src/share/vm/prims/jvmtiTagMap.cpp

Fri, 11 Mar 2011 22:34:57 -0800

author
jrose
date
Fri, 11 Mar 2011 22:34:57 -0800
changeset 2639
8033953d67ff
parent 2497
3582bf76420e
child 2658
c7f3d0b4570f
permissions
-rw-r--r--

7012648: move JSR 292 to package java.lang.invoke and adjust names
Summary: package and class renaming only; delete unused methods and classes
Reviewed-by: twisti

     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "jvmtifiles/jvmtiEnv.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "oops/oop.inline2.hpp"
    32 #include "prims/jvmtiEventController.hpp"
    33 #include "prims/jvmtiEventController.inline.hpp"
    34 #include "prims/jvmtiExport.hpp"
    35 #include "prims/jvmtiImpl.hpp"
    36 #include "prims/jvmtiTagMap.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/javaCalls.hpp"
    39 #include "runtime/jniHandles.hpp"
    40 #include "runtime/mutex.hpp"
    41 #include "runtime/mutexLocker.hpp"
    42 #include "runtime/reflectionUtils.hpp"
    43 #include "runtime/vframe.hpp"
    44 #include "runtime/vmThread.hpp"
    45 #include "runtime/vm_operations.hpp"
    46 #include "services/serviceUtil.hpp"
    47 #ifndef SERIALGC
    48 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    49 #endif
    51 // JvmtiTagHashmapEntry
    52 //
    53 // Each entry encapsulates a reference to the tagged object
    54 // and the tag value. In addition an entry includes a next pointer which
    55 // is used to chain entries together.
    57 class JvmtiTagHashmapEntry : public CHeapObj {
    58  private:
    59   friend class JvmtiTagMap;
    61   oop _object;                          // tagged object
    62   jlong _tag;                           // the tag
    63   JvmtiTagHashmapEntry* _next;          // next on the list
    65   inline void init(oop object, jlong tag) {
    66     _object = object;
    67     _tag = tag;
    68     _next = NULL;
    69   }
    71   // constructor
    72   JvmtiTagHashmapEntry(oop object, jlong tag)         { init(object, tag); }
    74  public:
    76   // accessor methods
    77   inline oop object() const                           { return _object; }
    78   inline oop* object_addr()                           { return &_object; }
    79   inline jlong tag() const                            { return _tag; }
    81   inline void set_tag(jlong tag) {
    82     assert(tag != 0, "can't be zero");
    83     _tag = tag;
    84   }
    86   inline JvmtiTagHashmapEntry* next() const             { return _next; }
    87   inline void set_next(JvmtiTagHashmapEntry* next)      { _next = next; }
    88 };
    91 // JvmtiTagHashmap
    92 //
    93 // A hashmap is essentially a table of pointers to entries. Entries
    94 // are hashed to a location, or position in the table, and then
    95 // chained from that location. The "key" for hashing is address of
    96 // the object, or oop. The "value" is the tag value.
    97 //
    98 // A hashmap maintains a count of the number entries in the hashmap
    99 // and resizes if the number of entries exceeds a given threshold.
   100 // The threshold is specified as a percentage of the size - for
   101 // example a threshold of 0.75 will trigger the hashmap to resize
   102 // if the number of entries is >75% of table size.
   103 //
   104 // A hashmap provides functions for adding, removing, and finding
   105 // entries. It also provides a function to iterate over all entries
   106 // in the hashmap.
   108 class JvmtiTagHashmap : public CHeapObj {
   109  private:
   110   friend class JvmtiTagMap;
   112   enum {
   113     small_trace_threshold  = 10000,                  // threshold for tracing
   114     medium_trace_threshold = 100000,
   115     large_trace_threshold  = 1000000,
   116     initial_trace_threshold = small_trace_threshold
   117   };
   119   static int _sizes[];                  // array of possible hashmap sizes
   120   int _size;                            // actual size of the table
   121   int _size_index;                      // index into size table
   123   int _entry_count;                     // number of entries in the hashmap
   125   float _load_factor;                   // load factor as a % of the size
   126   int _resize_threshold;                // computed threshold to trigger resizing.
   127   bool _resizing_enabled;               // indicates if hashmap can resize
   129   int _trace_threshold;                 // threshold for trace messages
   131   JvmtiTagHashmapEntry** _table;        // the table of entries.
   133   // private accessors
   134   int resize_threshold() const                  { return _resize_threshold; }
   135   int trace_threshold() const                   { return _trace_threshold; }
   137   // initialize the hashmap
   138   void init(int size_index=0, float load_factor=4.0f) {
   139     int initial_size =  _sizes[size_index];
   140     _size_index = size_index;
   141     _size = initial_size;
   142     _entry_count = 0;
   143     if (TraceJVMTIObjectTagging) {
   144       _trace_threshold = initial_trace_threshold;
   145     } else {
   146       _trace_threshold = -1;
   147     }
   148     _load_factor = load_factor;
   149     _resize_threshold = (int)(_load_factor * _size);
   150     _resizing_enabled = true;
   151     size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
   152     _table = (JvmtiTagHashmapEntry**)os::malloc(s);
   153     if (_table == NULL) {
   154       vm_exit_out_of_memory(s, "unable to allocate initial hashtable for jvmti object tags");
   155     }
   156     for (int i=0; i<initial_size; i++) {
   157       _table[i] = NULL;
   158     }
   159   }
   161   // hash a given key (oop) with the specified size
   162   static unsigned int hash(oop key, int size) {
   163     // shift right to get better distribution (as these bits will be zero
   164     // with aligned addresses)
   165     unsigned int addr = (unsigned int)((intptr_t)key);
   166 #ifdef _LP64
   167     return (addr >> 3) % size;
   168 #else
   169     return (addr >> 2) % size;
   170 #endif
   171   }
   173   // hash a given key (oop)
   174   unsigned int hash(oop key) {
   175     return hash(key, _size);
   176   }
   178   // resize the hashmap - allocates a large table and re-hashes
   179   // all entries into the new table.
   180   void resize() {
   181     int new_size_index = _size_index+1;
   182     int new_size = _sizes[new_size_index];
   183     if (new_size < 0) {
   184       // hashmap already at maximum capacity
   185       return;
   186     }
   188     // allocate new table
   189     size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
   190     JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s);
   191     if (new_table == NULL) {
   192       warning("unable to allocate larger hashtable for jvmti object tags");
   193       set_resizing_enabled(false);
   194       return;
   195     }
   197     // initialize new table
   198     int i;
   199     for (i=0; i<new_size; i++) {
   200       new_table[i] = NULL;
   201     }
   203     // rehash all entries into the new table
   204     for (i=0; i<_size; i++) {
   205       JvmtiTagHashmapEntry* entry = _table[i];
   206       while (entry != NULL) {
   207         JvmtiTagHashmapEntry* next = entry->next();
   208         oop key = entry->object();
   209         assert(key != NULL, "jni weak reference cleared!!");
   210         unsigned int h = hash(key, new_size);
   211         JvmtiTagHashmapEntry* anchor = new_table[h];
   212         if (anchor == NULL) {
   213           new_table[h] = entry;
   214           entry->set_next(NULL);
   215         } else {
   216           entry->set_next(anchor);
   217           new_table[h] = entry;
   218         }
   219         entry = next;
   220       }
   221     }
   223     // free old table and update settings.
   224     os::free((void*)_table);
   225     _table = new_table;
   226     _size_index = new_size_index;
   227     _size = new_size;
   229     // compute new resize threshold
   230     _resize_threshold = (int)(_load_factor * _size);
   231   }
   234   // internal remove function - remove an entry at a given position in the
   235   // table.
   236   inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
   237     assert(pos >= 0 && pos < _size, "out of range");
   238     if (prev == NULL) {
   239       _table[pos] = entry->next();
   240     } else {
   241       prev->set_next(entry->next());
   242     }
   243     assert(_entry_count > 0, "checking");
   244     _entry_count--;
   245   }
   247   // resizing switch
   248   bool is_resizing_enabled() const          { return _resizing_enabled; }
   249   void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
   251   // debugging
   252   void print_memory_usage();
   253   void compute_next_trace_threshold();
   255  public:
   257   // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
   258   // The preferred size is rounded down to an actual size.
   259   JvmtiTagHashmap(int size, float load_factor=0.0f) {
   260     int i=0;
   261     while (_sizes[i] < size) {
   262       if (_sizes[i] < 0) {
   263         assert(i > 0, "sanity check");
   264         i--;
   265         break;
   266       }
   267       i++;
   268     }
   270     // if a load factor is specified then use it, otherwise use default
   271     if (load_factor > 0.01f) {
   272       init(i, load_factor);
   273     } else {
   274       init(i);
   275     }
   276   }
   278   // create a JvmtiTagHashmap with default settings
   279   JvmtiTagHashmap() {
   280     init();
   281   }
   283   // release table when JvmtiTagHashmap destroyed
   284   ~JvmtiTagHashmap() {
   285     if (_table != NULL) {
   286       os::free((void*)_table);
   287       _table = NULL;
   288     }
   289   }
   291   // accessors
   292   int size() const                              { return _size; }
   293   JvmtiTagHashmapEntry** table() const          { return _table; }
   294   int entry_count() const                       { return _entry_count; }
   296   // find an entry in the hashmap, returns NULL if not found.
   297   inline JvmtiTagHashmapEntry* find(oop key) {
   298     unsigned int h = hash(key);
   299     JvmtiTagHashmapEntry* entry = _table[h];
   300     while (entry != NULL) {
   301       if (entry->object() == key) {
   302          return entry;
   303       }
   304       entry = entry->next();
   305     }
   306     return NULL;
   307   }
   310   // add a new entry to hashmap
   311   inline void add(oop key, JvmtiTagHashmapEntry* entry) {
   312     assert(key != NULL, "checking");
   313     assert(find(key) == NULL, "duplicate detected");
   314     unsigned int h = hash(key);
   315     JvmtiTagHashmapEntry* anchor = _table[h];
   316     if (anchor == NULL) {
   317       _table[h] = entry;
   318       entry->set_next(NULL);
   319     } else {
   320       entry->set_next(anchor);
   321       _table[h] = entry;
   322     }
   324     _entry_count++;
   325     if (trace_threshold() > 0 && entry_count() >= trace_threshold()) {
   326       assert(TraceJVMTIObjectTagging, "should only get here when tracing");
   327       print_memory_usage();
   328       compute_next_trace_threshold();
   329     }
   331     // if the number of entries exceed the threshold then resize
   332     if (entry_count() > resize_threshold() && is_resizing_enabled()) {
   333       resize();
   334     }
   335   }
   337   // remove an entry with the given key.
   338   inline JvmtiTagHashmapEntry* remove(oop key) {
   339     unsigned int h = hash(key);
   340     JvmtiTagHashmapEntry* entry = _table[h];
   341     JvmtiTagHashmapEntry* prev = NULL;
   342     while (entry != NULL) {
   343       if (key == entry->object()) {
   344         break;
   345       }
   346       prev = entry;
   347       entry = entry->next();
   348     }
   349     if (entry != NULL) {
   350       remove(prev, h, entry);
   351     }
   352     return entry;
   353   }
   355   // iterate over all entries in the hashmap
   356   void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
   357 };
   359 // possible hashmap sizes - odd primes that roughly double in size.
   360 // To avoid excessive resizing the odd primes from 4801-76831 and
   361 // 76831-307261 have been removed. The list must be terminated by -1.
   362 int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
   363     2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
   366 // A supporting class for iterating over all entries in Hashmap
   367 class JvmtiTagHashmapEntryClosure {
   368  public:
   369   virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
   370 };
   373 // iterate over all entries in the hashmap
   374 void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
   375   for (int i=0; i<_size; i++) {
   376     JvmtiTagHashmapEntry* entry = _table[i];
   377     JvmtiTagHashmapEntry* prev = NULL;
   378     while (entry != NULL) {
   379       // obtain the next entry before invoking do_entry - this is
   380       // necessary because do_entry may remove the entry from the
   381       // hashmap.
   382       JvmtiTagHashmapEntry* next = entry->next();
   383       closure->do_entry(entry);
   384       entry = next;
   385      }
   386   }
   387 }
   389 // debugging
   390 void JvmtiTagHashmap::print_memory_usage() {
   391   intptr_t p = (intptr_t)this;
   392   tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
   394   // table + entries in KB
   395   int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
   396     entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
   398   int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
   399   tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
   400     entry_count(), hashmap_usage, weak_globals_usage);
   401 }
   403 // compute threshold for the next trace message
   404 void JvmtiTagHashmap::compute_next_trace_threshold() {
   405   if (trace_threshold() < medium_trace_threshold) {
   406     _trace_threshold += small_trace_threshold;
   407   } else {
   408     if (trace_threshold() < large_trace_threshold) {
   409       _trace_threshold += medium_trace_threshold;
   410     } else {
   411       _trace_threshold += large_trace_threshold;
   412     }
   413   }
   414 }
   416 // create a JvmtiTagMap
   417 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
   418   _env(env),
   419   _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
   420   _free_entries(NULL),
   421   _free_entries_count(0)
   422 {
   423   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
   424   assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
   426   _hashmap = new JvmtiTagHashmap();
   428   // finally add us to the environment
   429   ((JvmtiEnvBase *)env)->set_tag_map(this);
   430 }
   433 // destroy a JvmtiTagMap
   434 JvmtiTagMap::~JvmtiTagMap() {
   436   // no lock acquired as we assume the enclosing environment is
   437   // also being destroryed.
