src/share/vm/c1/c1_Instruction.hpp

Wed, 29 Sep 2010 16:53:42 -0700

author
iveresov
date
Wed, 29 Sep 2010 16:53:42 -0700
changeset 2180
80c9354976b0
parent 2179
ad0638ff8ea4
child 2254
42a10fc37986
permissions
-rw-r--r--

6988346: 6986046 breaks tiered
Summary: adjusted profiling code generation to use the new ValueStack implementation; lowered optimization level for c1_LinearScan.cpp on solaris x64.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Predefined classes
    26 class ciField;
    27 class ValueStack;
    28 class InstructionPrinter;
    29 class IRScope;
    30 class LIR_OprDesc;
    31 typedef LIR_OprDesc* LIR_Opr;
    34 // Instruction class hierarchy
    35 //
    36 // All leaf classes in the class hierarchy are concrete classes
    37 // (i.e., are instantiated). All other classes are abstract and
    38 // serve factoring.
    40 class Instruction;
    41 class   Phi;
    42 class   Local;
    43 class   Constant;
    44 class   AccessField;
    45 class     LoadField;
    46 class     StoreField;
    47 class   AccessArray;
    48 class     ArrayLength;
    49 class     AccessIndexed;
    50 class       LoadIndexed;
    51 class       StoreIndexed;
    52 class   NegateOp;
    53 class   Op2;
    54 class     ArithmeticOp;
    55 class     ShiftOp;
    56 class     LogicOp;
    57 class     CompareOp;
    58 class     IfOp;
    59 class   Convert;
    60 class   NullCheck;
    61 class   OsrEntry;
    62 class   ExceptionObject;
    63 class   StateSplit;
    64 class     Invoke;
    65 class     NewInstance;
    66 class     NewArray;
    67 class       NewTypeArray;
    68 class       NewObjectArray;
    69 class       NewMultiArray;
    70 class     TypeCheck;
    71 class       CheckCast;
    72 class       InstanceOf;
    73 class     AccessMonitor;
    74 class       MonitorEnter;
    75 class       MonitorExit;
    76 class     Intrinsic;
    77 class     BlockBegin;
    78 class     BlockEnd;
    79 class       Goto;
    80 class       If;
    81 class       IfInstanceOf;
    82 class       Switch;
    83 class         TableSwitch;
    84 class         LookupSwitch;
    85 class       Return;
    86 class       Throw;
    87 class       Base;
    88 class   RoundFP;
    89 class   UnsafeOp;
    90 class     UnsafeRawOp;
    91 class       UnsafeGetRaw;
    92 class       UnsafePutRaw;
    93 class     UnsafeObjectOp;
    94 class       UnsafeGetObject;
    95 class       UnsafePutObject;
    96 class       UnsafePrefetch;
    97 class         UnsafePrefetchRead;
    98 class         UnsafePrefetchWrite;
    99 class   ProfileCall;
   100 class   ProfileInvoke;
   102 // A Value is a reference to the instruction creating the value
   103 typedef Instruction* Value;
   104 define_array(ValueArray, Value)
   105 define_stack(Values, ValueArray)
   107 define_array(ValueStackArray, ValueStack*)
   108 define_stack(ValueStackStack, ValueStackArray)
   110 // BlockClosure is the base class for block traversal/iteration.
   112 class BlockClosure: public CompilationResourceObj {
   113  public:
   114   virtual void block_do(BlockBegin* block)       = 0;
   115 };
   118 // A simple closure class for visiting the values of an Instruction
   119 class ValueVisitor: public StackObj {
   120  public:
   121   virtual void visit(Value* v) = 0;
   122 };
   125 // Some array and list classes
   126 define_array(BlockBeginArray, BlockBegin*)
   127 define_stack(_BlockList, BlockBeginArray)
   129 class BlockList: public _BlockList {
   130  public:
   131   BlockList(): _BlockList() {}
   132   BlockList(const int size): _BlockList(size) {}
   133   BlockList(const int size, BlockBegin* init): _BlockList(size, init) {}
   135   void iterate_forward(BlockClosure* closure);
   136   void iterate_backward(BlockClosure* closure);
   137   void blocks_do(void f(BlockBegin*));
   138   void values_do(ValueVisitor* f);
   139   void print(bool cfg_only = false, bool live_only = false) PRODUCT_RETURN;
   140 };
   143 // InstructionVisitors provide type-based dispatch for instructions.
   144 // For each concrete Instruction class X, a virtual function do_X is
   145 // provided. Functionality that needs to be implemented for all classes
   146 // (e.g., printing, code generation) is factored out into a specialised
   147 // visitor instead of added to the Instruction classes itself.
   149 class InstructionVisitor: public StackObj {
   150  public:
   151   virtual void do_Phi            (Phi*             x) = 0;
   152   virtual void do_Local          (Local*           x) = 0;
   153   virtual void do_Constant       (Constant*        x) = 0;
   154   virtual void do_LoadField      (LoadField*       x) = 0;
   155   virtual void do_StoreField     (StoreField*      x) = 0;
   156   virtual void do_ArrayLength    (ArrayLength*     x) = 0;
   157   virtual void do_LoadIndexed    (LoadIndexed*     x) = 0;
   158   virtual void do_StoreIndexed   (StoreIndexed*    x) = 0;
   159   virtual void do_NegateOp       (NegateOp*        x) = 0;
   160   virtual void do_ArithmeticOp   (ArithmeticOp*    x) = 0;
   161   virtual void do_ShiftOp        (ShiftOp*         x) = 0;
   162   virtual void do_LogicOp        (LogicOp*         x) = 0;
   163   virtual void do_CompareOp      (CompareOp*       x) = 0;
   164   virtual void do_IfOp           (IfOp*            x) = 0;
   165   virtual void do_Convert        (Convert*         x) = 0;
   166   virtual void do_NullCheck      (NullCheck*       x) = 0;
   167   virtual void do_Invoke         (Invoke*          x) = 0;
   168   virtual void do_NewInstance    (NewInstance*     x) = 0;
   169   virtual void do_NewTypeArray   (NewTypeArray*    x) = 0;
   170   virtual void do_NewObjectArray (NewObjectArray*  x) = 0;
   171   virtual void do_NewMultiArray  (NewMultiArray*   x) = 0;
   172   virtual void do_CheckCast      (CheckCast*       x) = 0;
   173   virtual void do_InstanceOf     (InstanceOf*      x) = 0;
   174   virtual void do_MonitorEnter   (MonitorEnter*    x) = 0;
   175   virtual void do_MonitorExit    (MonitorExit*     x) = 0;
   176   virtual void do_Intrinsic      (Intrinsic*       x) = 0;
   177   virtual void do_BlockBegin     (BlockBegin*      x) = 0;
   178   virtual void do_Goto           (Goto*            x) = 0;
   179   virtual void do_If             (If*              x) = 0;
   180   virtual void do_IfInstanceOf   (IfInstanceOf*    x) = 0;
   181   virtual void do_TableSwitch    (TableSwitch*     x) = 0;
   182   virtual void do_LookupSwitch   (LookupSwitch*    x) = 0;
   183   virtual void do_Return         (Return*          x) = 0;
   184   virtual void do_Throw          (Throw*           x) = 0;
   185   virtual void do_Base           (Base*            x) = 0;
   186   virtual void do_OsrEntry       (OsrEntry*        x) = 0;
   187   virtual void do_ExceptionObject(ExceptionObject* x) = 0;
   188   virtual void do_RoundFP        (RoundFP*         x) = 0;
   189   virtual void do_UnsafeGetRaw   (UnsafeGetRaw*    x) = 0;
   190   virtual void do_UnsafePutRaw   (UnsafePutRaw*    x) = 0;
   191   virtual void do_UnsafeGetObject(UnsafeGetObject* x) = 0;
   192   virtual void do_UnsafePutObject(UnsafePutObject* x) = 0;
   193   virtual void do_UnsafePrefetchRead (UnsafePrefetchRead*  x) = 0;
   194   virtual void do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) = 0;
   195   virtual void do_ProfileCall    (ProfileCall*     x) = 0;
   196   virtual void do_ProfileInvoke  (ProfileInvoke*   x) = 0;
   197 };
   200 // Hashing support
   201 //
   202 // Note: This hash functions affect the performance
   203 //       of ValueMap - make changes carefully!
   205 #define HASH1(x1            )                    ((intx)(x1))
   206 #define HASH2(x1, x2        )                    ((HASH1(x1        ) << 7) ^ HASH1(x2))
   207 #define HASH3(x1, x2, x3    )                    ((HASH2(x1, x2    ) << 7) ^ HASH1(x3))
   208 #define HASH4(x1, x2, x3, x4)                    ((HASH3(x1, x2, x3) << 7) ^ HASH1(x4))
   211 // The following macros are used to implement instruction-specific hashing.
   212 // By default, each instruction implements hash() and is_equal(Value), used
   213 // for value numbering/common subexpression elimination. The default imple-
   214 // mentation disables value numbering. Each instruction which can be value-
   215 // numbered, should define corresponding hash() and is_equal(Value) functions
   216 // via the macros below. The f arguments specify all the values/op codes, etc.
   217 // that need to be identical for two instructions to be identical.
   218 //
   219 // Note: The default implementation of hash() returns 0 in order to indicate
   220 //       that the instruction should not be considered for value numbering.
   221 //       The currently used hash functions do not guarantee that never a 0
   222 //       is produced. While this is still correct, it may be a performance
   223 //       bug (no value numbering for that node). However, this situation is
   224 //       so unlikely, that we are not going to handle it specially.
   226 #define HASHING1(class_name, enabled, f1)             \
   227   virtual intx hash() const {                         \
   228     return (enabled) ? HASH2(name(), f1) : 0;         \
   229   }                                                   \
   230   virtual bool is_equal(Value v) const {              \
   231     if (!(enabled)  ) return false;                   \
   232     class_name* _v = v->as_##class_name();            \
   233     if (_v == NULL  ) return false;                   \
   234     if (f1 != _v->f1) return false;                   \
   235     return true;                                      \
   236   }                                                   \
   239 #define HASHING2(class_name, enabled, f1, f2)         \
   240   virtual intx hash() const {                         \
   241     return (enabled) ? HASH3(name(), f1, f2) : 0;     \
   242   }                                                   \
   243   virtual bool is_equal(Value v) const {              \
   244     if (!(enabled)  ) return false;                   \
   245     class_name* _v = v->as_##class_name();            \
   246     if (_v == NULL  ) return false;                   \
   247     if (f1 != _v->f1) return false;                   \
   248     if (f2 != _v->f2) return false;                   \
   249     return true;                                      \
   250   }                                                   \
   253 #define HASHING3(class_name, enabled, f1, f2, f3)     \
   254   virtual intx hash() const {                          \
   255     return (enabled) ? HASH4(name(), f1, f2, f3) : 0; \
   256   }                                                   \
   257   virtual bool is_equal(Value v) const {              \
   258     if (!(enabled)  ) return false;                   \
   259     class_name* _v = v->as_##class_name();            \
   260     if (_v == NULL  ) return false;                   \
   261     if (f1 != _v->f1) return false;                   \
   262     if (f2 != _v->f2) return false;                   \
   263     if (f3 != _v->f3) return false;                   \
   264     return true;                                      \
   265   }                                                   \
   268 // The mother of all instructions...
