src/share/vm/oops/klass.cpp

Fri, 16 Nov 2012 09:19:12 -0500

author
coleenp
date
Fri, 16 Nov 2012 09:19:12 -0500
changeset 4280
80e866b1d053
parent 4278
070d523b96a7
child 4304
90273fc0a981
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/dictionary.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "gc_implementation/shared/markSweep.inline.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "memory/metadataFactory.hpp"
    33 #include "memory/oopFactory.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/instanceKlass.hpp"
    36 #include "oops/klass.inline.hpp"
    37 #include "oops/oop.inline2.hpp"
    38 #include "runtime/atomic.hpp"
    39 #include "utilities/stack.hpp"
    40 #ifndef SERIALGC
    41 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    42 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
    43 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    44 #endif
    46 void Klass::set_name(Symbol* n) {
    47   _name = n;
    48   if (_name != NULL) _name->increment_refcount();
    49 }
    51 bool Klass::is_subclass_of(Klass* k) const {
    52   // Run up the super chain and check
    53   if (this == k) return true;
    55   Klass* t = const_cast<Klass*>(this)->super();
    57   while (t != NULL) {
    58     if (t == k) return true;
    59     t = t->super();
    60   }
    61   return false;
    62 }
    64 bool Klass::search_secondary_supers(Klass* k) const {
    65   // Put some extra logic here out-of-line, before the search proper.
    66   // This cuts down the size of the inline method.
    68   // This is necessary, since I am never in my own secondary_super list.
    69   if (this == k)
    70     return true;
    71   // Scan the array-of-objects for a match
    72   int cnt = secondary_supers()->length();
    73   for (int i = 0; i < cnt; i++) {
    74     if (secondary_supers()->at(i) == k) {
    75       ((Klass*)this)->set_secondary_super_cache(k);
    76       return true;
    77     }
    78   }
    79   return false;
    80 }
    82 // Return self, except for abstract classes with exactly 1
    83 // implementor.  Then return the 1 concrete implementation.
    84 Klass *Klass::up_cast_abstract() {
    85   Klass *r = this;
    86   while( r->is_abstract() ) {   // Receiver is abstract?
    87     Klass *s = r->subklass();   // Check for exactly 1 subklass
    88     if( !s || s->next_sibling() ) // Oops; wrong count; give up
    89       return this;              // Return 'this' as a no-progress flag
    90     r = s;                    // Loop till find concrete class
    91   }
    92   return r;                   // Return the 1 concrete class
    93 }
    95 // Find LCA in class hierarchy
    96 Klass *Klass::LCA( Klass *k2 ) {
    97   Klass *k1 = this;
    98   while( 1 ) {
    99     if( k1->is_subtype_of(k2) ) return k2;
   100     if( k2->is_subtype_of(k1) ) return k1;
   101     k1 = k1->super();
   102     k2 = k2->super();
   103   }
   104 }
   107 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
   108   ResourceMark rm(THREAD);
   109   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
   110             : vmSymbols::java_lang_InstantiationException(), external_name());
   111 }
   114 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
   115   THROW(vmSymbols::java_lang_ArrayStoreException());
   116 }
   119 void Klass::initialize(TRAPS) {
   120   ShouldNotReachHere();
   121 }
   123 bool Klass::compute_is_subtype_of(Klass* k) {
   124   assert(k->is_klass(), "argument must be a class");
   125   return is_subclass_of(k);
   126 }
   129 Method* Klass::uncached_lookup_method(Symbol* name, Symbol* signature) const {
   130 #ifdef ASSERT
   131   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
   132                 " Likely error: reflection method does not correctly"
   133                 " wrap return value in a mirror object.");
   134 #endif
   135   ShouldNotReachHere();
   136   return NULL;
   137 }
   139 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) {
   140   return Metaspace::allocate(loader_data, word_size, /*read_only*/false,
   141                              Metaspace::ClassType, CHECK_NULL);
   142 }
   144 Klass::Klass() {
   145   Klass* k = this;
   147   { // Preinitialize supertype information.
