())
   340             return false; // Conservative answer for dead code
   341           dom_list.push(m);
   342         }
   343         // Now, the rest of edges.
   344         uint cnt = n->req();
   345         for (uint i = 1; i < cnt; i++) {
   346           m = n->find_exact_control(n->in(i));
   347           if (m == NULL || m->is_top())
   348             continue;
   349           dom_list.push(m);
   350         }
   351       }
   352     }
   353     return only_dominating_controls;
   354   }
   355 }
   357 //---------------------detect_ptr_independence---------------------------------
   358 // Used by MemNode::find_previous_store to prove that two base
   359 // pointers are never equal.
   360 // The pointers are accompanied by their associated allocations,
   361 // if any, which have been previously discovered by the caller.
   362 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   363                                       Node* p2, AllocateNode* a2,
   364                                       PhaseTransform* phase) {
   365   // Attempt to prove that these two pointers cannot be aliased.
   366   // They may both manifestly be allocations, and they should differ.
   367   // Or, if they are not both allocations, they can be distinct constants.
   368   // Otherwise, one is an allocation and the other a pre-existing value.
   369   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   370     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   371   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   372     return (a1 != a2);
   373   } else if (a1 != NULL) {                  // one allocation a1
   374     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   375     return all_controls_dominate(p2, a1);
   376   } else { //(a2 != NULL)                   // one allocation a2
   377     return all_controls_dominate(p1, a2);
   378   }
   379   return false;
   380 }
   383 // The logic for reordering loads and stores uses four steps:
   384 // (a) Walk carefully past stores and initializations which we
   385 //     can prove are independent of this load.
   386 // (b) Observe that the next memory state makes an exact match
   387 //     with self (load or store), and locate the relevant store.
   388 // (c) Ensure that, if we were to wire self directly to the store,
   389 //     the optimizer would fold it up somehow.
   390 // (d) Do the rewiring, and return, depending on some other part of
   391 //     the optimizer to fold up the load.
   392 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   393 // specific to loads and stores, so they are handled by the callers.
   394 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   395 //
   396 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   397   Node*         ctrl   = in(MemNode::Control);
   398   Node*         adr    = in(MemNode::Address);
   399   intptr_t      offset = 0;
   400   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   401   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   403   if (offset == Type::OffsetBot)
   404     return NULL;            // cannot unalias unless there are precise offsets
   406   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   408   intptr_t size_in_bytes = memory_size();
   410   Node* mem = in(MemNode::Memory);   // start searching here...
   412   int cnt = 50;             // Cycle limiter
   413   for (;;) {                // While we can dance past unrelated stores...
   414     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   416     if (mem->is_Store()) {
   417       Node* st_adr = mem->in(MemNode::Address);
   418       intptr_t st_offset = 0;
   419       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   420       if (st_base == NULL)
   421         break;              // inscrutable pointer
   422       if (st_offset != offset && st_offset != Type::OffsetBot) {
   423         const int MAX_STORE = BytesPerLong;
   424         if (st_offset >= offset + size_in_bytes ||
   425             st_offset <= offset - MAX_STORE ||
   426             st_offset <= offset - mem->as_Store()->memory_size()) {
   427           // Success:  The offsets are provably independent.
   428           // (You may ask, why not just test st_offset != offset and be done?
   429           // The answer is that stores of different sizes can co-exist
   430           // in the same sequence of RawMem effects.  We sometimes initialize
   431           // a whole 'tile' of array elements with a single jint or jlong.)
   432           mem = mem->in(MemNode::Memory);
   433           continue;           // (a) advance through independent store memory
   434         }
   435       }
   436       if (st_base != base &&
   437           detect_ptr_independence(base, alloc,
   438                                   st_base,
   439                                   AllocateNode::Ideal_allocation(st_base, phase),
   440                                   phase)) {
   441         // Success:  The bases are provably independent.
   442         mem = mem->in(MemNode::Memory);
   443         continue;           // (a) advance through independent store memory
   444       }
   446       // (b) At this point, if the bases or offsets do not agree, we lose,
   447       // since we have not managed to prove 'this' and 'mem' independent.
   448       if (st_base == base && st_offset == offset) {
   449         return mem;         // let caller handle steps (c), (d)
   450       }
   452     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   453       InitializeNode* st_init = mem->in(0)->as_Initialize();
   454       AllocateNode*  st_alloc = st_init->allocation();
   455       if (st_alloc == NULL)
   456         break;              // something degenerated
   457       bool known_identical = false;
   458       bool known_independent = false;
   459       if (alloc == st_alloc)
   460         known_identical = true;
   461       else if (alloc != NULL)
   462         known_independent = true;
   463       else if (all_controls_dominate(this, st_alloc))
   464         known_independent = true;
   466       if (known_independent) {
   467         // The bases are provably independent: Either they are
   468         // manifestly distinct allocations, or else the control
   469         // of this load dominates the store's allocation.
   470         int alias_idx = phase->C->get_alias_index(adr_type());
   471         if (alias_idx == Compile::AliasIdxRaw) {
   472           mem = st_alloc->in(TypeFunc::Memory);
   473         } else {
   474           mem = st_init->memory(alias_idx);
   475         }
   476         continue;           // (a) advance through independent store memory
   477       }
   479       // (b) at this point, if we are not looking at a store initializing
   480       // the same allocation we are loading from, we lose.
   481       if (known_identical) {
   482         // From caller, can_see_stored_value will consult find_captured_store.
   483         return mem;         // let caller handle steps (c), (d)
   484       }
   486     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   487       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   488       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   489         CallNode *call = mem->in(0)->as_Call();
   490         if (!call->may_modify(addr_t, phase)) {
   491           mem = call->in(TypeFunc::Memory);
   492           continue;         // (a) advance through independent call memory
   493         }
   494       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   495         mem = mem->in(0)->in(TypeFunc::Memory);
   496         continue;           // (a) advance through independent MemBar memory
   497       } else if (mem->is_MergeMem()) {
   498         int alias_idx = phase->C->get_alias_index(adr_type());
   499         mem = mem->as_MergeMem()->memory_at(alias_idx);
   500         continue;           // (a) advance through independent MergeMem memory
   501       }
   502     }
   504     // Unless there is an explicit 'continue', we must bail out here,
   505     // because 'mem' is an inscrutable memory state (e.g., a call).
   506     break;
   507   }
   509   return NULL;              // bail out
   510 }
   512 //----------------------calculate_adr_type-------------------------------------
   513 // Helper function.  Notices when the given type of address hits top or bottom.
   514 // Also, asserts a cross-check of the type against the expected address type.
   515 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   516   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   517   #ifdef PRODUCT
   518   cross_check = NULL;
   519   #else
   520   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   521   #endif
   522   const TypePtr* tp = t->isa_ptr();
   523   if (tp == NULL) {
   524     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   525     return TypePtr::BOTTOM;           // touches lots of memory
   526   } else {
   527     #ifdef ASSERT
   528     // %%%% [phh] We don't check the alias index if cross_check is
   529     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   530     if (cross_check != NULL &&
   531         cross_check != TypePtr::BOTTOM &&
   532         cross_check != TypeRawPtr::BOTTOM) {
   533       // Recheck the alias index, to see if it has changed (due to a bug).
   534       Compile* C = Compile::current();
   535       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   536              "must stay in the original alias category");
   537       // The type of the address must be contained in the adr_type,
   538       // disregarding "null"-ness.
   539       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   540       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   541       assert(cross_check->meet(tp_notnull) == cross_check,
   542              "real address must not escape from expected memory type");
   543     }
   544     #endif
   545     return tp;
   546   }
   547 }
   549 //------------------------adr_phi_is_loop_invariant----------------------------
   550 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   551 // loop is loop invariant. Make a quick traversal of Phi and associated
   552 // CastPP nodes, looking to see if they are a closed group within the loop.
   553 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   554   // The idea is that the phi-nest must boil down to only CastPP nodes
   555   // with the same data. This implies that any path into the loop already
   556   // includes such a CastPP, and so the original cast, whatever its input,
   557   // must be covered by an equivalent cast, with an earlier control input.
   558   ResourceMark rm;
   560   // The loop entry input of the phi should be the unique dominating
   561   // node for every Phi/CastPP in the loop.
   562   Unique_Node_List closure;
   563   closure.push(adr_phi->in(LoopNode::EntryControl));
   565   // Add the phi node and the cast to the worklist.
   566   Unique_Node_List worklist;
   567   worklist.push(adr_phi);
   568   if( cast != NULL ){
   569     if( !cast->is_ConstraintCast() ) return false;
   570     worklist.push(cast);
   571   }
   573   // Begin recursive walk of phi nodes.
   574   while( worklist.size() ){
   575     // Take a node off the worklist
   576     Node *n = worklist.pop();
   577     if( !closure.member(n) ){
   578       // Add it to the closure.
   579       closure.push(n);
   580       // Make a sanity check to ensure we don't waste too much time here.
   581       if( closure.size() > 20) return false;
   582       // This node is OK if:
   583       //  - it is a cast of an identical value
   584       //  - or it is a phi node (then we add its inputs to the worklist)
   585       // Otherwise, the node is not OK, and we presume the cast is not invariant
   586       if( n->is_ConstraintCast() ){
   587         worklist.push(n->in(1));
   588       } else if( n->is_Phi() ) {
   589         for( uint i = 1; i < n->req(); i++ ) {
   590           worklist.push(n->in(i));
   591         }
   592       } else {
   593         return false;
   594       }
   595     }
   596   }
   598   // Quit when the worklist is empty, and we've found no offending nodes.
   599   return true;
   600 }
   602 //------------------------------Ideal_DU_postCCP-------------------------------
   603 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   604 // going away in this pass and we need to make this memory op depend on the
   605 // gating null check.
   606 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   607   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   608 }
   610 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   611 // some sense; we get to keep around the knowledge that an oop is not-null
   612 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   613 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   614 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   615 // some of the more trivial cases in the optimizer.  Removing more useless
   616 // Phi's started allowing Loads to illegally float above null checks.  I gave
   617 // up on this approach.  CNC 10/20/2000
   618 // This static method may be called not from MemNode (EncodePNode calls it).
   619 // Only the control edge of the node 'n' might be updated.
   620 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   621   Node *skipped_cast = NULL;
   622   // Need a null check?  Regular static accesses do not because they are
   623   // from constant addresses.  Array ops are gated by the range check (which
   624   // always includes a NULL check).  Just check field ops.
   625   if( n->in(MemNode::Control) == NULL ) {
   626     // Scan upwards for the highest location we can place this memory op.
   627     while( true ) {
   628       switch( adr->Opcode() ) {
   630       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   631         adr = adr->in(AddPNode::Base);
   632         continue;
   634       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   635         adr = adr->in(1);
   636         continue;
   638       case Op_CastPP:
   639         // If the CastPP is useless, just peek on through it.
   640         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   641           // Remember the cast that we've peeked though. If we peek
   642           // through more than one, then we end up remembering the highest
   643           // one, that is, if in a loop, the one closest to the top.
   644           skipped_cast = adr;
   645           adr = adr->in(1);
   646           continue;
   647         }
   648         // CastPP is going away in this pass!  We need this memory op to be
   649         // control-dependent on the test that is guarding the CastPP.
   650         ccp->hash_delete(n);
   651         n->set_req(MemNode::Control, adr->in(0));
   652         ccp->hash_insert(n);
   653         return n;
   655       case Op_Phi:
   656         // Attempt to float above a Phi to some dominating point.
   657         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   658           // If we've already peeked through a Cast (which could have set the
   659           // control), we can't float above a Phi, because the skipped Cast
   660           // may not be loop invariant.
   661           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   662             adr = adr->in(1);
   663             continue;
   664           }
   665         }
   667         // Intentional fallthrough!
   669         // No obvious dominating point.  The mem op is pinned below the Phi
   670         // by the Phi itself.  If the Phi goes away (no true value is merged)
   671         // then the mem op can float, but not indefinitely.  It must be pinned
   672         // behind the controls leading to the Phi.
   673       case Op_CheckCastPP:
   674         // These usually stick around to change address type, however a
   675         // useless one can be elided and we still need to pick up a control edge
   676         if (adr->in(0) == NULL) {
   677           // This CheckCastPP node has NO control and is likely useless. But we
   678           // need check further up the ancestor chain for a control input to keep
   679           // the node in place. 4959717.
   680           skipped_cast = adr;
   681           adr = adr->in(1);
   682           continue;
   683         }
   684         ccp->hash_delete(n);
   685         n->set_req(MemNode::Control, adr->in(0));
   686         ccp->hash_insert(n);
   687         return n;
   689         // List of "safe" opcodes; those that implicitly block the memory
   690         // op below any null check.
   691       case Op_CastX2P:          // no null checks on native pointers
   692       case Op_Parm:             // 'this' pointer is not null
   693       case Op_LoadP:            // Loading from within a klass
   694       case Op_LoadN:            // Loading from within a klass
   695       case Op_LoadKlass:        // Loading from within a klass
   696       case Op_LoadNKlass:       // Loading from within a klass
   697       case Op_ConP:             // Loading from a klass
   698       case Op_ConN:             // Loading from a klass
   699       case Op_CreateEx:         // Sucking up the guts of an exception oop
   700       case Op_Con:              // Reading from TLS
   701       case Op_CMoveP:           // CMoveP is pinned
   702       case Op_CMoveN:           // CMoveN is pinned
   703         break;                  // No progress
   705       case Op_Proj:             // Direct call to an allocation routine
   706       case Op_SCMemProj:        // Memory state from store conditional ops
   707 #ifdef ASSERT
   708         {
   709           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   710           const Node* call = adr->in(0);
   711           if (call->is_CallJava()) {
   712             const CallJavaNode* call_java = call->as_CallJava();
   713             const TypeTuple *r = call_java->tf()->range();
   714             assert(r->cnt() > TypeFunc::Parms, "must return value");
   715             const Type* ret_type = r->field_at(TypeFunc::Parms);
   716             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   717             // We further presume that this is one of
   718             // new_instance_Java, new_array_Java, or
   719             // the like, but do not assert for this.
   720           } else if (call->is_Allocate()) {
   721             // similar case to new_instance_Java, etc.
   722           } else if (!call->is_CallLeaf()) {
   723             // Projections from fetch_oop (OSR) are allowed as well.