   270 class Instruction: public CompilationResourceObj {
   271  private:
   272   int          _id;                              // the unique instruction id
   273 #ifndef PRODUCT
   274   int          _printable_bci;                   // the bci of the instruction for printing
   275 #endif
   276   int          _use_count;                       // the number of instructions refering to this value (w/o prev/next); only roots can have use count = 0 or > 1
   277   int          _pin_state;                       // set of PinReason describing the reason for pinning
   278   ValueType*   _type;                            // the instruction value type
   279   Instruction* _next;                            // the next instruction if any (NULL for BlockEnd instructions)
   280   Instruction* _subst;                           // the substitution instruction if any
   281   LIR_Opr      _operand;                         // LIR specific information
   282   unsigned int _flags;                           // Flag bits
   284   ValueStack*  _state_before;                    // Copy of state with input operands still on stack (or NULL)
   285   ValueStack*  _exception_state;                 // Copy of state for exception handling
   286   XHandlers*   _exception_handlers;              // Flat list of exception handlers covering this instruction
   288   friend class UseCountComputer;
   289   friend class BlockBegin;
   291   void update_exception_state(ValueStack* state);
   293   bool has_printable_bci() const                 { return NOT_PRODUCT(_printable_bci != -99) PRODUCT_ONLY(false); }
   295  protected:
   296   void set_type(ValueType* type) {
   297     assert(type != NULL, "type must exist");
   298     _type = type;
   299   }
   301  public:
   302   void* operator new(size_t size) {
   303     Compilation* c = Compilation::current();
   304     void* res = c->arena()->Amalloc(size);
   305     ((Instruction*)res)->_id = c->get_next_id();
   306     return res;
   307   }
   309   enum InstructionFlag {
   310     NeedsNullCheckFlag = 0,
   311     CanTrapFlag,
   312     DirectCompareFlag,
   313     IsEliminatedFlag,
   314     IsInitializedFlag,
   315     IsLoadedFlag,
   316     IsSafepointFlag,
   317     IsStaticFlag,
   318     IsStrictfpFlag,
   319     NeedsStoreCheckFlag,
   320     NeedsWriteBarrierFlag,
   321     PreservesStateFlag,
   322     TargetIsFinalFlag,
   323     TargetIsLoadedFlag,
   324     TargetIsStrictfpFlag,
   325     UnorderedIsTrueFlag,
   326     NeedsPatchingFlag,
   327     ThrowIncompatibleClassChangeErrorFlag,
   328     ProfileMDOFlag,
   329     IsLinkedInBlockFlag,
   330     InstructionLastFlag
   331   };
   333  public:
   334   bool check_flag(InstructionFlag id) const      { return (_flags & (1 << id)) != 0;    }
   335   void set_flag(InstructionFlag id, bool f)      { _flags = f ? (_flags | (1 << id)) : (_flags & ~(1 << id)); };
   337   // 'globally' used condition values
   338   enum Condition {
   339     eql, neq, lss, leq, gtr, geq
   340   };
   342   // Instructions may be pinned for many reasons and under certain conditions
   343   // with enough knowledge it's possible to safely unpin them.
   344   enum PinReason {
   345       PinUnknown           = 1 << 0
   346     , PinExplicitNullCheck = 1 << 3
   347     , PinStackForStateSplit= 1 << 12
   348     , PinStateSplitConstructor= 1 << 13
   349     , PinGlobalValueNumbering= 1 << 14
   350   };
   352   static Condition mirror(Condition cond);
   353   static Condition negate(Condition cond);
   355   // initialization
   356   static int number_of_instructions() {
   357     return Compilation::current()->number_of_instructions();
   358   }
   360   // creation
   361   Instruction(ValueType* type, ValueStack* state_before = NULL, bool type_is_constant = false)
   362   : _use_count(0)
   363 #ifndef PRODUCT
   364   , _printable_bci(-99)
   365 #endif
   366   , _pin_state(0)
   367   , _type(type)
   368   , _next(NULL)
   369   , _subst(NULL)
   370   , _flags(0)
   371   , _operand(LIR_OprFact::illegalOpr)
   372   , _state_before(state_before)
   373   , _exception_handlers(NULL)
   374   {
   375     check_state(state_before);
   376     assert(type != NULL && (!type->is_constant() || type_is_constant), "type must exist");
   377     update_exception_state(_state_before);
   378   }
   380   // accessors
   381   int id() const                                 { return _id; }
   382 #ifndef PRODUCT
   383   int printable_bci() const                      { assert(has_printable_bci(), "_printable_bci should have been set"); return _printable_bci; }
   384   void set_printable_bci(int bci)                { NOT_PRODUCT(_printable_bci = bci;) }
   385 #endif
   386   int use_count() const                          { return _use_count; }
   387   int pin_state() const                          { return _pin_state; }
   388   bool is_pinned() const                         { return _pin_state != 0 || PinAllInstructions; }
   389   ValueType* type() const                        { return _type; }
   390   Instruction* prev(BlockBegin* block);          // use carefully, expensive operation
   391   Instruction* next() const                      { return _next; }
   392   bool has_subst() const                         { return _subst != NULL; }
   393   Instruction* subst()                           { return _subst == NULL ? this : _subst->subst(); }
   394   LIR_Opr operand() const                        { return _operand; }
   396   void set_needs_null_check(bool f)              { set_flag(NeedsNullCheckFlag, f); }
   397   bool needs_null_check() const                  { return check_flag(NeedsNullCheckFlag); }
   398   bool is_linked() const                         { return check_flag(IsLinkedInBlockFlag); }
   399   bool can_be_linked()                           { return as_Local() == NULL && as_Phi() == NULL; }
   401   bool has_uses() const                          { return use_count() > 0; }
   402   ValueStack* state_before() const               { return _state_before; }
   403   ValueStack* exception_state() const            { return _exception_state; }
   404   virtual bool needs_exception_state() const     { return true; }
   405   XHandlers* exception_handlers() const          { return _exception_handlers; }
   407   // manipulation
   408   void pin(PinReason reason)                     { _pin_state |= reason; }
   409   void pin()                                     { _pin_state |= PinUnknown; }
   410   // DANGEROUS: only used by EliminateStores
   411   void unpin(PinReason reason)                   { assert((reason & PinUnknown) == 0, "can't unpin unknown state"); _pin_state &= ~reason; }
   413   Instruction* set_next(Instruction* next) {
   414     assert(next->has_printable_bci(), "_printable_bci should have been set");
   415     assert(next != NULL, "must not be NULL");
   416     assert(as_BlockEnd() == NULL, "BlockEnd instructions must have no next");
   417     assert(next->can_be_linked(), "shouldn't link these instructions into list");
   419     next->set_flag(Instruction::IsLinkedInBlockFlag, true);
   420     _next = next;
   421     return next;
   422   }
   424   Instruction* set_next(Instruction* next, int bci) {
   425 #ifndef PRODUCT
   426     next->set_printable_bci(bci);
   427 #endif
   428     return set_next(next);
   429   }
   431   void set_subst(Instruction* subst)             {
   432     assert(subst == NULL ||
   433            type()->base() == subst->type()->base() ||
   434            subst->type()->base() == illegalType, "type can't change");
   435     _subst = subst;
   436   }
   437   void set_exception_handlers(XHandlers *xhandlers) { _exception_handlers = xhandlers; }
   438   void set_exception_state(ValueStack* s)        { check_state(s); _exception_state = s; }
   440   // machine-specifics
   441   void set_operand(LIR_Opr operand)              { assert(operand != LIR_OprFact::illegalOpr, "operand must exist"); _operand = operand; }
   442   void clear_operand()                           { _operand = LIR_OprFact::illegalOpr; }
   444   // generic
   445   virtual Instruction*      as_Instruction()     { return this; } // to satisfy HASHING1 macro
   446   virtual Phi*           as_Phi()          { return NULL; }
   447   virtual Local*            as_Local()           { return NULL; }
   448   virtual Constant*         as_Constant()        { return NULL; }
   449   virtual AccessField*      as_AccessField()     { return NULL; }
   450   virtual LoadField*        as_LoadField()       { return NULL; }
   451   virtual StoreField*       as_StoreField()      { return NULL; }
   452   virtual AccessArray*      as_AccessArray()     { return NULL; }
   453   virtual ArrayLength*      as_ArrayLength()     { return NULL; }
   454   virtual AccessIndexed*    as_AccessIndexed()   { return NULL; }
   455   virtual LoadIndexed*      as_LoadIndexed()     { return NULL; }
   456   virtual StoreIndexed*     as_StoreIndexed()    { return NULL; }
   457   virtual NegateOp*         as_NegateOp()        { return NULL; }
   458   virtual Op2*              as_Op2()             { return NULL; }
   459   virtual ArithmeticOp*     as_ArithmeticOp()    { return NULL; }
   460   virtual ShiftOp*          as_ShiftOp()         { return NULL; }
   461   virtual LogicOp*          as_LogicOp()         { return NULL; }
   462   virtual CompareOp*        as_CompareOp()       { return NULL; }
   463   virtual IfOp*             as_IfOp()            { return NULL; }
   464   virtual Convert*          as_Convert()         { return NULL; }
   465   virtual NullCheck*        as_NullCheck()       { return NULL; }
   466   virtual OsrEntry*         as_OsrEntry()        { return NULL; }
   467   virtual StateSplit*       as_StateSplit()      { return NULL; }
   468   virtual Invoke*           as_Invoke()          { return NULL; }
   469   virtual NewInstance*      as_NewInstance()     { return NULL; }
   470   virtual NewArray*         as_NewArray()        { return NULL; }
   471   virtual NewTypeArray*     as_NewTypeArray()    { return NULL; }
   472   virtual NewObjectArray*   as_NewObjectArray()  { return NULL; }
   473   virtual NewMultiArray*    as_NewMultiArray()   { return NULL; }
   474   virtual TypeCheck*        as_TypeCheck()       { return NULL; }
   475   virtual CheckCast*        as_CheckCast()       { return NULL; }
   476   virtual InstanceOf*       as_InstanceOf()      { return NULL; }
   477   virtual AccessMonitor*    as_AccessMonitor()   { return NULL; }
   478   virtual MonitorEnter*     as_MonitorEnter()    { return NULL; }
   479   virtual MonitorExit*      as_MonitorExit()     { return NULL; }
   480   virtual Intrinsic*        as_Intrinsic()       { return NULL; }
   481   virtual BlockBegin*       as_BlockBegin()      { return NULL; }
   482   virtual BlockEnd*         as_BlockEnd()        { return NULL; }
   483   virtual Goto*             as_Goto()            { return NULL; }
   484   virtual If*               as_If()              { return NULL; }
   485   virtual IfInstanceOf*     as_IfInstanceOf()    { return NULL; }
   486   virtual TableSwitch*      as_TableSwitch()     { return NULL; }
   487   virtual LookupSwitch*     as_LookupSwitch()    { return NULL; }
   488   virtual Return*           as_Return()          { return NULL; }
   489   virtual Throw*            as_Throw()           { return NULL; }
   490   virtual Base*             as_Base()            { return NULL; }
   491   virtual RoundFP*          as_RoundFP()         { return NULL; }
   492   virtual ExceptionObject*  as_ExceptionObject() { return NULL; }
   493   virtual UnsafeOp*         as_UnsafeOp()        { return NULL; }
   495   virtual void visit(InstructionVisitor* v)      = 0;
   497   virtual bool can_trap() const                  { return false; }
   499   virtual void input_values_do(ValueVisitor* f)   = 0;
   500   virtual void state_values_do(ValueVisitor* f);
   501   virtual void other_values_do(ValueVisitor* f)   { /* usually no other - override on demand */ }
   502           void       values_do(ValueVisitor* f)   { input_values_do(f); state_values_do(f); other_values_do(f); }
   504   virtual ciType* exact_type() const             { return NULL; }
   505   virtual ciType* declared_type() const          { return NULL; }
   507   // hashing
   508   virtual const char* name() const               = 0;
   509   HASHING1(Instruction, false, id())             // hashing disabled by default
   511   // debugging
   512   static void check_state(ValueStack* state)     PRODUCT_RETURN;
   513   void print()                                   PRODUCT_RETURN;
   514   void print_line()                              PRODUCT_RETURN;
   515   void print(InstructionPrinter& ip)             PRODUCT_RETURN;
   516 };
   519 // The following macros are used to define base (i.e., non-leaf)
   520 // and leaf instruction classes. They define class-name related
   521 // generic functionality in one place.
   523 #define BASE(class_name, super_class_name)       \
   524   class class_name: public super_class_name {    \
   525    public:                                       \
   526     virtual class_name* as_##class_name()        { return this; }              \
   529 #define LEAF(class_name, super_class_name)       \
   530   BASE(class_name, super_class_name)             \
   531    public:                                       \
   532     virtual const char* name() const             { return #class_name; }       \
   533     virtual void visit(InstructionVisitor* v)    { v->do_##class_name(this); } \
   536 // Debugging support
   539 #ifdef ASSERT
   540 class AssertValues: public ValueVisitor {
   541   void visit(Value* x)             { assert((*x) != NULL, "value must exist"); }
   542 };
   543   #define ASSERT_VALUES                          { AssertValues assert_value; values_do(&assert_value); }
   544 #else
   545   #define ASSERT_VALUES
   546 #endif // ASSERT
   549 // A Phi is a phi function in the sense of SSA form. It stands for
   550 // the value of a local variable at the beginning of a join block.
   551 // A Phi consists of n operands, one for every incoming branch.
   553 LEAF(Phi, Instruction)
   554  private:
   555   BlockBegin* _block;    // the block to which the phi function belongs
   556   int         _pf_flags; // the flags of the phi function
   557   int         _index;    // to value on operand stack (index < 0) or to local
   558  public:
   559   // creation
   560   Phi(ValueType* type, BlockBegin* b, int index)
   561   : Instruction(type->base())
   562   , _pf_flags(0)
   563   , _block(b)
   564   , _index(index)
   565   {
   566     if (type->is_illegal()) {
   567       make_illegal();
   568     }
   569   }
   571   // flags
   572   enum Flag {
   573     no_flag         = 0,
   574     visited         = 1 << 0,
   575     cannot_simplify = 1 << 1
   576   };
   578   // accessors
   579   bool  is_local() const          { return _index >= 0; }
   580   bool  is_on_stack() const       { return !is_local(); }
   581   int   local_index() const       { assert(is_local(), ""); return _index; }
   582   int   stack_index() const       { assert(is_on_stack(), ""); return -(_index+1); }
   584   Value operand_at(int i) const;
   585   int   operand_count() const;
   587   BlockBegin* block() const       { return _block; }
   589   void   set(Flag f)              { _pf_flags |=  f; }
   590   void   clear(Flag f)            { _pf_flags &= ~f; }
   591   bool   is_set(Flag f) const     { return (_pf_flags & f) != 0; }
   593   // Invalidates phis corresponding to merges of locals of two different types
   594   // (these should never be referenced, otherwise the bytecodes are illegal)
   595   void   make_illegal() {
   596     set(cannot_simplify);
   597     set_type(illegalType);
   598   }
   600   bool is_illegal() const {
   601     return type()->is_illegal();
   602   }
   604   // generic
   605   virtual void input_values_do(ValueVisitor* f) {
   606   }
   607 };
   610 // A local is a placeholder for an incoming argument to a function call.
   611 LEAF(Local, Instruction)
   612  private:
   613   int      _java_index;                          // the local index within the method to which the local belongs
   614  public:
   615   // creation
   616   Local(ValueType* type, int index)
   617     : Instruction(type)
   618     , _java_index(index)
   619   {}
   621   // accessors
   622   int java_index() const                         { return _java_index; }
   624   // generic
   625   virtual void input_values_do(ValueVisitor* f)   { /* no values */ }
   626 };
   629 LEAF(Constant, Instruction)
   630  public:
   631   // creation
   632   Constant(ValueType* type):
   633       Instruction(type, NULL, true)
   634   {
   635     assert(type->is_constant(), "must be a constant");
   636   }
   638   Constant(ValueType* type, ValueStack* state_before):
   639     Instruction(type, state_before, true)
   640   {
   641     assert(state_before != NULL, "only used for constants which need patching");
   642     assert(type->is_constant(), "must be a constant");
   643     // since it's patching it needs to be pinned
   644     pin();
   645   }
   647   virtual bool can_trap() const                  { return state_before() != NULL; }
   648   virtual void input_values_do(ValueVisitor* f)   { /* no values */ }
   650   virtual intx hash() const;
   651   virtual bool is_equal(Value v) const;
   653   virtual BlockBegin* compare(Instruction::Condition condition, Value right,
   654                               BlockBegin* true_sux, BlockBegin* false_sux);
   655 };
   658 BASE(AccessField, Instruction)
   659  private:
   660   Value       _obj;
   661   int         _offset;
   662   ciField*    _field;
   663   NullCheck*  _explicit_null_check;              // For explicit null check elimination
   665  public:
   666   // creation
   667   AccessField(Value obj, int offset, ciField* field, bool is_static,
   668               ValueStack* state_before, bool is_loaded, bool is_initialized)
   669   : Instruction(as_ValueType(field->type()->basic_type()), state_before)
   670   , _obj(obj)
   671   , _offset(offset)
   672   , _field(field)
   673   , _explicit_null_check(NULL)
   674   {
   675     set_needs_null_check(!is_static);
   676     set_flag(IsLoadedFlag, is_loaded);
   677     set_flag(IsInitializedFlag, is_initialized);
   678     set_flag(IsStaticFlag, is_static);
   679     ASSERT_VALUES
   680       if (!is_loaded || (PatchALot && !field->is_volatile())) {
   681       // need to patch if the holder wasn't loaded or we're testing
   682       // using PatchALot.  Don't allow PatchALot for fields which are
   683       // known to be volatile they aren't patchable.
   684       set_flag(NeedsPatchingFlag, true);
   685     }
   686     // pin of all instructions with memory access
   687     pin();
   688   }
   690   // accessors
   691   Value obj() const                              { return _obj; }
   692   int offset() const                             { return _offset; }
   693   ciField* field() const                         { return _field; }
   694   BasicType field_type() const                   { return _field->type()->basic_type(); }
   695   bool is_static() const                         { return check_flag(IsStaticFlag); }
   696   bool is_loaded() const                         { return check_flag(IsLoadedFlag); }
   697   bool is_initialized() const                    { return check_flag(IsInitializedFlag); }
   698   NullCheck* explicit_null_check() const         { return _explicit_null_check; }
   699   bool needs_patching() const                    { return check_flag(NeedsPatchingFlag); }
   701   // manipulation
   703   // Under certain circumstances, if a previous NullCheck instruction
   704   // proved the target object non-null, we can eliminate the explicit
   705   // null check and do an implicit one, simply specifying the debug
   706   // information from the NullCheck. This field should only be consulted
   707   // if needs_null_check() is true.
   708   void set_explicit_null_check(NullCheck* check) { _explicit_null_check = check; }
   710   // generic
   711   virtual bool can_trap() const                  { return needs_null_check() || needs_patching(); }
   712   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_obj); }
   713 };
   716 LEAF(LoadField, AccessField)
   717  public:
   718   // creation
   719   LoadField(Value obj, int offset, ciField* field, bool is_static,
   720             ValueStack* state_before, bool is_loaded, bool is_initialized)
   721   : AccessField(obj, offset, field, is_static, state_before, is_loaded, is_initialized)
   722   {}
   724   ciType* declared_type() const;
   725   ciType* exact_type() const;
   727   // generic
   728   HASHING2(LoadField, is_loaded() && !field()->is_volatile(), obj()->subst(), offset())  // cannot be eliminated if not yet loaded or if volatile
   729 };
   732 LEAF(StoreField, AccessField)
   733  private:
   734   Value _value;
   736  public:
   737   // creation
   738   StoreField(Value obj, int offset, ciField* field, Value value, bool is_static,
   739              ValueStack* state_before, bool is_loaded, bool is_initialized)
   740   : AccessField(obj, offset, field, is_static, state_before, is_loaded, is_initialized)
   741   , _value(value)
   742   {
   743     set_flag(NeedsWriteBarrierFlag, as_ValueType(field_type())->is_object());
   744     ASSERT_VALUES
   745     pin();
   746   }
   748   // accessors
   749   Value value() const                            { return _value; }
   750   bool needs_write_barrier() const               { return check_flag(NeedsWriteBarrierFlag); }
   752   // generic
   753   virtual void input_values_do(ValueVisitor* f)   { AccessField::input_values_do(f); f->visit(&_value); }
   754 };
   757 BASE(AccessArray, Instruction)
   758  private:
   759   Value       _array;
   761  public:
   762   // creation
   763   AccessArray(ValueType* type, Value array, ValueStack* state_before)
   764   : Instruction(type, state_before)
   765   , _array(array)
   766   {
   767     set_needs_null_check(true);
   768     ASSERT_VALUES
   769     pin(); // instruction with side effect (null exception or range check throwing)
   770   }
   772   Value array() const                            { return _array; }
   774   // generic
   775   virtual bool can_trap() const                  { return needs_null_check(); }
   776   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_array); }
   777 };
   780 LEAF(ArrayLength, AccessArray)
   781  private:
   782   NullCheck*  _explicit_null_check;              // For explicit null check elimination
   784  public:
   785   // creation
   786   ArrayLength(Value array, ValueStack* state_before)
   787   : AccessArray(intType, array, state_before)
   788   , _explicit_null_check(NULL) {}
   790   // accessors
   791   NullCheck* explicit_null_check() const         { return _explicit_null_check; }
   793   // setters
   794   // See LoadField::set_explicit_null_check for documentation
   795   void set_explicit_null_check(NullCheck* check) { _explicit_null_check = check; }
   797   // generic
   798   HASHING1(ArrayLength, true, array()->subst())
   799 };
   802 BASE(AccessIndexed, AccessArray)
   803  private:
   804   Value     _index;
   805   Value     _length;
   806   BasicType _elt_type;
   808  public:
   809   // creation
   810   AccessIndexed(Value array, Value index, Value length, BasicType elt_type, ValueStack* state_before)
   811   : AccessArray(as_ValueType(elt_type), array, state_before)
   812   , _index(index)
   813   , _length(length)
   814   , _elt_type(elt_type)
   815   {
   816     ASSERT_VALUES
   817   }
   819   // accessors
   820   Value index() const                            { return _index; }
   821   Value length() const                           { return _length; }
   822   BasicType elt_type() const                     { return _elt_type; }
   824   // perform elimination of range checks involving constants
   825   bool compute_needs_range_check();
   827   // generic
   828   virtual void input_values_do(ValueVisitor* f)   { AccessArray::input_values_do(f); f->visit(&_index); if (_length != NULL) f->visit(&_length); }
   829 };
   832 LEAF(LoadIndexed, AccessIndexed)
   833  private:
   834   NullCheck*  _explicit_null_check;              // For explicit null check elimination
   836  public:
   837   // creation
   838   LoadIndexed(Value array, Value index, Value length, BasicType elt_type, ValueStack* state_before)
   839   : AccessIndexed(array, index, length, elt_type, state_before)
   840   , _explicit_null_check(NULL) {}
   842   // accessors
   843   NullCheck* explicit_null_check() const         { return _explicit_null_check; }
   845   // setters
   846   // See LoadField::set_explicit_null_check for documentation
   847   void set_explicit_null_check(NullCheck* check) { _explicit_null_check = check; }
   849   ciType* exact_type() const;
   850   ciType* declared_type() const;
   852   // generic
   853   HASHING2(LoadIndexed, true, array()->subst(), index()->subst())
   854 };
   857 LEAF(StoreIndexed, AccessIndexed)
   858  private:
   859   Value       _value;
   861   ciMethod* _profiled_method;
   862   int       _profiled_bci;
   863  public:
   864   // creation
   865   StoreIndexed(Value array, Value index, Value length, BasicType elt_type, Value value, ValueStack* state_before)
   866   : AccessIndexed(array, index, length, elt_type, state_before)
   867   , _value(value), _profiled_method(NULL), _profiled_bci(0)
   868   {
   869     set_flag(NeedsWriteBarrierFlag, (as_ValueType(elt_type)->is_object()));
   870     set_flag(NeedsStoreCheckFlag, (as_ValueType(elt_type)->is_object()));
   871     ASSERT_VALUES
   872     pin();
   873   }
   875   // accessors
   876   Value value() const                            { return _value; }
   877   bool needs_write_barrier() const               { return check_flag(NeedsWriteBarrierFlag); }
   878   bool needs_store_check() const                 { return check_flag(NeedsStoreCheckFlag); }
   879   // Helpers for methodDataOop profiling
   880   void set_should_profile(bool value)                { set_flag(ProfileMDOFlag, value); }
   881   void set_profiled_method(ciMethod* method)         { _profiled_method = method;   }
   882   void set_profiled_bci(int bci)                     { _profiled_bci = bci;         }
   883   bool      should_profile() const                   { return check_flag(ProfileMDOFlag); }
   884   ciMethod* profiled_method() const                  { return _profiled_method;     }
   885   int       profiled_bci() const                     { return _profiled_bci;        }
   886   // generic
   887   virtual void input_values_do(ValueVisitor* f)   { AccessIndexed::input_values_do(f); f->visit(&_value); }
   888 };
   891 LEAF(NegateOp, Instruction)
   892  private:
   893   Value _x;
   895  public:
   896   // creation
   897   NegateOp(Value x) : Instruction(x->type()->base()), _x(x) {
   898     ASSERT_VALUES
   899   }
   901   // accessors
   902   Value x() const                                { return _x; }
   904   // generic
   905   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_x); }
   906 };
   909 BASE(Op2, Instruction)
   910  private:
   911   Bytecodes::Code _op;
   912   Value           _x;
   913   Value           _y;
   915  public:
   916   // creation
   917   Op2(ValueType* type, Bytecodes::Code op, Value x, Value y, ValueStack* state_before = NULL)
   918   : Instruction(type, state_before)
   919   , _op(op)
   920   , _x(x)
   921   , _y(y)
   922   {
   923     ASSERT_VALUES
   924   }
   926   // accessors
   927   Bytecodes::Code op() const                     { return _op; }
   928   Value x() const                                { return _x; }
   929   Value y() const                                { return _y; }
   931   // manipulators
   932   void swap_operands() {
   933     assert(is_commutative(), "operation must be commutative");
   934     Value t = _x; _x = _y; _y = t;
   935   }
   937   // generic
   938   virtual bool is_commutative() const            { return false; }
   939   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_x); f->visit(&_y); }
   940 };
   943 LEAF(ArithmeticOp, Op2)
   944  public:
   945   // creation
   946   ArithmeticOp(Bytecodes::Code op, Value x, Value y, bool is_strictfp, ValueStack* state_before)
   947   : Op2(x->type()->meet(y->type()), op, x, y, state_before)
   948   {
   949     set_flag(IsStrictfpFlag, is_strictfp);
   950     if (can_trap()) pin();
   951   }
   953   // accessors
   954   bool        is_strictfp() const                { return check_flag(IsStrictfpFlag); }
   956   // generic
   957   virtual bool is_commutative() const;
   958   virtual bool can_trap() const;
   959   HASHING3(Op2, true, op(), x()->subst(), y()->subst())
   960 };
   963 LEAF(ShiftOp, Op2)
   964  public:
   965   // creation
   966   ShiftOp(Bytecodes::Code op, Value x, Value s) : Op2(x->type()->base(), op, x, s) {}
   968   // generic
   969   HASHING3(Op2, true, op(), x()->subst(), y()->subst())
   970 };
   973 LEAF(LogicOp, Op2)
   974  public:
   975   // creation
   976   LogicOp(Bytecodes::Code op, Value x, Value y) : Op2(x->type()->meet(y->type()), op, x, y) {}
   978   // generic
   979   virtual bool is_commutative() const;
   980   HASHING3(Op2, true, op(), x()->subst(), y()->subst())
   981 };
   984 LEAF(CompareOp, Op2)
   985  public:
   986   // creation
   987   CompareOp(Bytecodes::Code op, Value x, Value y, ValueStack* state_before)
   988   : Op2(intType, op, x, y, state_before)
   989   {}
   991   // generic
   992   HASHING3(Op2, true, op(), x()->subst(), y()->subst())
   993 };
   996 LEAF(IfOp, Op2)
   997  private:
   998   Value _tval;
   999   Value _fval;
  1001  public:
  1002   // creation
  1003   IfOp(Value x, Condition cond, Value y, Value tval, Value fval)
  1004   : Op2(tval->type()->meet(fval->type()), (Bytecodes::Code)cond, x, y)
  1005   , _tval(tval)
  1006   , _fval(fval)
  1008     ASSERT_VALUES
  1009     assert(tval->type()->tag() == fval->type()->tag(), "types must match");
  1012   // accessors
  1013   virtual bool is_commutative() const;
  1014   Bytecodes::Code op() const                     { ShouldNotCallThis(); return Bytecodes::_illegal; }
  1015   Condition cond() const                         { return (Condition)Op2::op(); }
  1016   Value tval() const                             { return _tval; }
  1017   Value fval() const                             { return _fval; }
  1019   // generic
  1020   virtual void input_values_do(ValueVisitor* f)   { Op2::input_values_do(f); f->visit(&_tval); f->visit(&_fval); }
  1021 };
  1024 LEAF(Convert, Instruction)
  1025  private:
  1026   Bytecodes::Code _op;
  1027   Value           _value;
  1029  public:
  1030   // creation
  1031   Convert(Bytecodes::Code op, Value value, ValueType* to_type) : Instruction(to_type), _op(op), _value(value) {
  1032     ASSERT_VALUES
  1035   // accessors
  1036   Bytecodes::Code op() const                     { return _op; }
  1037   Value value() const                            { return _value; }
  1039   // generic
  1040   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_value); }
  1041   HASHING2(Convert, true, op(), value()->subst())
  1042 };
  1045 LEAF(NullCheck, Instruction)
  1046  private:
  1047   Value       _obj;
  1049  public:
  1050   // creation
  1051   NullCheck(Value obj, ValueStack* state_before)
  1052   : Instruction(obj->type()->base(), state_before)
  1053   , _obj(obj)
  1055     ASSERT_VALUES
  1056     set_can_trap(true);
  1057     assert(_obj->type()->is_object(), "null check must be applied to objects only");
  1058     pin(Instruction::PinExplicitNullCheck);
  1061   // accessors
  1062   Value obj() const                              { return _obj; }
  1064   // setters
  1065   void set_can_trap(bool can_trap)               { set_flag(CanTrapFlag, can_trap); }
  1067   // generic
  1068   virtual bool can_trap() const                  { return check_flag(CanTrapFlag); /* null-check elimination sets to false */ }
  1069   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_obj); }
  1070   HASHING1(NullCheck, true, obj()->subst())
  1071 };
  1074 BASE(StateSplit, Instruction)
  1075  private:
  1076   ValueStack* _state;
  1078  protected:
  1079   static void substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block);
  1081  public:
  1082   // creation
  1083   StateSplit(ValueType* type, ValueStack* state_before = NULL)
  1084   : Instruction(type, state_before)
  1085   , _state(NULL)
  1087     pin(PinStateSplitConstructor);
  1090   // accessors
  1091   ValueStack* state() const                      { return _state; }
  1092   IRScope* scope() const;                        // the state's scope
  1094   // manipulation
  1095   void set_state(ValueStack* state)              { assert(_state == NULL, "overwriting existing state"); check_state(state); _state = state; }
  1097   // generic
  1098   virtual void input_values_do(ValueVisitor* f)   { /* no values */ }
  1099   virtual void state_values_do(ValueVisitor* f);
  1100 };
  1103 LEAF(Invoke, StateSplit)
  1104  private:
  1105   Bytecodes::Code _code;
  1106   Value           _recv;
  1107   Values*         _args;
  1108   BasicTypeList*  _signature;
  1109   int             _vtable_index;
  1110   ciMethod*       _target;
  1112  public:
  1113   // creation
  1114   Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
  1115          int vtable_index, ciMethod* target, ValueStack* state_before);
  1117   // accessors
  1118   Bytecodes::Code code() const                   { return _code; }
  1119   Value receiver() const                         { return _recv; }
  1120   bool has_receiver() const                      { return receiver() != NULL; }
  1121   int number_of_arguments() const                { return _args->length(); }
  1122   Value argument_at(int i) const                 { return _args->at(i); }
  1123   int vtable_index() const                       { return _vtable_index; }
  1124   BasicTypeList* signature() const               { return _signature; }
  1125   ciMethod* target() const                       { return _target; }
  1127   // Returns false if target is not loaded
  1128   bool target_is_final() const                   { return check_flag(TargetIsFinalFlag); }
  1129   bool target_is_loaded() const                  { return check_flag(TargetIsLoadedFlag); }
  1130   // Returns false if target is not loaded
  1131   bool target_is_strictfp() const                { return check_flag(TargetIsStrictfpFlag); }
  1133   // JSR 292 support
  1134   bool is_invokedynamic() const                  { return code() == Bytecodes::_invokedynamic; }
  1136   virtual bool needs_exception_state() const     { return false; }
  1138   // generic
  1139   virtual bool can_trap() const                  { return true; }
  1140   virtual void input_values_do(ValueVisitor* f) {
  1141     StateSplit::input_values_do(f);
  1142     if (has_receiver()) f->visit(&_recv);
  1143     for (int i = 0; i < _args->length(); i++) f->visit(_args->adr_at(i));
  1145   virtual void state_values_do(ValueVisitor *f);
  1146 };
  1149 LEAF(NewInstance, StateSplit)
  1150  private:
  1151   ciInstanceKlass* _klass;
  1153  public:
  1154   // creation
  1155   NewInstance(ciInstanceKlass* klass, ValueStack* state_before)
  1156   : StateSplit(instanceType, state_before)
  1157   , _klass(klass)
  1158   {}
  1160   // accessors
  1161   ciInstanceKlass* klass() const                 { return _klass; }
  1163   virtual bool needs_exception_state() const     { return false; }
  1165   // generic
  1166   virtual bool can_trap() const                  { return true; }
  1167   ciType* exact_type() const;
  1168 };
  1171 BASE(NewArray, StateSplit)
  1172  private:
  1173   Value       _length;
  1175  public:
  1176   // creation
  1177   NewArray(Value length, ValueStack* state_before)
  1178   : StateSplit(objectType, state_before)
  1179   , _length(length)
  1181     // Do not ASSERT_VALUES since length is NULL for NewMultiArray
  1184   // accessors
  1185   Value length() const                           { return _length; }
  1187   virtual bool needs_exception_state() const     { return false; }
  1189   // generic
  1190   virtual bool can_trap() const                  { return true; }
  1191   virtual void input_values_do(ValueVisitor* f)   { StateSplit::input_values_do(f); f->visit(&_length); }
  1192 };
  1195 LEAF(NewTypeArray, NewArray)
  1196  private:
  1197   BasicType _elt_type;
  1199  public:
  1200   // creation
  1201   NewTypeArray(Value length, BasicType elt_type, ValueStack* state_before)
  1202   : NewArray(length, state_before)
  1203   , _elt_type(elt_type)
  1204   {}
  1206   // accessors
  1207   BasicType elt_type() const                     { return _elt_type; }
  1208   ciType* exact_type() const;
  1209 };
  1212 LEAF(NewObjectArray, NewArray)
  1213  private:
  1214   ciKlass* _klass;
  1216  public:
  1217   // creation
  1218   NewObjectArray(ciKlass* klass, Value length, ValueStack* state_before) : NewArray(length, state_before), _klass(klass) {}
  1220   // accessors
  1221   ciKlass* klass() const                         { return _klass; }
  1222   ciType* exact_type() const;
  1223 };
  1226 LEAF(NewMultiArray, NewArray)
  1227  private:
  1228   ciKlass* _klass;
  1229   Values*  _dims;
  1231  public:
  1232   // creation
  1233   NewMultiArray(ciKlass* klass, Values* dims, ValueStack* state_before) : NewArray(NULL, state_before), _klass(klass), _dims(dims) {
  1234     ASSERT_VALUES
  1237   // accessors
  1238   ciKlass* klass() const                         { return _klass; }
  1239   Values* dims() const                           { return _dims; }
  1240   int rank() const                               { return dims()->length(); }
  1242   // generic
  1243   virtual void input_values_do(ValueVisitor* f) {
  1244     // NOTE: we do not call NewArray::input_values_do since "length"
  1245     // is meaningless for a multi-dimensional array; passing the
  1246     // zeroth element down to NewArray as its length is a bad idea
  1247     // since there will be a copy in the "dims" array which doesn't
  1248     // get updated, and the value must not be traversed twice. Was bug
  1249     // - kbr 4/10/2001
  1250     StateSplit::input_values_do(f);
  1251     for (int i = 0; i < _dims->length(); i++) f->visit(_dims->adr_at(i));
  1253 };
  1256 BASE(TypeCheck, StateSplit)
  1257  private:
  1258   ciKlass*    _klass;
  1259   Value       _obj;
  1261   ciMethod* _profiled_method;
  1262   int       _profiled_bci;
  1264  public:
  1265   // creation
  1266   TypeCheck(ciKlass* klass, Value obj, ValueType* type, ValueStack* state_before)
  1267   : StateSplit(type, state_before), _klass(klass), _obj(obj),
  1268     _profiled_method(NULL), _profiled_bci(0) {
  1269     ASSERT_VALUES
  1270     set_direct_compare(false);
  1273   // accessors
  1274   ciKlass* klass() const                         { return _klass; }
  1275   Value obj() const                              { return _obj; }
  1276   bool is_loaded() const                         { return klass() != NULL; }
  1277   bool direct_compare() const                    { return check_flag(DirectCompareFlag); }
  1279   // manipulation
  1280   void set_direct_compare(bool flag)             { set_flag(DirectCompareFlag, flag); }
  1282   // generic
  1283   virtual bool can_trap() const                  { return true; }
  1284   virtual void input_values_do(ValueVisitor* f)   { StateSplit::input_values_do(f); f->visit(&_obj); }
  1286   // Helpers for methodDataOop profiling
  1287   void set_should_profile(bool value)                { set_flag(ProfileMDOFlag, value); }
  1288   void set_profiled_method(ciMethod* method)         { _profiled_method = method;   }
  1289   void set_profiled_bci(int bci)                     { _profiled_bci = bci;         }
  1290   bool      should_profile() const                   { return check_flag(ProfileMDOFlag); }
  1291   ciMethod* profiled_method() const                  { return _profiled_method;     }
  1292   int       profiled_bci() const                     { return _profiled_bci;        }
  1293 };
  1296 LEAF(CheckCast, TypeCheck)
  1297  public:
  1298   // creation
  1299   CheckCast(ciKlass* klass, Value obj, ValueStack* state_before)
  1300   : TypeCheck(klass, obj, objectType, state_before) {}
  1302   void set_incompatible_class_change_check() {
  1303     set_flag(ThrowIncompatibleClassChangeErrorFlag, true);
  1305   bool is_incompatible_class_change_check() const {
  1306     return check_flag(ThrowIncompatibleClassChangeErrorFlag);
  1309   ciType* declared_type() const;
  1310   ciType* exact_type() const;
  1311 };
  1314 LEAF(InstanceOf, TypeCheck)
  1315  public:
  1316   // creation
  1317   InstanceOf(ciKlass* klass, Value obj, ValueStack* state_before) : TypeCheck(klass, obj, intType, state_before) {}
  1319   virtual bool needs_exception_state() const     { return false; }
  1320 };
  1323 BASE(AccessMonitor, StateSplit)
  1324  private:
  1325   Value       _obj;
  1326   int         _monitor_no;
  1328  public:
  1329   // creation
  1330   AccessMonitor(Value obj, int monitor_no, ValueStack* state_before = NULL)
  1331   : StateSplit(illegalType, state_before)
  1332   , _obj(obj)
  1333   , _monitor_no(monitor_no)
  1335     set_needs_null_check(true);
  1336     ASSERT_VALUES
  1339   // accessors
  1340   Value obj() const                              { return _obj; }
  1341   int monitor_no() const                         { return _monitor_no; }
  1343   // generic
  1344   virtual void input_values_do(ValueVisitor* f)   { StateSplit::input_values_do(f); f->visit(&_obj); }
  1345 };
  1348 LEAF(MonitorEnter, AccessMonitor)
  1349  public:
  1350   // creation
  1351   MonitorEnter(Value obj, int monitor_no, ValueStack* state_before)
  1352   : AccessMonitor(obj, monitor_no, state_before)
  1354     ASSERT_VALUES
  1357   // generic
  1358   virtual bool can_trap() const                  { return true; }
  1359 };
  1362 LEAF(MonitorExit, AccessMonitor)
  1363  public:
  1364   // creation
  1365   MonitorExit(Value obj, int monitor_no)
  1366   : AccessMonitor(obj, monitor_no, NULL)
  1368     ASSERT_VALUES
  1370 };
  1373 LEAF(Intrinsic, StateSplit)
  1374  private:
  1375   vmIntrinsics::ID _id;
  1376   Values*          _args;
  1377   Value            _recv;
  1379  public:
  1380   // preserves_state can be set to true for Intrinsics
  1381   // which are guaranteed to preserve register state across any slow
  1382   // cases; setting it to true does not mean that the Intrinsic can
  1383   // not trap, only that if we continue execution in the same basic
  1384   // block after the Intrinsic, all of the registers are intact. This
  1385   // allows load elimination and common expression elimination to be
  1386   // performed across the Intrinsic.  The default value is false.
  1387   Intrinsic(ValueType* type,
  1388             vmIntrinsics::ID id,
  1389             Values* args,
  1390             bool has_receiver,
  1391             ValueStack* state_before,
  1392             bool preserves_state,
  1393             bool cantrap = true)
  1394   : StateSplit(type, state_before)
  1395   , _id(id)
  1396   , _args(args)
  1397   , _recv(NULL)
  1399     assert(args != NULL, "args must exist");
  1400     ASSERT_VALUES
  1401     set_flag(PreservesStateFlag, preserves_state);
  1402     set_flag(CanTrapFlag,        cantrap);
  1403     if (has_receiver) {
  1404       _recv = argument_at(0);
  1406     set_needs_null_check(has_receiver);
  1408     // some intrinsics can't trap, so don't force them to be pinned
  1409     if (!can_trap()) {
  1410       unpin(PinStateSplitConstructor);
  1414   // accessors
  1415   vmIntrinsics::ID id() const                    { return _id; }
  1416   int number_of_arguments() const                { return _args->length(); }
  1417   Value argument_at(int i) const                 { return _args->at(i); }
  1419   bool has_receiver() const                      { return (_recv != NULL); }
  1420   Value receiver() const                         { assert(has_receiver(), "must have receiver"); return _recv; }
  1421   bool preserves_state() const                   { return check_flag(PreservesStateFlag); }
  1423   // generic
  1424   virtual bool can_trap() const                  { return check_flag(CanTrapFlag); }
  1425   virtual void input_values_do(ValueVisitor* f) {
  1426     StateSplit::input_values_do(f);
  1427     for (int i = 0; i < _args->length(); i++) f->visit(_args->adr_at(i));
  1429 };
  1432 class LIR_List;
  1434 LEAF(BlockBegin, StateSplit)
  1435  private:
  1436   int        _block_id;                          // the unique block id
  1437   int        _bci;                               // start-bci of block
  1438   int        _depth_first_number;                // number of this block in a depth-first ordering
  1439   int        _linear_scan_number;                // number of this block in linear-scan ordering
  1440   int        _loop_depth;                        // the loop nesting level of this block
  1441   int        _loop_index;                        // number of the innermost loop of this block
  1442   int        _flags;                             // the flags associated with this block
  1444   // fields used by BlockListBuilder
  1445   int        _total_preds;                       // number of predecessors found by BlockListBuilder
  1446   BitMap     _stores_to_locals;                  // bit is set when a local variable is stored in the block
  1448   // SSA specific fields: (factor out later)
  1449   BlockList   _successors;                       // the successors of this block
  1450   BlockList   _predecessors;                     // the predecessors of this block
  1451   BlockBegin* _dominator;                        // the dominator of this block
  1452   // SSA specific ends
  1453   BlockEnd*  _end;                               // the last instruction of this block
  1454   BlockList  _exception_handlers;                // the exception handlers potentially invoked by this block
  1455   ValueStackStack* _exception_states;            // only for xhandler entries: states of all instructions that have an edge to this xhandler
  1456   int        _exception_handler_pco;             // if this block is the start of an exception handler,
  1457                                                  // this records the PC offset in the assembly code of the
  1458                                                  // first instruction in this block
  1459   Label      _label;                             // the label associated with this block
  1460   LIR_List*  _lir;                               // the low level intermediate representation for this block
  1462   BitMap      _live_in;                          // set of live LIR_Opr registers at entry to this block
  1463   BitMap      _live_out;                         // set of live LIR_Opr registers at exit from this block
  1464   BitMap      _live_gen;                         // set of registers used before any redefinition in this block
  1465   BitMap      _live_kill;                        // set of registers defined in this block
  1467   BitMap      _fpu_register_usage;
  1468   intArray*   _fpu_stack_state;                  // For x86 FPU code generation with UseLinearScan
  1469   int         _first_lir_instruction_id;         // ID of first LIR instruction in this block
  1470   int         _last_lir_instruction_id;          // ID of last LIR instruction in this block
  1472   void iterate_preorder (boolArray& mark, BlockClosure* closure);
  1473   void iterate_postorder(boolArray& mark, BlockClosure* closure);
  1475   friend class SuxAndWeightAdjuster;
  1477  public:
  1478    void* operator new(size_t size) {
  1479     Compilation* c = Compilation::current();
  1480     void* res = c->arena()->Amalloc(size);
  1481     ((BlockBegin*)res)->_id = c->get_next_id();
  1482     ((BlockBegin*)res)->_block_id = c->get_next_block_id();
  1483     return res;
  1486   // initialization/counting
  1487   static int  number_of_blocks() {
  1488     return Compilation::current()->number_of_blocks();
  1491   // creation
  1492   BlockBegin(int bci)
  1493   : StateSplit(illegalType)
  1494   , _bci(bci)
  1495   , _depth_first_number(-1)
  1496   , _linear_scan_number(-1)
  1497   , _loop_depth(0)
  1498   , _flags(0)
  1499   , _dominator(NULL)
  1500   , _end(NULL)
  1501   , _predecessors(2)
  1502   , _successors(2)
  1503   , _exception_handlers(1)
  1504   , _exception_states(NULL)
  1505   , _exception_handler_pco(-1)
  1506   , _lir(NULL)
  1507   , _loop_index(-1)
  1508   , _live_in()
  1509   , _live_out()
  1510   , _live_gen()
  1511   , _live_kill()
  1512   , _fpu_register_usage()
  1513   , _fpu_stack_state(NULL)
  1514   , _first_lir_instruction_id(-1)
  1515   , _last_lir_instruction_id(-1)
  1516   , _total_preds(0)
  1517   , _stores_to_locals()
  1519 #ifndef PRODUCT
  1520     set_printable_bci(bci);
  1521 #endif
  1524   // accessors
  1525   int block_id() const                           { return _block_id; }
  1526   int bci() const                                { return _bci; }
  1527   BlockList* successors()                        { return &_successors; }
  1528   BlockBegin* dominator() const                  { return _dominator; }
  1529   int loop_depth() const                         { return _loop_depth; }
  1530   int depth_first_number() const                 { return _depth_first_number; }
  1531   int linear_scan_number() const                 { return _linear_scan_number; }
  1532   BlockEnd* end() const                          { return _end; }
  1533   Label* label()                                 { return &_label; }
  1534   LIR_List* lir() const                          { return _lir; }
  1535   int exception_handler_pco() const              { return _exception_handler_pco; }
  1536   BitMap& live_in()                              { return _live_in;        }
  1537   BitMap& live_out()                             { return _live_out;       }
  1538   BitMap& live_gen()                             { return _live_gen;       }
  1539   BitMap& live_kill()                            { return _live_kill;      }
  1540   BitMap& fpu_register_usage()                   { return _fpu_register_usage; }
  1541   intArray* fpu_stack_state() const              { return _fpu_stack_state;    }
  1542   int first_lir_instruction_id() const           { return _first_lir_instruction_id; }
  1543   int last_lir_instruction_id() const            { return _last_lir_instruction_id; }
  1544   int total_preds() const                        { return _total_preds; }
  1545   BitMap& stores_to_locals()                     { return _stores_to_locals; }
  1547   // manipulation
  1548   void set_dominator(BlockBegin* dom)            { _dominator = dom; }
  1549   void set_loop_depth(int d)                     { _loop_depth = d; }
  1550   void set_depth_first_number(int dfn)           { _depth_first_number = dfn; }
  1551   void set_linear_scan_number(int lsn)           { _linear_scan_number = lsn; }
  1552   void set_end(BlockEnd* end);
  1553   void disconnect_from_graph();
  1554   static void disconnect_edge(BlockBegin* from, BlockBegin* to);
  1555   BlockBegin* insert_block_between(BlockBegin* sux);
  1556   void substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux);
  1557   void set_lir(LIR_List* lir)                    { _lir = lir; }
  1558   void set_exception_handler_pco(int pco)        { _exception_handler_pco = pco; }
  1559   void set_live_in       (BitMap map)            { _live_in = map;        }
  1560   void set_live_out      (BitMap map)            { _live_out = map;       }
  1561   void set_live_gen      (BitMap map)            { _live_gen = map;       }
  1562   void set_live_kill     (BitMap map)            { _live_kill = map;      }
  1563   void set_fpu_register_usage(BitMap map)        { _fpu_register_usage = map; }
  1564   void set_fpu_stack_state(intArray* state)      { _fpu_stack_state = state;  }
  1565   void set_first_lir_instruction_id(int id)      { _first_lir_instruction_id = id;  }
  1566   void set_last_lir_instruction_id(int id)       { _last_lir_instruction_id = id;  }
  1567   void increment_total_preds(int n = 1)          { _total_preds += n; }
  1568   void init_stores_to_locals(int locals_count)   { _stores_to_locals = BitMap(locals_count); _stores_to_locals.clear(); }
  1570   // generic
  1571   virtual void state_values_do(ValueVisitor* f);
  1573   // successors and predecessors
  1574   int number_of_sux() const;
  1575   BlockBegin* sux_at(int i) const;
  1576   void add_successor(BlockBegin* sux);
  1577   void remove_successor(BlockBegin* pred);
  1578   bool is_successor(BlockBegin* sux) const       { return _successors.contains(sux); }
  1580   void add_predecessor(BlockBegin* pred);
  1581   void remove_predecessor(BlockBegin* pred);
  1582   bool is_predecessor(BlockBegin* pred) const    { return _predecessors.contains(pred); }
  1583   int number_of_preds() const                    { return _predecessors.length(); }
  1584   BlockBegin* pred_at(int i) const               { return _predecessors[i]; }
  1586   // exception handlers potentially invoked by this block
  1587   void add_exception_handler(BlockBegin* b);
  1588   bool is_exception_handler(BlockBegin* b) const { return _exception_handlers.contains(b); }
  1589   int  number_of_exception_handlers() const      { return _exception_handlers.length(); }
  1590   BlockBegin* exception_handler_at(int i) const  { return _exception_handlers.at(i); }
  1592   // states of the instructions that have an edge to this exception handler
  1593   int number_of_exception_states()               { assert(is_set(exception_entry_flag), "only for xhandlers"); return _exception_states == NULL ? 0 : _exception_states->length(); }
  1594   ValueStack* exception_state_at(int idx) const  { assert(is_set(exception_entry_flag), "only for xhandlers"); return _exception_states->at(idx); }
  1595   int add_exception_state(ValueStack* state);
  1597   // flags
  1598   enum Flag {
  1599     no_flag                       = 0,
  1600     std_entry_flag                = 1 << 0,
  1601     osr_entry_flag                = 1 << 1,
  1602     exception_entry_flag          = 1 << 2,
  1603     subroutine_entry_flag         = 1 << 3,
  1604     backward_branch_target_flag   = 1 << 4,
  1605     is_on_work_list_flag          = 1 << 5,
  1606     was_visited_flag              = 1 << 6,
  1607     parser_loop_header_flag       = 1 << 7,  // set by parser to identify blocks where phi functions can not be created on demand
  1608     critical_edge_split_flag      = 1 << 8, // set for all blocks that are introduced when critical edges are split
  1609     linear_scan_loop_header_flag  = 1 << 9, // set during loop-detection for LinearScan
  1610     linear_scan_loop_end_flag     = 1 << 10  // set during loop-detection for LinearScan
  1611   };
  1613   void set(Flag f)                               { _flags |= f; }
  1614   void clear(Flag f)                             { _flags &= ~f; }
  1615   bool is_set(Flag f) const                      { return (_flags & f) != 0; }
  1616   bool is_entry_block() const {
  1617     const int entry_mask = std_entry_flag | osr_entry_flag | exception_entry_flag;
  1618     return (_flags & entry_mask) != 0;
  1621   // iteration
  1622   void iterate_preorder   (BlockClosure* closure);
  1623   void iterate_postorder  (BlockClosure* closure);
  1625   void block_values_do(ValueVisitor* f);
  1627   // loops
  1628   void set_loop_index(int ix)                    { _loop_index = ix;        }
  1629   int  loop_index() const                        { return _loop_index;      }
  1631   // merging
  1632   bool try_merge(ValueStack* state);             // try to merge states at block begin
  1633   void merge(ValueStack* state)                  { bool b = try_merge(state); assert(b, "merge failed"); }
  1635   // debugging
  1636   void print_block()                             PRODUCT_RETURN;
  1637   void print_block(InstructionPrinter& ip, bool live_only = false) PRODUCT_RETURN;
  1638 };
  1641 BASE(BlockEnd, StateSplit)
  1642  private:
  1643   BlockBegin* _begin;
  1644   BlockList*  _sux;
  1646  protected:
  1647   BlockList* sux() const                         { return _sux; }
  1649   void set_sux(BlockList* sux) {
  1650 #ifdef ASSERT
  1651     assert(sux != NULL, "sux must exist");
  1652     for (int i = sux->length() - 1; i >= 0; i--) assert(sux->at(i) != NULL, "sux must exist");
  1653 #endif
  1654     _sux = sux;
  1657  public:
  1658   // creation
  1659   BlockEnd(ValueType* type, ValueStack* state_before, bool is_safepoint)
  1660   : StateSplit(type, state_before)
  1661   , _begin(NULL)
  1662   , _sux(NULL)
  1664     set_flag(IsSafepointFlag, is_safepoint);
  1667   // accessors
  1668   bool is_safepoint() const                      { return check_flag(IsSafepointFlag); }
  1669   BlockBegin* begin() const                      { return _begin; }
  1671   // manipulation
  1672   void set_begin(BlockBegin* begin);
  1674   // successors
  1675   int number_of_sux() const                      { return _sux != NULL ? _sux->length() : 0; }
  1676   BlockBegin* sux_at(int i) const                { return _sux->at(i); }
  1677   BlockBegin* default_sux() const                { return sux_at(number_of_sux() - 1); }
  1678   BlockBegin** addr_sux_at(int i) const          { return _sux->adr_at(i); }
  1679   int sux_index(BlockBegin* sux) const           { return _sux->find(sux); }
  1680   void substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux);
  1681 };
  1684 LEAF(Goto, BlockEnd)
  1685  public:
  1686   enum Direction {
  1687     none,            // Just a regular goto
  1688     taken, not_taken // Goto produced from If
  1689   };
  1690  private:
  1691   ciMethod*   _profiled_method;
  1692   int         _profiled_bci;
  1693   Direction   _direction;
  1694  public:
  1695   // creation
  1696   Goto(BlockBegin* sux, ValueStack* state_before, bool is_safepoint = false)
  1697     : BlockEnd(illegalType, state_before, is_safepoint)
  1698     , _direction(none)
  1699     , _profiled_method(NULL)
  1700     , _profiled_bci(0) {
  1701     BlockList* s = new BlockList(1);
  1702     s->append(sux);
  1703     set_sux(s);
  1706   Goto(BlockBegin* sux, bool is_safepoint) : BlockEnd(illegalType, NULL, is_safepoint)
  1707                                            , _direction(none)
  1708                                            , _profiled_method(NULL)
  1709                                            , _profiled_bci(0) {
  1710     BlockList* s = new BlockList(1);
  1711     s->append(sux);
  1712     set_sux(s);
  1715   bool should_profile() const                    { return check_flag(ProfileMDOFlag); }
  1716   ciMethod* profiled_method() const              { return _profiled_method; } // set only for profiled branches
  1717   int profiled_bci() const                       { return _profiled_bci; }
  1718   Direction direction() const                    { return _direction; }
  1720   void set_should_profile(bool value)            { set_flag(ProfileMDOFlag, value); }
  1721   void set_profiled_method(ciMethod* method)     { _profiled_method = method; }
  1722   void set_profiled_bci(int bci)                 { _profiled_bci = bci; }
  1723   void set_direction(Direction d)                { _direction = d; }
  1724 };
  1727 LEAF(If, BlockEnd)
  1728  private:
  1729   Value       _x;
  1730   Condition   _cond;
  1731   Value       _y;
  1732   ciMethod*   _profiled_method;
  1733   int         _profiled_bci; // Canonicalizer may alter bci of If node
  1734   bool        _swapped;      // Is the order reversed with respect to the original If in the
  1735                              // bytecode stream?
  1736  public:
  1737   // creation
  1738   // unordered_is_true is valid for float/double compares only
  1739   If(Value x, Condition cond, bool unordered_is_true, Value y, BlockBegin* tsux, BlockBegin* fsux, ValueStack* state_before, bool is_safepoint)
  1740     : BlockEnd(illegalType, state_before, is_safepoint)
  1741   , _x(x)
  1742   , _cond(cond)
  1743   , _y(y)
  1744   , _profiled_method(NULL)
  1745   , _profiled_bci(0)
  1746   , _swapped(false)
  1748     ASSERT_VALUES
  1749     set_flag(UnorderedIsTrueFlag, unordered_is_true);
  1750     assert(x->type()->tag() == y->type()->tag(), "types must match");
  1751     BlockList* s = new BlockList(2);
  1752     s->append(tsux);
  1753     s->append(fsux);
  1754     set_sux(s);
  1757   // accessors
  1758   Value x() const                                { return _x; }
  1759   Condition cond() const                         { return _cond; }
  1760   bool unordered_is_true() const                 { return check_flag(UnorderedIsTrueFlag); }
  1761   Value y() const                                { return _y; }
  1762   BlockBegin* sux_for(bool is_true) const        { return sux_at(is_true ? 0 : 1); }
  1763   BlockBegin* tsux() const                       { return sux_for(true); }
  1764   BlockBegin* fsux() const                       { return sux_for(false); }
  1765   BlockBegin* usux() const                       { return sux_for(unordered_is_true()); }
  1766   bool should_profile() const                    { return check_flag(ProfileMDOFlag); }
  1767   ciMethod* profiled_method() const              { return _profiled_method; } // set only for profiled branches
  1768   int profiled_bci() const                       { return _profiled_bci; }    // set for profiled branches and tiered
  1769   bool is_swapped() const                        { return _swapped; }
  1771   // manipulation
  1772   void swap_operands() {
  1773     Value t = _x; _x = _y; _y = t;
  1774     _cond = mirror(_cond);
  1777   void swap_sux() {
  1778     assert(number_of_sux() == 2, "wrong number of successors");
  1779     BlockList* s = sux();
  1780     BlockBegin* t = s->at(0); s->at_put(0, s->at(1)); s->at_put(1, t);
  1781     _cond = negate(_cond);
  1782     set_flag(UnorderedIsTrueFlag, !check_flag(UnorderedIsTrueFlag));
  1785   void set_should_profile(bool value)             { set_flag(ProfileMDOFlag, value); }
  1786   void set_profiled_method(ciMethod* method)      { _profiled_method = method; }
  1787   void set_profiled_bci(int bci)                  { _profiled_bci = bci;       }
  1788   void set_swapped(bool value)                    { _swapped = value;         }
  1789   // generic
  1790   virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_x); f->visit(&_y); }
  1791 };
  1794 LEAF(IfInstanceOf, BlockEnd)
  1795  private:
  1796   ciKlass* _klass;
  1797   Value    _obj;
  1798   bool     _test_is_instance;                    // jump if instance
  1799   int      _instanceof_bci;
  1801  public:
  1802   IfInstanceOf(ciKlass* klass, Value obj, bool test_is_instance, int instanceof_bci, BlockBegin* tsux, BlockBegin* fsux)
  1803   : BlockEnd(illegalType, NULL, false) // temporary set to false
  1804   , _klass(klass)
  1805   , _obj(obj)
  1806   , _test_is_instance(test_is_instance)
  1807   , _instanceof_bci(instanceof_bci)
  1809     ASSERT_VALUES
  1810     assert(instanceof_bci >= 0, "illegal bci");
  1811     BlockList* s = new BlockList(2);
  1812     s->append(tsux);
  1813     s->append(fsux);
  1814     set_sux(s);
  1817   // accessors
  1818   //
  1819   // Note 1: If test_is_instance() is true, IfInstanceOf tests if obj *is* an
  1820   //         instance of klass; otherwise it tests if it is *not* and instance
  1821   //         of klass.
  1822   //
  1823   // Note 2: IfInstanceOf instructions are created by combining an InstanceOf
  1824   //         and an If instruction. The IfInstanceOf bci() corresponds to the
  1825   //         bci that the If would have had; the (this->) instanceof_bci() is
  1826   //         the bci of the original InstanceOf instruction.
  1827   ciKlass* klass() const                         { return _klass; }
  1828   Value obj() const                              { return _obj; }
  1829   int instanceof_bci() const                     { return _instanceof_bci; }
  1830   bool test_is_instance() const                  { return _test_is_instance; }
  1831   BlockBegin* sux_for(bool is_true) const        { return sux_at(is_true ? 0 : 1); }
  1832   BlockBegin* tsux() const                       { return sux_for(true); }
  1833   BlockBegin* fsux() const                       { return sux_for(false); }
  1835   // manipulation
  1836   void swap_sux() {
  1837     assert(number_of_sux() == 2, "wrong number of successors");
  1838     BlockList* s = sux();
  1839     BlockBegin* t = s->at(0); s->at_put(0, s->at(1)); s->at_put(1, t);
  1840     _test_is_instance = !_test_is_instance;
  1843   // generic
  1844   virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_obj); }
  1845 };
  1848 BASE(Switch, BlockEnd)
  1849  private:
  1850   Value       _tag;
  1852  public:
  1853   // creation
  1854   Switch(Value tag, BlockList* sux, ValueStack* state_before, bool is_safepoint)
  1855   : BlockEnd(illegalType, state_before, is_safepoint)
  1856   , _tag(tag) {
  1857     ASSERT_VALUES
  1858     set_sux(sux);
  1861   // accessors
  1862   Value tag() const                              { return _tag; }
  1863   int length() const                             { return number_of_sux() - 1; }
  1865   virtual bool needs_exception_state() const     { return false; }
  1867   // generic
  1868   virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_tag); }
  1869 };
  1872 LEAF(TableSwitch, Switch)
  1873  private:
  1874   int _lo_key;
  1876  public:
  1877   // creation
  1878   TableSwitch(Value tag, BlockList* sux, int lo_key, ValueStack* state_before, bool is_safepoint)
  1879     : Switch(tag, sux, state_before, is_safepoint)
  1880   , _lo_key(lo_key) {}
  1882   // accessors
  1883   int lo_key() const                             { return _lo_key; }
  1884   int hi_key() const                             { return _lo_key + length() - 1; }
  1885 };
  1888 LEAF(LookupSwitch, Switch)
  1889  private:
  1890   intArray* _keys;
  1892  public:
  1893   // creation
  1894   LookupSwitch(Value tag, BlockList* sux, intArray* keys, ValueStack* state_before, bool is_safepoint)
  1895   : Switch(tag, sux, state_before, is_safepoint)
  1896   , _keys(keys) {
  1897     assert(keys != NULL, "keys must exist");
  1898     assert(keys->length() == length(), "sux & keys have incompatible lengths");
  1901   // accessors
  1902   int key_at(int i) const                        { return _keys->at(i); }
  1903 };
  1906 LEAF(Return, BlockEnd)
  1907  private:
  1908   Value _result;
  1910  public:
  1911   // creation
  1912   Return(Value result) :
  1913     BlockEnd(result == NULL ? voidType : result->type()->base(), NULL, true),
  1914     _result(result) {}
  1916   // accessors
  1917   Value result() const                           { return _result; }
  1918   bool has_result() const                        { return result() != NULL; }
  1920   // generic
  1921   virtual void input_values_do(ValueVisitor* f) {
  1922     BlockEnd::input_values_do(f);
  1923     if (has_result()) f->visit(&_result);
  1925 };
  1928 LEAF(Throw, BlockEnd)
  1929  private:
  1930   Value _exception;
  1932  public:
  1933   // creation
  1934   Throw(Value exception, ValueStack* state_before) : BlockEnd(illegalType, state_before, true), _exception(exception) {
  1935     ASSERT_VALUES
  1938   // accessors
  1939   Value exception() const                        { return _exception; }
  1941   // generic
  1942   virtual bool can_trap() const                  { return true; }
  1943   virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_exception); }
  1944 };
  1947 LEAF(Base, BlockEnd)
  1948  public:
  1949   // creation
  1950   Base(BlockBegin* std_entry, BlockBegin* osr_entry) : BlockEnd(illegalType, NULL, false) {
  1951     assert(std_entry->is_set(BlockBegin::std_entry_flag), "std entry must be flagged");
  1952     assert(osr_entry == NULL || osr_entry->is_set(BlockBegin::osr_entry_flag), "osr entry must be flagged");
  1953     BlockList* s = new BlockList(2);
  1954     if (osr_entry != NULL) s->append(osr_entry);
  1955     s->append(std_entry); // must be default sux!
  1956     set_sux(s);
  1959   // accessors
  1960   BlockBegin* std_entry() const                  { return default_sux(); }
  1961   BlockBegin* osr_entry() const                  { return number_of_sux() < 2 ? NULL : sux_at(0); }
  1962 };
  1965 LEAF(OsrEntry, Instruction)
  1966  public:
  1967   // creation
  1968 #ifdef _LP64
  1969   OsrEntry() : Instruction(longType) { pin(); }
  1970 #else
  1971   OsrEntry() : Instruction(intType)  { pin(); }
  1972 #endif
  1974   // generic
  1975   virtual void input_values_do(ValueVisitor* f)   { }
  1976 };
  1979 // Models the incoming exception at a catch site
  1980 LEAF(ExceptionObject, Instruction)
  1981  public:
  1982   // creation
  1983   ExceptionObject() : Instruction(objectType) {
  1984     pin();
  1987   // generic
  1988   virtual void input_values_do(ValueVisitor* f)   { }
  1989 };
  1992 // Models needed rounding for floating-point values on Intel.
  1993 // Currently only used to represent rounding of double-precision
  1994 // values stored into local variables, but could be used to model
  1995 // intermediate rounding of single-precision values as well.
  1996 LEAF(RoundFP, Instruction)
  1997  private:
  1998   Value _input;             // floating-point value to be rounded
  2000  public:
  2001   RoundFP(Value input)
  2002   : Instruction(input->type()) // Note: should not be used for constants
  2003   , _input(input)
  2005     ASSERT_VALUES
  2008   // accessors
  2009   Value input() const                            { return _input; }
  2011   // generic
  2012   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_input); }
  2013 };
  2016 BASE(UnsafeOp, Instruction)
  2017  private:
  2018   BasicType _basic_type;    // ValueType can not express byte-sized integers
  2020  protected:
  2021   // creation
  2022   UnsafeOp(BasicType basic_type, bool is_put)
  2023   : Instruction(is_put ? voidType : as_ValueType(basic_type))
  2024   , _basic_type(basic_type)
  2026     //Note:  Unsafe ops are not not guaranteed to throw NPE.
  2027     // Convservatively, Unsafe operations must be pinned though we could be
  2028     // looser about this if we wanted to..
  2029     pin();
  2032  public:
  2033   // accessors
  2034   BasicType basic_type()                         { return _basic_type; }
  2036   // generic
  2037   virtual void input_values_do(ValueVisitor* f)   { }
  2038 };
  2041 BASE(UnsafeRawOp, UnsafeOp)
  2042  private:
  2043   Value _base;                                   // Base address (a Java long)
  2044   Value _index;                                  // Index if computed by optimizer; initialized to NULL
  2045   int   _log2_scale;                             // Scale factor: 0, 1, 2, or 3.
  2046                                                  // Indicates log2 of number of bytes (1, 2, 4, or 8)
  2047                                                  // to scale index by.
  2049  protected:
  2050   UnsafeRawOp(BasicType basic_type, Value addr, bool is_put)
  2051   : UnsafeOp(basic_type, is_put)
  2052   , _base(addr)
  2053   , _index(NULL)
  2054   , _log2_scale(0)
  2056     // Can not use ASSERT_VALUES because index may be NULL
  2057     assert(addr != NULL && addr->type()->is_long(), "just checking");
  2060   UnsafeRawOp(BasicType basic_type, Value base, Value index, int log2_scale, bool is_put)
  2061   : UnsafeOp(basic_type, is_put)
  2062   , _base(base)
  2063   , _index(index)
  2064   , _log2_scale(log2_scale)
  2068  public:
  2069   // accessors
  2070   Value base()                                   { return _base; }
  2071   Value index()                                  { return _index; }
  2072   bool  has_index()                              { return (_index != NULL); }
  2073   int   log2_scale()                             { return _log2_scale; }
  2075   // setters
  2076   void set_base (Value base)                     { _base  = base; }
  2077   void set_index(Value index)                    { _index = index; }
  2078   void set_log2_scale(int log2_scale)            { _log2_scale = log2_scale; }
  2080   // generic
  2081   virtual void input_values_do(ValueVisitor* f)   { UnsafeOp::input_values_do(f);
  2082                                                    f->visit(&_base);
  2083                                                    if (has_index()) f->visit(&_index); }
  2084 };
  2087 LEAF(UnsafeGetRaw, UnsafeRawOp)
  2088  private:
  2089   bool _may_be_unaligned;  // For OSREntry
  2091  public:
  2092   UnsafeGetRaw(BasicType basic_type, Value addr, bool may_be_unaligned)
  2093   : UnsafeRawOp(basic_type, addr, false) {
  2094     _may_be_unaligned = may_be_unaligned;
  2097   UnsafeGetRaw(BasicType basic_type, Value base, Value index, int log2_scale, bool may_be_unaligned)
  2098   : UnsafeRawOp(basic_type, base, index, log2_scale, false) {
  2099     _may_be_unaligned = may_be_unaligned;
  2102   bool may_be_unaligned()                               { return _may_be_unaligned; }
  2103 };
  2106 LEAF(UnsafePutRaw, UnsafeRawOp)
  2107  private:
  2108   Value _value;                                  // Value to be stored
  2110  public:
  2111   UnsafePutRaw(BasicType basic_type, Value addr, Value value)
  2112   : UnsafeRawOp(basic_type, addr, true)
  2113   , _value(value)
  2115     assert(value != NULL, "just checking");
  2116     ASSERT_VALUES
  2119   UnsafePutRaw(BasicType basic_type, Value base, Value index, int log2_scale, Value value)
  2120   : UnsafeRawOp(basic_type, base, index, log2_scale, true)
  2121   , _value(value)
  2123     assert(value != NULL, "just checking");
  2124     ASSERT_VALUES
  2127   // accessors
  2128   Value value()                                  { return _value; }
  2130   // generic
  2131   virtual void input_values_do(ValueVisitor* f)   { UnsafeRawOp::input_values_do(f);
  2132                                                    f->visit(&_value); }
  2133 };
  2136 BASE(UnsafeObjectOp, UnsafeOp)
  2137  private:
  2138   Value _object;                                 // Object to be fetched from or mutated
  2139   Value _offset;                                 // Offset within object
  2140   bool  _is_volatile;                            // true if volatile - dl/JSR166
  2141  public:
  2142   UnsafeObjectOp(BasicType basic_type, Value object, Value offset, bool is_put, bool is_volatile)
  2143     : UnsafeOp(basic_type, is_put), _object(object), _offset(offset), _is_volatile(is_volatile)
  2147   // accessors
  2148   Value object()                                 { return _object; }
  2149   Value offset()                                 { return _offset; }
  2150   bool  is_volatile()                            { return _is_volatile; }
  2151   // generic
  2152   virtual void input_values_do(ValueVisitor* f)   { UnsafeOp::input_values_do(f);
  2153                                                    f->visit(&_object);
  2154                                                    f->visit(&_offset); }
  2155 };
  2158 LEAF(UnsafeGetObject, UnsafeObjectOp)
  2159  public:
  2160   UnsafeGetObject(BasicType basic_type, Value object, Value offset, bool is_volatile)
  2161   : UnsafeObjectOp(basic_type, object, offset, false, is_volatile)
  2163     ASSERT_VALUES
  2165 };
  2168 LEAF(UnsafePutObject, UnsafeObjectOp)
  2169  private:
  2170   Value _value;                                  // Value to be stored
  2171  public:
  2172   UnsafePutObject(BasicType basic_type, Value object, Value offset, Value value, bool is_volatile)
  2173   : UnsafeObjectOp(basic_type, object, offset, true, is_volatile)
  2174     , _value(value)
  2176     ASSERT_VALUES
  2179   // accessors
  2180   Value value()                                  { return _value; }
  2182   // generic
  2183   virtual void input_values_do(ValueVisitor* f)   { UnsafeObjectOp::input_values_do(f);
  2184                                                    f->visit(&_value); }
  2185 };
  2188 BASE(UnsafePrefetch, UnsafeObjectOp)
  2189  public:
  2190   UnsafePrefetch(Value object, Value offset)
  2191   : UnsafeObjectOp(T_VOID, object, offset, false, false)
  2194 };
  2197 LEAF(UnsafePrefetchRead, UnsafePrefetch)
  2198  public:
  2199   UnsafePrefetchRead(Value object, Value offset)
  2200   : UnsafePrefetch(object, offset)
  2202     ASSERT_VALUES
  2204 };
  2207 LEAF(UnsafePrefetchWrite, UnsafePrefetch)
  2208  public:
  2209   UnsafePrefetchWrite(Value object, Value offset)
  2210   : UnsafePrefetch(object, offset)
  2212     ASSERT_VALUES
  2214 };
  2216 LEAF(ProfileCall, Instruction)
  2217  private:
  2218   ciMethod* _method;
  2219   int       _bci_of_invoke;
  2220   Value     _recv;
  2221   ciKlass*  _known_holder;
  2223  public:
  2224   ProfileCall(ciMethod* method, int bci, Value recv, ciKlass* known_holder)
  2225     : Instruction(voidType)
  2226     , _method(method)
  2227     , _bci_of_invoke(bci)
  2228     , _recv(recv)
  2229     , _known_holder(known_holder)
  2231     // The ProfileCall has side-effects and must occur precisely where located
  2232     pin();
  2235   ciMethod* method()      { return _method; }
  2236   int bci_of_invoke()     { return _bci_of_invoke; }
  2237   Value recv()            { return _recv; }
  2238   ciKlass* known_holder() { return _known_holder; }
  2240   virtual void input_values_do(ValueVisitor* f)   { if (_recv != NULL) f->visit(&_recv); }
  2241 };
  2243 // Use to trip invocation counter of an inlined method
  2245 LEAF(ProfileInvoke, Instruction)
  2246  private:
  2247   ciMethod*   _inlinee;
  2248   ValueStack* _state;
  2250  public:
  2251   ProfileInvoke(ciMethod* inlinee,  ValueStack* state)
  2252     : Instruction(voidType)
  2253     , _inlinee(inlinee)
  2254     , _state(state)
  2256     // The ProfileInvoke has side-effects and must occur precisely where located QQQ???
  2257     pin();
  2260   ciMethod* inlinee()      { return _inlinee; }
  2261   ValueStack* state()      { return _state; }
  2262   virtual void input_values_do(ValueVisitor*)   {}
  2263   virtual void state_values_do(ValueVisitor*);
  2264 };
  2266 class BlockPair: public CompilationResourceObj {
  2267  private:
  2268   BlockBegin* _from;
  2269   BlockBegin* _to;
  2270  public:
  2271   BlockPair(BlockBegin* from, BlockBegin* to): _from(from), _to(to) {}
  2272   BlockBegin* from() const { return _from; }
  2273   BlockBegin* to() const   { return _to;   }
  2274   bool is_same(BlockBegin* from, BlockBegin* to) const { return  _from == from && _to == to; }
  2275   bool is_same(BlockPair* p) const { return  _from == p->from() && _to == p->to(); }
  2276   void set_to(BlockBegin* b)   { _to = b; }
  2277   void set_from(BlockBegin* b) { _from = b; }
  2278 };
  2281 define_array(BlockPairArray, BlockPair*)
  2282 define_stack(BlockPairList, BlockPairArray)
  2285 inline int         BlockBegin::number_of_sux() const            { assert(_end == NULL || _end->number_of_sux() == _successors.length(), "mismatch"); return _successors.length(); }
  2286 inline BlockBegin* BlockBegin::sux_at(int i) const              { assert(_end == NULL || _end->sux_at(i) == _successors.at(i), "mismatch");          return _successors.at(i); }
  2287 inline void        BlockBegin::add_successor(BlockBegin* sux)   { assert(_end == NULL, "Would create mismatch with successors of BlockEnd");         _successors.append(sux); }
  2289 #undef ASSERT_VALUES

mercurial