src/share/vm/gc_implementation/g1/heapRegion.hpp

Fri, 23 Sep 2011 16:07:49 -0400

author
tonyp
date
Fri, 23 Sep 2011 16:07:49 -0400
changeset 3176
8229bd737950
parent 3175
4dfb2df418f2
child 3182
65a8ff39a6da
permissions
-rw-r--r--

7075646: G1: fix inconsistencies in the monitoring data
Summary: Fixed a few inconsistencies in the monitoring data, in particular when reported from jstat.
Reviewed-by: jmasa, brutisso, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    36 #ifndef SERIALGC
    38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    39 // can be collected independently.
    41 // NOTE: Although a HeapRegion is a Space, its
    42 // Space::initDirtyCardClosure method must not be called.
    43 // The problem is that the existence of this method breaks
    44 // the independence of barrier sets from remembered sets.
    45 // The solution is to remove this method from the definition
    46 // of a Space.
    48 class CompactibleSpace;
    49 class ContiguousSpace;
    50 class HeapRegionRemSet;
    51 class HeapRegionRemSetIterator;
    52 class HeapRegion;
    53 class HeapRegionSetBase;
    55 #define HR_FORMAT SIZE_FORMAT":(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    56 #define HR_FORMAT_PARAMS(_hr_) \
    57                 (_hr_)->hrs_index(), \
    58                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : "-", \
    59                 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
    61 // A dirty card to oop closure for heap regions. It
    62 // knows how to get the G1 heap and how to use the bitmap
    63 // in the concurrent marker used by G1 to filter remembered
    64 // sets.
    66 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    67 public:
    68   // Specification of possible DirtyCardToOopClosure filtering.
    69   enum FilterKind {
    70     NoFilterKind,
    71     IntoCSFilterKind,
    72     OutOfRegionFilterKind
    73   };
    75 protected:
    76   HeapRegion* _hr;
    77   FilterKind _fk;
    78   G1CollectedHeap* _g1;
    80   void walk_mem_region_with_cl(MemRegion mr,
    81                                HeapWord* bottom, HeapWord* top,
    82                                OopClosure* cl);
    84   // We don't specialize this for FilteringClosure; filtering is handled by
    85   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    86   // warning.
    87   void walk_mem_region_with_cl(MemRegion mr,
    88                                HeapWord* bottom, HeapWord* top,
    89                                FilteringClosure* cl) {
    90     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    91                                                        (OopClosure*)cl);
    92   }
    94   // Get the actual top of the area on which the closure will
    95   // operate, given where the top is assumed to be (the end of the
    96   // memory region passed to do_MemRegion) and where the object
    97   // at the top is assumed to start. For example, an object may
    98   // start at the top but actually extend past the assumed top,
    99   // in which case the top becomes the end of the object.
   100   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
   101     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
   102   }
   104   // Walk the given memory region from bottom to (actual) top
   105   // looking for objects and applying the oop closure (_cl) to
   106   // them. The base implementation of this treats the area as
   107   // blocks, where a block may or may not be an object. Sub-
   108   // classes should override this to provide more accurate
   109   // or possibly more efficient walking.
   110   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   111     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   112   }
   114 public:
   115   HeapRegionDCTOC(G1CollectedHeap* g1,
   116                   HeapRegion* hr, OopClosure* cl,
   117                   CardTableModRefBS::PrecisionStyle precision,
   118                   FilterKind fk);
   119 };
   121 // The complicating factor is that BlockOffsetTable diverged
   122 // significantly, and we need functionality that is only in the G1 version.
   123 // So I copied that code, which led to an alternate G1 version of
   124 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   125 // be reconciled, then G1OffsetTableContigSpace could go away.
