src/cpu/sparc/vm/assembler_sparc.inline.hpp

Fri, 11 Mar 2011 22:34:57 -0800

author
jrose
date
Fri, 11 Mar 2011 22:34:57 -0800
changeset 2639
8033953d67ff
parent 2441
c17b998c5926
child 2950
cba7b5c2d53f
permissions
-rw-r--r--

7012648: move JSR 292 to package java.lang.invoke and adjust names
Summary: package and class renaming only; delete unused methods and classes
Reviewed-by: twisti

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
    26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
    28 #include "asm/assembler.inline.hpp"
    29 #include "asm/codeBuffer.hpp"
    30 #include "code/codeCache.hpp"
    31 #include "runtime/handles.inline.hpp"
    33 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
    34   jint& stub_inst = *(jint*) branch;
    35   stub_inst = patched_branch(target - branch, stub_inst, 0);
    36 }
    38 #ifndef PRODUCT
    39 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
    40   jint stub_inst = *(jint*) branch;
    41   print_instruction(stub_inst);
    42   ::tty->print("%s", " (unresolved)");
    43 }
    44 #endif // PRODUCT
    46 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
    49 inline int AddressLiteral::low10() const {
    50   return Assembler::low10(value());
    51 }
    54 // inlines for SPARC assembler -- dmu 5/97
    56 inline void Assembler::check_delay() {
    57 # ifdef CHECK_DELAY
    58   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
    59   delay_state = no_delay;
    60 # endif
    61 }
    63 inline void Assembler::emit_long(int x) {
    64   check_delay();
    65   AbstractAssembler::emit_long(x);
    66 }
    68 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
    69   relocate(rtype);
    70   emit_long(x);
    71 }
    73 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
    74   relocate(rspec);
    75   emit_long(x);
    76 }
    79 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
    80 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
    81 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
    83 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
    84 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
    86 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    87 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
    89 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    90 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
    92 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    93 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
    95 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    96 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
    98 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    99 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
   101 inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
   102 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
   104 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
   105 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   107 inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   108 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
   110 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
   111   if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
   112   else                  ldf(w, s1, s2.as_constant(), d);
   113 }
   115 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
   116 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
   118 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
   120 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   121 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   122 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   123 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   125 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
   126 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   127 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
   128 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   129 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
   130 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   132 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
   133 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   135 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
   136 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   137 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
   138 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   139 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
   140 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   141 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
   142 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   143 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
   144 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   146 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
   147 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   148 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
   149 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   151 #ifdef _LP64
   152 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
   153 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
   154 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
   155 #else
   156 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
   157 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
   158 #endif
   160 #ifdef ASSERT
   161   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   162 # ifdef _LP64
   163 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
   164 # else
   165 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
   166 # endif
   167 #endif
   169 inline void Assembler::ld(  const Address& a, Register d, int offset) {
   170   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
   171   else               {                          ld(  a.base(), a.disp() + offset, d); }
   172 }
   173 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