   148     // A later call to initialize_supers() may update these settings:
   149     set_super(NULL);
   150     for (juint i = 0; i < Klass::primary_super_limit(); i++) {
   151       _primary_supers[i] = NULL;
   152     }
   153     set_secondary_supers(NULL);
   154     _primary_supers[0] = k;
   155     set_super_check_offset(in_bytes(primary_supers_offset()));
   156   }
   158   set_java_mirror(NULL);
   159   set_modifier_flags(0);
   160   set_layout_helper(Klass::_lh_neutral_value);
   161   set_name(NULL);
   162   AccessFlags af;
   163   af.set_flags(0);
   164   set_access_flags(af);
   165   set_subklass(NULL);
   166   set_next_sibling(NULL);
   167   set_next_link(NULL);
   168   set_alloc_count(0);
   169   TRACE_SET_KLASS_TRACE_ID(this, 0);
   171   set_prototype_header(markOopDesc::prototype());
   172   set_biased_lock_revocation_count(0);
   173   set_last_biased_lock_bulk_revocation_time(0);
   175   // The klass doesn't have any references at this point.
   176   clear_modified_oops();
   177   clear_accumulated_modified_oops();
   178 }
   180 jint Klass::array_layout_helper(BasicType etype) {
   181   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
   182   // Note that T_ARRAY is not allowed here.
   183   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
   184   int  esize = type2aelembytes(etype);
   185   bool isobj = (etype == T_OBJECT);
   186   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
   187   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
   189   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
   190   assert(layout_helper_is_array(lh), "correct kind");
   191   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
   192   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
   193   assert(layout_helper_header_size(lh) == hsize, "correct decode");
   194   assert(layout_helper_element_type(lh) == etype, "correct decode");
   195   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
   197   return lh;
   198 }
   200 bool Klass::can_be_primary_super_slow() const {
   201   if (super() == NULL)
   202     return true;
   203   else if (super()->super_depth() >= primary_super_limit()-1)
   204     return false;
   205   else
   206     return true;
   207 }
   209 void Klass::initialize_supers(Klass* k, TRAPS) {
   210   if (FastSuperclassLimit == 0) {
   211     // None of the other machinery matters.
   212     set_super(k);
   213     return;
   214   }
   215   if (k == NULL) {
   216     set_super(NULL);
   217     _primary_supers[0] = this;
   218     assert(super_depth() == 0, "Object must already be initialized properly");
   219   } else if (k != super() || k == SystemDictionary::Object_klass()) {
   220     assert(super() == NULL || super() == SystemDictionary::Object_klass(),
   221            "initialize this only once to a non-trivial value");
   222     set_super(k);
   223     Klass* sup = k;
   224     int sup_depth = sup->super_depth();
   225     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
   226     if (!can_be_primary_super_slow())
   227       my_depth = primary_super_limit();
   228     for (juint i = 0; i < my_depth; i++) {
   229       _primary_supers[i] = sup->_primary_supers[i];
   230     }
   231     Klass* *super_check_cell;
   232     if (my_depth < primary_super_limit()) {
   233       _primary_supers[my_depth] = this;
   234       super_check_cell = &_primary_supers[my_depth];
   235     } else {
   236       // Overflow of the primary_supers array forces me to be secondary.
   237       super_check_cell = &_secondary_super_cache;
   238     }
   239     set_super_check_offset((address)super_check_cell - (address) this);
   241 #ifdef ASSERT
   242     {
   243       juint j = super_depth();
   244       assert(j == my_depth, "computed accessor gets right answer");
   245       Klass* t = this;
   246       while (!t->can_be_primary_super()) {
   247         t = t->super();
   248         j = t->super_depth();
   249       }
   250       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
   251         assert(primary_super_of_depth(j1) == NULL, "super list padding");
   252       }
   253       while (t != NULL) {
   254         assert(primary_super_of_depth(j) == t, "super list initialization");
   255         t = t->super();
   256         --j;
   257       }
   258       assert(j == (juint)-1, "correct depth count");
   259     }
   260 #endif
   261   }
   263   if (secondary_supers() == NULL) {
   264     KlassHandle this_kh (THREAD, this);
   266     // Now compute the list of secondary supertypes.
   267     // Secondaries can occasionally be on the super chain,
   268     // if the inline "_primary_supers" array overflows.
   269     int extras = 0;
   270     Klass* p;
   271     for (p = super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
   272       ++extras;
   273     }
   275     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
   277     // Compute the "real" non-extra secondaries.
   278     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras);
   279     if (secondaries == NULL) {
   280       // secondary_supers set by compute_secondary_supers
   281       return;
   282     }
   284     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
   286     for (p = this_kh->super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
   287       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
   289       // This happens frequently for very deeply nested arrays: the
   290       // primary superclass chain overflows into the secondary.  The
   291       // secondary list contains the element_klass's secondaries with
   292       // an extra array dimension added.  If the element_klass's
   293       // secondary list already contains some primary overflows, they
   294       // (with the extra level of array-ness) will collide with the
   295       // normal primary superclass overflows.
   296       for( i = 0; i < secondaries->length(); i++ ) {
   297         if( secondaries->at(i) == p )
   298           break;
   299       }
   300       if( i < secondaries->length() )
   301         continue;               // It's a dup, don't put it in
   302       primaries->push(p);
   303     }
   304     // Combine the two arrays into a metadata object to pack the array.
   305     // The primaries are added in the reverse order, then the secondaries.
   306     int new_length = primaries->length() + secondaries->length();
   307     Array<Klass*>* s2 = MetadataFactory::new_array<Klass*>(
   308                                        class_loader_data(), new_length, CHECK);
   309     int fill_p = primaries->length();
   310     for (int j = 0; j < fill_p; j++) {
   311       s2->at_put(j, primaries->pop());  // add primaries in reverse order.
   312     }
   313     for( int j = 0; j < secondaries->length(); j++ ) {
   314       s2->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
   315     }
   317   #ifdef ASSERT
   318       // We must not copy any NULL placeholders left over from bootstrap.
   319     for (int j = 0; j < s2->length(); j++) {
   320       assert(s2->at(j) != NULL, "correct bootstrapping order");
   321     }
   322   #endif
   324     this_kh->set_secondary_supers(s2);
   325   }
   326 }
   328 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots) {
   329   assert(num_extra_slots == 0, "override for complex klasses");
   330   set_secondary_supers(Universe::the_empty_klass_array());
   331   return NULL;
   332 }
   335 Klass* Klass::subklass() const {
   336   return _subklass == NULL ? NULL : _subklass;
   337 }
   339 InstanceKlass* Klass::superklass() const {
   340   assert(super() == NULL || super()->oop_is_instance(), "must be instance klass");
   341   return _super == NULL ? NULL : InstanceKlass::cast(_super);
   342 }
   344 Klass* Klass::next_sibling() const {
   345   return _next_sibling == NULL ? NULL : _next_sibling;
   346 }
   348 void Klass::set_subklass(Klass* s) {
   349   assert(s != this, "sanity check");
   350   _subklass = s;
   351 }
   353 void Klass::set_next_sibling(Klass* s) {
   354   assert(s != this, "sanity check");
   355   _next_sibling = s;
   356 }
   358 void Klass::append_to_sibling_list() {
   359   debug_only(verify();)
   360   // add ourselves to superklass' subklass list
   361   InstanceKlass* super = superklass();
   362   if (super == NULL) return;        // special case: class Object
   363   assert((!super->is_interface()    // interfaces cannot be supers
   364           && (super->superklass() == NULL || !is_interface())),
   365          "an interface can only be a subklass of Object");
   366   Klass* prev_first_subklass = super->subklass_oop();
   367   if (prev_first_subklass != NULL) {
   368     // set our sibling to be the superklass' previous first subklass
   369     set_next_sibling(prev_first_subklass);
   370   }
   371   // make ourselves the superklass' first subklass
   372   super->set_subklass(this);
   373   debug_only(verify();)
   374 }
   376 void Klass::remove_from_sibling_list() {
   377   // remove receiver from sibling list
   378   InstanceKlass* super = superklass();
   379   assert(super != NULL || this == SystemDictionary::Object_klass(), "should have super");
   380   if (super == NULL) return;        // special case: class Object
   381   if (super->subklass() == this) {
   382     // first subklass
   383     super->set_subklass(_next_sibling);
   384   } else {
   385     Klass* sib = super->subklass();
   386     while (sib->next_sibling() != this) {
   387       sib = sib->next_sibling();
   388     };
   389     sib->set_next_sibling(_next_sibling);
   390   }
   391 }
   393 bool Klass::is_loader_alive(BoolObjectClosure* is_alive) {
   394   assert(is_metadata(), "p is not meta-data");
   395   assert(ClassLoaderDataGraph::contains((address)this), "is in the metaspace");
   396   // The class is alive iff the class loader is alive.
   397   oop loader = class_loader();
   398   return (loader == NULL) || is_alive->do_object_b(loader);
   399 }
   401 void Klass::clean_weak_klass_links(BoolObjectClosure* is_alive) {
   402   if (!ClassUnloading) {
   403     return;
   404   }
   406   Klass* root = SystemDictionary::Object_klass();
   407   Stack<Klass*, mtGC> stack;
   409   stack.push(root);
   410   while (!stack.is_empty()) {
   411     Klass* current = stack.pop();
   413     assert(current->is_loader_alive(is_alive), "just checking, this should be live");
   415     // Find and set the first alive subklass
   416     Klass* sub = current->subklass_oop();
   417     while (sub != NULL && !sub->is_loader_alive(is_alive)) {
   418 #ifndef PRODUCT
   419         if (TraceClassUnloading && WizardMode) {
   420           ResourceMark rm;
   421         tty->print_cr("[Unlinking class (subclass) %s]", sub->external_name());
   422         }
   423 #endif
   424       sub = sub->next_sibling_oop();
   425     }
   426     current->set_subklass(sub);
   427     if (sub != NULL) {
   428       stack.push(sub);
   429     }
   431     // Find and set the first alive sibling
   432     Klass* sibling = current->next_sibling_oop();
   433     while (sibling != NULL && !sibling->is_loader_alive(is_alive)) {
   434           if (TraceClassUnloading && WizardMode) {
   435             ResourceMark rm;
   436         tty->print_cr("[Unlinking class (sibling) %s]", sibling->external_name());
   437           }
   438       sibling = sibling->next_sibling_oop();
   439       }
   440     current->set_next_sibling(sibling);
   441     if (sibling != NULL) {
   442       stack.push(sibling);
   443 }
   445     // Clean the implementors list and method data.
   446     if (current->oop_is_instance()) {
   447       InstanceKlass* ik = InstanceKlass::cast(current);
   448       ik->clean_implementors_list(is_alive);
   449       ik->clean_method_data(is_alive);
   450     }
   451   }
   452 }
   454 void Klass::klass_update_barrier_set(oop v) {
   455   record_modified_oops();
   456 }
   458 void Klass::klass_update_barrier_set_pre(void* p, oop v) {
   459   // This barrier used by G1, where it's used remember the old oop values,
   460   // so that we don't forget any objects that were live at the snapshot at
   461   // the beginning. This function is only used when we write oops into
   462   // Klasses. Since the Klasses are used as roots in G1, we don't have to
   463   // do anything here.
   464 }
   466 void Klass::klass_oop_store(oop* p, oop v) {
   467   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
   468   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
   470   // do the store
   471   if (always_do_update_barrier) {
   472     klass_oop_store((volatile oop*)p, v);
   473   } else {
   474     klass_update_barrier_set_pre((void*)p, v);
   475     *p = v;
   476     klass_update_barrier_set(v);
   477   }
   478 }
   480 void Klass::klass_oop_store(volatile oop* p, oop v) {
   481   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
   482   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
   484   klass_update_barrier_set_pre((void*)p, v);
   485   OrderAccess::release_store_ptr(p, v);
   486   klass_update_barrier_set(v);
   487 }
   489 void Klass::oops_do(OopClosure* cl) {
   490   cl->do_oop(&_java_mirror);
   491 }
   493 void Klass::remove_unshareable_info() {
   494   set_subklass(NULL);
   495   set_next_sibling(NULL);
   496   // Clear the java mirror
   497   set_java_mirror(NULL);
   498   set_next_link(NULL);
   500   // Null out class_loader_data because we don't share that yet.
   501   set_class_loader_data(NULL);
   502 }
   504 void Klass::restore_unshareable_info(TRAPS) {
   505   ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data();
   506   // Restore class_loader_data to the null class loader data
   507   set_class_loader_data(loader_data);
   509   // Add to null class loader list first before creating the mirror
   510   // (same order as class file parsing)
   511   loader_data->add_class(this);
   513   // Recreate the class mirror
   514   java_lang_Class::create_mirror(this, CHECK);
   515 }
   517 Klass* Klass::array_klass_or_null(int rank) {
   518   EXCEPTION_MARK;
   519   // No exception can be thrown by array_klass_impl when called with or_null == true.
   520   // (In anycase, the execption mark will fail if it do so)
   521   return array_klass_impl(true, rank, THREAD);
   522 }
   525 Klass* Klass::array_klass_or_null() {
   526   EXCEPTION_MARK;
   527   // No exception can be thrown by array_klass_impl when called with or_null == true.
   528   // (In anycase, the execption mark will fail if it do so)
   529   return array_klass_impl(true, THREAD);
   530 }
   533 Klass* Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
   534   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
   535   return NULL;
   536 }
   539 Klass* Klass::array_klass_impl(bool or_null, TRAPS) {
   540   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
   541   return NULL;
   542 }
   545 void Klass::with_array_klasses_do(void f(Klass* k)) {
   546   f(this);
   547 }
   550 oop Klass::class_loader() const { return class_loader_data()->class_loader(); }
   552 const char* Klass::external_name() const {
   553   if (oop_is_instance()) {
   554     InstanceKlass* ik = (InstanceKlass*) this;
   555     if (ik->is_anonymous()) {
   556       assert(EnableInvokeDynamic, "");
   557       intptr_t hash = ik->java_mirror()->identity_hash();
   558       char     hash_buf[40];
   559       sprintf(hash_buf, "/" UINTX_FORMAT, (uintx)hash);
   560       size_t   hash_len = strlen(hash_buf);
   562       size_t result_len = name()->utf8_length();
   563       char*  result     = NEW_RESOURCE_ARRAY(char, result_len + hash_len + 1);
   564       name()->as_klass_external_name(result, (int) result_len + 1);
   565       assert(strlen(result) == result_len, "");
   566       strcpy(result + result_len, hash_buf);
   567       assert(strlen(result) == result_len + hash_len, "");
   568       return result;
   569     }
   570   }
   571   if (name() == NULL)  return "<unknown>";
   572   return name()->as_klass_external_name();
   573 }
   576 const char* Klass::signature_name() const {
   577   if (name() == NULL)  return "<unknown>";
   578   return name()->as_C_string();
   579 }
   581 // Unless overridden, modifier_flags is 0.
   582 jint Klass::compute_modifier_flags(TRAPS) const {
   583   return 0;
   584 }
   586 int Klass::atomic_incr_biased_lock_revocation_count() {
   587   return (int) Atomic::add(1, &_biased_lock_revocation_count);
   588 }
   590 // Unless overridden, jvmti_class_status has no flags set.
   591 jint Klass::jvmti_class_status() const {
   592   return 0;
   593 }
   596 // Printing
   598 void Klass::print_on(outputStream* st) const {
   599   ResourceMark rm;
   600   // print title
   601   st->print("%s", internal_name());
   602   print_address_on(st);
   603   st->cr();
   604 }
   606 void Klass::oop_print_on(oop obj, outputStream* st) {
   607   ResourceMark rm;
   608   // print title
   609   st->print_cr("%s ", internal_name());
   610   obj->print_address_on(st);
   612   if (WizardMode) {
   613      // print header
   614      obj->mark()->print_on(st);
   615   }
   617   // print class
   618   st->print(" - klass: ");
   619   obj->klass()->print_value_on(st);
   620   st->cr();
   621 }
   623 void Klass::oop_print_value_on(oop obj, outputStream* st) {
   624   // print title
   625   ResourceMark rm;              // Cannot print in debug mode without this
   626   st->print("%s", internal_name());
   627   obj->print_address_on(st);
   628 }
   631 // Verification
   633 void Klass::verify_on(outputStream* st) {
   634   guarantee(!Universe::heap()->is_in_reserved(this), "Shouldn't be");
   635   guarantee(this->is_metadata(), "should be in metaspace");
   637   assert(ClassLoaderDataGraph::contains((address)this), "Should be");
   639   guarantee(this->is_klass(),"should be klass");
   641   if (super() != NULL) {
   642     guarantee(super()->is_metadata(), "should be in metaspace");
   643     guarantee(super()->is_klass(), "should be klass");
   644   }
   645   if (secondary_super_cache() != NULL) {
   646     Klass* ko = secondary_super_cache();
   647     guarantee(ko->is_metadata(), "should be in metaspace");
   648     guarantee(ko->is_klass(), "should be klass");
   649   }
   650   for ( uint i = 0; i < primary_super_limit(); i++ ) {
   651     Klass* ko = _primary_supers[i];
   652     if (ko != NULL) {
   653       guarantee(ko->is_metadata(), "should be in metaspace");
   654       guarantee(ko->is_klass(), "should be klass");
   655     }
   656   }
   658   if (java_mirror() != NULL) {
   659     guarantee(java_mirror()->is_oop(), "should be instance");
   660   }
   661 }
   663 void Klass::oop_verify_on(oop obj, outputStream* st) {
   664   guarantee(obj->is_oop(),  "should be oop");
   665   guarantee(obj->klass()->is_metadata(), "should not be in Java heap");
   666   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
   667 }
   669 #ifndef PRODUCT
   671 void Klass::verify_vtable_index(int i) {
   672   if (oop_is_instance()) {
   673     assert(i>=0 && i<((InstanceKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
   674   } else {
   675     assert(oop_is_array(), "Must be");
   676     assert(i>=0 && i<((ArrayKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
   677   }
   678 }
   680 #endif

mercurial