   127 // The idea behind time stamps is the following. Doing a save_marks on
   128 // all regions at every GC pause is time consuming (if I remember
   129 // well, 10ms or so). So, we would like to do that only for regions
   130 // that are GC alloc regions. To achieve this, we use time
   131 // stamps. For every evacuation pause, G1CollectedHeap generates a
   132 // unique time stamp (essentially a counter that gets
   133 // incremented). Every time we want to call save_marks on a region,
   134 // we set the saved_mark_word to top and also copy the current GC
   135 // time stamp to the time stamp field of the space. Reading the
   136 // saved_mark_word involves checking the time stamp of the
   137 // region. If it is the same as the current GC time stamp, then we
   138 // can safely read the saved_mark_word field, as it is valid. If the
   139 // time stamp of the region is not the same as the current GC time
   140 // stamp, then we instead read top, as the saved_mark_word field is
   141 // invalid. Time stamps (on the regions and also on the
   142 // G1CollectedHeap) are reset at every cleanup (we iterate over
   143 // the regions anyway) and at the end of a Full GC. The current scheme
   144 // that uses sequential unsigned ints will fail only if we have 4b
   145 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   147 class G1OffsetTableContigSpace: public ContiguousSpace {
   148   friend class VMStructs;
   149  protected:
   150   G1BlockOffsetArrayContigSpace _offsets;
   151   Mutex _par_alloc_lock;
   152   volatile unsigned _gc_time_stamp;
   153   // When we need to retire an allocation region, while other threads
   154   // are also concurrently trying to allocate into it, we typically
   155   // allocate a dummy object at the end of the region to ensure that
   156   // no more allocations can take place in it. However, sometimes we
   157   // want to know where the end of the last "real" object we allocated
   158   // into the region was and this is what this keeps track.
   159   HeapWord* _pre_dummy_top;
   161  public:
   162   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
   163   // assumed to contain zeros.
   164   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   165                            MemRegion mr, bool is_zeroed = false);
   167   void set_bottom(HeapWord* value);
   168   void set_end(HeapWord* value);
   170   virtual HeapWord* saved_mark_word() const;
   171   virtual void set_saved_mark();
   172   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   174   // See the comment above in the declaration of _pre_dummy_top for an
   175   // explanation of what it is.
   176   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   177     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   178     _pre_dummy_top = pre_dummy_top;
   179   }
   180   HeapWord* pre_dummy_top() {
   181     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   182   }
   183   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   185   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   186   virtual void clear(bool mangle_space);
   188   HeapWord* block_start(const void* p);
   189   HeapWord* block_start_const(const void* p) const;
   191   // Add offset table update.
   192   virtual HeapWord* allocate(size_t word_size);
   193   HeapWord* par_allocate(size_t word_size);
   195   // MarkSweep support phase3
   196   virtual HeapWord* initialize_threshold();
   197   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   199   virtual void print() const;
   201   void reset_bot() {
   202     _offsets.zero_bottom_entry();
   203     _offsets.initialize_threshold();
   204   }
   206   void update_bot_for_object(HeapWord* start, size_t word_size) {
   207     _offsets.alloc_block(start, word_size);
   208   }
   210   void print_bot_on(outputStream* out) {
   211     _offsets.print_on(out);
   212   }
   213 };
   215 class HeapRegion: public G1OffsetTableContigSpace {
   216   friend class VMStructs;
   217  private:
   219   enum HumongousType {
   220     NotHumongous = 0,
   221     StartsHumongous,
   222     ContinuesHumongous
   223   };
   225   // Requires that the region "mr" be dense with objects, and begin and end
   226   // with an object.
   227   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
   229   // The remembered set for this region.
   230   // (Might want to make this "inline" later, to avoid some alloc failure
   231   // issues.)
   232   HeapRegionRemSet* _rem_set;
   234   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   236  protected:
   237   // The index of this region in the heap region sequence.
   238   size_t  _hrs_index;
   240   HumongousType _humongous_type;
   241   // For a humongous region, region in which it starts.
   242   HeapRegion* _humongous_start_region;
   243   // For the start region of a humongous sequence, it's original end().
   244   HeapWord* _orig_end;
   246   // True iff the region is in current collection_set.
   247   bool _in_collection_set;
   249   // True iff an attempt to evacuate an object in the region failed.
   250   bool _evacuation_failed;
   252   // A heap region may be a member one of a number of special subsets, each
   253   // represented as linked lists through the field below.  Currently, these
   254   // sets include:
   255   //   The collection set.
   256   //   The set of allocation regions used in a collection pause.
   257   //   Spaces that may contain gray objects.