   174   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
   175   else               {                          ldsb(a.base(), a.disp() + offset, d); }
   176 }
   177 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
   178   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
   179   else               {                          ldsh(a.base(), a.disp() + offset, d); }
   180 }
   181 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
   182   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
   183   else               {                          ldsw(a.base(), a.disp() + offset, d); }
   184 }
   185 inline void Assembler::ldub(const Address& a, Register d, int offset) {
   186   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
   187   else               {                          ldub(a.base(), a.disp() + offset, d); }
   188 }
   189 inline void Assembler::lduh(const Address& a, Register d, int offset) {
   190   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
   191   else               {                          lduh(a.base(), a.disp() + offset, d); }
   192 }
   193 inline void Assembler::lduw(const Address& a, Register d, int offset) {
   194   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
   195   else               {                          lduw(a.base(), a.disp() + offset, d); }
   196 }
   197 inline void Assembler::ldd( const Address& a, Register d, int offset) {
   198   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
   199   else               {                          ldd( a.base(), a.disp() + offset, d); }
   200 }
   201 inline void Assembler::ldx( const Address& a, Register d, int offset) {
   202   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
   203   else               {                          ldx( a.base(), a.disp() + offset, d); }
   204 }
   206 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
   207 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
   208 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
   209 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
   210 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
   211 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
   212 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
   213 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
   214 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
   216 // form effective addresses this way:
   217 inline void Assembler::add(const Address& a, Register d, int offset) {
   218   if (a.has_index())   add(a.base(), a.index(),         d);
   219   else               { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
   220   if (offset != 0)     add(d,        offset,            d);
   221 }
   222 inline void Assembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
   223   if (s2.is_register())  add(s1, s2.as_register(),          d);
   224   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
   225   if (offset != 0)       add(d,  offset,                    d);
   226 }
   228 inline void Assembler::andn(Register s1, RegisterOrConstant s2, Register d) {
   229   if (s2.is_register())  andn(s1, s2.as_register(), d);
   230   else                   andn(s1, s2.as_constant(), d);
   231 }
   233 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
   234 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   237 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
   238 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   240 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
   243 inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   244 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
   246 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
   248   // pp 222
   250 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
   251   if (s2.is_register()) stf(w, d, s1, s2.as_register());
   252   else                  stf(w, d, s1, s2.as_constant());
   253 }
   255 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
   256 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   258 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
   260 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   261 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   262 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   263 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   265   // p 226
   267 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
   268 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   269 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
   270 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   271 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
   272 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   275 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
   276 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   277 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
   278 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   280 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
   281 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
   283 #ifdef ASSERT
   284 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   285 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
   286 #endif
   288 inline void Assembler::stb(Register d, const Address& a, int offset) {
   289   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
   290   else               {                          stb(d, a.base(), a.disp() + offset); }
   291 }
   292 inline void Assembler::sth(Register d, const Address& a, int offset) {
   293   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
   294   else               {                          sth(d, a.base(), a.disp() + offset); }
   295 }
   296 inline void Assembler::stw(Register d, const Address& a, int offset) {
   297   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
   298   else               {                          stw(d, a.base(), a.disp() + offset); }
   299 }
   300 inline void Assembler::st( Register d, const Address& a, int offset) {
   301   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
   302   else               {                          st( d, a.base(), a.disp() + offset); }
   303 }
   304 inline void Assembler::std(Register d, const Address& a, int offset) {
   305   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
   306   else               {                          std(d, a.base(), a.disp() + offset); }
   307 }
   308 inline void Assembler::stx(Register d, const Address& a, int offset) {
   309   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
   310   else               {                          stx(d, a.base(), a.disp() + offset); }
   311 }
   313 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
   314 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
   315 inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
   316 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
   317 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
   318 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
   320 // v8 p 99
   322 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
   323 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   324 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
   325 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   326 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
   327 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   328 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
   329 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   331 inline void Assembler::sub(Register s1, RegisterOrConstant s2, Register d, int offset) {
   332   if (s2.is_register())  sub(s1, s2.as_register(),          d);
   333   else                 { sub(s1, s2.as_constant() + offset, d); offset = 0; }
   334   if (offset != 0)       sub(d,  offset,                    d);
   335 }
   337 // pp 231
   339 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
   340 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   342 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
   345 // Use the right loads/stores for the platform
   346 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
   347 #ifdef _LP64
   348   Assembler::ldx(s1, s2, d);
   349 #else
   350   Assembler::ld( s1, s2, d);
   351 #endif
   352 }
   354 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
   355 #ifdef _LP64
   356   Assembler::ldx(s1, simm13a, d);
   357 #else
   358   Assembler::ld( s1, simm13a, d);
   359 #endif
   360 }
   362 #ifdef ASSERT
   363 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   364 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
   365   ld_ptr(s1, in_bytes(simm13a), d);
   366 }
   367 #endif
   369 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   370 #ifdef _LP64
   371   Assembler::ldx(s1, s2, d);
   372 #else
   373   Assembler::ld( s1, s2, d);
   374 #endif
   375 }
   377 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
   378 #ifdef _LP64
   379   Assembler::ldx(a, d, offset);
   380 #else
   381   Assembler::ld( a, d, offset);
   382 #endif
   383 }
   385 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
   386 #ifdef _LP64
   387   Assembler::stx(d, s1, s2);
   388 #else
   389   Assembler::st( d, s1, s2);
   390 #endif
   391 }
   393 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
   394 #ifdef _LP64
   395   Assembler::stx(d, s1, simm13a);
   396 #else
   397   Assembler::st( d, s1, simm13a);
   398 #endif
   399 }
   401 #ifdef ASSERT
   402 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   403 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
   404   st_ptr(d, s1, in_bytes(simm13a));
   405 }
   406 #endif
   408 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
   409 #ifdef _LP64
   410   Assembler::stx(d, s1, s2);
   411 #else
   412   Assembler::st( d, s1, s2);
   413 #endif
   414 }
   416 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
   417 #ifdef _LP64
   418   Assembler::stx(d, a, offset);
   419 #else
   420   Assembler::st( d, a, offset);
   421 #endif
   422 }
   424 // Use the right loads/stores for the platform
   425 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
   426 #ifdef _LP64
   427   Assembler::ldx(s1, s2, d);
   428 #else
   429   Assembler::ldd(s1, s2, d);
   430 #endif
   431 }
   433 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
   434 #ifdef _LP64
   435   Assembler::ldx(s1, simm13a, d);
   436 #else
   437   Assembler::ldd(s1, simm13a, d);
   438 #endif
   439 }
   441 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
   442 #ifdef _LP64
   443   Assembler::ldx(s1, s2, d);
   444 #else
   445   Assembler::ldd(s1, s2, d);
   446 #endif
   447 }
   449 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
   450 #ifdef _LP64
   451   Assembler::ldx(a, d, offset);
   452 #else
   453   Assembler::ldd(a, d, offset);
   454 #endif
   455 }
   457 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
   458 #ifdef _LP64
   459   Assembler::stx(d, s1, s2);
   460 #else
   461   Assembler::std(d, s1, s2);
   462 #endif
   463 }
   465 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
   466 #ifdef _LP64
   467   Assembler::stx(d, s1, simm13a);
   468 #else
   469   Assembler::std(d, s1, simm13a);
   470 #endif
   471 }
   473 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
   474 #ifdef _LP64
   475   Assembler::stx(d, s1, s2);
   476 #else
   477   Assembler::std(d, s1, s2);
   478 #endif
   479 }
   481 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
   482 #ifdef _LP64
   483   Assembler::stx(d, a, offset);
   484 #else
   485   Assembler::std(d, a, offset);
   486 #endif
   487 }
   489 // Functions for isolating 64 bit shifts for LP64
   491 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
   492 #ifdef _LP64
   493   Assembler::sllx(s1, s2, d);
   494 #else
   495   Assembler::sll( s1, s2, d);
   496 #endif
   497 }
   499 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
   500 #ifdef _LP64
   501   Assembler::sllx(s1, imm6a, d);
   502 #else
   503   Assembler::sll( s1, imm6a, d);
   504 #endif
   505 }
   507 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
   508 #ifdef _LP64
   509   Assembler::srlx(s1, s2, d);
   510 #else
   511   Assembler::srl( s1, s2, d);
   512 #endif
   513 }
   515 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
   516 #ifdef _LP64
   517   Assembler::srlx(s1, imm6a, d);
   518 #else
   519   Assembler::srl( s1, imm6a, d);
   520 #endif
   521 }
   523 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   524   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
   525   else                   sll_ptr(s1, s2.as_constant(), d);
   526 }
   528 // Use the right branch for the platform
   530 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   531   if (VM_Version::v9_instructions_work())
   532     Assembler::bp(c, a, icc, p, d, rt);
   533   else
   534     Assembler::br(c, a, d, rt);
   535 }
   537 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
   538   br(c, a, p, target(L));
   539 }
   542 // Branch that tests either xcc or icc depending on the
   543 // architecture compiled (LP64 or not)
   544 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   545 #ifdef _LP64
   546     Assembler::bp(c, a, xcc, p, d, rt);
   547 #else
   548     MacroAssembler::br(c, a, p, d, rt);
   549 #endif
   550 }
   552 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
   553   brx(c, a, p, target(L));
   554 }
   556 inline void MacroAssembler::ba( bool a, Label& L ) {
   557   br(always, a, pt, L);
   558 }
   560 // Warning: V9 only functions
   561 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   562   Assembler::bp(c, a, cc, p, d, rt);
   563 }
   565 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   566   Assembler::bp(c, a, cc, p, L);
   567 }
   569 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   570   if (VM_Version::v9_instructions_work())
   571     fbp(c, a, fcc0, p, d, rt);
   572   else
   573     Assembler::fb(c, a, d, rt);
   574 }
   576 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
   577   fb(c, a, p, target(L));
   578 }
   580 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   581   Assembler::fbp(c, a, cc, p, d, rt);
   582 }
   584 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   585   Assembler::fbp(c, a, cc, p, L);
   586 }
   588 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
   589 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
   591 inline bool MacroAssembler::is_far_target(address d) {
   592   return !is_in_wdisp30_range(d, CodeCache::low_bound()) || !is_in_wdisp30_range(d, CodeCache::high_bound());
   593 }
   595 // Call with a check to see if we need to deal with the added
   596 // expense of relocation and if we overflow the displacement
   597 // of the quick call instruction.
   598 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
   599 #ifdef _LP64
   600   intptr_t disp;
   601   // NULL is ok because it will be relocated later.
   602   // Must change NULL to a reachable address in order to
   603   // pass asserts here and in wdisp.
   604   if ( d == NULL )
   605     d = pc();
   607   // Is this address within range of the call instruction?
   608   // If not, use the expensive instruction sequence
   609   if (is_far_target(d)) {
   610     relocate(rt);
   611     AddressLiteral dest(d);
   612     jumpl_to(dest, O7, O7);
   613   } else {
   614     Assembler::call(d, rt);
   615   }
   616 #else
   617   Assembler::call( d, rt );
   618 #endif
   619 }
   621 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
   622   MacroAssembler::call( target(L), rt);
   623 }
   627 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
   628 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
   630 // prefetch instruction
   631 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
   632   if (VM_Version::v9_instructions_work())
   633     Assembler::bp( never, true, xcc, pt, d, rt );
   634 }
   635 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
   638 // clobbers o7 on V8!!
   639 // returns delta from gotten pc to addr after
   640 inline int MacroAssembler::get_pc( Register d ) {
   641   int x = offset();
   642   if (VM_Version::v9_instructions_work())
   643     rdpc(d);
   644   else {
   645     Label lbl;
   646     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
   647     if (d == O7)  delayed()->nop();
   648     else          delayed()->mov(O7, d);
   649     bind(lbl);
   650   }
   651   return offset() - x;
   652 }
   655 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
   658 // Loads the current PC of the following instruction as an immediate value in
   659 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
   660 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
   661   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
   662 #ifdef _LP64
   663   Unimplemented();
   664 #else
   665   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   666   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   667 #endif
   668   return thepc;
   669 }
   672 inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
   673   assert_not_delayed();
   674   sethi(addrlit, d);
   675   ld(d, addrlit.low10() + offset, d);
   676 }
   679 inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
   680   assert_not_delayed();
   681   sethi(addrlit, d);
   682   ld_ptr(d, addrlit.low10() + offset, d);
   683 }
   686 inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
   687   assert_not_delayed();
   688   sethi(addrlit, temp);
   689   st(s, temp, addrlit.low10() + offset);
   690 }
   693 inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
   694   assert_not_delayed();
   695   sethi(addrlit, temp);
   696   st_ptr(s, temp, addrlit.low10() + offset);
   697 }
   700 // This code sequence is relocatable to any address, even on LP64.