   724             ShouldNotReachHere();
   725           }
   726         }
   727 #endif
   728         break;
   729       default:
   730         ShouldNotReachHere();
   731       }
   732       break;
   733     }
   734   }
   736   return  NULL;               // No progress
   737 }
   740 //=============================================================================
   741 uint LoadNode::size_of() const { return sizeof(*this); }
   742 uint LoadNode::cmp( const Node &n ) const
   743 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   744 const Type *LoadNode::bottom_type() const { return _type; }
   745 uint LoadNode::ideal_reg() const {
   746   return Matcher::base2reg[_type->base()];
   747 }
   749 #ifndef PRODUCT
   750 void LoadNode::dump_spec(outputStream *st) const {
   751   MemNode::dump_spec(st);
   752   if( !Verbose && !WizardMode ) {
   753     // standard dump does this in Verbose and WizardMode
   754     st->print(" #"); _type->dump_on(st);
   755   }
   756 }
   757 #endif
   760 //----------------------------LoadNode::make-----------------------------------
   761 // Polymorphic factory method:
   762 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   763   Compile* C = gvn.C;
   765   // sanity check the alias category against the created node type
   766   assert(!(adr_type->isa_oopptr() &&
   767            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   768          "use LoadKlassNode instead");
   769   assert(!(adr_type->isa_aryptr() &&
   770            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   771          "use LoadRangeNode instead");
   772   switch (bt) {
   773   case T_BOOLEAN:
   774   case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   775   case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
   776   case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
   777   case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   778   case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
   779   case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
   780   case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
   781   case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
   782   case T_OBJECT:
   783 #ifdef _LP64
   784     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   785       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
   786       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
   787     } else
   788 #endif
   789     {
   790       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
   791       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   792     }
   793   }
   794   ShouldNotReachHere();
   795   return (LoadNode*)NULL;
   796 }
   798 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   799   bool require_atomic = true;
   800   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   801 }
   806 //------------------------------hash-------------------------------------------
   807 uint LoadNode::hash() const {
   808   // unroll addition of interesting fields
   809   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   810 }
   812 //---------------------------can_see_stored_value------------------------------
   813 // This routine exists to make sure this set of tests is done the same
   814 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   815 // will change the graph shape in a way which makes memory alive twice at the
   816 // same time (uses the Oracle model of aliasing), then some
   817 // LoadXNode::Identity will fold things back to the equivalence-class model
   818 // of aliasing.
   819 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   820   Node* ld_adr = in(MemNode::Address);
   822   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   823   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   824   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   825       atp->field() != NULL && !atp->field()->is_volatile()) {
   826     uint alias_idx = atp->index();
   827     bool final = atp->field()->is_final();
   828     Node* result = NULL;
   829     Node* current = st;
   830     // Skip through chains of MemBarNodes checking the MergeMems for
   831     // new states for the slice of this load.  Stop once any other
   832     // kind of node is encountered.  Loads from final memory can skip
   833     // through any kind of MemBar but normal loads shouldn't skip
   834     // through MemBarAcquire since the could allow them to move out of
   835     // a synchronized region.
   836     while (current->is_Proj()) {
   837       int opc = current->in(0)->Opcode();
   838       if ((final && opc == Op_MemBarAcquire) ||
   839           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   840         Node* mem = current->in(0)->in(TypeFunc::Memory);
   841         if (mem->is_MergeMem()) {
   842           MergeMemNode* merge = mem->as_MergeMem();
   843           Node* new_st = merge->memory_at(alias_idx);
   844           if (new_st == merge->base_memory()) {
   845             // Keep searching
   846             current = merge->base_memory();
   847             continue;
   848           }
   849           // Save the new memory state for the slice and fall through
   850           // to exit.
   851           result = new_st;
   852         }
   853       }
   854       break;
   855     }
   856     if (result != NULL) {
   857       st = result;
   858     }
   859   }
   862   // Loop around twice in the case Load -> Initialize -> Store.
   863   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   864   for (int trip = 0; trip <= 1; trip++) {
   866     if (st->is_Store()) {
   867       Node* st_adr = st->in(MemNode::Address);
   868       if (!phase->eqv(st_adr, ld_adr)) {
   869         // Try harder before giving up...  Match raw and non-raw pointers.
   870         intptr_t st_off = 0;
   871         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   872         if (alloc == NULL)       return NULL;
   873         intptr_t ld_off = 0;
   874         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   875         if (alloc != allo2)      return NULL;
   876         if (ld_off != st_off)    return NULL;
   877         // At this point we have proven something like this setup:
   878         //  A = Allocate(...)
   879         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   880         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   881         // (Actually, we haven't yet proven the Q's are the same.)
   882         // In other words, we are loading from a casted version of
   883         // the same pointer-and-offset that we stored to.
   884         // Thus, we are able to replace L by V.
   885       }
   886       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   887       if (store_Opcode() != st->Opcode())
   888         return NULL;
   889       return st->in(MemNode::ValueIn);
   890     }
   892     intptr_t offset = 0;  // scratch
   894     // A load from a freshly-created object always returns zero.
   895     // (This can happen after LoadNode::Ideal resets the load's memory input
   896     // to find_captured_store, which returned InitializeNode::zero_memory.)
   897     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   898         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   899         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   900       // return a zero value for the load's basic type
   901       // (This is one of the few places where a generic PhaseTransform
   902       // can create new nodes.  Think of it as lazily manifesting
   903       // virtually pre-existing constants.)
   904       return phase->zerocon(memory_type());
   905     }
   907     // A load from an initialization barrier can match a captured store.
   908     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   909       InitializeNode* init = st->in(0)->as_Initialize();
   910       AllocateNode* alloc = init->allocation();
   911       if (alloc != NULL &&
   912           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   913         // examine a captured store value
   914         st = init->find_captured_store(offset, memory_size(), phase);
   915         if (st != NULL)
   916           continue;             // take one more trip around
   917       }
   918     }
   920     break;
   921   }
   923   return NULL;
   924 }
   926 //----------------------is_instance_field_load_with_local_phi------------------
   927 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
   928   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
   929       in(MemNode::Address)->is_AddP() ) {
   930     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
   931     // Only instances.
   932     if( t_oop != NULL && t_oop->is_known_instance_field() &&
   933         t_oop->offset() != Type::OffsetBot &&
   934         t_oop->offset() != Type::OffsetTop) {
   935       return true;
   936     }
   937   }
   938   return false;
   939 }
   941 //------------------------------Identity---------------------------------------
   942 // Loads are identity if previous store is to same address
   943 Node *LoadNode::Identity( PhaseTransform *phase ) {
   944   // If the previous store-maker is the right kind of Store, and the store is
   945   // to the same address, then we are equal to the value stored.
   946   Node* mem = in(MemNode::Memory);
   947   Node* value = can_see_stored_value(mem, phase);
   948   if( value ) {
   949     // byte, short & char stores truncate naturally.
   950     // A load has to load the truncated value which requires
   951     // some sort of masking operation and that requires an
   952     // Ideal call instead of an Identity call.
   953     if (memory_size() < BytesPerInt) {
   954       // If the input to the store does not fit with the load's result type,
   955       // it must be truncated via an Ideal call.
   956       if (!phase->type(value)->higher_equal(phase->type(this)))
   957         return this;
   958     }
   959     // (This works even when value is a Con, but LoadNode::Value
   960     // usually runs first, producing the singleton type of the Con.)
   961     return value;
   962   }
   964   // Search for an existing data phi which was generated before for the same
   965   // instance's field to avoid infinite genertion of phis in a loop.
   966   Node *region = mem->in(0);
   967   if (is_instance_field_load_with_local_phi(region)) {
   968     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
   969     int this_index  = phase->C->get_alias_index(addr_t);
   970     int this_offset = addr_t->offset();
   971     int this_id    = addr_t->is_oopptr()->instance_id();
   972     const Type* this_type = bottom_type();
   973     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
   974       Node* phi = region->fast_out(i);
   975       if (phi->is_Phi() && phi != mem &&
   976           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
   977         return phi;
   978       }
   979     }
   980   }
   982   return this;
   983 }
   986 // Returns true if the AliasType refers to the field that holds the
   987 // cached box array.  Currently only handles the IntegerCache case.
   988 static bool is_autobox_cache(Compile::AliasType* atp) {
   989   if (atp != NULL && atp->field() != NULL) {
   990     ciField* field = atp->field();
   991     ciSymbol* klass = field->holder()->name();
   992     if (field->name() == ciSymbol::cache_field_name() &&
   993         field->holder()->uses_default_loader() &&
   994         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   995       return true;
   996     }
   997   }
   998   return false;
   999 }
  1001 // Fetch the base value in the autobox array
  1002 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
  1003   if (atp != NULL && atp->field() != NULL) {
  1004     ciField* field = atp->field();
  1005     ciSymbol* klass = field->holder()->name();
  1006     if (field->name() == ciSymbol::cache_field_name() &&
  1007         field->holder()->uses_default_loader() &&
  1008         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1009       assert(field->is_constant(), "what?");
  1010       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
  1011       // Fetch the box object at the base of the array and get its value
  1012       ciInstance* box = array->obj_at(0)->as_instance();
  1013       ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1014       if (ik->nof_nonstatic_fields() == 1) {
  1015         // This should be true nonstatic_field_at requires calling
  1016         // nof_nonstatic_fields so check it anyway
  1017         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1018         cache_offset = c.as_int();
  1020       return true;
  1023   return false;
  1026 // Returns true if the AliasType refers to the value field of an
  1027 // autobox object.  Currently only handles Integer.
  1028 static bool is_autobox_object(Compile::AliasType* atp) {
  1029   if (atp != NULL && atp->field() != NULL) {
  1030     ciField* field = atp->field();
  1031     ciSymbol* klass = field->holder()->name();
  1032     if (field->name() == ciSymbol::value_name() &&
  1033         field->holder()->uses_default_loader() &&
  1034         klass == ciSymbol::java_lang_Integer()) {
  1035       return true;
  1038   return false;
  1042 // We're loading from an object which has autobox behaviour.
  1043 // If this object is result of a valueOf call we'll have a phi
  1044 // merging a newly allocated object and a load from the cache.
  1045 // We want to replace this load with the original incoming
  1046 // argument to the valueOf call.
  1047 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1048   Node* base = in(Address)->in(AddPNode::Base);
  1049   if (base->is_Phi() && base->req() == 3) {
  1050     AllocateNode* allocation = NULL;
  1051     int allocation_index = -1;
  1052     int load_index = -1;
  1053     for (uint i = 1; i < base->req(); i++) {
  1054       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1055       if (allocation != NULL) {
  1056         allocation_index = i;
  1057         load_index = 3 - allocation_index;
  1058         break;
  1061     LoadNode* load = NULL;
  1062     if (allocation != NULL && base->in(load_index)->is_Load()) {
  1063       load = base->in(load_index)->as_Load();
  1065     if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1066       // Push the loads from the phi that comes from valueOf up
  1067       // through it to allow elimination of the loads and the recovery
  1068       // of the original value.
  1069       Node* mem_phi = in(Memory);
  1070       Node* offset = in(Address)->in(AddPNode::Offset);
  1072       Node* in1 = clone();
  1073       Node* in1_addr = in1->in(Address)->clone();
  1074       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1075       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1076       in1_addr->set_req(AddPNode::Offset, offset);
  1077       in1->set_req(0, base->in(allocation_index));
  1078       in1->set_req(Address, in1_addr);
  1079       in1->set_req(Memory, mem_phi->in(allocation_index));
  1081       Node* in2 = clone();
  1082       Node* in2_addr = in2->in(Address)->clone();
  1083       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1084       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1085       in2_addr->set_req(AddPNode::Offset, offset);
  1086       in2->set_req(0, base->in(load_index));
  1087       in2->set_req(Address, in2_addr);
  1088       in2->set_req(Memory, mem_phi->in(load_index));
  1090       in1_addr = phase->transform(in1_addr);
  1091       in1 =      phase->transform(in1);
  1092       in2_addr = phase->transform(in2_addr);
  1093       in2 =      phase->transform(in2);
  1095       PhiNode* result = PhiNode::make_blank(base->in(0), this);
  1096       result->set_req(allocation_index, in1);
  1097       result->set_req(load_index, in2);
  1098       return result;
  1100   } else if (base->is_Load()) {
  1101     // Eliminate the load of Integer.value for integers from the cache
  1102     // array by deriving the value from the index into the array.
  1103     // Capture the offset of the load and then reverse the computation.
  1104     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1105     if (load_base != NULL) {
  1106       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1107       intptr_t cache_offset;
  1108       int shift = -1;
  1109       Node* cache = NULL;
  1110       if (is_autobox_cache(atp)) {
  1111         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1112         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1114       if (cache != NULL && base->in(Address)->is_AddP()) {
  1115         Node* elements[4];
  1116         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1117         int cache_low;
  1118         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1119           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1120           // Add up all the offsets making of the address of the load
  1121           Node* result = elements[0];
  1122           for (int i = 1; i < count; i++) {
  1123             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1125           // Remove the constant offset from the address and then
  1126           // remove the scaling of the offset to recover the original index.
  1127           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1128           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1129             // Peel the shift off directly but wrap it in a dummy node
  1130             // since Ideal can't return existing nodes
  1131             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1132           } else {
  1133             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1135 #ifdef _LP64
  1136           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1137 #endif
  1138           return result;
  1143   return NULL;
  1146 //------------------------------split_through_phi------------------------------
  1147 // Split instance field load through Phi.
  1148 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1149   Node* mem     = in(MemNode::Memory);
  1150   Node* address = in(MemNode::Address);
  1151   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1152   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1154   assert(mem->is_Phi() && (t_oop != NULL) &&
  1155          t_oop->is_known_instance_field(), "invalide conditions");
  1157   Node *region = mem->in(0);
  1158   if (region == NULL) {
  1159     return NULL; // Wait stable graph
  1161   uint cnt = mem->req();
  1162   for( uint i = 1; i < cnt; i++ ) {
  1163     Node *in = mem->in(i);
  1164     if( in == NULL ) {
  1165       return NULL; // Wait stable graph
  1168   // Check for loop invariant.
  1169   if (cnt == 3) {
  1170     for( uint i = 1; i < cnt; i++ ) {
  1171       Node *in = mem->in(i);
  1172       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1173       if (m == mem) {
  1174         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
  1175         return this;
  1179   // Split through Phi (see original code in loopopts.cpp).
  1180   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1182   // Do nothing here if Identity will find a value
  1183   // (to avoid infinite chain of value phis generation).
  1184   if ( !phase->eqv(this, this->Identity(phase)) )
  1185     return NULL;
  1187   // Skip the split if the region dominates some control edge of the address.
  1188   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
  1189     return NULL;
  1191   const Type* this_type = this->bottom_type();
  1192   int this_index  = phase->C->get_alias_index(addr_t);
  1193   int this_offset = addr_t->offset();
  1194   int this_iid    = addr_t->is_oopptr()->instance_id();
  1195   int wins = 0;
  1196   PhaseIterGVN *igvn = phase->is_IterGVN();
  1197   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1198   for( uint i = 1; i < region->req(); i++ ) {
  1199     Node *x;
  1200     Node* the_clone = NULL;
  1201     if( region->in(i) == phase->C->top() ) {
  1202       x = phase->C->top();      // Dead path?  Use a dead data op
  1203     } else {
  1204       x = this->clone();        // Else clone up the data op
  1205       the_clone = x;            // Remember for possible deletion.
  1206       // Alter data node to use pre-phi inputs
  1207       if( this->in(0) == region ) {
  1208         x->set_req( 0, region->in(i) );
  1209       } else {
  1210         x->set_req( 0, NULL );
  1212       for( uint j = 1; j < this->req(); j++ ) {
  1213         Node *in = this->in(j);
  1214         if( in->is_Phi() && in->in(0) == region )
  1215           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
  1218     // Check for a 'win' on some paths
  1219     const Type *t = x->Value(igvn);
  1221     bool singleton = t->singleton();
  1223     // See comments in PhaseIdealLoop::split_thru_phi().
  1224     if( singleton && t == Type::TOP ) {
  1225       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1228     if( singleton ) {
  1229       wins++;
  1230       x = igvn->makecon(t);
  1231     } else {
  1232       // We now call Identity to try to simplify the cloned node.
  1233       // Note that some Identity methods call phase->type(this).
  1234       // Make sure that the type array is big enough for
  1235       // our new node, even though we may throw the node away.
  1236       // (This tweaking with igvn only works because x is a new node.)
  1237       igvn->set_type(x, t);
  1238       // If x is a TypeNode, capture any more-precise type permanently into Node
  1239       // othewise it will be not updated during igvn->transform since
  1240       // igvn->type(x) is set to x->Value() already.
  1241       x->raise_bottom_type(t);
  1242       Node *y = x->Identity(igvn);
  1243       if( y != x ) {
  1244         wins++;
  1245         x = y;
  1246       } else {
  1247         y = igvn->hash_find(x);
  1248         if( y ) {
  1249           wins++;
  1250           x = y;
  1251         } else {
  1252           // Else x is a new node we are keeping
  1253           // We do not need register_new_node_with_optimizer
  1254           // because set_type has already been called.
  1255           igvn->_worklist.push(x);
  1259     if (x != the_clone && the_clone != NULL)
  1260       igvn->remove_dead_node(the_clone);
  1261     phi->set_req(i, x);
  1263   if( wins > 0 ) {
  1264     // Record Phi
  1265     igvn->register_new_node_with_optimizer(phi);
  1266     return phi;
  1268   igvn->remove_dead_node(phi);
  1269   return NULL;
  1272 //------------------------------Ideal------------------------------------------
  1273 // If the load is from Field memory and the pointer is non-null, we can
  1274 // zero out the control input.
  1275 // If the offset is constant and the base is an object allocation,
  1276 // try to hook me up to the exact initializing store.
  1277 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1278   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1279   if (p)  return (p == NodeSentinel) ? NULL : p;
  1281   Node* ctrl    = in(MemNode::Control);
  1282   Node* address = in(MemNode::Address);
  1284   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1285   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1286   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1287       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1288     ctrl = ctrl->in(0);
  1289     set_req(MemNode::Control,ctrl);
  1292   // Check for useless control edge in some common special cases
  1293   if (in(MemNode::Control) != NULL) {
  1294     intptr_t ignore = 0;
  1295     Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1296     if (base != NULL
  1297         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1298         && all_controls_dominate(base, phase->C->start())) {
  1299       // A method-invariant, non-null address (constant or 'this' argument).
  1300       set_req(MemNode::Control, NULL);
  1304   if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
  1305     Node* base = in(Address)->in(AddPNode::Base);
  1306     if (base != NULL) {
  1307       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1308       if (is_autobox_object(atp)) {
  1309         Node* result = eliminate_autobox(phase);
  1310         if (result != NULL) return result;
  1315   Node* mem = in(MemNode::Memory);
  1316   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1318   if (addr_t != NULL) {
  1319     // try to optimize our memory input
  1320     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1321     if (opt_mem != mem) {
  1322       set_req(MemNode::Memory, opt_mem);
  1323       if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1324       return this;
  1326     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1327     if (can_reshape && opt_mem->is_Phi() &&
  1328         (t_oop != NULL) && t_oop->is_known_instance_field()) {
  1329       // Split instance field load through Phi.
  1330       Node* result = split_through_phi(phase);
  1331       if (result != NULL) return result;
  1335   // Check for prior store with a different base or offset; make Load
  1336   // independent.  Skip through any number of them.  Bail out if the stores
  1337   // are in an endless dead cycle and report no progress.  This is a key
  1338   // transform for Reflection.  However, if after skipping through the Stores
  1339   // we can't then fold up against a prior store do NOT do the transform as
  1340   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1341   // array memory alive twice: once for the hoisted Load and again after the
  1342   // bypassed Store.  This situation only works if EVERYBODY who does
  1343   // anti-dependence work knows how to bypass.  I.e. we need all
  1344   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1345   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1346   // fold up, do so.
  1347   Node* prev_mem = find_previous_store(phase);
  1348   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1349   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1350     // (c) See if we can fold up on the spot, but don't fold up here.
  1351     // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
  1352     // just return a prior value, which is done by Identity calls.
  1353     if (can_see_stored_value(prev_mem, phase)) {
  1354       // Make ready for step (d):
  1355       set_req(MemNode::Memory, prev_mem);
  1356       return this;
  1360   return NULL;                  // No further progress
  1363 // Helper to recognize certain Klass fields which are invariant across
  1364 // some group of array types (e.g., int[] or all T[] where T < Object).
  1365 const Type*
  1366 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1367                                  ciKlass* klass) const {
  1368   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1369     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1370     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1371     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1372     return TypeInt::make(klass->modifier_flags());
  1374   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1375     // The field is Klass::_access_flags.  Return its (constant) value.
  1376     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1377     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1378     return TypeInt::make(klass->access_flags());
  1380   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1381     // The field is Klass::_layout_helper.  Return its constant value if known.
  1382     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1383     return TypeInt::make(klass->layout_helper());
  1386   // No match.
  1387   return NULL;
  1390 //------------------------------Value-----------------------------------------
  1391 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1392   // Either input is TOP ==> the result is TOP
  1393   Node* mem = in(MemNode::Memory);
  1394   const Type *t1 = phase->type(mem);
  1395   if (t1 == Type::TOP)  return Type::TOP;
  1396   Node* adr = in(MemNode::Address);
  1397   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1398   if (tp == NULL || tp->empty())  return Type::TOP;
  1399   int off = tp->offset();
  1400   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1402   // Try to guess loaded type from pointer type
  1403   if (tp->base() == Type::AryPtr) {
  1404     const Type *t = tp->is_aryptr()->elem();
  1405     // Don't do this for integer types. There is only potential profit if
  1406     // the element type t is lower than _type; that is, for int types, if _type is
  1407     // more restrictive than t.  This only happens here if one is short and the other
  1408     // char (both 16 bits), and in those cases we've made an intentional decision
  1409     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1410     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1411     //
  1412     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1413     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1414     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1415     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1416     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1417     // In fact, that could have been the original type of p1, and p1 could have
  1418     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1419     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1420     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1421         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1422       // t might actually be lower than _type, if _type is a unique
  1423       // concrete subclass of abstract class t.
  1424       // Make sure the reference is not into the header, by comparing
  1425       // the offset against the offset of the start of the array's data.
  1426       // Different array types begin at slightly different offsets (12 vs. 16).
  1427       // We choose T_BYTE as an example base type that is least restrictive
  1428       // as to alignment, which will therefore produce the smallest
  1429       // possible base offset.
  1430       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1431       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1432         const Type* jt = t->join(_type);
  1433         // In any case, do not allow the join, per se, to empty out the type.
  1434         if (jt->empty() && !t->empty()) {
  1435           // This can happen if a interface-typed array narrows to a class type.
  1436           jt = _type;
  1439         if (EliminateAutoBox) {
  1440           // The pointers in the autobox arrays are always non-null
  1441           Node* base = in(Address)->in(AddPNode::Base);
  1442           if (base != NULL) {
  1443             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1444             if (is_autobox_cache(atp)) {
  1445               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1449         return jt;
  1452   } else if (tp->base() == Type::InstPtr) {
  1453     assert( off != Type::OffsetBot ||
  1454             // arrays can be cast to Objects
  1455             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1456             // unsafe field access may not have a constant offset
  1457             phase->C->has_unsafe_access(),
  1458             "Field accesses must be precise" );
  1459     // For oop loads, we expect the _type to be precise
  1460   } else if (tp->base() == Type::KlassPtr) {
  1461     assert( off != Type::OffsetBot ||
  1462             // arrays can be cast to Objects
  1463             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1464             // also allow array-loading from the primary supertype
  1465             // array during subtype checks
  1466             Opcode() == Op_LoadKlass,
  1467             "Field accesses must be precise" );
  1468     // For klass/static loads, we expect the _type to be precise
  1471   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1472   if (tkls != NULL && !StressReflectiveCode) {
  1473     ciKlass* klass = tkls->klass();
  1474     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1475       // We are loading a field from a Klass metaobject whose identity
  1476       // is known at compile time (the type is "exact" or "precise").
  1477       // Check for fields we know are maintained as constants by the VM.
  1478       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1479         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1480         // (Folds up type checking code.)
  1481         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1482         return TypeInt::make(klass->super_check_offset());
  1484       // Compute index into primary_supers array
  1485       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1486       // Check for overflowing; use unsigned compare to handle the negative case.
  1487       if( depth < ciKlass::primary_super_limit() ) {
  1488         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1489         // (Folds up type checking code.)
  1490         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1491         ciKlass *ss = klass->super_of_depth(depth);
  1492         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1494       const Type* aift = load_array_final_field(tkls, klass);
  1495       if (aift != NULL)  return aift;
  1496       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1497           && klass->is_array_klass()) {
  1498         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1499         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1500         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1501         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1503       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1504         // The field is Klass::_java_mirror.  Return its (constant) value.
  1505         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1506         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1507         return TypeInstPtr::make(klass->java_mirror());
  1511     // We can still check if we are loading from the primary_supers array at a
  1512     // shallow enough depth.  Even though the klass is not exact, entries less
  1513     // than or equal to its super depth are correct.
  1514     if (klass->is_loaded() ) {
  1515       ciType *inner = klass->klass();
  1516       while( inner->is_obj_array_klass() )
  1517         inner = inner->as_obj_array_klass()->base_element_type();
  1518       if( inner->is_instance_klass() &&
  1519           !inner->as_instance_klass()->flags().is_interface() ) {
  1520         // Compute index into primary_supers array
  1521         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1522         // Check for overflowing; use unsigned compare to handle the negative case.
  1523         if( depth < ciKlass::primary_super_limit() &&
  1524             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1525           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1526           // (Folds up type checking code.)
  1527           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1528           ciKlass *ss = klass->super_of_depth(depth);
  1529           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1534     // If the type is enough to determine that the thing is not an array,
  1535     // we can give the layout_helper a positive interval type.
  1536     // This will help short-circuit some reflective code.
  1537     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1538         && !klass->is_array_klass() // not directly typed as an array
  1539         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1540         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1541         ) {
  1542       // Note:  When interfaces are reliable, we can narrow the interface
  1543       // test to (klass != Serializable && klass != Cloneable).
  1544       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1545       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1546       // The key property of this type is that it folds up tests
  1547       // for array-ness, since it proves that the layout_helper is positive.
  1548       // Thus, a generic value like the basic object layout helper works fine.
  1549       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1553   // If we are loading from a freshly-allocated object, produce a zero,
  1554   // if the load is provably beyond the header of the object.
  1555   // (Also allow a variable load from a fresh array to produce zero.)
  1556   if (ReduceFieldZeroing) {
  1557     Node* value = can_see_stored_value(mem,phase);
  1558     if (value != NULL && value->is_Con())
  1559       return value->bottom_type();
  1562   const TypeOopPtr *tinst = tp->isa_oopptr();
  1563   if (tinst != NULL && tinst->is_known_instance_field()) {
  1564     // If we have an instance type and our memory input is the
  1565     // programs's initial memory state, there is no matching store,
  1566     // so just return a zero of the appropriate type
  1567     Node *mem = in(MemNode::Memory);
  1568     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1569       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1570       return Type::get_zero_type(_type->basic_type());
  1573   return _type;
  1576 //------------------------------match_edge-------------------------------------
  1577 // Do we Match on this edge index or not?  Match only the address.
  1578 uint LoadNode::match_edge(uint idx) const {
  1579   return idx == MemNode::Address;
  1582 //--------------------------LoadBNode::Ideal--------------------------------------
  1583 //
  1584 //  If the previous store is to the same address as this load,
  1585 //  and the value stored was larger than a byte, replace this load
  1586 //  with the value stored truncated to a byte.  If no truncation is
  1587 //  needed, the replacement is done in LoadNode::Identity().
  1588 //
  1589 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1590   Node* mem = in(MemNode::Memory);
  1591   Node* value = can_see_stored_value(mem,phase);
  1592   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1593     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1594     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1596   // Identity call will handle the case where truncation is not needed.
  1597   return LoadNode::Ideal(phase, can_reshape);
  1600 //--------------------------LoadCNode::Ideal--------------------------------------
  1601 //
  1602 //  If the previous store is to the same address as this load,
  1603 //  and the value stored was larger than a char, replace this load
  1604 //  with the value stored truncated to a char.  If no truncation is
  1605 //  needed, the replacement is done in LoadNode::Identity().
  1606 //
  1607 Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1608   Node* mem = in(MemNode::Memory);
  1609   Node* value = can_see_stored_value(mem,phase);
  1610   if( value && !phase->type(value)->higher_equal( _type ) )
  1611     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1612   // Identity call will handle the case where truncation is not needed.
  1613   return LoadNode::Ideal(phase, can_reshape);
  1616 //--------------------------LoadSNode::Ideal--------------------------------------
  1617 //
  1618 //  If the previous store is to the same address as this load,
  1619 //  and the value stored was larger than a short, replace this load
  1620 //  with the value stored truncated to a short.  If no truncation is
  1621 //  needed, the replacement is done in LoadNode::Identity().
  1622 //
  1623 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1624   Node* mem = in(MemNode::Memory);
  1625   Node* value = can_see_stored_value(mem,phase);
  1626   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1627     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1628     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1630   // Identity call will handle the case where truncation is not needed.
  1631   return LoadNode::Ideal(phase, can_reshape);
  1634 //=============================================================================
  1635 //----------------------------LoadKlassNode::make------------------------------
  1636 // Polymorphic factory method:
  1637 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1638   Compile* C = gvn.C;
  1639   Node *ctl = NULL;
  1640   // sanity check the alias category against the created node type
  1641   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
  1642   assert(adr_type != NULL, "expecting TypeOopPtr");
  1643 #ifdef _LP64
  1644   if (adr_type->is_ptr_to_narrowoop()) {
  1645     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
  1646     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
  1648 #endif
  1649   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1650   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
  1653 //------------------------------Value------------------------------------------
  1654 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1655   return klass_value_common(phase);
  1658 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1659   // Either input is TOP ==> the result is TOP
  1660   const Type *t1 = phase->type( in(MemNode::Memory) );
  1661   if (t1 == Type::TOP)  return Type::TOP;
  1662   Node *adr = in(MemNode::Address);
  1663   const Type *t2 = phase->type( adr );
  1664   if (t2 == Type::TOP)  return Type::TOP;
  1665   const TypePtr *tp = t2->is_ptr();
  1666   if (TypePtr::above_centerline(tp->ptr()) ||
  1667       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1669   // Return a more precise klass, if possible
  1670   const TypeInstPtr *tinst = tp->isa_instptr();
  1671   if (tinst != NULL) {
  1672     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1673     int offset = tinst->offset();
  1674     if (ik == phase->C->env()->Class_klass()
  1675         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1676             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1677       // We are loading a special hidden field from a Class mirror object,
  1678       // the field which points to the VM's Klass metaobject.
  1679       ciType* t = tinst->java_mirror_type();
  1680       // java_mirror_type returns non-null for compile-time Class constants.
  1681       if (t != NULL) {
  1682         // constant oop => constant klass
  1683         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1684           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1686         if (!t->is_klass()) {
  1687           // a primitive Class (e.g., int.class) has NULL for a klass field
  1688           return TypePtr::NULL_PTR;
  1690         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1691         return TypeKlassPtr::make(t->as_klass());
  1693       // non-constant mirror, so we can't tell what's going on
  1695     if( !ik->is_loaded() )
  1696       return _type;             // Bail out if not loaded
  1697     if (offset == oopDesc::klass_offset_in_bytes()) {
  1698       if (tinst->klass_is_exact()) {
  1699         return TypeKlassPtr::make(ik);
  1701       // See if we can become precise: no subklasses and no interface
  1702       // (Note:  We need to support verified interfaces.)
  1703       if (!ik->is_interface() && !ik->has_subklass()) {
  1704         //assert(!UseExactTypes, "this code should be useless with exact types");
  1705         // Add a dependence; if any subclass added we need to recompile
  1706         if (!ik->is_final()) {
  1707           // %%% should use stronger assert_unique_concrete_subtype instead
  1708           phase->C->dependencies()->assert_leaf_type(ik);
  1710         // Return precise klass
  1711         return TypeKlassPtr::make(ik);
  1714       // Return root of possible klass
  1715       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1719   // Check for loading klass from an array
  1720   const TypeAryPtr *tary = tp->isa_aryptr();
  1721   if( tary != NULL ) {
  1722     ciKlass *tary_klass = tary->klass();
  1723     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1724         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1725       if (tary->klass_is_exact()) {
  1726         return TypeKlassPtr::make(tary_klass);
  1728       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1729       // If the klass is an object array, we defer the question to the
  1730       // array component klass.
  1731       if( ak->is_obj_array_klass() ) {
  1732         assert( ak->is_loaded(), "" );
  1733         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1734         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1735           ciInstanceKlass* ik = base_k->as_instance_klass();
  1736           // See if we can become precise: no subklasses and no interface
  1737           if (!ik->is_interface() && !ik->has_subklass()) {
  1738             //assert(!UseExactTypes, "this code should be useless with exact types");
  1739             // Add a dependence; if any subclass added we need to recompile
  1740             if (!ik->is_final()) {
  1741               phase->C->dependencies()->assert_leaf_type(ik);
  1743             // Return precise array klass
  1744             return TypeKlassPtr::make(ak);
  1747         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1748       } else {                  // Found a type-array?
  1749         //assert(!UseExactTypes, "this code should be useless with exact types");
  1750         assert( ak->is_type_array_klass(), "" );
  1751         return TypeKlassPtr::make(ak); // These are always precise
  1756   // Check for loading klass from an array klass
  1757   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1758   if (tkls != NULL && !StressReflectiveCode) {
  1759     ciKlass* klass = tkls->klass();
  1760     if( !klass->is_loaded() )
  1761       return _type;             // Bail out if not loaded
  1762     if( klass->is_obj_array_klass() &&
  1763         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1764       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1765       // // Always returning precise element type is incorrect,
  1766       // // e.g., element type could be object and array may contain strings
  1767       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1769       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1770       // according to the element type's subclassing.
  1771       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1773     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1774         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1775       ciKlass* sup = klass->as_instance_klass()->super();
  1776       // The field is Klass::_super.  Return its (constant) value.
  1777       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1778       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1782   // Bailout case
  1783   return LoadNode::Value(phase);
  1786 //------------------------------Identity---------------------------------------
  1787 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1788 // Also feed through the klass in Allocate(...klass...)._klass.
  1789 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1790   return klass_identity_common(phase);
  1793 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  1794   Node* x = LoadNode::Identity(phase);
  1795   if (x != this)  return x;
  1797   // Take apart the address into an oop and and offset.
  1798   // Return 'this' if we cannot.
  1799   Node*    adr    = in(MemNode::Address);
  1800   intptr_t offset = 0;
  1801   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1802   if (base == NULL)     return this;
  1803   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1804   if (toop == NULL)     return this;
  1806   // We can fetch the klass directly through an AllocateNode.
  1807   // This works even if the klass is not constant (clone or newArray).
  1808   if (offset == oopDesc::klass_offset_in_bytes()) {
  1809     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1810     if (allocated_klass != NULL) {
  1811       return allocated_klass;
  1815   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1816   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1817   // See inline_native_Class_query for occurrences of these patterns.
  1818   // Java Example:  x.getClass().isAssignableFrom(y)
  1819   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1820   //
  1821   // This improves reflective code, often making the Class
  1822   // mirror go completely dead.  (Current exception:  Class
  1823   // mirrors may appear in debug info, but we could clean them out by
  1824   // introducing a new debug info operator for klassOop.java_mirror).
  1825   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1826       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1827           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1828     // We are loading a special hidden field from a Class mirror,
  1829     // the field which points to its Klass or arrayKlass metaobject.
  1830     if (base->is_Load()) {
  1831       Node* adr2 = base->in(MemNode::Address);
  1832       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1833       if (tkls != NULL && !tkls->empty()
  1834           && (tkls->klass()->is_instance_klass() ||
  1835               tkls->klass()->is_array_klass())
  1836           && adr2->is_AddP()
  1837           ) {
  1838         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1839         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1840           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1842         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1843           return adr2->in(AddPNode::Base);
  1849   return this;
  1853 //------------------------------Value------------------------------------------
  1854 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  1855   const Type *t = klass_value_common(phase);
  1856   if (t == Type::TOP)
  1857     return t;
  1859   return t->make_narrowoop();
  1862 //------------------------------Identity---------------------------------------
  1863 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  1864 // Also feed through the klass in Allocate(...klass...)._klass.
  1865 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  1866   Node *x = klass_identity_common(phase);
  1868   const Type *t = phase->type( x );
  1869   if( t == Type::TOP ) return x;
  1870   if( t->isa_narrowoop()) return x;
  1872   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
  1875 //------------------------------Value-----------------------------------------
  1876 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1877   // Either input is TOP ==> the result is TOP
  1878   const Type *t1 = phase->type( in(MemNode::Memory) );
  1879   if( t1 == Type::TOP ) return Type::TOP;
  1880   Node *adr = in(MemNode::Address);
  1881   const Type *t2 = phase->type( adr );
  1882   if( t2 == Type::TOP ) return Type::TOP;
  1883   const TypePtr *tp = t2->is_ptr();
  1884   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1885   const TypeAryPtr *tap = tp->isa_aryptr();
  1886   if( !tap ) return _type;
  1887   return tap->size();
  1890 //-------------------------------Ideal---------------------------------------
  1891 // Feed through the length in AllocateArray(...length...)._length.
  1892 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1893   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1894   if (p)  return (p == NodeSentinel) ? NULL : p;
  1896   // Take apart the address into an oop and and offset.
  1897   // Return 'this' if we cannot.
  1898   Node*    adr    = in(MemNode::Address);
  1899   intptr_t offset = 0;
  1900   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  1901   if (base == NULL)     return NULL;
  1902   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1903   if (tary == NULL)     return NULL;
  1905   // We can fetch the length directly through an AllocateArrayNode.
  1906   // This works even if the length is not constant (clone or newArray).
  1907   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1908     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  1909     if (alloc != NULL) {
  1910       Node* allocated_length = alloc->Ideal_length();
  1911       Node* len = alloc->make_ideal_length(tary, phase);
  1912       if (allocated_length != len) {
  1913         // New CastII improves on this.
  1914         return len;
  1919   return NULL;
  1922 //------------------------------Identity---------------------------------------
  1923 // Feed through the length in AllocateArray(...length...)._length.
  1924 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1925   Node* x = LoadINode::Identity(phase);
  1926   if (x != this)  return x;
  1928   // Take apart the address into an oop and and offset.
  1929   // Return 'this' if we cannot.
  1930   Node*    adr    = in(MemNode::Address);
  1931   intptr_t offset = 0;
  1932   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1933   if (base == NULL)     return this;
  1934   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1935   if (tary == NULL)     return this;
  1937   // We can fetch the length directly through an AllocateArrayNode.
  1938   // This works even if the length is not constant (clone or newArray).
  1939   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1940     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  1941     if (alloc != NULL) {
  1942       Node* allocated_length = alloc->Ideal_length();
  1943       // Do not allow make_ideal_length to allocate a CastII node.
  1944       Node* len = alloc->make_ideal_length(tary, phase, false);
  1945       if (allocated_length == len) {
  1946         // Return allocated_length only if it would not be improved by a CastII.
  1947         return allocated_length;
  1952   return this;
  1956 //=============================================================================
  1957 //---------------------------StoreNode::make-----------------------------------
  1958 // Polymorphic factory method:
  1959 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  1960   Compile* C = gvn.C;
  1962   switch (bt) {
  1963   case T_BOOLEAN:
  1964   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  1965   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  1966   case T_CHAR:
  1967   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  1968   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  1969   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  1970   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  1971   case T_ADDRESS:
  1972   case T_OBJECT:
  1973 #ifdef _LP64
  1974     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
  1975         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
  1976          adr->bottom_type()->isa_rawptr())) {
  1977       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  1978       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
  1979     } else
  1980 #endif
  1982       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  1985   ShouldNotReachHere();
  1986   return (StoreNode*)NULL;
  1989 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  1990   bool require_atomic = true;
  1991   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  1995 //--------------------------bottom_type----------------------------------------
  1996 const Type *StoreNode::bottom_type() const {
  1997   return Type::MEMORY;
  2000 //------------------------------hash-------------------------------------------
  2001 uint StoreNode::hash() const {
  2002   // unroll addition of interesting fields
  2003   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  2005   // Since they are not commoned, do not hash them:
  2006   return NO_HASH;
  2009 //------------------------------Ideal------------------------------------------
  2010 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  2011 // When a store immediately follows a relevant allocation/initialization,
  2012 // try to capture it into the initialization, or hoist it above.
  2013 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2014   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2015   if (p)  return (p == NodeSentinel) ? NULL : p;
  2017   Node* mem     = in(MemNode::Memory);
  2018   Node* address = in(MemNode::Address);
  2020   // Back-to-back stores to same address?  Fold em up.
  2021   // Generally unsafe if I have intervening uses...
  2022   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  2023     // Looking at a dead closed cycle of memory?
  2024     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  2026     assert(Opcode() == mem->Opcode() ||
  2027            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  2028            "no mismatched stores, except on raw memory");
  2030     if (mem->outcnt() == 1 &&           // check for intervening uses
  2031         mem->as_Store()->memory_size() <= this->memory_size()) {
  2032       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  2033       // For example, 'mem' might be the final state at a conditional return.
  2034       // Or, 'mem' might be used by some node which is live at the same time
  2035       // 'this' is live, which might be unschedulable.  So, require exactly
  2036       // ONE user, the 'this' store, until such time as we clone 'mem' for
  2037       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  2038       if (can_reshape) {  // (%%% is this an anachronism?)
  2039         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  2040                   phase->is_IterGVN());
  2041       } else {
  2042         // It's OK to do this in the parser, since DU info is always accurate,
  2043         // and the parser always refers to nodes via SafePointNode maps.
  2044         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2046       return this;
  2050   // Capture an unaliased, unconditional, simple store into an initializer.
  2051   // Or, if it is independent of the allocation, hoist it above the allocation.
  2052   if (ReduceFieldZeroing && /*can_reshape &&*/
  2053       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2054     InitializeNode* init = mem->in(0)->as_Initialize();
  2055     intptr_t offset = init->can_capture_store(this, phase);
  2056     if (offset > 0) {
  2057       Node* moved = init->capture_store(this, offset, phase);
  2058       // If the InitializeNode captured me, it made a raw copy of me,
  2059       // and I need to disappear.
  2060       if (moved != NULL) {
  2061         // %%% hack to ensure that Ideal returns a new node:
  2062         mem = MergeMemNode::make(phase->C, mem);
  2063         return mem;             // fold me away
  2068   return NULL;                  // No further progress
  2071 //------------------------------Value-----------------------------------------
  2072 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2073   // Either input is TOP ==> the result is TOP
  2074   const Type *t1 = phase->type( in(MemNode::Memory) );
  2075   if( t1 == Type::TOP ) return Type::TOP;
  2076   const Type *t2 = phase->type( in(MemNode::Address) );
  2077   if( t2 == Type::TOP ) return Type::TOP;
  2078   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2079   if( t3 == Type::TOP ) return Type::TOP;
  2080   return Type::MEMORY;
  2083 //------------------------------Identity---------------------------------------
  2084 // Remove redundant stores:
  2085 //   Store(m, p, Load(m, p)) changes to m.
  2086 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2087 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2088   Node* mem = in(MemNode::Memory);
  2089   Node* adr = in(MemNode::Address);
  2090   Node* val = in(MemNode::ValueIn);
  2092   // Load then Store?  Then the Store is useless
  2093   if (val->is_Load() &&
  2094       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  2095       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  2096       val->as_Load()->store_Opcode() == Opcode()) {
  2097     return mem;
  2100   // Two stores in a row of the same value?
  2101   if (mem->is_Store() &&
  2102       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  2103       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  2104       mem->Opcode() == Opcode()) {
  2105     return mem;
  2108   // Store of zero anywhere into a freshly-allocated object?
  2109   // Then the store is useless.
  2110   // (It must already have been captured by the InitializeNode.)
  2111   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2112     // a newly allocated object is already all-zeroes everywhere
  2113     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2114       return mem;
  2117     // the store may also apply to zero-bits in an earlier object
  2118     Node* prev_mem = find_previous_store(phase);
  2119     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2120     if (prev_mem != NULL) {
  2121       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2122       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2123         // prev_val and val might differ by a cast; it would be good
  2124         // to keep the more informative of the two.
  2125         return mem;
  2130   return this;
  2133 //------------------------------match_edge-------------------------------------
  2134 // Do we Match on this edge index or not?  Match only memory & value
  2135 uint StoreNode::match_edge(uint idx) const {
  2136   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2139 //------------------------------cmp--------------------------------------------
  2140 // Do not common stores up together.  They generally have to be split
  2141 // back up anyways, so do not bother.
  2142 uint StoreNode::cmp( const Node &n ) const {
  2143   return (&n == this);          // Always fail except on self
  2146 //------------------------------Ideal_masked_input-----------------------------
  2147 // Check for a useless mask before a partial-word store
  2148 // (StoreB ... (AndI valIn conIa) )
  2149 // If (conIa & mask == mask) this simplifies to
  2150 // (StoreB ... (valIn) )
  2151 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2152   Node *val = in(MemNode::ValueIn);
  2153   if( val->Opcode() == Op_AndI ) {
  2154     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2155     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2156       set_req(MemNode::ValueIn, val->in(1));
  2157       return this;
  2160   return NULL;
  2164 //------------------------------Ideal_sign_extended_input----------------------
  2165 // Check for useless sign-extension before a partial-word store
  2166 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2167 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2168 // (StoreB ... (valIn) )
  2169 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2170   Node *val = in(MemNode::ValueIn);
  2171   if( val->Opcode() == Op_RShiftI ) {
  2172     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2173     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2174       Node *shl = val->in(1);
  2175       if( shl->Opcode() == Op_LShiftI ) {
  2176         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2177         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2178           set_req(MemNode::ValueIn, shl->in(1));
  2179           return this;
  2184   return NULL;
  2187 //------------------------------value_never_loaded-----------------------------------
  2188 // Determine whether there are any possible loads of the value stored.
  2189 // For simplicity, we actually check if there are any loads from the
  2190 // address stored to, not just for loads of the value stored by this node.
  2191 //
  2192 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2193   Node *adr = in(Address);
  2194   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2195   if (adr_oop == NULL)
  2196     return false;
  2197   if (!adr_oop->is_known_instance_field())
  2198     return false; // if not a distinct instance, there may be aliases of the address
  2199   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2200     Node *use = adr->fast_out(i);
  2201     int opc = use->Opcode();
  2202     if (use->is_Load() || use->is_LoadStore()) {
  2203       return false;
  2206   return true;
  2209 //=============================================================================
  2210 //------------------------------Ideal------------------------------------------
  2211 // If the store is from an AND mask that leaves the low bits untouched, then
  2212 // we can skip the AND operation.  If the store is from a sign-extension
  2213 // (a left shift, then right shift) we can skip both.
  2214 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2215   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2216   if( progress != NULL ) return progress;
  2218   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2219   if( progress != NULL ) return progress;
  2221   // Finally check the default case
  2222   return StoreNode::Ideal(phase, can_reshape);
  2225 //=============================================================================
  2226 //------------------------------Ideal------------------------------------------
  2227 // If the store is from an AND mask that leaves the low bits untouched, then
  2228 // we can skip the AND operation
  2229 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2230   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2231   if( progress != NULL ) return progress;
  2233   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2234   if( progress != NULL ) return progress;
  2236   // Finally check the default case
  2237   return StoreNode::Ideal(phase, can_reshape);
  2240 //=============================================================================
  2241 //------------------------------Identity---------------------------------------
  2242 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2243   // No need to card mark when storing a null ptr
  2244   Node* my_store = in(MemNode::OopStore);
  2245   if (my_store->is_Store()) {
  2246     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2247     if( t1 == TypePtr::NULL_PTR ) {
  2248       return in(MemNode::Memory);
  2251   return this;
  2254 //------------------------------Value-----------------------------------------
  2255 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2256   // Either input is TOP ==> the result is TOP
  2257   const Type *t = phase->type( in(MemNode::Memory) );
  2258   if( t == Type::TOP ) return Type::TOP;
  2259   t = phase->type( in(MemNode::Address) );
  2260   if( t == Type::TOP ) return Type::TOP;
  2261   t = phase->type( in(MemNode::ValueIn) );
  2262   if( t == Type::TOP ) return Type::TOP;
  2263   // If extra input is TOP ==> the result is TOP
  2264   t = phase->type( in(MemNode::OopStore) );
  2265   if( t == Type::TOP ) return Type::TOP;
  2267   return StoreNode::Value( phase );
  2271 //=============================================================================
  2272 //----------------------------------SCMemProjNode------------------------------
  2273 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2275   return bottom_type();
  2278 //=============================================================================
  2279 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2280   init_req(MemNode::Control, c  );
  2281   init_req(MemNode::Memory , mem);
  2282   init_req(MemNode::Address, adr);
  2283   init_req(MemNode::ValueIn, val);
  2284   init_req(         ExpectedIn, ex );
  2285   init_class_id(Class_LoadStore);
  2289 //=============================================================================
  2290 //-------------------------------adr_type--------------------------------------
  2291 // Do we Match on this edge index or not?  Do not match memory
  2292 const TypePtr* ClearArrayNode::adr_type() const {
  2293   Node *adr = in(3);
  2294   return MemNode::calculate_adr_type(adr->bottom_type());
  2297 //------------------------------match_edge-------------------------------------
  2298 // Do we Match on this edge index or not?  Do not match memory
  2299 uint ClearArrayNode::match_edge(uint idx) const {
  2300   return idx > 1;
  2303 //------------------------------Identity---------------------------------------
  2304 // Clearing a zero length array does nothing
  2305 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2306   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2309 //------------------------------Idealize---------------------------------------
  2310 // Clearing a short array is faster with stores
  2311 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2312   const int unit = BytesPerLong;
  2313   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2314   if (!t)  return NULL;
  2315   if (!t->is_con())  return NULL;
  2316   intptr_t raw_count = t->get_con();
  2317   intptr_t size = raw_count;
  2318   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2319   // Clearing nothing uses the Identity call.
  2320   // Negative clears are possible on dead ClearArrays
  2321   // (see jck test stmt114.stmt11402.val).
  2322   if (size <= 0 || size % unit != 0)  return NULL;
  2323   intptr_t count = size / unit;
  2324   // Length too long; use fast hardware clear
  2325   if (size > Matcher::init_array_short_size)  return NULL;
  2326   Node *mem = in(1);
  2327   if( phase->type(mem)==Type::TOP ) return NULL;
  2328   Node *adr = in(3);
  2329   const Type* at = phase->type(adr);
  2330   if( at==Type::TOP ) return NULL;
  2331   const TypePtr* atp = at->isa_ptr();
  2332   // adjust atp to be the correct array element address type
  2333   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2334   else              atp = atp->add_offset(Type::OffsetBot);
  2335   // Get base for derived pointer purposes
  2336   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2337   Node *base = adr->in(1);
  2339   Node *zero = phase->makecon(TypeLong::ZERO);
  2340   Node *off  = phase->MakeConX(BytesPerLong);
  2341   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2342   count--;
  2343   while( count-- ) {
  2344     mem = phase->transform(mem);
  2345     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2346     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2348   return mem;
  2351 //----------------------------clear_memory-------------------------------------
  2352 // Generate code to initialize object storage to zero.
  2353 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2354                                    intptr_t start_offset,
  2355                                    Node* end_offset,
  2356                                    PhaseGVN* phase) {
  2357   Compile* C = phase->C;
  2358   intptr_t offset = start_offset;
  2360   int unit = BytesPerLong;
  2361   if ((offset % unit) != 0) {
  2362     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2363     adr = phase->transform(adr);
  2364     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2365     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2366     mem = phase->transform(mem);
  2367     offset += BytesPerInt;
  2369   assert((offset % unit) == 0, "");
  2371   // Initialize the remaining stuff, if any, with a ClearArray.
  2372   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2375 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2376                                    Node* start_offset,
  2377                                    Node* end_offset,
  2378                                    PhaseGVN* phase) {
  2379   if (start_offset == end_offset) {
  2380     // nothing to do
  2381     return mem;
  2384   Compile* C = phase->C;
  2385   int unit = BytesPerLong;
  2386   Node* zbase = start_offset;
  2387   Node* zend  = end_offset;
  2389   // Scale to the unit required by the CPU:
  2390   if (!Matcher::init_array_count_is_in_bytes) {
  2391     Node* shift = phase->intcon(exact_log2(unit));
  2392     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2393     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2396   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2397   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2399   // Bulk clear double-words
  2400   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2401   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2402   return phase->transform(mem);
  2405 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2406                                    intptr_t start_offset,
  2407                                    intptr_t end_offset,
  2408                                    PhaseGVN* phase) {
  2409   if (start_offset == end_offset) {
  2410     // nothing to do
  2411     return mem;
  2414   Compile* C = phase->C;
  2415   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2416   intptr_t done_offset = end_offset;
  2417   if ((done_offset % BytesPerLong) != 0) {
  2418     done_offset -= BytesPerInt;
  2420   if (done_offset > start_offset) {
  2421     mem = clear_memory(ctl, mem, dest,
  2422                        start_offset, phase->MakeConX(done_offset), phase);
  2424   if (done_offset < end_offset) { // emit the final 32-bit store
  2425     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2426     adr = phase->transform(adr);
  2427     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2428     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2429     mem = phase->transform(mem);
  2430     done_offset += BytesPerInt;
  2432   assert(done_offset == end_offset, "");
  2433   return mem;
  2436 //=============================================================================
  2437 // Do we match on this edge? No memory edges
  2438 uint StrCompNode::match_edge(uint idx) const {
  2439   return idx == 5 || idx == 6;
  2442 //------------------------------Ideal------------------------------------------
  2443 // Return a node which is more "ideal" than the current node.  Strip out
  2444 // control copies
  2445 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2446   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2449 //------------------------------Ideal------------------------------------------
  2450 // Return a node which is more "ideal" than the current node.  Strip out
  2451 // control copies
  2452 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2453   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2457 //=============================================================================
  2458 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2459   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2460     _adr_type(C->get_adr_type(alias_idx))
  2462   init_class_id(Class_MemBar);
  2463   Node* top = C->top();
  2464   init_req(TypeFunc::I_O,top);
  2465   init_req(TypeFunc::FramePtr,top);
  2466   init_req(TypeFunc::ReturnAdr,top);
  2467   if (precedent != NULL)
  2468     init_req(TypeFunc::Parms, precedent);
  2471 //------------------------------cmp--------------------------------------------
  2472 uint MemBarNode::hash() const { return NO_HASH; }
  2473 uint MemBarNode::cmp( const Node &n ) const {
  2474   return (&n == this);          // Always fail except on self
  2477 //------------------------------make-------------------------------------------
  2478 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2479   int len = Precedent + (pn == NULL? 0: 1);
  2480   switch (opcode) {
  2481   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2482   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2483   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2484   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2485   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2486   default:                 ShouldNotReachHere(); return NULL;
  2490 //------------------------------Ideal------------------------------------------
  2491 // Return a node which is more "ideal" than the current node.  Strip out
  2492 // control copies
  2493 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2494   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2497 //------------------------------Value------------------------------------------
  2498 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2499   if( !in(0) ) return Type::TOP;
  2500   if( phase->type(in(0)) == Type::TOP )
  2501     return Type::TOP;
  2502   return TypeTuple::MEMBAR;
  2505 //------------------------------match------------------------------------------
  2506 // Construct projections for memory.
  2507 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2508   switch (proj->_con) {
  2509   case TypeFunc::Control:
  2510   case TypeFunc::Memory:
  2511     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2513   ShouldNotReachHere();
  2514   return NULL;
  2517 //===========================InitializeNode====================================
  2518 // SUMMARY:
  2519 // This node acts as a memory barrier on raw memory, after some raw stores.
  2520 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2521 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2522 // It can coalesce related raw stores into larger units (called 'tiles').
  2523 // It can avoid zeroing new storage for memory units which have raw inits.
  2524 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2525 //
  2526 // EXAMPLE:
  2527 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2528 //   ctl = incoming control; mem* = incoming memory
  2529 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2530 // First allocate uninitialized memory and fill in the header:
  2531 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2532 //   ctl := alloc.Control; mem* := alloc.Memory*
  2533 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2534 // Then initialize to zero the non-header parts of the raw memory block:
  2535 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2536 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2537 // After the initialize node executes, the object is ready for service:
  2538 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2539 // Suppose its body is immediately initialized as {1,2}:
  2540 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2541 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2542 //   mem.SLICE(#short[*]) := store2
  2543 //
  2544 // DETAILS:
  2545 // An InitializeNode collects and isolates object initialization after
  2546 // an AllocateNode and before the next possible safepoint.  As a
  2547 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2548 // down past any safepoint or any publication of the allocation.
  2549 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2550 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2551 //
  2552 // The semantics of the InitializeNode include an implicit zeroing of
  2553 // the new object from object header to the end of the object.
  2554 // (The object header and end are determined by the AllocateNode.)
  2555 //
  2556 // Certain stores may be added as direct inputs to the InitializeNode.
  2557 // These stores must update raw memory, and they must be to addresses
  2558 // derived from the raw address produced by AllocateNode, and with
  2559 // a constant offset.  They must be ordered by increasing offset.
  2560 // The first one is at in(RawStores), the last at in(req()-1).
  2561 // Unlike most memory operations, they are not linked in a chain,
  2562 // but are displayed in parallel as users of the rawmem output of
  2563 // the allocation.
  2564 //
  2565 // (See comments in InitializeNode::capture_store, which continue
  2566 // the example given above.)
  2567 //
  2568 // When the associated Allocate is macro-expanded, the InitializeNode
  2569 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2570 // may also be created at that point to represent any required zeroing.
  2571 // The InitializeNode is then marked 'complete', prohibiting further
  2572 // capturing of nearby memory operations.
  2573 //
  2574 // During macro-expansion, all captured initializations which store
  2575 // constant values of 32 bits or smaller are coalesced (if advantagous)
  2576 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2577 // initialized in fewer memory operations.  Memory words which are
  2578 // covered by neither tiles nor non-constant stores are pre-zeroed
  2579 // by explicit stores of zero.  (The code shape happens to do all
  2580 // zeroing first, then all other stores, with both sequences occurring
  2581 // in order of ascending offsets.)
  2582 //
  2583 // Alternatively, code may be inserted between an AllocateNode and its
  2584 // InitializeNode, to perform arbitrary initialization of the new object.
  2585 // E.g., the object copying intrinsics insert complex data transfers here.
  2586 // The initialization must then be marked as 'complete' disable the
  2587 // built-in zeroing semantics and the collection of initializing stores.
  2588 //
  2589 // While an InitializeNode is incomplete, reads from the memory state
  2590 // produced by it are optimizable if they match the control edge and
  2591 // new oop address associated with the allocation/initialization.
  2592 // They return a stored value (if the offset matches) or else zero.
  2593 // A write to the memory state, if it matches control and address,
  2594 // and if it is to a constant offset, may be 'captured' by the
  2595 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2596 // inside the initialization, to the raw oop produced by the allocation.
  2597 // Operations on addresses which are provably distinct (e.g., to
  2598 // other AllocateNodes) are allowed to bypass the initialization.
  2599 //
  2600 // The effect of all this is to consolidate object initialization
  2601 // (both arrays and non-arrays, both piecewise and bulk) into a
  2602 // single location, where it can be optimized as a unit.
  2603 //
  2604 // Only stores with an offset less than TrackedInitializationLimit words
  2605 // will be considered for capture by an InitializeNode.  This puts a
  2606 // reasonable limit on the complexity of optimized initializations.
  2608 //---------------------------InitializeNode------------------------------------
  2609 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2610   : _is_complete(false),
  2611     MemBarNode(C, adr_type, rawoop)
  2613   init_class_id(Class_Initialize);
  2615   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2616   assert(in(RawAddress) == rawoop, "proper init");
  2617   // Note:  allocation() can be NULL, for secondary initialization barriers
  2620 // Since this node is not matched, it will be processed by the
  2621 // register allocator.  Declare that there are no constraints
  2622 // on the allocation of the RawAddress edge.
  2623 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2624   // This edge should be set to top, by the set_complete.  But be conservative.
  2625   if (idx == InitializeNode::RawAddress)
  2626     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2627   return RegMask::Empty;
  2630 Node* InitializeNode::memory(uint alias_idx) {
  2631   Node* mem = in(Memory);
  2632   if (mem->is_MergeMem()) {
  2633     return mem->as_MergeMem()->memory_at(alias_idx);
  2634   } else {
  2635     // incoming raw memory is not split
  2636     return mem;
  2640 bool InitializeNode::is_non_zero() {
  2641   if (is_complete())  return false;
  2642   remove_extra_zeroes();
  2643   return (req() > RawStores);
  2646 void InitializeNode::set_complete(PhaseGVN* phase) {
  2647   assert(!is_complete(), "caller responsibility");
  2648   _is_complete = true;
  2650   // After this node is complete, it contains a bunch of
  2651   // raw-memory initializations.  There is no need for
  2652   // it to have anything to do with non-raw memory effects.
  2653   // Therefore, tell all non-raw users to re-optimize themselves,
  2654   // after skipping the memory effects of this initialization.
  2655   PhaseIterGVN* igvn = phase->is_IterGVN();
  2656   if (igvn)  igvn->add_users_to_worklist(this);
  2659 // convenience function
  2660 // return false if the init contains any stores already
  2661 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2662   InitializeNode* init = initialization();
  2663   if (init == NULL || init->is_complete())  return false;
  2664   init->remove_extra_zeroes();
  2665   // for now, if this allocation has already collected any inits, bail:
  2666   if (init->is_non_zero())  return false;
  2667   init->set_complete(phase);
  2668   return true;
  2671 void InitializeNode::remove_extra_zeroes() {
  2672   if (req() == RawStores)  return;
  2673   Node* zmem = zero_memory();
  2674   uint fill = RawStores;
  2675   for (uint i = fill; i < req(); i++) {
  2676     Node* n = in(i);
  2677     if (n->is_top() || n == zmem)  continue;  // skip
  2678     if (fill < i)  set_req(fill, n);          // compact
  2679     ++fill;
  2681   // delete any empty spaces created:
  2682   while (fill < req()) {
  2683     del_req(fill);
  2687 // Helper for remembering which stores go with which offsets.
  2688 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2689   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2690   intptr_t offset = -1;
  2691   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2692                                                phase, offset);
  2693   if (base == NULL)     return -1;  // something is dead,
  2694   if (offset < 0)       return -1;  //        dead, dead
  2695   return offset;
  2698 // Helper for proving that an initialization expression is
  2699 // "simple enough" to be folded into an object initialization.
  2700 // Attempts to prove that a store's initial value 'n' can be captured
  2701 // within the initialization without creating a vicious cycle, such as:
  2702 //     { Foo p = new Foo(); p.next = p; }
  2703 // True for constants and parameters and small combinations thereof.
  2704 bool InitializeNode::detect_init_independence(Node* n,
  2705                                               bool st_is_pinned,
  2706                                               int& count) {
  2707   if (n == NULL)      return true;   // (can this really happen?)
  2708   if (n->is_Proj())   n = n->in(0);
  2709   if (n == this)      return false;  // found a cycle
  2710   if (n->is_Con())    return true;
  2711   if (n->is_Start())  return true;   // params, etc., are OK
  2712   if (n->is_Root())   return true;   // even better
  2714   Node* ctl = n->in(0);
  2715   if (ctl != NULL && !ctl->is_top()) {
  2716     if (ctl->is_Proj())  ctl = ctl->in(0);
  2717     if (ctl == this)  return false;
  2719     // If we already know that the enclosing memory op is pinned right after
  2720     // the init, then any control flow that the store has picked up
  2721     // must have preceded the init, or else be equal to the init.
  2722     // Even after loop optimizations (which might change control edges)
  2723     // a store is never pinned *before* the availability of its inputs.
  2724     if (!MemNode::all_controls_dominate(n, this))
  2725       return false;                  // failed to prove a good control
  2729   // Check data edges for possible dependencies on 'this'.
  2730   if ((count += 1) > 20)  return false;  // complexity limit
  2731   for (uint i = 1; i < n->req(); i++) {
  2732     Node* m = n->in(i);
  2733     if (m == NULL || m == n || m->is_top())  continue;
  2734     uint first_i = n->find_edge(m);
  2735     if (i != first_i)  continue;  // process duplicate edge just once
  2736     if (!detect_init_independence(m, st_is_pinned, count)) {
  2737       return false;
  2741   return true;
  2744 // Here are all the checks a Store must pass before it can be moved into
  2745 // an initialization.  Returns zero if a check fails.
  2746 // On success, returns the (constant) offset to which the store applies,
  2747 // within the initialized memory.
  2748 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2749   const int FAIL = 0;
  2750   if (st->req() != MemNode::ValueIn + 1)
  2751     return FAIL;                // an inscrutable StoreNode (card mark?)
  2752   Node* ctl = st->in(MemNode::Control);
  2753   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2754     return FAIL;                // must be unconditional after the initialization
  2755   Node* mem = st->in(MemNode::Memory);
  2756   if (!(mem->is_Proj() && mem->in(0) == this))
  2757     return FAIL;                // must not be preceded by other stores
  2758   Node* adr = st->in(MemNode::Address);
  2759   intptr_t offset;
  2760   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2761   if (alloc == NULL)
  2762     return FAIL;                // inscrutable address
  2763   if (alloc != allocation())
  2764     return FAIL;                // wrong allocation!  (store needs to float up)
  2765   Node* val = st->in(MemNode::ValueIn);
  2766   int complexity_count = 0;
  2767   if (!detect_init_independence(val, true, complexity_count))
  2768     return FAIL;                // stored value must be 'simple enough'
  2770   return offset;                // success
  2773 // Find the captured store in(i) which corresponds to the range
  2774 // [start..start+size) in the initialized object.
  2775 // If there is one, return its index i.  If there isn't, return the
  2776 // negative of the index where it should be inserted.
  2777 // Return 0 if the queried range overlaps an initialization boundary
  2778 // or if dead code is encountered.
  2779 // If size_in_bytes is zero, do not bother with overlap checks.
  2780 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2781                                                    int size_in_bytes,
  2782                                                    PhaseTransform* phase) {
  2783   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2785   if (is_complete())
  2786     return FAIL;                // arraycopy got here first; punt
  2788   assert(allocation() != NULL, "must be present");
  2790   // no negatives, no header fields:
  2791   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2793   // after a certain size, we bail out on tracking all the stores:
  2794   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2795   if (start >= ti_limit)  return FAIL;
  2797   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2798     if (i >= limit)  return -(int)i; // not found; here is where to put it
  2800     Node*    st     = in(i);
  2801     intptr_t st_off = get_store_offset(st, phase);
  2802     if (st_off < 0) {
  2803       if (st != zero_memory()) {
  2804         return FAIL;            // bail out if there is dead garbage
  2806     } else if (st_off > start) {
  2807       // ...we are done, since stores are ordered
  2808       if (st_off < start + size_in_bytes) {
  2809         return FAIL;            // the next store overlaps
  2811       return -(int)i;           // not found; here is where to put it
  2812     } else if (st_off < start) {
  2813       if (size_in_bytes != 0 &&
  2814           start < st_off + MAX_STORE &&
  2815           start < st_off + st->as_Store()->memory_size()) {
  2816         return FAIL;            // the previous store overlaps
  2818     } else {
  2819       if (size_in_bytes != 0 &&
  2820           st->as_Store()->memory_size() != size_in_bytes) {
  2821         return FAIL;            // mismatched store size
  2823       return i;
  2826     ++i;
  2830 // Look for a captured store which initializes at the offset 'start'
  2831 // with the given size.  If there is no such store, and no other
  2832 // initialization interferes, then return zero_memory (the memory
  2833 // projection of the AllocateNode).
  2834 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  2835                                           PhaseTransform* phase) {
  2836   assert(stores_are_sane(phase), "");
  2837   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2838   if (i == 0) {
  2839     return NULL;                // something is dead
  2840   } else if (i < 0) {
  2841     return zero_memory();       // just primordial zero bits here
  2842   } else {
  2843     Node* st = in(i);           // here is the store at this position
  2844     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  2845     return st;
  2849 // Create, as a raw pointer, an address within my new object at 'offset'.
  2850 Node* InitializeNode::make_raw_address(intptr_t offset,
  2851                                        PhaseTransform* phase) {
  2852   Node* addr = in(RawAddress);
  2853   if (offset != 0) {
  2854     Compile* C = phase->C;
  2855     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  2856                                                  phase->MakeConX(offset)) );
  2858   return addr;
  2861 // Clone the given store, converting it into a raw store
  2862 // initializing a field or element of my new object.
  2863 // Caller is responsible for retiring the original store,
  2864 // with subsume_node or the like.
  2865 //
  2866 // From the example above InitializeNode::InitializeNode,
  2867 // here are the old stores to be captured:
  2868 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2869 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2870 //
  2871 // Here is the changed code; note the extra edges on init:
  2872 //   alloc = (Allocate ...)
  2873 //   rawoop = alloc.RawAddress
  2874 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  2875 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  2876 //   init = (Initialize alloc.Control alloc.Memory rawoop
  2877 //                      rawstore1 rawstore2)
  2878 //
  2879 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  2880                                     PhaseTransform* phase) {
  2881   assert(stores_are_sane(phase), "");
  2883   if (start < 0)  return NULL;
  2884   assert(can_capture_store(st, phase) == start, "sanity");
  2886   Compile* C = phase->C;
  2887   int size_in_bytes = st->memory_size();
  2888   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2889   if (i == 0)  return NULL;     // bail out
  2890   Node* prev_mem = NULL;        // raw memory for the captured store
  2891   if (i > 0) {
  2892     prev_mem = in(i);           // there is a pre-existing store under this one
  2893     set_req(i, C->top());       // temporarily disconnect it
  2894     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  2895   } else {
  2896     i = -i;                     // no pre-existing store
  2897     prev_mem = zero_memory();   // a slice of the newly allocated object
  2898     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  2899       set_req(--i, C->top());   // reuse this edge; it has been folded away
  2900     else
  2901       ins_req(i, C->top());     // build a new edge
  2903   Node* new_st = st->clone();
  2904   new_st->set_req(MemNode::Control, in(Control));
  2905   new_st->set_req(MemNode::Memory,  prev_mem);
  2906   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  2907   new_st = phase->transform(new_st);
  2909   // At this point, new_st might have swallowed a pre-existing store
  2910   // at the same offset, or perhaps new_st might have disappeared,
  2911   // if it redundantly stored the same value (or zero to fresh memory).
  2913   // In any case, wire it in:
  2914   set_req(i, new_st);
  2916   // The caller may now kill the old guy.
  2917   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  2918   assert(check_st == new_st || check_st == NULL, "must be findable");
  2919   assert(!is_complete(), "");
  2920   return new_st;
  2923 static bool store_constant(jlong* tiles, int num_tiles,
  2924                            intptr_t st_off, int st_size,
  2925                            jlong con) {
  2926   if ((st_off & (st_size-1)) != 0)
  2927     return false;               // strange store offset (assume size==2**N)
  2928   address addr = (address)tiles + st_off;
  2929   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  2930   switch (st_size) {
  2931   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  2932   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  2933   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  2934   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  2935   default: return false;        // strange store size (detect size!=2**N here)
  2937   return true;                  // return success to caller
  2940 // Coalesce subword constants into int constants and possibly
  2941 // into long constants.  The goal, if the CPU permits,
  2942 // is to initialize the object with a small number of 64-bit tiles.
  2943 // Also, convert floating-point constants to bit patterns.
  2944 // Non-constants are not relevant to this pass.
  2945 //
  2946 // In terms of the running example on InitializeNode::InitializeNode
  2947 // and InitializeNode::capture_store, here is the transformation
  2948 // of rawstore1 and rawstore2 into rawstore12:
  2949 //   alloc = (Allocate ...)
  2950 //   rawoop = alloc.RawAddress
  2951 //   tile12 = 0x00010002
  2952 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  2953 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  2954 //
  2955 void
  2956 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  2957                                         Node* size_in_bytes,
  2958                                         PhaseGVN* phase) {
  2959   Compile* C = phase->C;
  2961   assert(stores_are_sane(phase), "");
  2962   // Note:  After this pass, they are not completely sane,
  2963   // since there may be some overlaps.
  2965   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  2967   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2968   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  2969   size_limit = MIN2(size_limit, ti_limit);
  2970   size_limit = align_size_up(size_limit, BytesPerLong);
  2971   int num_tiles = size_limit / BytesPerLong;
  2973   // allocate space for the tile map:
  2974   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  2975   jlong  tiles_buf[small_len];
  2976   Node*  nodes_buf[small_len];
  2977   jlong  inits_buf[small_len];
  2978   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  2979                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2980   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  2981                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  2982   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  2983                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2984   // tiles: exact bitwise model of all primitive constants
  2985   // nodes: last constant-storing node subsumed into the tiles model
  2986   // inits: which bytes (in each tile) are touched by any initializations
  2988   //// Pass A: Fill in the tile model with any relevant stores.
  2990   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  2991   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  2992   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  2993   Node* zmem = zero_memory(); // initially zero memory state
  2994   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2995     Node* st = in(i);
  2996     intptr_t st_off = get_store_offset(st, phase);
  2998     // Figure out the store's offset and constant value:
  2999     if (st_off < header_size)             continue; //skip (ignore header)
  3000     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  3001     int st_size = st->as_Store()->memory_size();
  3002     if (st_off + st_size > size_limit)    break;
  3004     // Record which bytes are touched, whether by constant or not.
  3005     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  3006       continue;                 // skip (strange store size)
  3008     const Type* val = phase->type(st->in(MemNode::ValueIn));
  3009     if (!val->singleton())                continue; //skip (non-con store)
  3010     BasicType type = val->basic_type();
  3012     jlong con = 0;
  3013     switch (type) {
  3014     case T_INT:    con = val->is_int()->get_con();  break;
  3015     case T_LONG:   con = val->is_long()->get_con(); break;
  3016     case T_FLOAT:  con = jint_cast(val->getf());    break;
  3017     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  3018     default:                              continue; //skip (odd store type)
  3021     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  3022         st->Opcode() == Op_StoreL) {
  3023       continue;                 // This StoreL is already optimal.
  3026     // Store down the constant.
  3027     store_constant(tiles, num_tiles, st_off, st_size, con);
  3029     intptr_t j = st_off >> LogBytesPerLong;
  3031     if (type == T_INT && st_size == BytesPerInt
  3032         && (st_off & BytesPerInt) == BytesPerInt) {
  3033       jlong lcon = tiles[j];
  3034       if (!Matcher::isSimpleConstant64(lcon) &&
  3035           st->Opcode() == Op_StoreI) {
  3036         // This StoreI is already optimal by itself.
  3037         jint* intcon = (jint*) &tiles[j];
  3038         intcon[1] = 0;  // undo the store_constant()
  3040         // If the previous store is also optimal by itself, back up and
  3041         // undo the action of the previous loop iteration... if we can.
  3042         // But if we can't, just let the previous half take care of itself.
  3043         st = nodes[j];
  3044         st_off -= BytesPerInt;
  3045         con = intcon[0];
  3046         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3047           assert(st_off >= header_size, "still ignoring header");
  3048           assert(get_store_offset(st, phase) == st_off, "must be");
  3049           assert(in(i-1) == zmem, "must be");
  3050           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3051           assert(con == tcon->is_int()->get_con(), "must be");
  3052           // Undo the effects of the previous loop trip, which swallowed st:
  3053           intcon[0] = 0;        // undo store_constant()
  3054           set_req(i-1, st);     // undo set_req(i, zmem)
  3055           nodes[j] = NULL;      // undo nodes[j] = st
  3056           --old_subword;        // undo ++old_subword
  3058         continue;               // This StoreI is already optimal.
  3062     // This store is not needed.
  3063     set_req(i, zmem);
  3064     nodes[j] = st;              // record for the moment
  3065     if (st_size < BytesPerLong) // something has changed
  3066           ++old_subword;        // includes int/float, but who's counting...
  3067     else  ++old_long;
  3070   if ((old_subword + old_long) == 0)
  3071     return;                     // nothing more to do
  3073   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3074   // Be sure to insert them before overlapping non-constant stores.
  3075   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3076   for (int j = 0; j < num_tiles; j++) {
  3077     jlong con  = tiles[j];
  3078     jlong init = inits[j];
  3079     if (con == 0)  continue;
  3080     jint con0,  con1;           // split the constant, address-wise
  3081     jint init0, init1;          // split the init map, address-wise
  3082     { union { jlong con; jint intcon[2]; } u;
  3083       u.con = con;
  3084       con0  = u.intcon[0];
  3085       con1  = u.intcon[1];
  3086       u.con = init;
  3087       init0 = u.intcon[0];
  3088       init1 = u.intcon[1];
  3091     Node* old = nodes[j];
  3092     assert(old != NULL, "need the prior store");
  3093     intptr_t offset = (j * BytesPerLong);
  3095     bool split = !Matcher::isSimpleConstant64(con);
  3097     if (offset < header_size) {
  3098       assert(offset + BytesPerInt >= header_size, "second int counts");
  3099       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3100       split = true;             // only the second word counts
  3101       // Example:  int a[] = { 42 ... }
  3102     } else if (con0 == 0 && init0 == -1) {
  3103       split = true;             // first word is covered by full inits
  3104       // Example:  int a[] = { ... foo(), 42 ... }
  3105     } else if (con1 == 0 && init1 == -1) {
  3106       split = true;             // second word is covered by full inits
  3107       // Example:  int a[] = { ... 42, foo() ... }
  3110     // Here's a case where init0 is neither 0 nor -1:
  3111     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3112     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3113     // In this case the tile is not split; it is (jlong)42.
  3114     // The big tile is stored down, and then the foo() value is inserted.
  3115     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3117     Node* ctl = old->in(MemNode::Control);
  3118     Node* adr = make_raw_address(offset, phase);
  3119     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3121     // One or two coalesced stores to plop down.
  3122     Node*    st[2];
  3123     intptr_t off[2];
  3124     int  nst = 0;
  3125     if (!split) {
  3126       ++new_long;
  3127       off[nst] = offset;
  3128       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3129                                   phase->longcon(con), T_LONG);
  3130     } else {
  3131       // Omit either if it is a zero.
  3132       if (con0 != 0) {
  3133         ++new_int;
  3134         off[nst]  = offset;
  3135         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3136                                     phase->intcon(con0), T_INT);
  3138       if (con1 != 0) {
  3139         ++new_int;
  3140         offset += BytesPerInt;
  3141         adr = make_raw_address(offset, phase);
  3142         off[nst]  = offset;
  3143         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3144                                     phase->intcon(con1), T_INT);
  3148     // Insert second store first, then the first before the second.
  3149     // Insert each one just before any overlapping non-constant stores.
  3150     while (nst > 0) {
  3151       Node* st1 = st[--nst];
  3152       C->copy_node_notes_to(st1, old);
  3153       st1 = phase->transform(st1);
  3154       offset = off[nst];
  3155       assert(offset >= header_size, "do not smash header");
  3156       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3157       guarantee(ins_idx != 0, "must re-insert constant store");
  3158       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3159       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3160         set_req(--ins_idx, st1);
  3161       else
  3162         ins_req(ins_idx, st1);
  3166   if (PrintCompilation && WizardMode)
  3167     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3168                   old_subword, old_long, new_int, new_long);
  3169   if (C->log() != NULL)
  3170     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3171                    old_subword, old_long, new_int, new_long);
  3173   // Clean up any remaining occurrences of zmem:
  3174   remove_extra_zeroes();
  3177 // Explore forward from in(start) to find the first fully initialized
  3178 // word, and return its offset.  Skip groups of subword stores which
  3179 // together initialize full words.  If in(start) is itself part of a
  3180 // fully initialized word, return the offset of in(start).  If there
  3181 // are no following full-word stores, or if something is fishy, return
  3182 // a negative value.
  3183 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3184   int       int_map = 0;
  3185   intptr_t  int_map_off = 0;
  3186   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3188   for (uint i = start, limit = req(); i < limit; i++) {
  3189     Node* st = in(i);
  3191     intptr_t st_off = get_store_offset(st, phase);
  3192     if (st_off < 0)  break;  // return conservative answer
  3194     int st_size = st->as_Store()->memory_size();
  3195     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3196       return st_off;            // we found a complete word init
  3199     // update the map:
  3201     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3202     if (this_int_off != int_map_off) {
  3203       // reset the map:
  3204       int_map = 0;
  3205       int_map_off = this_int_off;
  3208     int subword_off = st_off - this_int_off;
  3209     int_map |= right_n_bits(st_size) << subword_off;
  3210     if ((int_map & FULL_MAP) == FULL_MAP) {
  3211       return this_int_off;      // we found a complete word init
  3214     // Did this store hit or cross the word boundary?
  3215     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3216     if (next_int_off == this_int_off + BytesPerInt) {
  3217       // We passed the current int, without fully initializing it.
  3218       int_map_off = next_int_off;
  3219       int_map >>= BytesPerInt;
  3220     } else if (next_int_off > this_int_off + BytesPerInt) {
  3221       // We passed the current and next int.
  3222       return this_int_off + BytesPerInt;
  3226   return -1;
  3230 // Called when the associated AllocateNode is expanded into CFG.
  3231 // At this point, we may perform additional optimizations.
  3232 // Linearize the stores by ascending offset, to make memory
  3233 // activity as coherent as possible.
  3234 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3235                                       intptr_t header_size,
  3236                                       Node* size_in_bytes,
  3237                                       PhaseGVN* phase) {
  3238   assert(!is_complete(), "not already complete");
  3239   assert(stores_are_sane(phase), "");
  3240   assert(allocation() != NULL, "must be present");
  3242   remove_extra_zeroes();
  3244   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3245     // reduce instruction count for common initialization patterns
  3246     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3248   Node* zmem = zero_memory();   // initially zero memory state
  3249   Node* inits = zmem;           // accumulating a linearized chain of inits
  3250   #ifdef ASSERT
  3251   intptr_t first_offset = allocation()->minimum_header_size();
  3252   intptr_t last_init_off = first_offset;  // previous init offset
  3253   intptr_t last_init_end = first_offset;  // previous init offset+size
  3254   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3255   #endif
  3256   intptr_t zeroes_done = header_size;
  3258   bool do_zeroing = true;       // we might give up if inits are very sparse
  3259   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3261   if (ZeroTLAB)  do_zeroing = false;
  3262   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3264   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3265     Node* st = in(i);
  3266     intptr_t st_off = get_store_offset(st, phase);
  3267     if (st_off < 0)
  3268       break;                    // unknown junk in the inits
  3269     if (st->in(MemNode::Memory) != zmem)
  3270       break;                    // complicated store chains somehow in list
  3272     int st_size = st->as_Store()->memory_size();
  3273     intptr_t next_init_off = st_off + st_size;
  3275     if (do_zeroing && zeroes_done < next_init_off) {
  3276       // See if this store needs a zero before it or under it.
  3277       intptr_t zeroes_needed = st_off;
  3279       if (st_size < BytesPerInt) {
  3280         // Look for subword stores which only partially initialize words.
  3281         // If we find some, we must lay down some word-level zeroes first,
  3282         // underneath the subword stores.
  3283         //
  3284         // Examples:
  3285         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3286         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3287         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3288         //
  3289         // Note:  coalesce_subword_stores may have already done this,
  3290         // if it was prompted by constant non-zero subword initializers.
  3291         // But this case can still arise with non-constant stores.
  3293         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3295         // In the examples above:
  3296         //   in(i)          p   q   r   s     x   y     z
  3297         //   st_off        12  13  14  15    12  13    14
  3298         //   st_size        1   1   1   1     1   1     1
  3299         //   next_full_s.  12  16  16  16    16  16    16
  3300         //   z's_done      12  16  16  16    12  16    12
  3301         //   z's_needed    12  16  16  16    16  16    16
  3302         //   zsize          0   0   0   0     4   0     4
  3303         if (next_full_store < 0) {
  3304           // Conservative tack:  Zero to end of current word.
  3305           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3306         } else {
  3307           // Zero to beginning of next fully initialized word.
  3308           // Or, don't zero at all, if we are already in that word.
  3309           assert(next_full_store >= zeroes_needed, "must go forward");
  3310           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3311           zeroes_needed = next_full_store;
  3315       if (zeroes_needed > zeroes_done) {
  3316         intptr_t zsize = zeroes_needed - zeroes_done;
  3317         // Do some incremental zeroing on rawmem, in parallel with inits.
  3318         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3319         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3320                                               zeroes_done, zeroes_needed,
  3321                                               phase);
  3322         zeroes_done = zeroes_needed;
  3323         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3324           do_zeroing = false;   // leave the hole, next time
  3328     // Collect the store and move on:
  3329     st->set_req(MemNode::Memory, inits);
  3330     inits = st;                 // put it on the linearized chain
  3331     set_req(i, zmem);           // unhook from previous position
  3333     if (zeroes_done == st_off)
  3334       zeroes_done = next_init_off;
  3336     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3338     #ifdef ASSERT
  3339     // Various order invariants.  Weaker than stores_are_sane because
  3340     // a large constant tile can be filled in by smaller non-constant stores.
  3341     assert(st_off >= last_init_off, "inits do not reverse");
  3342     last_init_off = st_off;
  3343     const Type* val = NULL;
  3344     if (st_size >= BytesPerInt &&
  3345         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3346         (int)val->basic_type() < (int)T_OBJECT) {
  3347       assert(st_off >= last_tile_end, "tiles do not overlap");
  3348       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3349       last_tile_end = MAX2(last_tile_end, next_init_off);
  3350     } else {
  3351       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3352       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3353       assert(st_off      >= last_init_end, "inits do not overlap");
  3354       last_init_end = next_init_off;  // it's a non-tile
  3356     #endif //ASSERT
  3359   remove_extra_zeroes();        // clear out all the zmems left over
  3360   add_req(inits);
  3362   if (!ZeroTLAB) {
  3363     // If anything remains to be zeroed, zero it all now.
  3364     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3365     // if it is the last unused 4 bytes of an instance, forget about it
  3366     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3367     if (zeroes_done + BytesPerLong >= size_limit) {
  3368       assert(allocation() != NULL, "");
  3369       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3370       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3371       if (zeroes_done == k->layout_helper())
  3372         zeroes_done = size_limit;
  3374     if (zeroes_done < size_limit) {
  3375       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3376                                             zeroes_done, size_in_bytes, phase);
  3380   set_complete(phase);
  3381   return rawmem;
  3385 #ifdef ASSERT
  3386 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3387   if (is_complete())
  3388     return true;                // stores could be anything at this point
  3389   assert(allocation() != NULL, "must be present");
  3390   intptr_t last_off = allocation()->minimum_header_size();
  3391   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3392     Node* st = in(i);
  3393     intptr_t st_off = get_store_offset(st, phase);
  3394     if (st_off < 0)  continue;  // ignore dead garbage
  3395     if (last_off > st_off) {
  3396       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3397       this->dump(2);
  3398       assert(false, "ascending store offsets");
  3399       return false;
  3401     last_off = st_off + st->as_Store()->memory_size();
  3403   return true;
  3405 #endif //ASSERT
  3410 //============================MergeMemNode=====================================
  3411 //
  3412 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3413 // contributing store or call operations.  Each contributor provides the memory
  3414 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3415 // if a MergeMem has an input X for alias category #6, then any memory reference
  3416 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3417 // to using the MergeMem as a whole.
  3418 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3419 //
  3420 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3421 //
  3422 // In one special case (and more cases in the future), alias categories overlap.
  3423 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3424 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3425 // it is exactly equivalent to that state W:
  3426 //   MergeMem(<Bot>: W) <==> W
  3427 //
  3428 // Usually, the merge has more than one input.  In that case, where inputs
  3429 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3430 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3431 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3432 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3433 //
  3434 // A merge can take a "wide" memory state as one of its narrow inputs.
  3435 // This simply means that the merge observes out only the relevant parts of
  3436 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3437 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3438 //
  3439 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3440 // and that memory slices "leak through":
  3441 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3442 //
  3443 // But, in such a cascade, repeated memory slices can "block the leak":
  3444 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3445 //
  3446 // In the last example, Y is not part of the combined memory state of the
  3447 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3448 // memory states from arising, so you can be sure that the state Y is somehow
  3449 // a precursor to state Y'.
  3450 //
  3451 //
  3452 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3453 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3454 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3455 // Compile::alias_type (and kin) produce and manage these indexes.
  3456 //
  3457 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3458 // (Note that this provides quick access to the top node inside MergeMem methods,
  3459 // without the need to reach out via TLS to Compile::current.)
  3460 //
  3461 // As a consequence of what was just described, a MergeMem that represents a full
  3462 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3463 // containing all alias categories.
  3464 //
  3465 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3466 //
  3467 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3468 // a memory state for the alias type <N>, or else the top node, meaning that
  3469 // there is no particular input for that alias type.  Note that the length of
  3470 // a MergeMem is variable, and may be extended at any time to accommodate new
  3471 // memory states at larger alias indexes.  When merges grow, they are of course
  3472 // filled with "top" in the unused in() positions.
  3473 //
  3474 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3475 // (Top was chosen because it works smoothly with passes like GCM.)
  3476 //
  3477 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3478 // the type of random VM bits like TLS references.)  Since it is always the
  3479 // first non-Bot memory slice, some low-level loops use it to initialize an
  3480 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3481 //
  3482 //
  3483 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3484 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3485 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3486 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3487 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3488 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3489 //
  3490 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3491 // really that different from the other memory inputs.  An abbreviation called
  3492 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3493 //
  3494 //
  3495 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3496 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3497 // that "emerges though" the base memory will be marked as excluding the alias types
  3498 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3499 //
  3500 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3501 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3502 //
  3503 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3504 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3505 // actually a disjoint union of memory states, rather than an overlay.
  3506 //
  3508 //------------------------------MergeMemNode-----------------------------------
  3509 Node* MergeMemNode::make_empty_memory() {
  3510   Node* empty_memory = (Node*) Compile::current()->top();
  3511   assert(empty_memory->is_top(), "correct sentinel identity");
  3512   return empty_memory;
  3515 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3516   init_class_id(Class_MergeMem);
  3517   // all inputs are nullified in Node::Node(int)
  3518   // set_input(0, NULL);  // no control input
  3520   // Initialize the edges uniformly to top, for starters.
  3521   Node* empty_mem = make_empty_memory();
  3522   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3523     init_req(i,empty_mem);
  3525   assert(empty_memory() == empty_mem, "");
  3527   if( new_base != NULL && new_base->is_MergeMem() ) {
  3528     MergeMemNode* mdef = new_base->as_MergeMem();
  3529     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3530     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3531       mms.set_memory(mms.memory2());
  3533     assert(base_memory() == mdef->base_memory(), "");
  3534   } else {
  3535     set_base_memory(new_base);
  3539 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3540 // If mem is itself a MergeMem, populate the result with the same edges.
  3541 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3542   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3545 //------------------------------cmp--------------------------------------------
  3546 uint MergeMemNode::hash() const { return NO_HASH; }
  3547 uint MergeMemNode::cmp( const Node &n ) const {
  3548   return (&n == this);          // Always fail except on self
  3551 //------------------------------Identity---------------------------------------
  3552 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3553   // Identity if this merge point does not record any interesting memory
  3554   // disambiguations.
  3555   Node* base_mem = base_memory();
  3556   Node* empty_mem = empty_memory();
  3557   if (base_mem != empty_mem) {  // Memory path is not dead?
  3558     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3559       Node* mem = in(i);
  3560       if (mem != empty_mem && mem != base_mem) {
  3561         return this;            // Many memory splits; no change
  3565   return base_mem;              // No memory splits; ID on the one true input
  3568 //------------------------------Ideal------------------------------------------
  3569 // This method is invoked recursively on chains of MergeMem nodes
  3570 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3571   // Remove chain'd MergeMems
  3572   //
  3573   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3574   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3575   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3576   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3577   Node *progress = NULL;
  3580   Node* old_base = base_memory();
  3581   Node* empty_mem = empty_memory();
  3582   if (old_base == empty_mem)
  3583     return NULL; // Dead memory path.
  3585   MergeMemNode* old_mbase;
  3586   if (old_base != NULL && old_base->is_MergeMem())
  3587     old_mbase = old_base->as_MergeMem();
  3588   else
  3589     old_mbase = NULL;
  3590   Node* new_base = old_base;
  3592   // simplify stacked MergeMems in base memory
  3593   if (old_mbase)  new_base = old_mbase->base_memory();
  3595   // the base memory might contribute new slices beyond my req()
  3596   if (old_mbase)  grow_to_match(old_mbase);
  3598   // Look carefully at the base node if it is a phi.
  3599   PhiNode* phi_base;
  3600   if (new_base != NULL && new_base->is_Phi())
  3601     phi_base = new_base->as_Phi();
  3602   else
  3603     phi_base = NULL;
  3605   Node*    phi_reg = NULL;
  3606   uint     phi_len = (uint)-1;
  3607   if (phi_base != NULL && !phi_base->is_copy()) {
  3608     // do not examine phi if degraded to a copy
  3609     phi_reg = phi_base->region();
  3610     phi_len = phi_base->req();
  3611     // see if the phi is unfinished
  3612     for (uint i = 1; i < phi_len; i++) {
  3613       if (phi_base->in(i) == NULL) {
  3614         // incomplete phi; do not look at it yet!
  3615         phi_reg = NULL;
  3616         phi_len = (uint)-1;
  3617         break;
  3622   // Note:  We do not call verify_sparse on entry, because inputs
  3623   // can normalize to the base_memory via subsume_node or similar
  3624   // mechanisms.  This method repairs that damage.
  3626   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3628   // Look at each slice.
  3629   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3630     Node* old_in = in(i);
  3631     // calculate the old memory value
  3632     Node* old_mem = old_in;
  3633     if (old_mem == empty_mem)  old_mem = old_base;
  3634     assert(old_mem == memory_at(i), "");
  3636     // maybe update (reslice) the old memory value
  3638     // simplify stacked MergeMems
  3639     Node* new_mem = old_mem;
  3640     MergeMemNode* old_mmem;
  3641     if (old_mem != NULL && old_mem->is_MergeMem())
  3642       old_mmem = old_mem->as_MergeMem();
  3643     else
  3644       old_mmem = NULL;
  3645     if (old_mmem == this) {
  3646       // This can happen if loops break up and safepoints disappear.
  3647       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3648       // safepoint can be rewritten to a merge of the same BotPtr with
  3649       // the BotPtr phi coming into the loop.  If that phi disappears
  3650       // also, we can end up with a self-loop of the mergemem.
  3651       // In general, if loops degenerate and memory effects disappear,
  3652       // a mergemem can be left looking at itself.  This simply means
  3653       // that the mergemem's default should be used, since there is
  3654       // no longer any apparent effect on this slice.
  3655       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3656       //       from start.  Update the input to TOP.
  3657       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3659     else if (old_mmem != NULL) {
  3660       new_mem = old_mmem->memory_at(i);
  3662     // else preceeding memory was not a MergeMem
  3664     // replace equivalent phis (unfortunately, they do not GVN together)
  3665     if (new_mem != NULL && new_mem != new_base &&
  3666         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3667       if (new_mem->is_Phi()) {
  3668         PhiNode* phi_mem = new_mem->as_Phi();
  3669         for (uint i = 1; i < phi_len; i++) {
  3670           if (phi_base->in(i) != phi_mem->in(i)) {
  3671             phi_mem = NULL;
  3672             break;
  3675         if (phi_mem != NULL) {
  3676           // equivalent phi nodes; revert to the def
  3677           new_mem = new_base;
  3682     // maybe store down a new value
  3683     Node* new_in = new_mem;
  3684     if (new_in == new_base)  new_in = empty_mem;
  3686     if (new_in != old_in) {
  3687       // Warning:  Do not combine this "if" with the previous "if"
  3688       // A memory slice might have be be rewritten even if it is semantically
  3689       // unchanged, if the base_memory value has changed.
  3690       set_req(i, new_in);
  3691       progress = this;          // Report progress
  3695   if (new_base != old_base) {
  3696     set_req(Compile::AliasIdxBot, new_base);
  3697     // Don't use set_base_memory(new_base), because we need to update du.
  3698     assert(base_memory() == new_base, "");
  3699     progress = this;
  3702   if( base_memory() == this ) {
  3703     // a self cycle indicates this memory path is dead
  3704     set_req(Compile::AliasIdxBot, empty_mem);
  3707   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3708   // Recursion must occur after the self cycle check above
  3709   if( base_memory()->is_MergeMem() ) {
  3710     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3711     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3712     if( m != NULL && (m->is_top() ||
  3713         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3714       // propagate rollup of dead cycle to self
  3715       set_req(Compile::AliasIdxBot, empty_mem);
  3719   if( base_memory() == empty_mem ) {
  3720     progress = this;
  3721     // Cut inputs during Parse phase only.
  3722     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3723     if( !can_reshape ) {
  3724       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3725         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3730   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3731     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3732     // transform should be attempted. Look for this->phi->this cycle.
  3733     uint merge_width = req();
  3734     if (merge_width > Compile::AliasIdxRaw) {
  3735       PhiNode* phi = base_memory()->as_Phi();
  3736       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3737         if (phi->in(i) == this) {
  3738           phase->is_IterGVN()->_worklist.push(phi);
  3739           break;
  3745   assert(progress || verify_sparse(), "please, no dups of base");
  3746   return progress;
  3749 //-------------------------set_base_memory-------------------------------------
  3750 void MergeMemNode::set_base_memory(Node *new_base) {
  3751   Node* empty_mem = empty_memory();
  3752   set_req(Compile::AliasIdxBot, new_base);
  3753   assert(memory_at(req()) == new_base, "must set default memory");
  3754   // Clear out other occurrences of new_base:
  3755   if (new_base != empty_mem) {
  3756     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3757       if (in(i) == new_base)  set_req(i, empty_mem);
  3762 //------------------------------out_RegMask------------------------------------
  3763 const RegMask &MergeMemNode::out_RegMask() const {
  3764   return RegMask::Empty;
  3767 //------------------------------dump_spec--------------------------------------
  3768 #ifndef PRODUCT
  3769 void MergeMemNode::dump_spec(outputStream *st) const {
  3770   st->print(" {");
  3771   Node* base_mem = base_memory();
  3772   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3773     Node* mem = memory_at(i);
  3774     if (mem == base_mem) { st->print(" -"); continue; }
  3775     st->print( " N%d:", mem->_idx );
  3776     Compile::current()->get_adr_type(i)->dump_on(st);
  3778   st->print(" }");
  3780 #endif // !PRODUCT
  3783 #ifdef ASSERT
  3784 static bool might_be_same(Node* a, Node* b) {
  3785   if (a == b)  return true;
  3786   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3787   // phis shift around during optimization
  3788   return true;  // pretty stupid...
  3791 // verify a narrow slice (either incoming or outgoing)
  3792 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3793   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3794   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3795   if (Node::in_dump())      return;  // muzzle asserts when printing
  3796   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3797   assert(n != NULL, "");
  3798   // Elide intervening MergeMem's
  3799   while (n->is_MergeMem()) {
  3800     n = n->as_MergeMem()->memory_at(alias_idx);
  3802   Compile* C = Compile::current();
  3803   const TypePtr* n_adr_type = n->adr_type();
  3804   if (n == m->empty_memory()) {
  3805     // Implicit copy of base_memory()
  3806   } else if (n_adr_type != TypePtr::BOTTOM) {
  3807     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  3808     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  3809   } else {
  3810     // A few places like make_runtime_call "know" that VM calls are narrow,
  3811     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  3812     bool expected_wide_mem = false;
  3813     if (n == m->base_memory()) {
  3814       expected_wide_mem = true;
  3815     } else if (alias_idx == Compile::AliasIdxRaw ||
  3816                n == m->memory_at(Compile::AliasIdxRaw)) {
  3817       expected_wide_mem = true;
  3818     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  3819       // memory can "leak through" calls on channels that
  3820       // are write-once.  Allow this also.
  3821       expected_wide_mem = true;
  3823     assert(expected_wide_mem, "expected narrow slice replacement");
  3826 #else // !ASSERT
  3827 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  3828 #endif
  3831 //-----------------------------memory_at---------------------------------------
  3832 Node* MergeMemNode::memory_at(uint alias_idx) const {
  3833   assert(alias_idx >= Compile::AliasIdxRaw ||
  3834          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  3835          "must avoid base_memory and AliasIdxTop");
  3837   // Otherwise, it is a narrow slice.
  3838   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  3839   Compile *C = Compile::current();
  3840   if (is_empty_memory(n)) {
  3841     // the array is sparse; empty slots are the "top" node
  3842     n = base_memory();
  3843     assert(Node::in_dump()
  3844            || n == NULL || n->bottom_type() == Type::TOP
  3845            || n->adr_type() == TypePtr::BOTTOM
  3846            || n->adr_type() == TypeRawPtr::BOTTOM
  3847            || Compile::current()->AliasLevel() == 0,
  3848            "must be a wide memory");
  3849     // AliasLevel == 0 if we are organizing the memory states manually.
  3850     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  3851   } else {
  3852     // make sure the stored slice is sane
  3853     #ifdef ASSERT
  3854     if (is_error_reported() || Node::in_dump()) {
  3855     } else if (might_be_same(n, base_memory())) {
  3856       // Give it a pass:  It is a mostly harmless repetition of the base.
  3857       // This can arise normally from node subsumption during optimization.
  3858     } else {
  3859       verify_memory_slice(this, alias_idx, n);
  3861     #endif
  3863   return n;
  3866 //---------------------------set_memory_at-------------------------------------
  3867 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  3868   verify_memory_slice(this, alias_idx, n);
  3869   Node* empty_mem = empty_memory();
  3870   if (n == base_memory())  n = empty_mem;  // collapse default
  3871   uint need_req = alias_idx+1;
  3872   if (req() < need_req) {
  3873     if (n == empty_mem)  return;  // already the default, so do not grow me
  3874     // grow the sparse array
  3875     do {
  3876       add_req(empty_mem);
  3877     } while (req() < need_req);
  3879   set_req( alias_idx, n );
  3884 //--------------------------iteration_setup------------------------------------
  3885 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  3886   if (other != NULL) {
  3887     grow_to_match(other);
  3888     // invariant:  the finite support of mm2 is within mm->req()
  3889     #ifdef ASSERT
  3890     for (uint i = req(); i < other->req(); i++) {
  3891       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  3893     #endif
  3895   // Replace spurious copies of base_memory by top.
  3896   Node* base_mem = base_memory();
  3897   if (base_mem != NULL && !base_mem->is_top()) {
  3898     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  3899       if (in(i) == base_mem)
  3900         set_req(i, empty_memory());
  3905 //---------------------------grow_to_match-------------------------------------
  3906 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  3907   Node* empty_mem = empty_memory();
  3908   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  3909   // look for the finite support of the other memory
  3910   for (uint i = other->req(); --i >= req(); ) {
  3911     if (other->in(i) != empty_mem) {
  3912       uint new_len = i+1;
  3913       while (req() < new_len)  add_req(empty_mem);
  3914       break;
  3919 //---------------------------verify_sparse-------------------------------------
  3920 #ifndef PRODUCT
  3921 bool MergeMemNode::verify_sparse() const {
  3922   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  3923   Node* base_mem = base_memory();
  3924   // The following can happen in degenerate cases, since empty==top.
  3925   if (is_empty_memory(base_mem))  return true;
  3926   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3927     assert(in(i) != NULL, "sane slice");
  3928     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  3930   return true;
  3933 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  3934   Node* n;
  3935   n = mm->in(idx);
  3936   if (mem == n)  return true;  // might be empty_memory()
  3937   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  3938   if (mem == n)  return true;
  3939   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  3940     if (mem == n)  return true;
  3941     if (n == NULL)  break;
  3943   return false;
  3945 #endif // !PRODUCT

mercurial