   258   HeapRegion* _next_in_special_set;
   260   // next region in the young "generation" region set
   261   HeapRegion* _next_young_region;
   263   // Next region whose cards need cleaning
   264   HeapRegion* _next_dirty_cards_region;
   266   // Fields used by the HeapRegionSetBase class and subclasses.
   267   HeapRegion* _next;
   268 #ifdef ASSERT
   269   HeapRegionSetBase* _containing_set;
   270 #endif // ASSERT
   271   bool _pending_removal;
   273   // For parallel heapRegion traversal.
   274   jint _claimed;
   276   // We use concurrent marking to determine the amount of live data
   277   // in each heap region.
   278   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   279   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   281   // See "sort_index" method.  -1 means is not in the array.
   282   int _sort_index;
   284   // <PREDICTION>
   285   double _gc_efficiency;
   286   // </PREDICTION>
   288   enum YoungType {
   289     NotYoung,                   // a region is not young
   290     Young,                      // a region is young
   291     Survivor                    // a region is young and it contains survivors
   292   };
   294   volatile YoungType _young_type;
   295   int  _young_index_in_cset;
   296   SurvRateGroup* _surv_rate_group;
   297   int  _age_index;
   299   // The start of the unmarked area. The unmarked area extends from this
   300   // word until the top and/or end of the region, and is the part
   301   // of the region for which no marking was done, i.e. objects may
   302   // have been allocated in this part since the last mark phase.
   303   // "prev" is the top at the start of the last completed marking.
   304   // "next" is the top at the start of the in-progress marking (if any.)
   305   HeapWord* _prev_top_at_mark_start;
   306   HeapWord* _next_top_at_mark_start;
   307   // If a collection pause is in progress, this is the top at the start
   308   // of that pause.
   310   // We've counted the marked bytes of objects below here.
   311   HeapWord* _top_at_conc_mark_count;
   313   void init_top_at_mark_start() {
   314     assert(_prev_marked_bytes == 0 &&
   315            _next_marked_bytes == 0,
   316            "Must be called after zero_marked_bytes.");
   317     HeapWord* bot = bottom();
   318     _prev_top_at_mark_start = bot;
   319     _next_top_at_mark_start = bot;
   320     _top_at_conc_mark_count = bot;
   321   }
   323   void set_young_type(YoungType new_type) {
   324     //assert(_young_type != new_type, "setting the same type" );
   325     // TODO: add more assertions here
   326     _young_type = new_type;
   327   }
   329   // Cached attributes used in the collection set policy information
   331   // The RSet length that was added to the total value
   332   // for the collection set.
   333   size_t _recorded_rs_length;
   335   // The predicted elapsed time that was added to total value
   336   // for the collection set.
   337   double _predicted_elapsed_time_ms;
   339   // The predicted number of bytes to copy that was added to
   340   // the total value for the collection set.
   341   size_t _predicted_bytes_to_copy;
   343  public:
   344   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
   345   HeapRegion(size_t hrs_index,
   346              G1BlockOffsetSharedArray* sharedOffsetArray,
   347              MemRegion mr, bool is_zeroed);
   349   static int LogOfHRGrainBytes;
   350   static int LogOfHRGrainWords;
   351   // The normal type of these should be size_t. However, they used to
   352   // be members of an enum before and they are assumed by the
   353   // compilers to be ints. To avoid going and fixing all their uses,
   354   // I'm declaring them as ints. I'm not anticipating heap region
   355   // sizes to reach anywhere near 2g, so using an int here is safe.
   356   static int GrainBytes;
   357   static int GrainWords;
   358   static int CardsPerRegion;
   360   static size_t align_up_to_region_byte_size(size_t sz) {
   361     return (sz + (size_t) GrainBytes - 1) &
   362                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   363   }
   365   // It sets up the heap region size (GrainBytes / GrainWords), as
   366   // well as other related fields that are based on the heap region
   367   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   368   // CardsPerRegion). All those fields are considered constant
   369   // throughout the JVM's execution, therefore they should only be set
   370   // up once during initialization time.