   701 inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
   702   assert_not_delayed();
   703   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   704   // variable length instruction streams.
   705   patchable_sethi(addrlit, temp);
   706   jmpl(temp, addrlit.low10() + offset, d);
   707 }
   710 inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
   711   jumpl_to(addrlit, temp, G0, offset);
   712 }
   715 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
   716                                              int ld_offset, int jmp_offset) {
   717   assert_not_delayed();
   718   //sethi(al);                   // sethi is caller responsibility for this one
   719   ld_ptr(a, temp, ld_offset);
   720   jmp(temp, jmp_offset);
   721 }
   724 inline void MacroAssembler::set_oop(jobject obj, Register d) {
   725   set_oop(allocate_oop_address(obj), d);
   726 }
   729 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
   730   set_oop(constant_oop_address(obj), d);
   731 }
   734 inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
   735   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   736   set(obj_addr, d);
   737 }
   740 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
   741   if (a.is_register())
   742     mov(a.as_register(), d);
   743   else
   744     ld (a.as_address(),  d);
   745 }
   747 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
   748   if (a.is_register())
   749     mov(s, a.as_register());
   750   else
   751     st_ptr (s, a.as_address());         // ABI says everything is right justified.
   752 }
   754 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
   755   if (a.is_register())
   756     mov(s, a.as_register());
   757   else
   758     st_ptr (s, a.as_address());
   759 }
   762 #ifdef _LP64
   763 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
   764   if (a.is_float_register())
   765 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
   766     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
   767   else
   768     // Floats are stored in the high half of the stack entry
   769     // The low half is undefined per the ABI.
   770     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
   771 }
   773 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
   774   if (a.is_float_register())
   775 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
   776     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
   777   else
   778     stf(FloatRegisterImpl::D, s, a.as_address());
   779 }
   781 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
   782   if (a.is_register())
   783     mov(s, a.as_register());
   784   else
   785     stx(s, a.as_address());
   786 }
   787 #endif
   789 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
   790 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
   791 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
   792 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
   794 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
   795 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
   796 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
   797 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
   799 // returns if membar generates anything, obviously this code should mirror
   800 // membar below.
   801 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
   802   if( !os::is_MP() ) return false;  // Not needed on single CPU
   803   if( VM_Version::v9_instructions_work() ) {
   804     const Membar_mask_bits effective_mask =
   805         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   806     return (effective_mask != 0);
   807   } else {
   808     return true;
   809   }
   810 }
   812 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
   813   // Uniprocessors do not need memory barriers
   814   if (!os::is_MP()) return;
   815   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
   816   // 8.4.4.3, a.31 and a.50.
   817   if( VM_Version::v9_instructions_work() ) {
   818     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
   819     // of the mmask subfield of const7a that does anything that isn't done
   820     // implicitly is StoreLoad.
   821     const Membar_mask_bits effective_mask =
   822         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   823     if ( effective_mask != 0 ) {
   824       Assembler::membar( effective_mask );
   825     }
   826   } else {
   827     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
   828     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
   829     // which guarantees that all stores behave as if an stbar were issued just after
   830     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
   831     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
   832     // it can't be specified by stbar, nor have I come up with a way to simulate it.
   833     //
   834     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
   835     // space.  Put one here to be on the safe side.
   836     Assembler::ldstub(SP, 0, G0);
   837   }
   838 }
   840 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP

mercurial