   438   ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
   440   JvmtiTagHashmapEntry** table = _hashmap->table();
   441   for (int j = 0; j < _hashmap->size(); j++) {
   442     JvmtiTagHashmapEntry* entry = table[j];
   443     while (entry != NULL) {
   444       JvmtiTagHashmapEntry* next = entry->next();
   445       delete entry;
   446       entry = next;
   447     }
   448   }
   450   // finally destroy the hashmap
   451   delete _hashmap;
   452   _hashmap = NULL;
   454   // remove any entries on the free list
   455   JvmtiTagHashmapEntry* entry = _free_entries;
   456   while (entry != NULL) {
   457     JvmtiTagHashmapEntry* next = entry->next();
   458     delete entry;
   459     entry = next;
   460   }
   461   _free_entries = NULL;
   462 }
   464 // create a hashmap entry
   465 // - if there's an entry on the (per-environment) free list then this
   466 // is returned. Otherwise an new entry is allocated.
   467 JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(oop ref, jlong tag) {
   468   assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
   469   JvmtiTagHashmapEntry* entry;
   470   if (_free_entries == NULL) {
   471     entry = new JvmtiTagHashmapEntry(ref, tag);
   472   } else {
   473     assert(_free_entries_count > 0, "mismatched _free_entries_count");
   474     _free_entries_count--;
   475     entry = _free_entries;
   476     _free_entries = entry->next();
   477     entry->init(ref, tag);
   478   }
   479   return entry;
   480 }
   482 // destroy an entry by returning it to the free list
   483 void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
   484   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
   485   // limit the size of the free list
   486   if (_free_entries_count >= max_free_entries) {
   487     delete entry;
   488   } else {
   489     entry->set_next(_free_entries);
   490     _free_entries = entry;
   491     _free_entries_count++;
   492   }
   493 }
   495 // returns the tag map for the given environments. If the tag map
   496 // doesn't exist then it is created.
   497 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
   498   JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map();
   499   if (tag_map == NULL) {
   500     MutexLocker mu(JvmtiThreadState_lock);
   501     tag_map = ((JvmtiEnvBase*)env)->tag_map();
   502     if (tag_map == NULL) {
   503       tag_map = new JvmtiTagMap(env);
   504     }
   505   } else {
   506     CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
   507   }
   508   return tag_map;
   509 }
   511 // iterate over all entries in the tag map.
   512 void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
   513   hashmap()->entry_iterate(closure);
   514 }
   516 // returns true if the hashmaps are empty
   517 bool JvmtiTagMap::is_empty() {
   518   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
   519   return hashmap()->entry_count() == 0;
   520 }
   523 // Return the tag value for an object, or 0 if the object is
   524 // not tagged
   525 //
   526 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
   527   JvmtiTagHashmapEntry* entry = tag_map->hashmap()->find(o);
   528   if (entry == NULL) {
   529     return 0;
   530   } else {
   531     return entry->tag();
   532   }
   533 }
   535 // If the object is a java.lang.Class then return the klassOop,
   536 // otherwise return the original object
   537 static inline oop klassOop_if_java_lang_Class(oop o) {
   538   if (o->klass() == SystemDictionary::Class_klass()) {
   539     if (!java_lang_Class::is_primitive(o)) {
   540       o = (oop)java_lang_Class::as_klassOop(o);
   541       assert(o != NULL, "class for non-primitive mirror must exist");
   542     }
   543   }
   544   return o;
   545 }
   547 // A CallbackWrapper is a support class for querying and tagging an object
   548 // around a callback to a profiler. The constructor does pre-callback
   549 // work to get the tag value, klass tag value, ... and the destructor
   550 // does the post-callback work of tagging or untagging the object.
   551 //
   552 // {
   553 //   CallbackWrapper wrapper(tag_map, o);
   554 //
   555 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
   556 //
   557 // } // wrapper goes out of scope here which results in the destructor
   558 //      checking to see if the object has been tagged, untagged, or the
   559 //      tag value has changed.
   560 //
   561 class CallbackWrapper : public StackObj {
   562  private:
   563   JvmtiTagMap* _tag_map;
   564   JvmtiTagHashmap* _hashmap;
   565   JvmtiTagHashmapEntry* _entry;
   566   oop _o;
   567   jlong _obj_size;
   568   jlong _obj_tag;
   569   klassOop _klass;         // the object's class
   570   jlong _klass_tag;
   572  protected:
   573   JvmtiTagMap* tag_map() const      { return _tag_map; }
   575   // invoked post-callback to tag, untag, or update the tag of an object
   576   void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
   577                                        JvmtiTagHashmapEntry* entry, jlong obj_tag);
   578  public:
   579   CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
   580     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
   581            "MT unsafe or must be VM thread");
   583     // for Classes the klassOop is tagged
   584     _o = klassOop_if_java_lang_Class(o);
   586     // object size
   587     _obj_size = _o->size() * wordSize;
   589     // record the context
   590     _tag_map = tag_map;
   591     _hashmap = tag_map->hashmap();
   592     _entry = _hashmap->find(_o);
   594     // get object tag
   595     _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
   597     // get the class and the class's tag value
   598     if (_o == o) {
   599       _klass = _o->klass();
   600     } else {
   601       // if the object represents a runtime class then use the
   602       // tag for java.lang.Class
   603       _klass = SystemDictionary::Class_klass();
   604     }
   605     _klass_tag = tag_for(tag_map, _klass);
   606   }
   608   ~CallbackWrapper() {
   609     post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
   610   }
   612   inline jlong* obj_tag_p()                     { return &_obj_tag; }
   613   inline jlong obj_size() const                 { return _obj_size; }
   614   inline jlong obj_tag() const                  { return _obj_tag; }
   615   inline klassOop klass() const                 { return _klass; }
   616   inline jlong klass_tag() const                { return _klass_tag; }
   617 };
   621 // callback post-callback to tag, untag, or update the tag of an object
   622 void inline CallbackWrapper::post_callback_tag_update(oop o,
   623                                                       JvmtiTagHashmap* hashmap,
   624                                                       JvmtiTagHashmapEntry* entry,
   625                                                       jlong obj_tag) {
   626   if (entry == NULL) {
   627     if (obj_tag != 0) {
   628       // callback has tagged the object
   629       assert(Thread::current()->is_VM_thread(), "must be VMThread");
   630       entry = tag_map()->create_entry(o, obj_tag);
   631       hashmap->add(o, entry);
   632     }
   633   } else {
   634     // object was previously tagged - the callback may have untagged
   635     // the object or changed the tag value
   636     if (obj_tag == 0) {
   638       JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
   639       assert(entry_removed == entry, "checking");
   640       tag_map()->destroy_entry(entry);
   642     } else {
   643       if (obj_tag != entry->tag()) {
   644          entry->set_tag(obj_tag);
   645       }
   646     }
   647   }
   648 }
   650 // An extended CallbackWrapper used when reporting an object reference
   651 // to the agent.
   652 //
   653 // {
   654 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
   655 //
   656 //   (*callback)(wrapper.klass_tag(),
   657 //               wrapper.obj_size(),
   658 //               wrapper.obj_tag_p()
   659 //               wrapper.referrer_tag_p(), ...)
   660 //
   661 // } // wrapper goes out of scope here which results in the destructor
   662 //      checking to see if the referrer object has been tagged, untagged,
   663 //      or the tag value has changed.
   664 //
   665 class TwoOopCallbackWrapper : public CallbackWrapper {
   666  private:
   667   bool _is_reference_to_self;
   668   JvmtiTagHashmap* _referrer_hashmap;
   669   JvmtiTagHashmapEntry* _referrer_entry;
   670   oop _referrer;
   671   jlong _referrer_obj_tag;
   672   jlong _referrer_klass_tag;
   673   jlong* _referrer_tag_p;
   675   bool is_reference_to_self() const             { return _is_reference_to_self; }
   677  public:
   678   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
   679     CallbackWrapper(tag_map, o)
   680   {
   681     // self reference needs to be handled in a special way
   682     _is_reference_to_self = (referrer == o);
   684     if (_is_reference_to_self) {
   685       _referrer_klass_tag = klass_tag();
   686       _referrer_tag_p = obj_tag_p();
   687     } else {
   688       // for Classes the klassOop is tagged
   689       _referrer = klassOop_if_java_lang_Class(referrer);
   690       // record the context
   691       _referrer_hashmap = tag_map->hashmap();
   692       _referrer_entry = _referrer_hashmap->find(_referrer);
   694       // get object tag
   695       _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
   696       _referrer_tag_p = &_referrer_obj_tag;
   698       // get referrer class tag.
   699       klassOop k = (_referrer == referrer) ?  // Check if referrer is a class...
   700           _referrer->klass()                  // No, just get its class
   701          : SystemDictionary::Class_klass();   // Yes, its class is Class
   702       _referrer_klass_tag = tag_for(tag_map, k);
   703     }
   704   }
   706   ~TwoOopCallbackWrapper() {
   707     if (!is_reference_to_self()){
   708       post_callback_tag_update(_referrer,
   709                                _referrer_hashmap,
   710                                _referrer_entry,
   711                                _referrer_obj_tag);
   712     }
   713   }
   715   // address of referrer tag
   716   // (for a self reference this will return the same thing as obj_tag_p())
   717   inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
   719   // referrer's class tag
   720   inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
   721 };
   723 // tag an object
   724 //
   725 // This function is performance critical. If many threads attempt to tag objects
   726 // around the same time then it's possible that the Mutex associated with the
   727 // tag map will be a hot lock.
   728 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
   729   MutexLocker ml(lock());
   731   // resolve the object
   732   oop o = JNIHandles::resolve_non_null(object);
   734   // for Classes we tag the klassOop
   735   o = klassOop_if_java_lang_Class(o);
   737   // see if the object is already tagged
   738   JvmtiTagHashmap* hashmap = _hashmap;
   739   JvmtiTagHashmapEntry* entry = hashmap->find(o);
   741   // if the object is not already tagged then we tag it
   742   if (entry == NULL) {
   743     if (tag != 0) {
   744       entry = create_entry(o, tag);
   745       hashmap->add(o, entry);
   746     } else {
   747       // no-op
   748     }
   749   } else {
   750     // if the object is already tagged then we either update
   751     // the tag (if a new tag value has been provided)
   752     // or remove the object if the new tag value is 0.
   753     if (tag == 0) {
   754       hashmap->remove(o);
   755       destroy_entry(entry);
   756     } else {
   757       entry->set_tag(tag);
   758     }
   759   }
   760 }
   762 // get the tag for an object
   763 jlong JvmtiTagMap::get_tag(jobject object) {
   764   MutexLocker ml(lock());
   766   // resolve the object
   767   oop o = JNIHandles::resolve_non_null(object);
   769   // for Classes get the tag from the klassOop
   770   return tag_for(this, klassOop_if_java_lang_Class(o));
   771 }
   774 // Helper class used to describe the static or instance fields of a class.
   775 // For each field it holds the field index (as defined by the JVMTI specification),
   776 // the field type, and the offset.
   778 class ClassFieldDescriptor: public CHeapObj {
   779  private:
   780   int _field_index;
   781   int _field_offset;
   782   char _field_type;
   783  public:
   784   ClassFieldDescriptor(int index, char type, int offset) :
   785     _field_index(index), _field_type(type), _field_offset(offset) {
   786   }
   787   int field_index()  const  { return _field_index; }
   788   char field_type()  const  { return _field_type; }
   789   int field_offset() const  { return _field_offset; }
   790 };
   792 class ClassFieldMap: public CHeapObj {
   793  private:
   794   enum {
   795     initial_field_count = 5
   796   };
   798   // list of field descriptors
   799   GrowableArray<ClassFieldDescriptor*>* _fields;
   801   // constructor
   802   ClassFieldMap();
   804   // add a field
   805   void add(int index, char type, int offset);
   807   // returns the field count for the given class
   808   static int compute_field_count(instanceKlassHandle ikh);
   810  public:
   811   ~ClassFieldMap();
   813   // access
   814   int field_count()                     { return _fields->length(); }
   815   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
   817   // functions to create maps of static or instance fields
   818   static ClassFieldMap* create_map_of_static_fields(klassOop k);
   819   static ClassFieldMap* create_map_of_instance_fields(oop obj);
   820 };
   822 ClassFieldMap::ClassFieldMap() {
   823   _fields = new (ResourceObj::C_HEAP) GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
   824 }
   826 ClassFieldMap::~ClassFieldMap() {
   827   for (int i=0; i<_fields->length(); i++) {
   828     delete _fields->at(i);
   829   }
   830   delete _fields;
   831 }
   833 void ClassFieldMap::add(int index, char type, int offset) {
   834   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
   835   _fields->append(field);
   836 }
   838 // Returns a heap allocated ClassFieldMap to describe the static fields
   839 // of the given class.
   840 //
   841 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(klassOop k) {
   842   HandleMark hm;
   843   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), k);
   845   // create the field map
   846   ClassFieldMap* field_map = new ClassFieldMap();
   848   FilteredFieldStream f(ikh, false, false);
   849   int max_field_index = f.field_count()-1;
   851   int index = 0;
   852   for (FilteredFieldStream fld(ikh, true, true); !fld.eos(); fld.next(), index++) {
   853     // ignore instance fields
   854     if (!fld.access_flags().is_static()) {
   855       continue;
   856     }
   857     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
   858   }
   859   return field_map;
   860 }
   862 // Returns a heap allocated ClassFieldMap to describe the instance fields
   863 // of the given class. All instance fields are included (this means public
   864 // and private fields declared in superclasses and superinterfaces too).
   865 //
   866 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
   867   HandleMark hm;
   868   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), obj->klass());
   870   // create the field map
   871   ClassFieldMap* field_map = new ClassFieldMap();
   873   FilteredFieldStream f(ikh, false, false);
   875   int max_field_index = f.field_count()-1;
   877   int index = 0;
   878   for (FilteredFieldStream fld(ikh, false, false); !fld.eos(); fld.next(), index++) {
   879     // ignore static fields
   880     if (fld.access_flags().is_static()) {
   881       continue;
   882     }
   883     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
   884   }
   886   return field_map;
   887 }
   889 // Helper class used to cache a ClassFileMap for the instance fields of
   890 // a cache. A JvmtiCachedClassFieldMap can be cached by an instanceKlass during
   891 // heap iteration and avoid creating a field map for each object in the heap
   892 // (only need to create the map when the first instance of a class is encountered).
   893 //
   894 class JvmtiCachedClassFieldMap : public CHeapObj {
   895  private:
   896    enum {
   897      initial_class_count = 200
   898    };
   899   ClassFieldMap* _field_map;
   901   ClassFieldMap* field_map() const          { return _field_map; }
   903   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
   904   ~JvmtiCachedClassFieldMap();
   906   static GrowableArray<instanceKlass*>* _class_list;
   907   static void add_to_class_list(instanceKlass* ik);
   909  public:
   910   // returns the field map for a given object (returning map cached
   911   // by instanceKlass if possible
   912   static ClassFieldMap* get_map_of_instance_fields(oop obj);
   914   // removes the field map from all instanceKlasses - should be
   915   // called before VM operation completes
   916   static void clear_cache();
   918   // returns the number of ClassFieldMap cached by instanceKlasses
   919   static int cached_field_map_count();
   920 };
   922 GrowableArray<instanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
   924 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
   925   _field_map = field_map;
   926 }
   928 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
   929   if (_field_map != NULL) {
   930     delete _field_map;
   931   }
   932 }
   934 // Marker class to ensure that the class file map cache is only used in a defined
   935 // scope.
   936 class ClassFieldMapCacheMark : public StackObj {
   937  private:
   938    static bool _is_active;
   939  public:
   940    ClassFieldMapCacheMark() {
   941      assert(Thread::current()->is_VM_thread(), "must be VMThread");
   942      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
   943      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
   944      _is_active = true;
   945    }
   946    ~ClassFieldMapCacheMark() {
   947      JvmtiCachedClassFieldMap::clear_cache();
   948      _is_active = false;
   949    }
   950    static bool is_active() { return _is_active; }
   951 };
   953 bool ClassFieldMapCacheMark::_is_active;
   956 // record that the given instanceKlass is caching a field map
   957 void JvmtiCachedClassFieldMap::add_to_class_list(instanceKlass* ik) {
   958   if (_class_list == NULL) {
   959     _class_list = new (ResourceObj::C_HEAP) GrowableArray<instanceKlass*>(initial_class_count, true);
   960   }
   961   _class_list->push(ik);
   962 }
   964 // returns the instance field map for the given object
   965 // (returns field map cached by the instanceKlass if possible)
   966 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
   967   assert(Thread::current()->is_VM_thread(), "must be VMThread");
   968   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
   970   klassOop k = obj->klass();
   971   instanceKlass* ik = instanceKlass::cast(k);
   973   // return cached map if possible
   974   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
   975   if (cached_map != NULL) {
   976     assert(cached_map->field_map() != NULL, "missing field list");
   977     return cached_map->field_map();
   978   } else {
   979     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
   980     cached_map = new JvmtiCachedClassFieldMap(field_map);
   981     ik->set_jvmti_cached_class_field_map(cached_map);
   982     add_to_class_list(ik);
   983     return field_map;
   984   }
   985 }
   987 // remove the fields maps cached from all instanceKlasses
   988 void JvmtiCachedClassFieldMap::clear_cache() {
   989   assert(Thread::current()->is_VM_thread(), "must be VMThread");
   990   if (_class_list != NULL) {
   991     for (int i = 0; i < _class_list->length(); i++) {
   992       instanceKlass* ik = _class_list->at(i);
   993       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
   994       assert(cached_map != NULL, "should not be NULL");
   995       ik->set_jvmti_cached_class_field_map(NULL);
   996       delete cached_map;  // deletes the encapsulated field map
   997     }
   998     delete _class_list;
   999     _class_list = NULL;
  1003 // returns the number of ClassFieldMap cached by instanceKlasses
  1004 int JvmtiCachedClassFieldMap::cached_field_map_count() {
  1005   return (_class_list == NULL) ? 0 : _class_list->length();
  1008 // helper function to indicate if an object is filtered by its tag or class tag
  1009 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
  1010                                               jlong klass_tag,
  1011                                               int heap_filter) {
  1012   // apply the heap filter
  1013   if (obj_tag != 0) {
  1014     // filter out tagged objects
  1015     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
  1016   } else {
  1017     // filter out untagged objects
  1018     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
  1020   if (klass_tag != 0) {
  1021     // filter out objects with tagged classes
  1022     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
  1023   } else {
  1024     // filter out objects with untagged classes.
  1025     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
  1027   return false;
  1030 // helper function to indicate if an object is filtered by a klass filter
  1031 static inline bool is_filtered_by_klass_filter(oop obj, KlassHandle klass_filter) {
  1032   if (!klass_filter.is_null()) {
  1033     if (obj->klass() != klass_filter()) {
  1034       return true;
  1037   return false;
  1040 // helper function to tell if a field is a primitive field or not
  1041 static inline bool is_primitive_field_type(char type) {
  1042   return (type != 'L' && type != '[');
  1045 // helper function to copy the value from location addr to jvalue.
  1046 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
  1047   switch (value_type) {
  1048     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
  1049     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
  1050     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
  1051     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
  1052     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
  1053     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
  1054     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
  1055     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
  1056     default: ShouldNotReachHere();
  1060 // helper function to invoke string primitive value callback
  1061 // returns visit control flags
  1062 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
  1063                                          CallbackWrapper* wrapper,
  1064                                          oop str,
  1065                                          void* user_data)
  1067   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
  1069   // get the string value and length
  1070   // (string value may be offset from the base)
  1071   int s_len = java_lang_String::length(str);
  1072   typeArrayOop s_value = java_lang_String::value(str);
  1073   int s_offset = java_lang_String::offset(str);
  1074   jchar* value;
  1075   if (s_len > 0) {
  1076     value = s_value->char_at_addr(s_offset);
  1077   } else {
  1078     value = (jchar*) s_value->base(T_CHAR);
  1081   // invoke the callback
  1082   return (*cb)(wrapper->klass_tag(),
  1083                wrapper->obj_size(),
  1084                wrapper->obj_tag_p(),
  1085                value,
  1086                (jint)s_len,
  1087                user_data);
  1090 // helper function to invoke string primitive value callback
  1091 // returns visit control flags
  1092 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
  1093                                                   CallbackWrapper* wrapper,
  1094                                                   oop obj,
  1095                                                   void* user_data)
  1097   assert(obj->is_typeArray(), "not a primitive array");
  1099   // get base address of first element
  1100   typeArrayOop array = typeArrayOop(obj);
  1101   BasicType type = typeArrayKlass::cast(array->klass())->element_type();
  1102   void* elements = array->base(type);
  1104   // jvmtiPrimitiveType is defined so this mapping is always correct
  1105   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
  1107   return (*cb)(wrapper->klass_tag(),
  1108                wrapper->obj_size(),
  1109                wrapper->obj_tag_p(),
  1110                (jint)array->length(),
  1111                elem_type,
  1112                elements,
  1113                user_data);
  1116 // helper function to invoke the primitive field callback for all static fields
  1117 // of a given class
  1118 static jint invoke_primitive_field_callback_for_static_fields
  1119   (CallbackWrapper* wrapper,
  1120    oop obj,
  1121    jvmtiPrimitiveFieldCallback cb,
  1122    void* user_data)
  1124   // for static fields only the index will be set
  1125   static jvmtiHeapReferenceInfo reference_info = { 0 };
  1127   assert(obj->klass() == SystemDictionary::Class_klass(), "not a class");
  1128   if (java_lang_Class::is_primitive(obj)) {
  1129     return 0;
  1131   klassOop k = java_lang_Class::as_klassOop(obj);
  1132   Klass* klass = k->klass_part();
  1134   // ignore classes for object and type arrays
  1135   if (!klass->oop_is_instance()) {
  1136     return 0;
  1139   // ignore classes which aren't linked yet
  1140   instanceKlass* ik = instanceKlass::cast(k);
  1141   if (!ik->is_linked()) {
  1142     return 0;
  1145   // get the field map
  1146   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
  1148   // invoke the callback for each static primitive field
  1149   for (int i=0; i<field_map->field_count(); i++) {
  1150     ClassFieldDescriptor* field = field_map->field_at(i);
  1152     // ignore non-primitive fields
  1153     char type = field->field_type();
  1154     if (!is_primitive_field_type(type)) {
  1155       continue;
  1157     // one-to-one mapping
  1158     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  1160     // get offset and field value
  1161     int offset = field->field_offset();
  1162     address addr = (address)k + offset;
  1163     jvalue value;
  1164     copy_to_jvalue(&value, addr, value_type);
  1166     // field index
  1167     reference_info.field.index = field->field_index();
  1169     // invoke the callback
  1170     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
  1171                      &reference_info,
  1172                      wrapper->klass_tag(),
  1173                      wrapper->obj_tag_p(),
  1174                      value,
  1175                      value_type,
  1176                      user_data);
  1177     if (res & JVMTI_VISIT_ABORT) {
  1178       delete field_map;
  1179       return res;
  1183   delete field_map;
  1184   return 0;
  1187 // helper function to invoke the primitive field callback for all instance fields
  1188 // of a given object
  1189 static jint invoke_primitive_field_callback_for_instance_fields(
  1190   CallbackWrapper* wrapper,
  1191   oop obj,
  1192   jvmtiPrimitiveFieldCallback cb,
  1193   void* user_data)
  1195   // for instance fields only the index will be set
  1196   static jvmtiHeapReferenceInfo reference_info = { 0 };
  1198   // get the map of the instance fields
  1199   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
  1201   // invoke the callback for each instance primitive field
  1202   for (int i=0; i<fields->field_count(); i++) {
  1203     ClassFieldDescriptor* field = fields->field_at(i);
  1205     // ignore non-primitive fields
  1206     char type = field->field_type();
  1207     if (!is_primitive_field_type(type)) {
  1208       continue;
  1210     // one-to-one mapping
  1211     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  1213     // get offset and field value
  1214     int offset = field->field_offset();
  1215     address addr = (address)obj + offset;
  1216     jvalue value;
  1217     copy_to_jvalue(&value, addr, value_type);
  1219     // field index
  1220     reference_info.field.index = field->field_index();
  1222     // invoke the callback
  1223     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
  1224                      &reference_info,
  1225                      wrapper->klass_tag(),
  1226                      wrapper->obj_tag_p(),
  1227                      value,
  1228                      value_type,
  1229                      user_data);
  1230     if (res & JVMTI_VISIT_ABORT) {
  1231       return res;
  1234   return 0;
  1238 // VM operation to iterate over all objects in the heap (both reachable
  1239 // and unreachable)
  1240 class VM_HeapIterateOperation: public VM_Operation {
  1241  private:
  1242   ObjectClosure* _blk;
  1243  public:
  1244   VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
  1246   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
  1247   void doit() {
  1248     // allows class files maps to be cached during iteration
  1249     ClassFieldMapCacheMark cm;
  1251     // make sure that heap is parsable (fills TLABs with filler objects)
  1252     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
  1254     // Verify heap before iteration - if the heap gets corrupted then
  1255     // JVMTI's IterateOverHeap will crash.
  1256     if (VerifyBeforeIteration) {
  1257       Universe::verify();
  1260     // do the iteration
  1261     // If this operation encounters a bad object when using CMS,
  1262     // consider using safe_object_iterate() which avoids perm gen
  1263     // objects that may contain bad references.
  1264     Universe::heap()->object_iterate(_blk);
  1266     // when sharing is enabled we must iterate over the shared spaces
  1267     if (UseSharedSpaces) {
  1268       GenCollectedHeap* gch = GenCollectedHeap::heap();
  1269       CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
  1270       gen->ro_space()->object_iterate(_blk);
  1271       gen->rw_space()->object_iterate(_blk);
  1275 };
  1278 // An ObjectClosure used to support the deprecated IterateOverHeap and
  1279 // IterateOverInstancesOfClass functions
  1280 class IterateOverHeapObjectClosure: public ObjectClosure {
  1281  private:
  1282   JvmtiTagMap* _tag_map;
  1283   KlassHandle _klass;
  1284   jvmtiHeapObjectFilter _object_filter;
  1285   jvmtiHeapObjectCallback _heap_object_callback;
  1286   const void* _user_data;
  1288   // accessors
  1289   JvmtiTagMap* tag_map() const                    { return _tag_map; }
  1290   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
  1291   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
  1292   KlassHandle klass() const                       { return _klass; }
  1293   const void* user_data() const                   { return _user_data; }
  1295   // indicates if iteration has been aborted
  1296   bool _iteration_aborted;
  1297   bool is_iteration_aborted() const               { return _iteration_aborted; }
  1298   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
  1300  public:
  1301   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
  1302                                KlassHandle klass,
  1303                                jvmtiHeapObjectFilter object_filter,
  1304                                jvmtiHeapObjectCallback heap_object_callback,
  1305                                const void* user_data) :
  1306     _tag_map(tag_map),
  1307     _klass(klass),
  1308     _object_filter(object_filter),
  1309     _heap_object_callback(heap_object_callback),
  1310     _user_data(user_data),
  1311     _iteration_aborted(false)
  1315   void do_object(oop o);
  1316 };
  1318 // invoked for each object in the heap
  1319 void IterateOverHeapObjectClosure::do_object(oop o) {
  1320   // check if iteration has been halted
  1321   if (is_iteration_aborted()) return;
  1323   // ignore any objects that aren't visible to profiler
  1324   if (!ServiceUtil::visible_oop(o)) return;
  1326   // instanceof check when filtering by klass
  1327   if (!klass().is_null() && !o->is_a(klass()())) {
  1328     return;
  1330   // prepare for the calllback
  1331   CallbackWrapper wrapper(tag_map(), o);
  1333   // if the object is tagged and we're only interested in untagged objects
  1334   // then don't invoke the callback. Similiarly, if the object is untagged
  1335   // and we're only interested in tagged objects we skip the callback.
  1336   if (wrapper.obj_tag() != 0) {
  1337     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
  1338   } else {
  1339     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
  1342   // invoke the agent's callback
  1343   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
  1344                                                        wrapper.obj_size(),
  1345                                                        wrapper.obj_tag_p(),
  1346                                                        (void*)user_data());
  1347   if (control == JVMTI_ITERATION_ABORT) {
  1348     set_iteration_aborted(true);
  1352 // An ObjectClosure used to support the IterateThroughHeap function
  1353 class IterateThroughHeapObjectClosure: public ObjectClosure {
  1354  private:
  1355   JvmtiTagMap* _tag_map;
  1356   KlassHandle _klass;
  1357   int _heap_filter;
  1358   const jvmtiHeapCallbacks* _callbacks;
  1359   const void* _user_data;
  1361   // accessor functions
  1362   JvmtiTagMap* tag_map() const                     { return _tag_map; }
  1363   int heap_filter() const                          { return _heap_filter; }
  1364   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
  1365   KlassHandle klass() const                        { return _klass; }
  1366   const void* user_data() const                    { return _user_data; }
  1368   // indicates if the iteration has been aborted
  1369   bool _iteration_aborted;
  1370   bool is_iteration_aborted() const                { return _iteration_aborted; }
  1372   // used to check the visit control flags. If the abort flag is set
  1373   // then we set the iteration aborted flag so that the iteration completes
  1374   // without processing any further objects
  1375   bool check_flags_for_abort(jint flags) {
  1376     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
  1377     if (is_abort) {
  1378       _iteration_aborted = true;
  1380     return is_abort;
  1383  public:
  1384   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
  1385                                   KlassHandle klass,
  1386                                   int heap_filter,
  1387                                   const jvmtiHeapCallbacks* heap_callbacks,
  1388                                   const void* user_data) :
  1389     _tag_map(tag_map),
  1390     _klass(klass),
  1391     _heap_filter(heap_filter),
  1392     _callbacks(heap_callbacks),
  1393     _user_data(user_data),
  1394     _iteration_aborted(false)
  1398   void do_object(oop o);
  1399 };
  1401 // invoked for each object in the heap
  1402 void IterateThroughHeapObjectClosure::do_object(oop obj) {
  1403   // check if iteration has been halted
  1404   if (is_iteration_aborted()) return;
  1406   // ignore any objects that aren't visible to profiler
  1407   if (!ServiceUtil::visible_oop(obj)) return;
  1409   // apply class filter
  1410   if (is_filtered_by_klass_filter(obj, klass())) return;
  1412   // prepare for callback
  1413   CallbackWrapper wrapper(tag_map(), obj);
  1415   // check if filtered by the heap filter
  1416   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
  1417     return;
  1420   // for arrays we need the length, otherwise -1
  1421   bool is_array = obj->is_array();
  1422   int len = is_array ? arrayOop(obj)->length() : -1;
  1424   // invoke the object callback (if callback is provided)
  1425   if (callbacks()->heap_iteration_callback != NULL) {
  1426     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
  1427     jint res = (*cb)(wrapper.klass_tag(),
  1428                      wrapper.obj_size(),
  1429                      wrapper.obj_tag_p(),
  1430                      (jint)len,
  1431                      (void*)user_data());
  1432     if (check_flags_for_abort(res)) return;
  1435   // for objects and classes we report primitive fields if callback provided
  1436   if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
  1437     jint res;
  1438     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
  1439     if (obj->klass() == SystemDictionary::Class_klass()) {
  1440       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
  1441                                                                     obj,
  1442                                                                     cb,
  1443                                                                     (void*)user_data());
  1444     } else {
  1445       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
  1446                                                                       obj,
  1447                                                                       cb,
  1448                                                                       (void*)user_data());
  1450     if (check_flags_for_abort(res)) return;
  1453   // string callback
  1454   if (!is_array &&
  1455       callbacks()->string_primitive_value_callback != NULL &&
  1456       obj->klass() == SystemDictionary::String_klass()) {
  1457     jint res = invoke_string_value_callback(
  1458                 callbacks()->string_primitive_value_callback,
  1459                 &wrapper,
  1460                 obj,
  1461                 (void*)user_data() );
  1462     if (check_flags_for_abort(res)) return;
  1465   // array callback
  1466   if (is_array &&
  1467       callbacks()->array_primitive_value_callback != NULL &&
  1468       obj->is_typeArray()) {
  1469     jint res = invoke_array_primitive_value_callback(
  1470                callbacks()->array_primitive_value_callback,
  1471                &wrapper,
  1472                obj,
  1473                (void*)user_data() );
  1474     if (check_flags_for_abort(res)) return;
  1476 };
  1479 // Deprecated function to iterate over all objects in the heap
  1480 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
  1481                                     KlassHandle klass,
  1482                                     jvmtiHeapObjectCallback heap_object_callback,
  1483                                     const void* user_data)
  1485   MutexLocker ml(Heap_lock);
  1486   IterateOverHeapObjectClosure blk(this,
  1487                                    klass,
  1488                                    object_filter,
  1489                                    heap_object_callback,
  1490                                    user_data);
  1491   VM_HeapIterateOperation op(&blk);
  1492   VMThread::execute(&op);
  1496 // Iterates over all objects in the heap
  1497 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
  1498                                        KlassHandle klass,
  1499                                        const jvmtiHeapCallbacks* callbacks,
  1500                                        const void* user_data)
  1502   MutexLocker ml(Heap_lock);
  1503   IterateThroughHeapObjectClosure blk(this,
  1504                                       klass,
  1505                                       heap_filter,
  1506                                       callbacks,
  1507                                       user_data);
  1508   VM_HeapIterateOperation op(&blk);
  1509   VMThread::execute(&op);
  1512 // support class for get_objects_with_tags
  1514 class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
  1515  private:
  1516   JvmtiEnv* _env;
  1517   jlong* _tags;
  1518   jint _tag_count;
  1520   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
  1521   GrowableArray<uint64_t>* _tag_results;    // collected tags
  1523  public:
  1524   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
  1525     _env = env;
  1526     _tags = (jlong*)tags;
  1527     _tag_count = tag_count;
  1528     _object_results = new (ResourceObj::C_HEAP) GrowableArray<jobject>(1,true);
  1529     _tag_results = new (ResourceObj::C_HEAP) GrowableArray<uint64_t>(1,true);
  1532   ~TagObjectCollector() {
  1533     delete _object_results;
  1534     delete _tag_results;
  1537   // for each tagged object check if the tag value matches
  1538   // - if it matches then we create a JNI local reference to the object
  1539   // and record the reference and tag value.
  1540   //
  1541   void do_entry(JvmtiTagHashmapEntry* entry) {
  1542     for (int i=0; i<_tag_count; i++) {
  1543       if (_tags[i] == entry->tag()) {
  1544         oop o = entry->object();
  1545         assert(o != NULL, "sanity check");
  1547         // the mirror is tagged
  1548         if (o->is_klass()) {
  1549           klassOop k = (klassOop)o;
  1550           o = Klass::cast(k)->java_mirror();
  1553         jobject ref = JNIHandles::make_local(JavaThread::current(), o);
  1554         _object_results->append(ref);
  1555         _tag_results->append((uint64_t)entry->tag());
  1560   // return the results from the collection
  1561   //
  1562   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
  1563     jvmtiError error;
  1564     int count = _object_results->length();
  1565     assert(count >= 0, "sanity check");
  1567     // if object_result_ptr is not NULL then allocate the result and copy
  1568     // in the object references.
  1569     if (object_result_ptr != NULL) {
  1570       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
  1571       if (error != JVMTI_ERROR_NONE) {
  1572         return error;
  1574       for (int i=0; i<count; i++) {
  1575         (*object_result_ptr)[i] = _object_results->at(i);
  1579     // if tag_result_ptr is not NULL then allocate the result and copy
  1580     // in the tag values.
  1581     if (tag_result_ptr != NULL) {
  1582       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
  1583       if (error != JVMTI_ERROR_NONE) {
  1584         if (object_result_ptr != NULL) {
  1585           _env->Deallocate((unsigned char*)object_result_ptr);
  1587         return error;
  1589       for (int i=0; i<count; i++) {
  1590         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
  1594     *count_ptr = count;
  1595     return JVMTI_ERROR_NONE;
  1597 };
  1599 // return the list of objects with the specified tags
  1600 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
  1601   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
  1603   TagObjectCollector collector(env(), tags, count);
  1605     // iterate over all tagged objects
  1606     MutexLocker ml(lock());
  1607     entry_iterate(&collector);
  1609   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
  1613 // ObjectMarker is used to support the marking objects when walking the
  1614 // heap.
  1615 //
  1616 // This implementation uses the existing mark bits in an object for
  1617 // marking. Objects that are marked must later have their headers restored.
  1618 // As most objects are unlocked and don't have their identity hash computed
  1619 // we don't have to save their headers. Instead we save the headers that
  1620 // are "interesting". Later when the headers are restored this implementation
  1621 // restores all headers to their initial value and then restores the few
  1622 // objects that had interesting headers.
  1623 //
  1624 // Future work: This implementation currently uses growable arrays to save
  1625 // the oop and header of interesting objects. As an optimization we could
  1626 // use the same technique as the GC and make use of the unused area
  1627 // between top() and end().
  1628 //
  1630 // An ObjectClosure used to restore the mark bits of an object
  1631 class RestoreMarksClosure : public ObjectClosure {
  1632  public:
  1633   void do_object(oop o) {
  1634     if (o != NULL) {
  1635       markOop mark = o->mark();
  1636       if (mark->is_marked()) {
  1637         o->init_mark();
  1641 };
  1643 // ObjectMarker provides the mark and visited functions
  1644 class ObjectMarker : AllStatic {
  1645  private:
  1646   // saved headers
  1647   static GrowableArray<oop>* _saved_oop_stack;
  1648   static GrowableArray<markOop>* _saved_mark_stack;
  1650  public:
  1651   static void init();                       // initialize
  1652   static void done();                       // clean-up
  1654   static inline void mark(oop o);           // mark an object
  1655   static inline bool visited(oop o);        // check if object has been visited
  1656 };
  1658 GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
  1659 GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL;
  1661 // initialize ObjectMarker - prepares for object marking
  1662 void ObjectMarker::init() {
  1663   assert(Thread::current()->is_VM_thread(), "must be VMThread");
  1665   // prepare heap for iteration
  1666   Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
  1668   // create stacks for interesting headers
  1669   _saved_mark_stack = new (ResourceObj::C_HEAP) GrowableArray<markOop>(4000, true);
  1670   _saved_oop_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
  1672   if (UseBiasedLocking) {
  1673     BiasedLocking::preserve_marks();
  1677 // Object marking is done so restore object headers
  1678 void ObjectMarker::done() {
  1679   // iterate over all objects and restore the mark bits to
  1680   // their initial value
  1681   RestoreMarksClosure blk;
  1682   Universe::heap()->object_iterate(&blk);
  1684   // When sharing is enabled we need to restore the headers of the objects
  1685   // in the readwrite space too.
  1686   if (UseSharedSpaces) {
  1687     GenCollectedHeap* gch = GenCollectedHeap::heap();
  1688     CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
  1689     gen->rw_space()->object_iterate(&blk);
  1692   // now restore the interesting headers
  1693   for (int i = 0; i < _saved_oop_stack->length(); i++) {
  1694     oop o = _saved_oop_stack->at(i);
  1695     markOop mark = _saved_mark_stack->at(i);
  1696     o->set_mark(mark);
  1699   if (UseBiasedLocking) {
  1700     BiasedLocking::restore_marks();
  1703   // free the stacks
  1704   delete _saved_oop_stack;
  1705   delete _saved_mark_stack;
  1708 // mark an object
  1709 inline void ObjectMarker::mark(oop o) {
  1710   assert(Universe::heap()->is_in(o), "sanity check");
  1711   assert(!o->mark()->is_marked(), "should only mark an object once");
  1713   // object's mark word
  1714   markOop mark = o->mark();
  1716   if (mark->must_be_preserved(o)) {
  1717     _saved_mark_stack->push(mark);
  1718     _saved_oop_stack->push(o);
  1721   // mark the object
  1722   o->set_mark(markOopDesc::prototype()->set_marked());
  1725 // return true if object is marked
  1726 inline bool ObjectMarker::visited(oop o) {
  1727   return o->mark()->is_marked();
  1730 // Stack allocated class to help ensure that ObjectMarker is used
  1731 // correctly. Constructor initializes ObjectMarker, destructor calls
  1732 // ObjectMarker's done() function to restore object headers.
  1733 class ObjectMarkerController : public StackObj {
  1734  public:
  1735   ObjectMarkerController() {
  1736     ObjectMarker::init();
  1738   ~ObjectMarkerController() {
  1739     ObjectMarker::done();
  1741 };
  1744 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
  1745 // (not performance critical as only used for roots)
  1746 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
  1747   switch (kind) {
  1748     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
  1749     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
  1750     case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
  1751     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
  1752     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
  1753     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
  1754     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
  1755     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
  1759 // Base class for all heap walk contexts. The base class maintains a flag
  1760 // to indicate if the context is valid or not.
  1761 class HeapWalkContext VALUE_OBJ_CLASS_SPEC {
  1762  private:
  1763   bool _valid;
  1764  public:
  1765   HeapWalkContext(bool valid)                   { _valid = valid; }
  1766   void invalidate()                             { _valid = false; }
  1767   bool is_valid() const                         { return _valid; }
  1768 };
  1770 // A basic heap walk context for the deprecated heap walking functions.
  1771 // The context for a basic heap walk are the callbacks and fields used by
  1772 // the referrer caching scheme.
  1773 class BasicHeapWalkContext: public HeapWalkContext {
  1774  private:
  1775   jvmtiHeapRootCallback _heap_root_callback;
  1776   jvmtiStackReferenceCallback _stack_ref_callback;
  1777   jvmtiObjectReferenceCallback _object_ref_callback;
  1779   // used for caching
  1780   oop _last_referrer;
  1781   jlong _last_referrer_tag;
  1783  public:
  1784   BasicHeapWalkContext() : HeapWalkContext(false) { }
  1786   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
  1787                        jvmtiStackReferenceCallback stack_ref_callback,
  1788                        jvmtiObjectReferenceCallback object_ref_callback) :
  1789     HeapWalkContext(true),
  1790     _heap_root_callback(heap_root_callback),
  1791     _stack_ref_callback(stack_ref_callback),
  1792     _object_ref_callback(object_ref_callback),
  1793     _last_referrer(NULL),
  1794     _last_referrer_tag(0) {
  1797   // accessors
  1798   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
  1799   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
  1800   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
  1802   oop last_referrer() const               { return _last_referrer; }
  1803   void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
  1804   jlong last_referrer_tag() const         { return _last_referrer_tag; }
  1805   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
  1806 };
  1808 // The advanced heap walk context for the FollowReferences functions.
  1809 // The context is the callbacks, and the fields used for filtering.
  1810 class AdvancedHeapWalkContext: public HeapWalkContext {
  1811  private:
  1812   jint _heap_filter;
  1813   KlassHandle _klass_filter;
  1814   const jvmtiHeapCallbacks* _heap_callbacks;
  1816  public:
  1817   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
  1819   AdvancedHeapWalkContext(jint heap_filter,
  1820                            KlassHandle klass_filter,
  1821                            const jvmtiHeapCallbacks* heap_callbacks) :
  1822     HeapWalkContext(true),
  1823     _heap_filter(heap_filter),
  1824     _klass_filter(klass_filter),
  1825     _heap_callbacks(heap_callbacks) {
  1828   // accessors
  1829   jint heap_filter() const         { return _heap_filter; }
  1830   KlassHandle klass_filter() const { return _klass_filter; }
  1832   const jvmtiHeapReferenceCallback heap_reference_callback() const {
  1833     return _heap_callbacks->heap_reference_callback;
  1834   };
  1835   const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
  1836     return _heap_callbacks->primitive_field_callback;
  1838   const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
  1839     return _heap_callbacks->array_primitive_value_callback;
  1841   const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
  1842     return _heap_callbacks->string_primitive_value_callback;
  1844 };
  1846 // The CallbackInvoker is a class with static functions that the heap walk can call
  1847 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
  1848 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
  1849 // mode is for the newer FollowReferences function which supports a lot of
  1850 // additional callbacks.
  1851 class CallbackInvoker : AllStatic {
  1852  private:
  1853   // heap walk styles
  1854   enum { basic, advanced };
  1855   static int _heap_walk_type;
  1856   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
  1857   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
  1859   // context for basic style heap walk
  1860   static BasicHeapWalkContext _basic_context;
  1861   static BasicHeapWalkContext* basic_context() {
  1862     assert(_basic_context.is_valid(), "invalid");
  1863     return &_basic_context;
  1866   // context for advanced style heap walk
  1867   static AdvancedHeapWalkContext _advanced_context;
  1868   static AdvancedHeapWalkContext* advanced_context() {
  1869     assert(_advanced_context.is_valid(), "invalid");
  1870     return &_advanced_context;
  1873   // context needed for all heap walks
  1874   static JvmtiTagMap* _tag_map;
  1875   static const void* _user_data;
  1876   static GrowableArray<oop>* _visit_stack;
  1878   // accessors
  1879   static JvmtiTagMap* tag_map()                        { return _tag_map; }
  1880   static const void* user_data()                       { return _user_data; }
  1881   static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
  1883   // if the object hasn't been visited then push it onto the visit stack
  1884   // so that it will be visited later
  1885   static inline bool check_for_visit(oop obj) {
  1886     if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
  1887     return true;
  1890   // invoke basic style callbacks
  1891   static inline bool invoke_basic_heap_root_callback
  1892     (jvmtiHeapRootKind root_kind, oop obj);
  1893   static inline bool invoke_basic_stack_ref_callback
  1894     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
  1895      int slot, oop obj);
  1896   static inline bool invoke_basic_object_reference_callback
  1897     (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
  1899   // invoke advanced style callbacks
  1900   static inline bool invoke_advanced_heap_root_callback
  1901     (jvmtiHeapReferenceKind ref_kind, oop obj);
  1902   static inline bool invoke_advanced_stack_ref_callback
  1903     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
  1904      jmethodID method, jlocation bci, jint slot, oop obj);
  1905   static inline bool invoke_advanced_object_reference_callback
  1906     (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
  1908   // used to report the value of primitive fields
  1909   static inline bool report_primitive_field
  1910     (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
  1912  public:
  1913   // initialize for basic mode
  1914   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
  1915                                              GrowableArray<oop>* visit_stack,
  1916                                              const void* user_data,
  1917                                              BasicHeapWalkContext context);
  1919   // initialize for advanced mode
  1920   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
  1921                                                 GrowableArray<oop>* visit_stack,
  1922                                                 const void* user_data,
  1923                                                 AdvancedHeapWalkContext context);
  1925    // functions to report roots
  1926   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
  1927   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
  1928     jmethodID m, oop o);
  1929   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
  1930     jmethodID method, jlocation bci, jint slot, oop o);
  1932   // functions to report references
  1933   static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
  1934   static inline bool report_class_reference(oop referrer, oop referree);
  1935   static inline bool report_class_loader_reference(oop referrer, oop referree);
  1936   static inline bool report_signers_reference(oop referrer, oop referree);
  1937   static inline bool report_protection_domain_reference(oop referrer, oop referree);
  1938   static inline bool report_superclass_reference(oop referrer, oop referree);
  1939   static inline bool report_interface_reference(oop referrer, oop referree);
  1940   static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
  1941   static inline bool report_field_reference(oop referrer, oop referree, jint slot);
  1942   static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
  1943   static inline bool report_primitive_array_values(oop array);
  1944   static inline bool report_string_value(oop str);
  1945   static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
  1946   static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
  1947 };
  1949 // statics
  1950 int CallbackInvoker::_heap_walk_type;
  1951 BasicHeapWalkContext CallbackInvoker::_basic_context;
  1952 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
  1953 JvmtiTagMap* CallbackInvoker::_tag_map;
  1954 const void* CallbackInvoker::_user_data;
  1955 GrowableArray<oop>* CallbackInvoker::_visit_stack;
  1957 // initialize for basic heap walk (IterateOverReachableObjects et al)
  1958 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
  1959                                                      GrowableArray<oop>* visit_stack,
  1960                                                      const void* user_data,
  1961                                                      BasicHeapWalkContext context) {
  1962   _tag_map = tag_map;
  1963   _visit_stack = visit_stack;
  1964   _user_data = user_data;
  1965   _basic_context = context;
  1966   _advanced_context.invalidate();       // will trigger assertion if used
  1967   _heap_walk_type = basic;
  1970 // initialize for advanced heap walk (FollowReferences)
  1971 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
  1972                                                         GrowableArray<oop>* visit_stack,
  1973                                                         const void* user_data,
  1974                                                         AdvancedHeapWalkContext context) {
  1975   _tag_map = tag_map;
  1976   _visit_stack = visit_stack;
  1977   _user_data = user_data;
  1978   _advanced_context = context;
  1979   _basic_context.invalidate();      // will trigger assertion if used
  1980   _heap_walk_type = advanced;
  1984 // invoke basic style heap root callback
  1985 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
  1986   assert(ServiceUtil::visible_oop(obj), "checking");
  1988   // if we heap roots should be reported
  1989   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
  1990   if (cb == NULL) {
  1991     return check_for_visit(obj);
  1994   CallbackWrapper wrapper(tag_map(), obj);
  1995   jvmtiIterationControl control = (*cb)(root_kind,
  1996                                         wrapper.klass_tag(),
  1997                                         wrapper.obj_size(),
  1998                                         wrapper.obj_tag_p(),
  1999                                         (void*)user_data());
  2000   // push root to visit stack when following references
  2001   if (control == JVMTI_ITERATION_CONTINUE &&
  2002       basic_context()->object_ref_callback() != NULL) {
  2003     visit_stack()->push(obj);
  2005   return control != JVMTI_ITERATION_ABORT;
  2008 // invoke basic style stack ref callback
  2009 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
  2010                                                              jlong thread_tag,
  2011                                                              jint depth,
  2012                                                              jmethodID method,
  2013                                                              jint slot,
  2014                                                              oop obj) {
  2015   assert(ServiceUtil::visible_oop(obj), "checking");
  2017   // if we stack refs should be reported
  2018   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
  2019   if (cb == NULL) {
  2020     return check_for_visit(obj);
  2023   CallbackWrapper wrapper(tag_map(), obj);
  2024   jvmtiIterationControl control = (*cb)(root_kind,
  2025                                         wrapper.klass_tag(),
  2026                                         wrapper.obj_size(),
  2027                                         wrapper.obj_tag_p(),
  2028                                         thread_tag,
  2029                                         depth,
  2030                                         method,
  2031                                         slot,
  2032                                         (void*)user_data());
  2033   // push root to visit stack when following references
  2034   if (control == JVMTI_ITERATION_CONTINUE &&
  2035       basic_context()->object_ref_callback() != NULL) {
  2036     visit_stack()->push(obj);
  2038   return control != JVMTI_ITERATION_ABORT;
  2041 // invoke basic style object reference callback
  2042 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
  2043                                                                     oop referrer,
  2044                                                                     oop referree,
  2045                                                                     jint index) {
  2047   assert(ServiceUtil::visible_oop(referrer), "checking");
  2048   assert(ServiceUtil::visible_oop(referree), "checking");
  2050   BasicHeapWalkContext* context = basic_context();
  2052   // callback requires the referrer's tag. If it's the same referrer
  2053   // as the last call then we use the cached value.
  2054   jlong referrer_tag;
  2055   if (referrer == context->last_referrer()) {
  2056     referrer_tag = context->last_referrer_tag();
  2057   } else {
  2058     referrer_tag = tag_for(tag_map(), klassOop_if_java_lang_Class(referrer));
  2061   // do the callback
  2062   CallbackWrapper wrapper(tag_map(), referree);
  2063   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
  2064   jvmtiIterationControl control = (*cb)(ref_kind,
  2065                                         wrapper.klass_tag(),
  2066                                         wrapper.obj_size(),
  2067                                         wrapper.obj_tag_p(),
  2068                                         referrer_tag,
  2069                                         index,
  2070                                         (void*)user_data());
  2072   // record referrer and referrer tag. For self-references record the
  2073   // tag value from the callback as this might differ from referrer_tag.
  2074   context->set_last_referrer(referrer);
  2075   if (referrer == referree) {
  2076     context->set_last_referrer_tag(*wrapper.obj_tag_p());
  2077   } else {
  2078     context->set_last_referrer_tag(referrer_tag);
  2081   if (control == JVMTI_ITERATION_CONTINUE) {
  2082     return check_for_visit(referree);
  2083   } else {
  2084     return control != JVMTI_ITERATION_ABORT;
  2088 // invoke advanced style heap root callback
  2089 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
  2090                                                                 oop obj) {
  2091   assert(ServiceUtil::visible_oop(obj), "checking");
  2093   AdvancedHeapWalkContext* context = advanced_context();
  2095   // check that callback is provided
  2096   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2097   if (cb == NULL) {
  2098     return check_for_visit(obj);
  2101   // apply class filter
  2102   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2103     return check_for_visit(obj);
  2106   // setup the callback wrapper
  2107   CallbackWrapper wrapper(tag_map(), obj);
  2109   // apply tag filter
  2110   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2111                                  wrapper.klass_tag(),
  2112                                  context->heap_filter())) {
  2113     return check_for_visit(obj);
  2116   // for arrays we need the length, otherwise -1
  2117   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2119   // invoke the callback
  2120   jint res  = (*cb)(ref_kind,
  2121                     NULL, // referrer info
  2122                     wrapper.klass_tag(),
  2123                     0,    // referrer_class_tag is 0 for heap root
  2124                     wrapper.obj_size(),
  2125                     wrapper.obj_tag_p(),
  2126                     NULL, // referrer_tag_p
  2127                     len,
  2128                     (void*)user_data());
  2129   if (res & JVMTI_VISIT_ABORT) {
  2130     return false;// referrer class tag
  2132   if (res & JVMTI_VISIT_OBJECTS) {
  2133     check_for_visit(obj);
  2135   return true;
  2138 // report a reference from a thread stack to an object
  2139 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
  2140                                                                 jlong thread_tag,
  2141                                                                 jlong tid,
  2142                                                                 int depth,
  2143                                                                 jmethodID method,
  2144                                                                 jlocation bci,
  2145                                                                 jint slot,
  2146                                                                 oop obj) {
  2147   assert(ServiceUtil::visible_oop(obj), "checking");
  2149   AdvancedHeapWalkContext* context = advanced_context();
  2151   // check that callback is provider
  2152   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2153   if (cb == NULL) {
  2154     return check_for_visit(obj);
  2157   // apply class filter
  2158   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2159     return check_for_visit(obj);
  2162   // setup the callback wrapper
  2163   CallbackWrapper wrapper(tag_map(), obj);
  2165   // apply tag filter
  2166   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2167                                  wrapper.klass_tag(),
  2168                                  context->heap_filter())) {
  2169     return check_for_visit(obj);
  2172   // setup the referrer info
  2173   jvmtiHeapReferenceInfo reference_info;
  2174   reference_info.stack_local.thread_tag = thread_tag;
  2175   reference_info.stack_local.thread_id = tid;
  2176   reference_info.stack_local.depth = depth;
  2177   reference_info.stack_local.method = method;
  2178   reference_info.stack_local.location = bci;
  2179   reference_info.stack_local.slot = slot;
  2181   // for arrays we need the length, otherwise -1
  2182   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2184   // call into the agent
  2185   int res = (*cb)(ref_kind,
  2186                   &reference_info,
  2187                   wrapper.klass_tag(),
  2188                   0,    // referrer_class_tag is 0 for heap root (stack)
  2189                   wrapper.obj_size(),
  2190                   wrapper.obj_tag_p(),
  2191                   NULL, // referrer_tag is 0 for root
  2192                   len,
  2193                   (void*)user_data());
  2195   if (res & JVMTI_VISIT_ABORT) {
  2196     return false;
  2198   if (res & JVMTI_VISIT_OBJECTS) {
  2199     check_for_visit(obj);
  2201   return true;
  2204 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
  2205 // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
  2206 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
  2207                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
  2208                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
  2209                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
  2210                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
  2211                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
  2213 // invoke the object reference callback to report a reference
  2214 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
  2215                                                                        oop referrer,
  2216                                                                        oop obj,
  2217                                                                        jint index)
  2219   // field index is only valid field in reference_info
  2220   static jvmtiHeapReferenceInfo reference_info = { 0 };
  2222   assert(ServiceUtil::visible_oop(referrer), "checking");
  2223   assert(ServiceUtil::visible_oop(obj), "checking");
  2225   AdvancedHeapWalkContext* context = advanced_context();
  2227   // check that callback is provider
  2228   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2229   if (cb == NULL) {
  2230     return check_for_visit(obj);
  2233   // apply class filter
  2234   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2235     return check_for_visit(obj);
  2238   // setup the callback wrapper
  2239   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
  2241   // apply tag filter
  2242   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2243                                  wrapper.klass_tag(),
  2244                                  context->heap_filter())) {
  2245     return check_for_visit(obj);
  2248   // field index is only valid field in reference_info
  2249   reference_info.field.index = index;
  2251   // for arrays we need the length, otherwise -1
  2252   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2254   // invoke the callback
  2255   int res = (*cb)(ref_kind,
  2256                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
  2257                   wrapper.klass_tag(),
  2258                   wrapper.referrer_klass_tag(),
  2259                   wrapper.obj_size(),
  2260                   wrapper.obj_tag_p(),
  2261                   wrapper.referrer_tag_p(),
  2262                   len,
  2263                   (void*)user_data());
  2265   if (res & JVMTI_VISIT_ABORT) {
  2266     return false;
  2268   if (res & JVMTI_VISIT_OBJECTS) {
  2269     check_for_visit(obj);
  2271   return true;
  2274 // report a "simple root"
  2275 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
  2276   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
  2277          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
  2278   assert(ServiceUtil::visible_oop(obj), "checking");
  2280   if (is_basic_heap_walk()) {
  2281     // map to old style root kind
  2282     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
  2283     return invoke_basic_heap_root_callback(root_kind, obj);
  2284   } else {
  2285     assert(is_advanced_heap_walk(), "wrong heap walk type");
  2286     return invoke_advanced_heap_root_callback(kind, obj);
  2291 // invoke the primitive array values
  2292 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
  2293   assert(obj->is_typeArray(), "not a primitive array");
  2295   AdvancedHeapWalkContext* context = advanced_context();
  2296   assert(context->array_primitive_value_callback() != NULL, "no callback");
  2298   // apply class filter
  2299   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2300     return true;
  2303   CallbackWrapper wrapper(tag_map(), obj);
  2305   // apply tag filter
  2306   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2307                                  wrapper.klass_tag(),
  2308                                  context->heap_filter())) {
  2309     return true;
  2312   // invoke the callback
  2313   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
  2314                                                   &wrapper,
  2315                                                   obj,
  2316                                                   (void*)user_data());
  2317   return (!(res & JVMTI_VISIT_ABORT));
  2320 // invoke the string value callback
  2321 inline bool CallbackInvoker::report_string_value(oop str) {
  2322   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
  2324   AdvancedHeapWalkContext* context = advanced_context();
  2325   assert(context->string_primitive_value_callback() != NULL, "no callback");
  2327   // apply class filter
  2328   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
  2329     return true;
  2332   CallbackWrapper wrapper(tag_map(), str);
  2334   // apply tag filter
  2335   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2336                                  wrapper.klass_tag(),
  2337                                  context->heap_filter())) {
  2338     return true;
  2341   // invoke the callback
  2342   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
  2343                                          &wrapper,
  2344                                          str,
  2345                                          (void*)user_data());
  2346   return (!(res & JVMTI_VISIT_ABORT));
  2349 // invoke the primitive field callback
  2350 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
  2351                                                     oop obj,
  2352                                                     jint index,
  2353                                                     address addr,
  2354                                                     char type)
  2356   // for primitive fields only the index will be set
  2357   static jvmtiHeapReferenceInfo reference_info = { 0 };
  2359   AdvancedHeapWalkContext* context = advanced_context();
  2360   assert(context->primitive_field_callback() != NULL, "no callback");
  2362   // apply class filter
  2363   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2364     return true;
  2367   CallbackWrapper wrapper(tag_map(), obj);
  2369   // apply tag filter
  2370   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2371                                  wrapper.klass_tag(),
  2372                                  context->heap_filter())) {
  2373     return true;
  2376   // the field index in the referrer
  2377   reference_info.field.index = index;
  2379   // map the type
  2380   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  2382   // setup the jvalue
  2383   jvalue value;
  2384   copy_to_jvalue(&value, addr, value_type);
  2386   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
  2387   int res = (*cb)(ref_kind,
  2388                   &reference_info,
  2389                   wrapper.klass_tag(),
  2390                   wrapper.obj_tag_p(),
  2391                   value,
  2392                   value_type,
  2393                   (void*)user_data());
  2394   return (!(res & JVMTI_VISIT_ABORT));
  2398 // instance field
  2399 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
  2400                                                              jint index,
  2401                                                              address value,
  2402                                                              char type) {
  2403   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
  2404                                 obj,
  2405                                 index,
  2406                                 value,
  2407                                 type);
  2410 // static field
  2411 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
  2412                                                            jint index,
  2413                                                            address value,
  2414                                                            char type) {
  2415   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
  2416                                 obj,
  2417                                 index,
  2418                                 value,
  2419                                 type);
  2422 // report a JNI local (root object) to the profiler
  2423 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
  2424   if (is_basic_heap_walk()) {
  2425     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
  2426                                            thread_tag,
  2427                                            depth,
  2428                                            m,
  2429                                            -1,
  2430                                            obj);
  2431   } else {
  2432     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
  2433                                               thread_tag, tid,
  2434                                               depth,
  2435                                               m,
  2436                                               (jlocation)-1,
  2437                                               -1,
  2438                                               obj);
  2443 // report a local (stack reference, root object)
  2444 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
  2445                                                    jlong tid,
  2446                                                    jint depth,
  2447                                                    jmethodID method,
  2448                                                    jlocation bci,
  2449                                                    jint slot,
  2450                                                    oop obj) {
  2451   if (is_basic_heap_walk()) {
  2452     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
  2453                                            thread_tag,
  2454                                            depth,
  2455                                            method,
  2456                                            slot,
  2457                                            obj);
  2458   } else {
  2459     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
  2460                                               thread_tag,
  2461                                               tid,
  2462                                               depth,
  2463                                               method,
  2464                                               bci,
  2465                                               slot,
  2466                                               obj);
  2470 // report an object referencing a class.
  2471 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
  2472   if (is_basic_heap_walk()) {
  2473     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
  2474   } else {
  2475     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
  2479 // report a class referencing its class loader.
  2480 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
  2481   if (is_basic_heap_walk()) {
  2482     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
  2483   } else {
  2484     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
  2488 // report a class referencing its signers.
  2489 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
  2490   if (is_basic_heap_walk()) {
  2491     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
  2492   } else {
  2493     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
  2497 // report a class referencing its protection domain..
  2498 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
  2499   if (is_basic_heap_walk()) {
  2500     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
  2501   } else {
  2502     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
  2506 // report a class referencing its superclass.
  2507 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
  2508   if (is_basic_heap_walk()) {
  2509     // Send this to be consistent with past implementation
  2510     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
  2511   } else {
  2512     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
  2516 // report a class referencing one of its interfaces.
  2517 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
  2518   if (is_basic_heap_walk()) {
  2519     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
  2520   } else {
  2521     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
  2525 // report a class referencing one of its static fields.
  2526 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
  2527   if (is_basic_heap_walk()) {
  2528     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
  2529   } else {
  2530     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
  2534 // report an array referencing an element object
  2535 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
  2536   if (is_basic_heap_walk()) {
  2537     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
  2538   } else {
  2539     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
  2543 // report an object referencing an instance field object
  2544 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
  2545   if (is_basic_heap_walk()) {
  2546     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
  2547   } else {
  2548     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
  2552 // report an array referencing an element object
  2553 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
  2554   if (is_basic_heap_walk()) {
  2555     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
  2556   } else {
  2557     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
  2561 // A supporting closure used to process simple roots
  2562 class SimpleRootsClosure : public OopClosure {
  2563  private:
  2564   jvmtiHeapReferenceKind _kind;
  2565   bool _continue;
  2567   jvmtiHeapReferenceKind root_kind()    { return _kind; }
  2569  public:
  2570   void set_kind(jvmtiHeapReferenceKind kind) {
  2571     _kind = kind;
  2572     _continue = true;
  2575   inline bool stopped() {
  2576     return !_continue;
  2579   void do_oop(oop* obj_p) {
  2580     // iteration has terminated
  2581     if (stopped()) {
  2582       return;
  2585     // ignore null or deleted handles
  2586     oop o = *obj_p;
  2587     if (o == NULL || o == JNIHandles::deleted_handle()) {
  2588       return;
  2591     jvmtiHeapReferenceKind kind = root_kind();
  2593     // many roots are Klasses so we use the java mirror
  2594     if (o->is_klass()) {
  2595       klassOop k = (klassOop)o;
  2596       o = Klass::cast(k)->java_mirror();
  2597     } else {
  2599       // SystemDictionary::always_strong_oops_do reports the application
  2600       // class loader as a root. We want this root to be reported as
  2601       // a root kind of "OTHER" rather than "SYSTEM_CLASS".
  2602       if (o->is_instance() && root_kind() == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
  2603         kind = JVMTI_HEAP_REFERENCE_OTHER;
  2607     // some objects are ignored - in the case of simple
  2608     // roots it's mostly Symbol*s that we are skipping
  2609     // here.
  2610     if (!ServiceUtil::visible_oop(o)) {
  2611       return;
  2614     // invoke the callback
  2615     _continue = CallbackInvoker::report_simple_root(kind, o);
  2618   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
  2619 };
  2621 // A supporting closure used to process JNI locals
  2622 class JNILocalRootsClosure : public OopClosure {
  2623  private:
  2624   jlong _thread_tag;
  2625   jlong _tid;
  2626   jint _depth;
  2627   jmethodID _method;
  2628   bool _continue;
  2629  public:
  2630   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
  2631     _thread_tag = thread_tag;
  2632     _tid = tid;
  2633     _depth = depth;
  2634     _method = method;
  2635     _continue = true;
  2638   inline bool stopped() {
  2639     return !_continue;
  2642   void do_oop(oop* obj_p) {
  2643     // iteration has terminated
  2644     if (stopped()) {
  2645       return;
  2648     // ignore null or deleted handles
  2649     oop o = *obj_p;
  2650     if (o == NULL || o == JNIHandles::deleted_handle()) {
  2651       return;
  2654     if (!ServiceUtil::visible_oop(o)) {
  2655       return;
  2658     // invoke the callback
  2659     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
  2661   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
  2662 };
  2665 // A VM operation to iterate over objects that are reachable from
  2666 // a set of roots or an initial object.
  2667 //
  2668 // For VM_HeapWalkOperation the set of roots used is :-
  2669 //
  2670 // - All JNI global references
  2671 // - All inflated monitors
  2672 // - All classes loaded by the boot class loader (or all classes
  2673 //     in the event that class unloading is disabled)
  2674 // - All java threads
  2675 // - For each java thread then all locals and JNI local references
  2676 //      on the thread's execution stack
  2677 // - All visible/explainable objects from Universes::oops_do
  2678 //
  2679 class VM_HeapWalkOperation: public VM_Operation {
  2680  private:
  2681   enum {
  2682     initial_visit_stack_size = 4000
  2683   };
  2685   bool _is_advanced_heap_walk;                      // indicates FollowReferences
  2686   JvmtiTagMap* _tag_map;
  2687   Handle _initial_object;
  2688   GrowableArray<oop>* _visit_stack;                 // the visit stack
  2690   bool _collecting_heap_roots;                      // are we collecting roots
  2691   bool _following_object_refs;                      // are we following object references
  2693   bool _reporting_primitive_fields;                 // optional reporting
  2694   bool _reporting_primitive_array_values;
  2695   bool _reporting_string_values;
  2697   GrowableArray<oop>* create_visit_stack() {
  2698     return new (ResourceObj::C_HEAP) GrowableArray<oop>(initial_visit_stack_size, true);
  2701   // accessors
  2702   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
  2703   JvmtiTagMap* tag_map() const                     { return _tag_map; }
  2704   Handle initial_object() const                    { return _initial_object; }
  2706   bool is_following_references() const             { return _following_object_refs; }
  2708   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
  2709   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
  2710   bool is_reporting_string_values() const          { return _reporting_string_values; }
  2712   GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
  2714   // iterate over the various object types
  2715   inline bool iterate_over_array(oop o);
  2716   inline bool iterate_over_type_array(oop o);
  2717   inline bool iterate_over_class(klassOop o);
  2718   inline bool iterate_over_object(oop o);
  2720   // root collection
  2721   inline bool collect_simple_roots();
  2722   inline bool collect_stack_roots();
  2723   inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
  2725   // visit an object
  2726   inline bool visit(oop o);
  2728  public:
  2729   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2730                        Handle initial_object,
  2731                        BasicHeapWalkContext callbacks,
  2732                        const void* user_data);
  2734   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2735                        Handle initial_object,
  2736                        AdvancedHeapWalkContext callbacks,
  2737                        const void* user_data);
  2739   ~VM_HeapWalkOperation();
  2741   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
  2742   void doit();
  2743 };
  2746 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2747                                            Handle initial_object,
  2748                                            BasicHeapWalkContext callbacks,
  2749                                            const void* user_data) {
  2750   _is_advanced_heap_walk = false;
  2751   _tag_map = tag_map;
  2752   _initial_object = initial_object;
  2753   _following_object_refs = (callbacks.object_ref_callback() != NULL);
  2754   _reporting_primitive_fields = false;
  2755   _reporting_primitive_array_values = false;
  2756   _reporting_string_values = false;
  2757   _visit_stack = create_visit_stack();
  2760   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
  2763 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2764                                            Handle initial_object,
  2765                                            AdvancedHeapWalkContext callbacks,
  2766                                            const void* user_data) {
  2767   _is_advanced_heap_walk = true;
  2768   _tag_map = tag_map;
  2769   _initial_object = initial_object;
  2770   _following_object_refs = true;
  2771   _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
  2772   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
  2773   _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
  2774   _visit_stack = create_visit_stack();
  2776   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
  2779 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
  2780   if (_following_object_refs) {
  2781     assert(_visit_stack != NULL, "checking");
  2782     delete _visit_stack;
  2783     _visit_stack = NULL;
  2787 // an array references its class and has a reference to
  2788 // each element in the array
  2789 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
  2790   objArrayOop array = objArrayOop(o);
  2791   if (array->klass() == Universe::systemObjArrayKlassObj()) {
  2792     // filtered out
  2793     return true;
  2796   // array reference to its class
  2797   oop mirror = objArrayKlass::cast(array->klass())->java_mirror();
  2798   if (!CallbackInvoker::report_class_reference(o, mirror)) {
  2799     return false;
  2802   // iterate over the array and report each reference to a
  2803   // non-null element
  2804   for (int index=0; index<array->length(); index++) {
  2805     oop elem = array->obj_at(index);
  2806     if (elem == NULL) {
  2807       continue;
  2810     // report the array reference o[index] = elem
  2811     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
  2812       return false;
  2815   return true;
  2818 // a type array references its class
  2819 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
  2820   klassOop k = o->klass();
  2821   oop mirror = Klass::cast(k)->java_mirror();
  2822   if (!CallbackInvoker::report_class_reference(o, mirror)) {
  2823     return false;
  2826   // report the array contents if required
  2827   if (is_reporting_primitive_array_values()) {
  2828     if (!CallbackInvoker::report_primitive_array_values(o)) {
  2829       return false;
  2832   return true;
  2835 // verify that a static oop field is in range
  2836 static inline bool verify_static_oop(instanceKlass* ik,
  2837                                      klassOop k, int offset) {
  2838   address obj_p = (address)k + offset;
  2839   address start = (address)ik->start_of_static_fields();
  2840   address end = start + (ik->static_oop_field_size() * heapOopSize);
  2841   assert(end >= start, "sanity check");
  2843   if (obj_p >= start && obj_p < end) {
  2844     return true;
  2845   } else {
  2846     return false;
  2850 // a class references its super class, interfaces, class loader, ...
  2851 // and finally its static fields
  2852 inline bool VM_HeapWalkOperation::iterate_over_class(klassOop k) {
  2853   int i;
  2854   Klass* klass = klassOop(k)->klass_part();
  2856   if (klass->oop_is_instance()) {
  2857     instanceKlass* ik = instanceKlass::cast(k);
  2859     // ignore the class if it's has been initialized yet
  2860     if (!ik->is_linked()) {
  2861       return true;
  2864     // get the java mirror
  2865     oop mirror = klass->java_mirror();
  2867     // super (only if something more interesting than java.lang.Object)
  2868     klassOop java_super = ik->java_super();
  2869     if (java_super != NULL && java_super != SystemDictionary::Object_klass()) {
  2870       oop super = Klass::cast(java_super)->java_mirror();
  2871       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
  2872         return false;
  2876     // class loader
  2877     oop cl = ik->class_loader();
  2878     if (cl != NULL) {
  2879       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
  2880         return false;
  2884     // protection domain
  2885     oop pd = ik->protection_domain();
  2886     if (pd != NULL) {
  2887       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
  2888         return false;
  2892     // signers
  2893     oop signers = ik->signers();
  2894     if (signers != NULL) {
  2895       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
  2896         return false;
  2900     // references from the constant pool
  2902       const constantPoolOop pool = ik->constants();
  2903       for (int i = 1; i < pool->length(); i++) {
  2904         constantTag tag = pool->tag_at(i).value();
  2905         if (tag.is_string() || tag.is_klass()) {
  2906           oop entry;
  2907           if (tag.is_string()) {
  2908             entry = pool->resolved_string_at(i);
  2909             assert(java_lang_String::is_instance(entry), "must be string");
  2910           } else {
  2911             entry = Klass::cast(pool->resolved_klass_at(i))->java_mirror();
  2913           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
  2914             return false;
  2920     // interfaces
  2921     // (These will already have been reported as references from the constant pool
  2922     //  but are specified by IterateOverReachableObjects and must be reported).
  2923     objArrayOop interfaces = ik->local_interfaces();
  2924     for (i = 0; i < interfaces->length(); i++) {
  2925       oop interf = Klass::cast((klassOop)interfaces->obj_at(i))->java_mirror();
  2926       if (interf == NULL) {
  2927         continue;
  2929       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
  2930         return false;
  2934     // iterate over the static fields
  2936     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
  2937     for (i=0; i<field_map->field_count(); i++) {
  2938       ClassFieldDescriptor* field = field_map->field_at(i);
  2939       char type = field->field_type();
  2940       if (!is_primitive_field_type(type)) {
  2941         oop fld_o = k->obj_field(field->field_offset());
  2942         assert(verify_static_oop(ik, k, field->field_offset()), "sanity check");
  2943         if (fld_o != NULL) {
  2944           int slot = field->field_index();
  2945           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
  2946             delete field_map;
  2947             return false;
  2950       } else {
  2951          if (is_reporting_primitive_fields()) {
  2952            address addr = (address)k + field->field_offset();
  2953            int slot = field->field_index();
  2954            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
  2955              delete field_map;
  2956              return false;
  2961     delete field_map;
  2963     return true;
  2966   return true;
  2969 // an object references a class and its instance fields
  2970 // (static fields are ignored here as we report these as
  2971 // references from the class).
  2972 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
  2973   // reference to the class
  2974   if (!CallbackInvoker::report_class_reference(o, Klass::cast(o->klass())->java_mirror())) {
  2975     return false;
  2978   // iterate over instance fields
  2979   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
  2980   for (int i=0; i<field_map->field_count(); i++) {
  2981     ClassFieldDescriptor* field = field_map->field_at(i);
  2982     char type = field->field_type();
  2983     if (!is_primitive_field_type(type)) {
  2984       oop fld_o = o->obj_field(field->field_offset());
  2985       if (fld_o != NULL) {
  2986         // reflection code may have a reference to a klassOop.
  2987         // - see sun.reflect.UnsafeStaticFieldAccessorImpl and sun.misc.Unsafe
  2988         if (fld_o->is_klass()) {
  2989           klassOop k = (klassOop)fld_o;
  2990           fld_o = Klass::cast(k)->java_mirror();
  2992         int slot = field->field_index();
  2993         if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
  2994           return false;
  2997     } else {
  2998       if (is_reporting_primitive_fields()) {
  2999         // primitive instance field
  3000         address addr = (address)o + field->field_offset();
  3001         int slot = field->field_index();
  3002         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
  3003           return false;
  3009   // if the object is a java.lang.String
  3010   if (is_reporting_string_values() &&
  3011       o->klass() == SystemDictionary::String_klass()) {
  3012     if (!CallbackInvoker::report_string_value(o)) {
  3013       return false;
  3016   return true;
  3020 // collects all simple (non-stack) roots.
  3021 // if there's a heap root callback provided then the callback is
  3022 // invoked for each simple root.
  3023 // if an object reference callback is provided then all simple
  3024 // roots are pushed onto the marking stack so that they can be
  3025 // processed later
  3026 //
  3027 inline bool VM_HeapWalkOperation::collect_simple_roots() {
  3028   SimpleRootsClosure blk;
  3030   // JNI globals
  3031   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
  3032   JNIHandles::oops_do(&blk);
  3033   if (blk.stopped()) {
  3034     return false;
  3037   // Preloaded classes and loader from the system dictionary
  3038   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
  3039   SystemDictionary::always_strong_oops_do(&blk);
  3040   if (blk.stopped()) {
  3041     return false;
  3044   // Inflated monitors
  3045   blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
  3046   ObjectSynchronizer::oops_do(&blk);
  3047   if (blk.stopped()) {
  3048     return false;
  3051   // Threads
  3052   for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
  3053     oop threadObj = thread->threadObj();
  3054     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
  3055       bool cont = CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD, threadObj);
  3056       if (!cont) {
  3057         return false;
  3062   // Other kinds of roots maintained by HotSpot
  3063   // Many of these won't be visible but others (such as instances of important
  3064   // exceptions) will be visible.
  3065   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
  3066   Universe::oops_do(&blk);
  3068   // If there are any non-perm roots in the code cache, visit them.
  3069   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
  3070   CodeBlobToOopClosure look_in_blobs(&blk, false);
  3071   CodeCache::scavenge_root_nmethods_do(&look_in_blobs);
  3073   return true;
  3076 // Walk the stack of a given thread and find all references (locals
  3077 // and JNI calls) and report these as stack references
  3078 inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
  3079                                                       JNILocalRootsClosure* blk)
  3081   oop threadObj = java_thread->threadObj();
  3082   assert(threadObj != NULL, "sanity check");
  3084   // only need to get the thread's tag once per thread
  3085   jlong thread_tag = tag_for(_tag_map, threadObj);
  3087   // also need the thread id
  3088   jlong tid = java_lang_Thread::thread_id(threadObj);
  3091   if (java_thread->has_last_Java_frame()) {
  3093     // vframes are resource allocated
  3094     Thread* current_thread = Thread::current();
  3095     ResourceMark rm(current_thread);
  3096     HandleMark hm(current_thread);
  3098     RegisterMap reg_map(java_thread);
  3099     frame f = java_thread->last_frame();
  3100     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
  3102     bool is_top_frame = true;
  3103     int depth = 0;
  3104     frame* last_entry_frame = NULL;
  3106     while (vf != NULL) {
  3107       if (vf->is_java_frame()) {
  3109         // java frame (interpreted, compiled, ...)
  3110         javaVFrame *jvf = javaVFrame::cast(vf);
  3112         // the jmethodID
  3113         jmethodID method = jvf->method()->jmethod_id();
  3115         if (!(jvf->method()->is_native())) {
  3116           jlocation bci = (jlocation)jvf->bci();
  3117           StackValueCollection* locals = jvf->locals();
  3118           for (int slot=0; slot<locals->size(); slot++) {
  3119             if (locals->at(slot)->type() == T_OBJECT) {
  3120               oop o = locals->obj_at(slot)();
  3121               if (o == NULL) {
  3122                 continue;
  3125               // stack reference
  3126               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
  3127                                                    bci, slot, o)) {
  3128                 return false;
  3132         } else {
  3133           blk->set_context(thread_tag, tid, depth, method);
  3134           if (is_top_frame) {
  3135             // JNI locals for the top frame.
  3136             java_thread->active_handles()->oops_do(blk);
  3137           } else {
  3138             if (last_entry_frame != NULL) {
  3139               // JNI locals for the entry frame
  3140               assert(last_entry_frame->is_entry_frame(), "checking");
  3141               last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
  3145         last_entry_frame = NULL;
  3146         depth++;
  3147       } else {
  3148         // externalVFrame - for an entry frame then we report the JNI locals
  3149         // when we find the corresponding javaVFrame
  3150         frame* fr = vf->frame_pointer();
  3151         assert(fr != NULL, "sanity check");
  3152         if (fr->is_entry_frame()) {
  3153           last_entry_frame = fr;
  3157       vf = vf->sender();
  3158       is_top_frame = false;
  3160   } else {
  3161     // no last java frame but there may be JNI locals
  3162     blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
  3163     java_thread->active_handles()->oops_do(blk);
  3165   return true;
  3169 // collects all stack roots - for each thread it walks the execution
  3170 // stack to find all references and local JNI refs.
  3171 inline bool VM_HeapWalkOperation::collect_stack_roots() {
  3172   JNILocalRootsClosure blk;
  3173   for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
  3174     oop threadObj = thread->threadObj();
  3175     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
  3176       if (!collect_stack_roots(thread, &blk)) {
  3177         return false;
  3181   return true;
  3184 // visit an object
  3185 // first mark the object as visited
  3186 // second get all the outbound references from this object (in other words, all
  3187 // the objects referenced by this object).
  3188 //
  3189 bool VM_HeapWalkOperation::visit(oop o) {
  3190   // mark object as visited
  3191   assert(!ObjectMarker::visited(o), "can't visit same object more than once");
  3192   ObjectMarker::mark(o);
  3194   // instance
  3195   if (o->is_instance()) {
  3196     if (o->klass() == SystemDictionary::Class_klass()) {
  3197       o = klassOop_if_java_lang_Class(o);
  3198       if (o->is_klass()) {
  3199         // a java.lang.Class
  3200         return iterate_over_class(klassOop(o));
  3202     } else {
  3203       return iterate_over_object(o);
  3207   // object array
  3208   if (o->is_objArray()) {
  3209     return iterate_over_array(o);
  3212   // type array
  3213   if (o->is_typeArray()) {
  3214     return iterate_over_type_array(o);
  3217   return true;
  3220 void VM_HeapWalkOperation::doit() {
  3221   ResourceMark rm;
  3222   ObjectMarkerController marker;
  3223   ClassFieldMapCacheMark cm;
  3225   assert(visit_stack()->is_empty(), "visit stack must be empty");
  3227   // the heap walk starts with an initial object or the heap roots
  3228   if (initial_object().is_null()) {
  3229     if (!collect_simple_roots()) return;
  3230     if (!collect_stack_roots()) return;
  3231   } else {
  3232     visit_stack()->push(initial_object()());
  3235   // object references required
  3236   if (is_following_references()) {
  3238     // visit each object until all reachable objects have been
  3239     // visited or the callback asked to terminate the iteration.
  3240     while (!visit_stack()->is_empty()) {
  3241       oop o = visit_stack()->pop();
  3242       if (!ObjectMarker::visited(o)) {
  3243         if (!visit(o)) {
  3244           break;
  3251 // iterate over all objects that are reachable from a set of roots
  3252 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
  3253                                                  jvmtiStackReferenceCallback stack_ref_callback,
  3254                                                  jvmtiObjectReferenceCallback object_ref_callback,
  3255                                                  const void* user_data) {
  3256   MutexLocker ml(Heap_lock);
  3257   BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
  3258   VM_HeapWalkOperation op(this, Handle(), context, user_data);
  3259   VMThread::execute(&op);
  3262 // iterate over all objects that are reachable from a given object
  3263 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
  3264                                                              jvmtiObjectReferenceCallback object_ref_callback,
  3265                                                              const void* user_data) {
  3266   oop obj = JNIHandles::resolve(object);
  3267   Handle initial_object(Thread::current(), obj);
  3269   MutexLocker ml(Heap_lock);
  3270   BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
  3271   VM_HeapWalkOperation op(this, initial_object, context, user_data);
  3272   VMThread::execute(&op);
  3275 // follow references from an initial object or the GC roots
  3276 void JvmtiTagMap::follow_references(jint heap_filter,
  3277                                     KlassHandle klass,
  3278                                     jobject object,
  3279                                     const jvmtiHeapCallbacks* callbacks,
  3280                                     const void* user_data)
  3282   oop obj = JNIHandles::resolve(object);
  3283   Handle initial_object(Thread::current(), obj);
  3285   MutexLocker ml(Heap_lock);
  3286   AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
  3287   VM_HeapWalkOperation op(this, initial_object, context, user_data);
  3288   VMThread::execute(&op);
  3292 void JvmtiTagMap::weak_oops_do(BoolObjectClosure* is_alive, OopClosure* f) {
  3293   // No locks during VM bring-up (0 threads) and no safepoints after main
  3294   // thread creation and before VMThread creation (1 thread); initial GC
  3295   // verification can happen in that window which gets to here.
  3296   assert(Threads::number_of_threads() <= 1 ||
  3297          SafepointSynchronize::is_at_safepoint(),
  3298          "must be executed at a safepoint");
  3299   if (JvmtiEnv::environments_might_exist()) {
  3300     JvmtiEnvIterator it;
  3301     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
  3302       JvmtiTagMap* tag_map = env->tag_map();
  3303       if (tag_map != NULL && !tag_map->is_empty()) {
  3304         tag_map->do_weak_oops(is_alive, f);
  3310 void JvmtiTagMap::do_weak_oops(BoolObjectClosure* is_alive, OopClosure* f) {
  3312   // does this environment have the OBJECT_FREE event enabled
  3313   bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
  3315   // counters used for trace message
  3316   int freed = 0;
  3317   int moved = 0;
  3319   JvmtiTagHashmap* hashmap = this->hashmap();
  3321   // reenable sizing (if disabled)
  3322   hashmap->set_resizing_enabled(true);
  3324   // if the hashmap is empty then we can skip it
  3325   if (hashmap->_entry_count == 0) {
  3326     return;
  3329   // now iterate through each entry in the table
  3331   JvmtiTagHashmapEntry** table = hashmap->table();
  3332   int size = hashmap->size();
  3334   JvmtiTagHashmapEntry* delayed_add = NULL;
  3336   for (int pos = 0; pos < size; ++pos) {
  3337     JvmtiTagHashmapEntry* entry = table[pos];
  3338     JvmtiTagHashmapEntry* prev = NULL;
  3340     while (entry != NULL) {
  3341       JvmtiTagHashmapEntry* next = entry->next();
  3343       oop* obj = entry->object_addr();
  3345       // has object been GC'ed
  3346       if (!is_alive->do_object_b(entry->object())) {
  3347         // grab the tag
  3348         jlong tag = entry->tag();
  3349         guarantee(tag != 0, "checking");
  3351         // remove GC'ed entry from hashmap and return the
  3352         // entry to the free list
  3353         hashmap->remove(prev, pos, entry);
  3354         destroy_entry(entry);
  3356         // post the event to the profiler
  3357         if (post_object_free) {
  3358           JvmtiExport::post_object_free(env(), tag);
  3361         ++freed;
  3362       } else {
  3363         f->do_oop(entry->object_addr());
  3364         oop new_oop = entry->object();
  3366         // if the object has moved then re-hash it and move its
  3367         // entry to its new location.
  3368         unsigned int new_pos = JvmtiTagHashmap::hash(new_oop, size);
  3369         if (new_pos != (unsigned int)pos) {
  3370           if (prev == NULL) {
  3371             table[pos] = next;
  3372           } else {
  3373             prev->set_next(next);
  3375           if (new_pos < (unsigned int)pos) {
  3376             entry->set_next(table[new_pos]);
  3377             table[new_pos] = entry;
  3378           } else {
  3379             // Delay adding this entry to it's new position as we'd end up
  3380             // hitting it again during this iteration.
  3381             entry->set_next(delayed_add);
  3382             delayed_add = entry;
  3384           moved++;
  3385         } else {
  3386           // object didn't move
  3387           prev = entry;
  3391       entry = next;
  3395   // Re-add all the entries which were kept aside
  3396   while (delayed_add != NULL) {
  3397     JvmtiTagHashmapEntry* next = delayed_add->next();
  3398     unsigned int pos = JvmtiTagHashmap::hash(delayed_add->object(), size);
  3399     delayed_add->set_next(table[pos]);
  3400     table[pos] = delayed_add;
  3401     delayed_add = next;
  3404   // stats
  3405   if (TraceJVMTIObjectTagging) {
  3406     int post_total = hashmap->_entry_count;
  3407     int pre_total = post_total + freed;
  3409     tty->print_cr("(%d->%d, %d freed, %d total moves)",
  3410         pre_total, post_total, freed, moved);

mercurial