   371   static void setup_heap_region_size(uintx min_heap_size);
   373   enum ClaimValues {
   374     InitialClaimValue     = 0,
   375     FinalCountClaimValue  = 1,
   376     NoteEndClaimValue     = 2,
   377     ScrubRemSetClaimValue = 3,
   378     ParVerifyClaimValue   = 4,
   379     RebuildRSClaimValue   = 5
   380   };
   382   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   383     assert(is_young(), "we can only skip BOT updates on young regions");
   384     return ContiguousSpace::par_allocate(word_size);
   385   }
   386   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   387     assert(is_young(), "we can only skip BOT updates on young regions");
   388     return ContiguousSpace::allocate(word_size);
   389   }
   391   // If this region is a member of a HeapRegionSeq, the index in that
   392   // sequence, otherwise -1.
   393   size_t hrs_index() const { return _hrs_index; }
   395   // The number of bytes marked live in the region in the last marking phase.
   396   size_t marked_bytes()    { return _prev_marked_bytes; }
   397   size_t live_bytes() {
   398     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   399   }
   401   // The number of bytes counted in the next marking.
   402   size_t next_marked_bytes() { return _next_marked_bytes; }
   403   // The number of bytes live wrt the next marking.
   404   size_t next_live_bytes() {
   405     return
   406       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   407   }
   409   // A lower bound on the amount of garbage bytes in the region.
   410   size_t garbage_bytes() {
   411     size_t used_at_mark_start_bytes =
   412       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   413     assert(used_at_mark_start_bytes >= marked_bytes(),
   414            "Can't mark more than we have.");
   415     return used_at_mark_start_bytes - marked_bytes();
   416   }
   418   // An upper bound on the number of live bytes in the region.
   419   size_t max_live_bytes() { return used() - garbage_bytes(); }
   421   void add_to_marked_bytes(size_t incr_bytes) {
   422     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   423     guarantee( _next_marked_bytes <= used(), "invariant" );
   424   }
   426   void zero_marked_bytes()      {
   427     _prev_marked_bytes = _next_marked_bytes = 0;
   428   }
   430   bool isHumongous() const { return _humongous_type != NotHumongous; }
   431   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   432   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   433   // For a humongous region, region in which it starts.
   434   HeapRegion* humongous_start_region() const {
   435     return _humongous_start_region;
   436   }
   438   // Makes the current region be a "starts humongous" region, i.e.,
   439   // the first region in a series of one or more contiguous regions
   440   // that will contain a single "humongous" object. The two parameters
   441   // are as follows:
   442   //
   443   // new_top : The new value of the top field of this region which
   444   // points to the end of the humongous object that's being
   445   // allocated. If there is more than one region in the series, top
   446   // will lie beyond this region's original end field and on the last
   447   // region in the series.
   448   //
   449   // new_end : The new value of the end field of this region which
   450   // points to the end of the last region in the series. If there is
   451   // one region in the series (namely: this one) end will be the same
   452   // as the original end of this region.
   453   //
   454   // Updating top and end as described above makes this region look as
   455   // if it spans the entire space taken up by all the regions in the
   456   // series and an single allocation moved its top to new_top. This
   457   // ensures that the space (capacity / allocated) taken up by all
   458   // humongous regions can be calculated by just looking at the
   459   // "starts humongous" regions and by ignoring the "continues
   460   // humongous" regions.
   461   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   463   // Makes the current region be a "continues humongous'
   464   // region. first_hr is the "start humongous" region of the series
   465   // which this region will be part of.
   466   void set_continuesHumongous(HeapRegion* first_hr);
   468   // Unsets the humongous-related fields on the region.
   469   void set_notHumongous();
   471   // If the region has a remembered set, return a pointer to it.
   472   HeapRegionRemSet* rem_set() const {
   473     return _rem_set;
   474   }
   476   // True iff the region is in current collection_set.
   477   bool in_collection_set() const {
   478     return _in_collection_set;
   479   }
   480   void set_in_collection_set(bool b) {
   481     _in_collection_set = b;
   482   }
   483   HeapRegion* next_in_collection_set() {
   484     assert(in_collection_set(), "should only invoke on member of CS.");
   485     assert(_next_in_special_set == NULL ||
   486            _next_in_special_set->in_collection_set(),
   487            "Malformed CS.");
   488     return _next_in_special_set;
   489   }
   490   void set_next_in_collection_set(HeapRegion* r) {
   491     assert(in_collection_set(), "should only invoke on member of CS.");
   492     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   493     _next_in_special_set = r;
   494   }
   496   // Methods used by the HeapRegionSetBase class and subclasses.
   498   // Getter and setter for the next field used to link regions into
   499   // linked lists.
   500   HeapRegion* next()              { return _next; }
   502   void set_next(HeapRegion* next) { _next = next; }
   504   // Every region added to a set is tagged with a reference to that
   505   // set. This is used for doing consistency checking to make sure that
   506   // the contents of a set are as they should be and it's only
   507   // available in non-product builds.
   508 #ifdef ASSERT
   509   void set_containing_set(HeapRegionSetBase* containing_set) {
   510     assert((containing_set == NULL && _containing_set != NULL) ||
   511            (containing_set != NULL && _containing_set == NULL),
   512            err_msg("containing_set: "PTR_FORMAT" "
   513                    "_containing_set: "PTR_FORMAT,
   514                    containing_set, _containing_set));
   516     _containing_set = containing_set;
   517   }
   519   HeapRegionSetBase* containing_set() { return _containing_set; }
   520 #else // ASSERT
   521   void set_containing_set(HeapRegionSetBase* containing_set) { }
   523   // containing_set() is only used in asserts so there's no reason
   524   // to provide a dummy version of it.
   525 #endif // ASSERT
   527   // If we want to remove regions from a list in bulk we can simply tag
   528   // them with the pending_removal tag and call the
   529   // remove_all_pending() method on the list.
   531   bool pending_removal() { return _pending_removal; }
   533   void set_pending_removal(bool pending_removal) {
   534     if (pending_removal) {
   535       assert(!_pending_removal && containing_set() != NULL,
   536              "can only set pending removal to true if it's false and "
   537              "the region belongs to a region set");
   538     } else {
   539       assert( _pending_removal && containing_set() == NULL,
   540               "can only set pending removal to false if it's true and "
   541               "the region does not belong to a region set");
   542     }
   544     _pending_removal = pending_removal;
   545   }
   547   HeapRegion* get_next_young_region() { return _next_young_region; }
   548   void set_next_young_region(HeapRegion* hr) {
   549     _next_young_region = hr;
   550   }
   552   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   553   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   554   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   555   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   557   HeapWord* orig_end() { return _orig_end; }
   559   // Allows logical separation between objects allocated before and after.
   560   void save_marks();
   562   // Reset HR stuff to default values.
   563   void hr_clear(bool par, bool clear_space);
   564   void par_clear();
   566   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   568   // Get the start of the unmarked area in this region.
   569   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   570   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   572   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   573   // allocated in the current region before the last call to "save_mark".
   574   void oop_before_save_marks_iterate(OopClosure* cl);
   576   DirtyCardToOopClosure*
   577   new_dcto_closure(OopClosure* cl,
   578                    CardTableModRefBS::PrecisionStyle precision,
   579                    HeapRegionDCTOC::FilterKind fk);
   581   // Note the start or end of marking. This tells the heap region
   582   // that the collector is about to start or has finished (concurrently)
   583   // marking the heap.
   585   // Note the start of a marking phase. Record the
   586   // start of the unmarked area of the region here.
   587   void note_start_of_marking(bool during_initial_mark) {
   588     init_top_at_conc_mark_count();
   589     _next_marked_bytes = 0;
   590     if (during_initial_mark && is_young() && !is_survivor())
   591       _next_top_at_mark_start = bottom();
   592     else
   593       _next_top_at_mark_start = top();
   594   }
   596   // Note the end of a marking phase. Install the start of
   597   // the unmarked area that was captured at start of marking.
   598   void note_end_of_marking() {
   599     _prev_top_at_mark_start = _next_top_at_mark_start;
   600     _prev_marked_bytes = _next_marked_bytes;
   601     _next_marked_bytes = 0;
   603     guarantee(_prev_marked_bytes <=
   604               (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
   605               "invariant");
   606   }
   608   // After an evacuation, we need to update _next_top_at_mark_start
   609   // to be the current top.  Note this is only valid if we have only
   610   // ever evacuated into this region.  If we evacuate, allocate, and
   611   // then evacuate we are in deep doodoo.
   612   void note_end_of_copying() {
   613     assert(top() >= _next_top_at_mark_start, "Increase only");
   614     _next_top_at_mark_start = top();
   615   }
   617   // Returns "false" iff no object in the region was allocated when the
   618   // last mark phase ended.
   619   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   621   // If "is_marked()" is true, then this is the index of the region in
   622   // an array constructed at the end of marking of the regions in a
   623   // "desirability" order.
   624   int sort_index() {
   625     return _sort_index;
   626   }
   627   void set_sort_index(int i) {
   628     _sort_index = i;
   629   }
   631   void init_top_at_conc_mark_count() {
   632     _top_at_conc_mark_count = bottom();
   633   }
   635   void set_top_at_conc_mark_count(HeapWord *cur) {
   636     assert(bottom() <= cur && cur <= end(), "Sanity.");
   637     _top_at_conc_mark_count = cur;
   638   }
   640   HeapWord* top_at_conc_mark_count() {
   641     return _top_at_conc_mark_count;
   642   }
   644   void reset_during_compaction() {
   645     guarantee( isHumongous() && startsHumongous(),
   646                "should only be called for humongous regions");
   648     zero_marked_bytes();
   649     init_top_at_mark_start();
   650   }
   652   // <PREDICTION>
   653   void calc_gc_efficiency(void);
   654   double gc_efficiency() { return _gc_efficiency;}
   655   // </PREDICTION>
   657   bool is_young() const     { return _young_type != NotYoung; }
   658   bool is_survivor() const  { return _young_type == Survivor; }
   660   int  young_index_in_cset() const { return _young_index_in_cset; }
   661   void set_young_index_in_cset(int index) {
   662     assert( (index == -1) || is_young(), "pre-condition" );
   663     _young_index_in_cset = index;
   664   }
   666   int age_in_surv_rate_group() {
   667     assert( _surv_rate_group != NULL, "pre-condition" );
   668     assert( _age_index > -1, "pre-condition" );
   669     return _surv_rate_group->age_in_group(_age_index);
   670   }
   672   void record_surv_words_in_group(size_t words_survived) {
   673     assert( _surv_rate_group != NULL, "pre-condition" );
   674     assert( _age_index > -1, "pre-condition" );
   675     int age_in_group = age_in_surv_rate_group();
   676     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   677   }
   679   int age_in_surv_rate_group_cond() {
   680     if (_surv_rate_group != NULL)
   681       return age_in_surv_rate_group();
   682     else
   683       return -1;
   684   }
   686   SurvRateGroup* surv_rate_group() {
   687     return _surv_rate_group;
   688   }
   690   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   691     assert( surv_rate_group != NULL, "pre-condition" );
   692     assert( _surv_rate_group == NULL, "pre-condition" );
   693     assert( is_young(), "pre-condition" );
   695     _surv_rate_group = surv_rate_group;
   696     _age_index = surv_rate_group->next_age_index();
   697   }
   699   void uninstall_surv_rate_group() {
   700     if (_surv_rate_group != NULL) {
   701       assert( _age_index > -1, "pre-condition" );
   702       assert( is_young(), "pre-condition" );
   704       _surv_rate_group = NULL;
   705       _age_index = -1;
   706     } else {
   707       assert( _age_index == -1, "pre-condition" );
   708     }
   709   }
   711   void set_young() { set_young_type(Young); }
   713   void set_survivor() { set_young_type(Survivor); }
   715   void set_not_young() { set_young_type(NotYoung); }
   717   // Determine if an object has been allocated since the last
   718   // mark performed by the collector. This returns true iff the object
   719   // is within the unmarked area of the region.
   720   bool obj_allocated_since_prev_marking(oop obj) const {
   721     return (HeapWord *) obj >= prev_top_at_mark_start();
   722   }
   723   bool obj_allocated_since_next_marking(oop obj) const {
   724     return (HeapWord *) obj >= next_top_at_mark_start();
   725   }
   727   // For parallel heapRegion traversal.
   728   bool claimHeapRegion(int claimValue);
   729   jint claim_value() { return _claimed; }
   730   // Use this carefully: only when you're sure no one is claiming...
   731   void set_claim_value(int claimValue) { _claimed = claimValue; }
   733   // Returns the "evacuation_failed" property of the region.
   734   bool evacuation_failed() { return _evacuation_failed; }
   736   // Sets the "evacuation_failed" property of the region.
   737   void set_evacuation_failed(bool b) {
   738     _evacuation_failed = b;
   740     if (b) {
   741       init_top_at_conc_mark_count();
   742       _next_marked_bytes = 0;
   743     }
   744   }
   746   // Requires that "mr" be entirely within the region.
   747   // Apply "cl->do_object" to all objects that intersect with "mr".
   748   // If the iteration encounters an unparseable portion of the region,
   749   // or if "cl->abort()" is true after a closure application,
   750   // terminate the iteration and return the address of the start of the
   751   // subregion that isn't done.  (The two can be distinguished by querying
   752   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   753   // completed.
   754   HeapWord*
   755   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   757   // filter_young: if true and the region is a young region then we
   758   // skip the iteration.
   759   // card_ptr: if not NULL, and we decide that the card is not young
   760   // and we iterate over it, we'll clean the card before we start the
   761   // iteration.
   762   HeapWord*
   763   oops_on_card_seq_iterate_careful(MemRegion mr,
   764                                    FilterOutOfRegionClosure* cl,
   765                                    bool filter_young,
   766                                    jbyte* card_ptr);
   768   // A version of block start that is guaranteed to find *some* block
   769   // boundary at or before "p", but does not object iteration, and may
   770   // therefore be used safely when the heap is unparseable.
   771   HeapWord* block_start_careful(const void* p) const {
   772     return _offsets.block_start_careful(p);
   773   }
   775   // Requires that "addr" is within the region.  Returns the start of the
   776   // first ("careful") block that starts at or after "addr", or else the
   777   // "end" of the region if there is no such block.
   778   HeapWord* next_block_start_careful(HeapWord* addr);
   780   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   781   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   782   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   784   void set_recorded_rs_length(size_t rs_length) {
   785     _recorded_rs_length = rs_length;
   786   }
   788   void set_predicted_elapsed_time_ms(double ms) {
   789     _predicted_elapsed_time_ms = ms;
   790   }
   792   void set_predicted_bytes_to_copy(size_t bytes) {
   793     _predicted_bytes_to_copy = bytes;
   794   }
   796 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   797   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   798   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   800   CompactibleSpace* next_compaction_space() const;
   802   virtual void reset_after_compaction();
   804   void print() const;
   805   void print_on(outputStream* st) const;
   807   // vo == UsePrevMarking  -> use "prev" marking information,
   808   // vo == UseNextMarking -> use "next" marking information
   809   // vo == UseMarkWord    -> use the mark word in the object header
   810   //
   811   // NOTE: Only the "prev" marking information is guaranteed to be
   812   // consistent most of the time, so most calls to this should use
   813   // vo == UsePrevMarking.
   814   // Currently, there is only one case where this is called with
   815   // vo == UseNextMarking, which is to verify the "next" marking
   816   // information at the end of remark.
   817   // Currently there is only one place where this is called with
   818   // vo == UseMarkWord, which is to verify the marking during a
   819   // full GC.
   820   void verify(bool allow_dirty, VerifyOption vo, bool *failures) const;
   822   // Override; it uses the "prev" marking information
   823   virtual void verify(bool allow_dirty) const;
   824 };
   826 // HeapRegionClosure is used for iterating over regions.
   827 // Terminates the iteration when the "doHeapRegion" method returns "true".
   828 class HeapRegionClosure : public StackObj {
   829   friend class HeapRegionSeq;
   830   friend class G1CollectedHeap;
   832   bool _complete;
   833   void incomplete() { _complete = false; }
   835  public:
   836   HeapRegionClosure(): _complete(true) {}
   838   // Typically called on each region until it returns true.
   839   virtual bool doHeapRegion(HeapRegion* r) = 0;
   841   // True after iteration if the closure was applied to all heap regions
   842   // and returned "false" in all cases.
   843   bool complete() { return _complete; }
   844 };
   846 #endif // SERIALGC
   848 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial