src/share/vm/c1/c1_Runtime1.cpp

Thu, 13 Jan 2011 22:15:41 -0800

author
never
date
Thu, 13 Jan 2011 22:15:41 -0800
changeset 2462
8012aa3ccede
parent 2344
ac637b7220d1
child 2488
e4fee0bdaa85
permissions
-rw-r--r--

4926272: methodOopDesc::method_from_bcp is unsafe
Reviewed-by: coleenp, jrose, kvn, dcubed

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/codeBuffer.hpp"
    27 #include "c1/c1_CodeStubs.hpp"
    28 #include "c1/c1_Defs.hpp"
    29 #include "c1/c1_FrameMap.hpp"
    30 #include "c1/c1_LIRAssembler.hpp"
    31 #include "c1/c1_MacroAssembler.hpp"
    32 #include "c1/c1_Runtime1.hpp"
    33 #include "classfile/systemDictionary.hpp"
    34 #include "classfile/vmSymbols.hpp"
    35 #include "code/codeBlob.hpp"
    36 #include "code/compiledIC.hpp"
    37 #include "code/pcDesc.hpp"
    38 #include "code/scopeDesc.hpp"
    39 #include "code/vtableStubs.hpp"
    40 #include "compiler/disassembler.hpp"
    41 #include "gc_interface/collectedHeap.hpp"
    42 #include "interpreter/bytecode.hpp"
    43 #include "interpreter/interpreter.hpp"
    44 #include "memory/allocation.inline.hpp"
    45 #include "memory/barrierSet.hpp"
    46 #include "memory/oopFactory.hpp"
    47 #include "memory/resourceArea.hpp"
    48 #include "oops/objArrayKlass.hpp"
    49 #include "oops/oop.inline.hpp"
    50 #include "runtime/biasedLocking.hpp"
    51 #include "runtime/compilationPolicy.hpp"
    52 #include "runtime/interfaceSupport.hpp"
    53 #include "runtime/javaCalls.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/vframe.hpp"
    57 #include "runtime/vframeArray.hpp"
    58 #include "utilities/copy.hpp"
    59 #include "utilities/events.hpp"
    62 // Implementation of StubAssembler
    64 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
    65   _name = name;
    66   _must_gc_arguments = false;
    67   _frame_size = no_frame_size;
    68   _num_rt_args = 0;
    69   _stub_id = stub_id;
    70 }
    73 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
    74   _name = name;
    75   _must_gc_arguments = must_gc_arguments;
    76 }
    79 void StubAssembler::set_frame_size(int size) {
    80   if (_frame_size == no_frame_size) {
    81     _frame_size = size;
    82   }
    83   assert(_frame_size == size, "can't change the frame size");
    84 }
    87 void StubAssembler::set_num_rt_args(int args) {
    88   if (_num_rt_args == 0) {
    89     _num_rt_args = args;
    90   }
    91   assert(_num_rt_args == args, "can't change the number of args");
    92 }
    94 // Implementation of Runtime1
    96 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
    97 const char *Runtime1::_blob_names[] = {
    98   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
    99 };
   101 #ifndef PRODUCT
   102 // statistics
   103 int Runtime1::_generic_arraycopy_cnt = 0;
   104 int Runtime1::_primitive_arraycopy_cnt = 0;
   105 int Runtime1::_oop_arraycopy_cnt = 0;
   106 int Runtime1::_arraycopy_slowcase_cnt = 0;
   107 int Runtime1::_new_type_array_slowcase_cnt = 0;
   108 int Runtime1::_new_object_array_slowcase_cnt = 0;
   109 int Runtime1::_new_instance_slowcase_cnt = 0;
   110 int Runtime1::_new_multi_array_slowcase_cnt = 0;
   111 int Runtime1::_monitorenter_slowcase_cnt = 0;
   112 int Runtime1::_monitorexit_slowcase_cnt = 0;
   113 int Runtime1::_patch_code_slowcase_cnt = 0;
   114 int Runtime1::_throw_range_check_exception_count = 0;
   115 int Runtime1::_throw_index_exception_count = 0;
   116 int Runtime1::_throw_div0_exception_count = 0;
   117 int Runtime1::_throw_null_pointer_exception_count = 0;
   118 int Runtime1::_throw_class_cast_exception_count = 0;
   119 int Runtime1::_throw_incompatible_class_change_error_count = 0;
   120 int Runtime1::_throw_array_store_exception_count = 0;
   121 int Runtime1::_throw_count = 0;
   122 #endif
   124 // Simple helper to see if the caller of a runtime stub which
   125 // entered the VM has been deoptimized
   127 static bool caller_is_deopted() {
   128   JavaThread* thread = JavaThread::current();
   129   RegisterMap reg_map(thread, false);
   130   frame runtime_frame = thread->last_frame();
   131   frame caller_frame = runtime_frame.sender(&reg_map);
   132   assert(caller_frame.is_compiled_frame(), "must be compiled");
   133   return caller_frame.is_deoptimized_frame();
   134 }
   136 // Stress deoptimization
   137 static void deopt_caller() {
   138   if ( !caller_is_deopted()) {
   139     JavaThread* thread = JavaThread::current();
   140     RegisterMap reg_map(thread, false);
   141     frame runtime_frame = thread->last_frame();
   142     frame caller_frame = runtime_frame.sender(&reg_map);
   143     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   144     assert(caller_is_deopted(), "Must be deoptimized");
   145   }
   146 }
   149 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
   150   assert(0 <= id && id < number_of_ids, "illegal stub id");
   151   ResourceMark rm;
   152   // create code buffer for code storage
   153   CodeBuffer code(buffer_blob);
   155   Compilation::setup_code_buffer(&code, 0);
   157   // create assembler for code generation
   158   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
   159   // generate code for runtime stub
   160   OopMapSet* oop_maps;
   161   oop_maps = generate_code_for(id, sasm);
   162   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
   163          "if stub has an oop map it must have a valid frame size");
   165 #ifdef ASSERT
   166   // Make sure that stubs that need oopmaps have them
   167   switch (id) {
   168     // These stubs don't need to have an oopmap
   169     case dtrace_object_alloc_id:
   170     case g1_pre_barrier_slow_id:
   171     case g1_post_barrier_slow_id:
   172     case slow_subtype_check_id:
   173     case fpu2long_stub_id:
   174     case unwind_exception_id:
   175     case counter_overflow_id:
   176 #if defined(SPARC) || defined(PPC)
   177     case handle_exception_nofpu_id:  // Unused on sparc
   178 #endif
   179       break;
   181     // All other stubs should have oopmaps
   182     default:
   183       assert(oop_maps != NULL, "must have an oopmap");
   184   }
   185 #endif
   187   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
   188   sasm->align(BytesPerWord);
   189   // make sure all code is in code buffer
   190   sasm->flush();
   191   // create blob - distinguish a few special cases
   192   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
   193                                                  &code,
   194                                                  CodeOffsets::frame_never_safe,
   195                                                  sasm->frame_size(),
   196                                                  oop_maps,
   197                                                  sasm->must_gc_arguments());
   198   // install blob
   199   assert(blob != NULL, "blob must exist");
   200   _blobs[id] = blob;
   201 }
   204 void Runtime1::initialize(BufferBlob* blob) {
   205   // platform-dependent initialization
   206   initialize_pd();
   207   // generate stubs
   208   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
   209   // printing
   210 #ifndef PRODUCT
   211   if (PrintSimpleStubs) {
   212     ResourceMark rm;
   213     for (int id = 0; id < number_of_ids; id++) {
   214       _blobs[id]->print();
   215       if (_blobs[id]->oop_maps() != NULL) {
   216         _blobs[id]->oop_maps()->print();
   217       }
   218     }
   219   }
   220 #endif
   221 }
   224 CodeBlob* Runtime1::blob_for(StubID id) {
   225   assert(0 <= id && id < number_of_ids, "illegal stub id");
   226   return _blobs[id];
   227 }
   230 const char* Runtime1::name_for(StubID id) {
   231   assert(0 <= id && id < number_of_ids, "illegal stub id");
   232   return _blob_names[id];
   233 }
   235 const char* Runtime1::name_for_address(address entry) {
   236   for (int id = 0; id < number_of_ids; id++) {
   237     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
   238   }
   240 #define FUNCTION_CASE(a, f) \
   241   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
   243   FUNCTION_CASE(entry, os::javaTimeMillis);
   244   FUNCTION_CASE(entry, os::javaTimeNanos);
   245   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
   246   FUNCTION_CASE(entry, SharedRuntime::d2f);
   247   FUNCTION_CASE(entry, SharedRuntime::d2i);
   248   FUNCTION_CASE(entry, SharedRuntime::d2l);
   249   FUNCTION_CASE(entry, SharedRuntime::dcos);
   250   FUNCTION_CASE(entry, SharedRuntime::dexp);
   251   FUNCTION_CASE(entry, SharedRuntime::dlog);
   252   FUNCTION_CASE(entry, SharedRuntime::dlog10);
   253   FUNCTION_CASE(entry, SharedRuntime::dpow);
   254   FUNCTION_CASE(entry, SharedRuntime::drem);
   255   FUNCTION_CASE(entry, SharedRuntime::dsin);
   256   FUNCTION_CASE(entry, SharedRuntime::dtan);
   257   FUNCTION_CASE(entry, SharedRuntime::f2i);
   258   FUNCTION_CASE(entry, SharedRuntime::f2l);
   259   FUNCTION_CASE(entry, SharedRuntime::frem);
   260   FUNCTION_CASE(entry, SharedRuntime::l2d);
   261   FUNCTION_CASE(entry, SharedRuntime::l2f);
   262   FUNCTION_CASE(entry, SharedRuntime::ldiv);
   263   FUNCTION_CASE(entry, SharedRuntime::lmul);
   264   FUNCTION_CASE(entry, SharedRuntime::lrem);
   265   FUNCTION_CASE(entry, SharedRuntime::lrem);
   266   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
   267   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
   268   FUNCTION_CASE(entry, trace_block_entry);
   270 #undef FUNCTION_CASE
   272   // Soft float adds more runtime names.
   273   return pd_name_for_address(entry);
   274 }
   277 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
   278   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
   280   assert(oop(klass)->is_klass(), "not a class");
   281   instanceKlassHandle h(thread, klass);
   282   h->check_valid_for_instantiation(true, CHECK);
   283   // make sure klass is initialized
   284   h->initialize(CHECK);
   285   // allocate instance and return via TLS
   286   oop obj = h->allocate_instance(CHECK);
   287   thread->set_vm_result(obj);
   288 JRT_END
   291 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
   292   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
   293   // Note: no handle for klass needed since they are not used
   294   //       anymore after new_typeArray() and no GC can happen before.
   295   //       (This may have to change if this code changes!)
   296   assert(oop(klass)->is_klass(), "not a class");
   297   BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
   298   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
   299   thread->set_vm_result(obj);
   300   // This is pretty rare but this runtime patch is stressful to deoptimization
   301   // if we deoptimize here so force a deopt to stress the path.
   302   if (DeoptimizeALot) {
   303     deopt_caller();
   304   }
   306 JRT_END
   309 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
   310   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
   312   // Note: no handle for klass needed since they are not used
   313   //       anymore after new_objArray() and no GC can happen before.
   314   //       (This may have to change if this code changes!)
   315   assert(oop(array_klass)->is_klass(), "not a class");
   316   klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
   317   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
   318   thread->set_vm_result(obj);
   319   // This is pretty rare but this runtime patch is stressful to deoptimization
   320   // if we deoptimize here so force a deopt to stress the path.
   321   if (DeoptimizeALot) {
   322     deopt_caller();
   323   }
   324 JRT_END
   327 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
   328   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
   330   assert(oop(klass)->is_klass(), "not a class");
   331   assert(rank >= 1, "rank must be nonzero");
   332   oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
   333   thread->set_vm_result(obj);
   334 JRT_END
   337 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
   338   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
   339 JRT_END
   342 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
   343   THROW(vmSymbolHandles::java_lang_ArrayStoreException());
   344 JRT_END
   347 JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
   348   if (JvmtiExport::can_post_on_exceptions()) {
   349     vframeStream vfst(thread, true);
   350     address bcp = vfst.method()->bcp_from(vfst.bci());
   351     JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
   352   }
   353 JRT_END
   355 // This is a helper to allow us to safepoint but allow the outer entry
   356 // to be safepoint free if we need to do an osr
   357 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, methodOopDesc* m) {
   358   nmethod* osr_nm = NULL;
   359   methodHandle method(THREAD, m);
   361   RegisterMap map(THREAD, false);
   362   frame fr =  THREAD->last_frame().sender(&map);
   363   nmethod* nm = (nmethod*) fr.cb();
   364   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
   365   methodHandle enclosing_method(THREAD, nm->method());
   367   CompLevel level = (CompLevel)nm->comp_level();
   368   int bci = InvocationEntryBci;
   369   if (branch_bci != InvocationEntryBci) {
   370     // Compute desination bci
   371     address pc = method()->code_base() + branch_bci;
   372     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
   373     int offset = 0;
   374     switch (branch) {
   375       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
   376       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
   377       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
   378       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
   379       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
   380       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
   381       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
   382         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
   383         break;
   384       case Bytecodes::_goto_w:
   385         offset = Bytes::get_Java_u4(pc + 1);
   386         break;
   387       default: ;
   388     }
   389     bci = branch_bci + offset;
   390   }
   392   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, THREAD);
   393   return osr_nm;
   394 }
   396 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, methodOopDesc* method))
   397   nmethod* osr_nm;
   398   JRT_BLOCK
   399     osr_nm = counter_overflow_helper(thread, bci, method);
   400     if (osr_nm != NULL) {
   401       RegisterMap map(thread, false);
   402       frame fr =  thread->last_frame().sender(&map);
   403       Deoptimization::deoptimize_frame(thread, fr.id());
   404     }
   405   JRT_BLOCK_END
   406   return NULL;
   407 JRT_END
   409 extern void vm_exit(int code);
   411 // Enter this method from compiled code handler below. This is where we transition
   412 // to VM mode. This is done as a helper routine so that the method called directly
   413 // from compiled code does not have to transition to VM. This allows the entry
   414 // method to see if the nmethod that we have just looked up a handler for has
   415 // been deoptimized while we were in the vm. This simplifies the assembly code
   416 // cpu directories.
   417 //
   418 // We are entering here from exception stub (via the entry method below)
   419 // If there is a compiled exception handler in this method, we will continue there;
   420 // otherwise we will unwind the stack and continue at the caller of top frame method
   421 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
   422 // control the area where we can allow a safepoint. After we exit the safepoint area we can
   423 // check to see if the handler we are going to return is now in a nmethod that has
   424 // been deoptimized. If that is the case we return the deopt blob
   425 // unpack_with_exception entry instead. This makes life for the exception blob easier
   426 // because making that same check and diverting is painful from assembly language.
   427 //
   430 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
   432   Handle exception(thread, ex);
   433   nm = CodeCache::find_nmethod(pc);
   434   assert(nm != NULL, "this is not an nmethod");
   435   // Adjust the pc as needed/
   436   if (nm->is_deopt_pc(pc)) {
   437     RegisterMap map(thread, false);
   438     frame exception_frame = thread->last_frame().sender(&map);
   439     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
   440     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
   441     pc = exception_frame.pc();
   442   }
   443 #ifdef ASSERT
   444   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
   445   assert(exception->is_oop(), "just checking");
   446   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
   447   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   448     if (ExitVMOnVerifyError) vm_exit(-1);
   449     ShouldNotReachHere();
   450   }
   451 #endif
   453   // Check the stack guard pages and reenable them if necessary and there is
   454   // enough space on the stack to do so.  Use fast exceptions only if the guard
   455   // pages are enabled.
   456   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   457   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   459   if (JvmtiExport::can_post_on_exceptions()) {
   460     // To ensure correct notification of exception catches and throws
   461     // we have to deoptimize here.  If we attempted to notify the
   462     // catches and throws during this exception lookup it's possible
   463     // we could deoptimize on the way out of the VM and end back in
   464     // the interpreter at the throw site.  This would result in double
   465     // notifications since the interpreter would also notify about
   466     // these same catches and throws as it unwound the frame.
   468     RegisterMap reg_map(thread);
   469     frame stub_frame = thread->last_frame();
   470     frame caller_frame = stub_frame.sender(&reg_map);
   472     // We don't really want to deoptimize the nmethod itself since we
   473     // can actually continue in the exception handler ourselves but I
   474     // don't see an easy way to have the desired effect.
   475     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   476     assert(caller_is_deopted(), "Must be deoptimized");
   478     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   479   }
   481   // ExceptionCache is used only for exceptions at call and not for implicit exceptions
   482   if (guard_pages_enabled) {
   483     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
   484     if (fast_continuation != NULL) {
   485       if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
   486       return fast_continuation;
   487     }
   488   }
   490   // If the stack guard pages are enabled, check whether there is a handler in
   491   // the current method.  Otherwise (guard pages disabled), force an unwind and
   492   // skip the exception cache update (i.e., just leave continuation==NULL).
   493   address continuation = NULL;
   494   if (guard_pages_enabled) {
   496     // New exception handling mechanism can support inlined methods
   497     // with exception handlers since the mappings are from PC to PC
   499     // debugging support
   500     // tracing
   501     if (TraceExceptions) {
   502       ttyLocker ttyl;
   503       ResourceMark rm;
   504       tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
   505                     exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
   506     }
   507     // for AbortVMOnException flag
   508     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   510     // Clear out the exception oop and pc since looking up an
   511     // exception handler can cause class loading, which might throw an
   512     // exception and those fields are expected to be clear during
   513     // normal bytecode execution.
   514     thread->set_exception_oop(NULL);
   515     thread->set_exception_pc(NULL);
   517     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
   518     // If an exception was thrown during exception dispatch, the exception oop may have changed
   519     thread->set_exception_oop(exception());
   520     thread->set_exception_pc(pc);
   522     // the exception cache is used only by non-implicit exceptions
   523     if (continuation == NULL) {
   524       nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
   525     } else {
   526       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
   527     }
   528   }
   530   thread->set_vm_result(exception());
   532   if (TraceExceptions) {
   533     ttyLocker ttyl;
   534     ResourceMark rm;
   535     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
   536                   thread, continuation, pc);
   537   }
   539   return continuation;
   540 JRT_END
   542 // Enter this method from compiled code only if there is a Java exception handler
   543 // in the method handling the exception
   544 // We are entering here from exception stub. We don't do a normal VM transition here.
   545 // We do it in a helper. This is so we can check to see if the nmethod we have just
   546 // searched for an exception handler has been deoptimized in the meantime.
   547 address  Runtime1::exception_handler_for_pc(JavaThread* thread) {
   548   oop exception = thread->exception_oop();
   549   address pc = thread->exception_pc();
   550   // Still in Java mode
   551   debug_only(ResetNoHandleMark rnhm);
   552   nmethod* nm = NULL;
   553   address continuation = NULL;
   554   {
   555     // Enter VM mode by calling the helper
   557     ResetNoHandleMark rnhm;
   558     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
   559   }
   560   // Back in JAVA, use no oops DON'T safepoint
   562   // Now check to see if the nmethod we were called from is now deoptimized.
   563   // If so we must return to the deopt blob and deoptimize the nmethod
   565   if (nm != NULL && caller_is_deopted()) {
   566     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   567   }
   569   return continuation;
   570 }
   573 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
   574   NOT_PRODUCT(_throw_range_check_exception_count++;)
   575   Events::log("throw_range_check");
   576   char message[jintAsStringSize];
   577   sprintf(message, "%d", index);
   578   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
   579 JRT_END
   582 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
   583   NOT_PRODUCT(_throw_index_exception_count++;)
   584   Events::log("throw_index");
   585   char message[16];
   586   sprintf(message, "%d", index);
   587   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
   588 JRT_END
   591 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
   592   NOT_PRODUCT(_throw_div0_exception_count++;)
   593   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   594 JRT_END
   597 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
   598   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
   599   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   600 JRT_END
   603 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
   604   NOT_PRODUCT(_throw_class_cast_exception_count++;)
   605   ResourceMark rm(thread);
   606   char* message = SharedRuntime::generate_class_cast_message(
   607     thread, Klass::cast(object->klass())->external_name());
   608   SharedRuntime::throw_and_post_jvmti_exception(
   609     thread, vmSymbols::java_lang_ClassCastException(), message);
   610 JRT_END
   613 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
   614   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
   615   ResourceMark rm(thread);
   616   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
   617 JRT_END
   620 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
   621   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
   622   if (PrintBiasedLockingStatistics) {
   623     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
   624   }
   625   Handle h_obj(thread, obj);
   626   assert(h_obj()->is_oop(), "must be NULL or an object");
   627   if (UseBiasedLocking) {
   628     // Retry fast entry if bias is revoked to avoid unnecessary inflation
   629     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
   630   } else {
   631     if (UseFastLocking) {
   632       // When using fast locking, the compiled code has already tried the fast case
   633       assert(obj == lock->obj(), "must match");
   634       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
   635     } else {
   636       lock->set_obj(obj);
   637       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
   638     }
   639   }
   640 JRT_END
   643 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
   644   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
   645   assert(thread == JavaThread::current(), "threads must correspond");
   646   assert(thread->last_Java_sp(), "last_Java_sp must be set");
   647   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
   648   EXCEPTION_MARK;
   650   oop obj = lock->obj();
   651   assert(obj->is_oop(), "must be NULL or an object");
   652   if (UseFastLocking) {
   653     // When using fast locking, the compiled code has already tried the fast case
   654     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
   655   } else {
   656     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
   657   }
   658 JRT_END
   661 static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
   662   Bytecode_field field_access(caller, bci);
   663   // This can be static or non-static field access
   664   Bytecodes::Code code       = field_access.code();
   666   // We must load class, initialize class and resolvethe field
   667   FieldAccessInfo result; // initialize class if needed
   668   constantPoolHandle constants(THREAD, caller->constants());
   669   LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK_NULL);
   670   return result.klass()();
   671 }
   674 //
   675 // This routine patches sites where a class wasn't loaded or
   676 // initialized at the time the code was generated.  It handles
   677 // references to classes, fields and forcing of initialization.  Most
   678 // of the cases are straightforward and involving simply forcing
   679 // resolution of a class, rewriting the instruction stream with the
   680 // needed constant and replacing the call in this function with the
   681 // patched code.  The case for static field is more complicated since
   682 // the thread which is in the process of initializing a class can
   683 // access it's static fields but other threads can't so the code
   684 // either has to deoptimize when this case is detected or execute a
   685 // check that the current thread is the initializing thread.  The
   686 // current
   687 //
   688 // Patches basically look like this:
   689 //
   690 //
   691 // patch_site: jmp patch stub     ;; will be patched
   692 // continue:   ...
   693 //             ...
   694 //             ...
   695 //             ...
   696 //
   697 // They have a stub which looks like this:
   698 //
   699 //             ;; patch body
   700 //             movl <const>, reg           (for class constants)
   701 //        <or> movl [reg1 + <const>], reg  (for field offsets)
   702 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
   703 //             <being_init offset> <bytes to copy> <bytes to skip>
   704 // patch_stub: call Runtime1::patch_code (through a runtime stub)
   705 //             jmp patch_site
   706 //
   707 //
   708 // A normal patch is done by rewriting the patch body, usually a move,
   709 // and then copying it into place over top of the jmp instruction
   710 // being careful to flush caches and doing it in an MP-safe way.  The
   711 // constants following the patch body are used to find various pieces
   712 // of the patch relative to the call site for Runtime1::patch_code.
   713 // The case for getstatic and putstatic is more complicated because
   714 // getstatic and putstatic have special semantics when executing while
   715 // the class is being initialized.  getstatic/putstatic on a class
   716 // which is being_initialized may be executed by the initializing
   717 // thread but other threads have to block when they execute it.  This
   718 // is accomplished in compiled code by executing a test of the current
   719 // thread against the initializing thread of the class.  It's emitted
   720 // as boilerplate in their stub which allows the patched code to be
   721 // executed before it's copied back into the main body of the nmethod.
   722 //
   723 // being_init: get_thread(<tmp reg>
   724 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
   725 //             jne patch_stub
   726 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
   727 //             movl reg, [reg1 + <const>]  (for field offsets)
   728 //             jmp continue
   729 //             <being_init offset> <bytes to copy> <bytes to skip>
   730 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
   731 //             jmp patch_site
   732 //
   733 // If the class is being initialized the patch body is rewritten and
   734 // the patch site is rewritten to jump to being_init, instead of
   735 // patch_stub.  Whenever this code is executed it checks the current
   736 // thread against the intializing thread so other threads will enter
   737 // the runtime and end up blocked waiting the class to finish
   738 // initializing inside the calls to resolve_field below.  The
   739 // initializing class will continue on it's way.  Once the class is
   740 // fully_initialized, the intializing_thread of the class becomes
   741 // NULL, so the next thread to execute this code will fail the test,
   742 // call into patch_code and complete the patching process by copying
   743 // the patch body back into the main part of the nmethod and resume
   744 // executing.
   745 //
   746 //
   748 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
   749   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
   751   ResourceMark rm(thread);
   752   RegisterMap reg_map(thread, false);
   753   frame runtime_frame = thread->last_frame();
   754   frame caller_frame = runtime_frame.sender(&reg_map);
   756   // last java frame on stack
   757   vframeStream vfst(thread, true);
   758   assert(!vfst.at_end(), "Java frame must exist");
   760   methodHandle caller_method(THREAD, vfst.method());
   761   // Note that caller_method->code() may not be same as caller_code because of OSR's
   762   // Note also that in the presence of inlining it is not guaranteed
   763   // that caller_method() == caller_code->method()
   766   int bci = vfst.bci();
   768   Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
   770   Bytecodes::Code code = caller_method()->java_code_at(bci);
   772 #ifndef PRODUCT
   773   // this is used by assertions in the access_field_patching_id
   774   BasicType patch_field_type = T_ILLEGAL;
   775 #endif // PRODUCT
   776   bool deoptimize_for_volatile = false;
   777   int patch_field_offset = -1;
   778   KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
   779   Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
   780   if (stub_id == Runtime1::access_field_patching_id) {
   782     Bytecode_field field_access(caller_method, bci);
   783     FieldAccessInfo result; // initialize class if needed
   784     Bytecodes::Code code = field_access.code();
   785     constantPoolHandle constants(THREAD, caller_method->constants());
   786     LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK);
   787     patch_field_offset = result.field_offset();
   789     // If we're patching a field which is volatile then at compile it
   790     // must not have been know to be volatile, so the generated code
   791     // isn't correct for a volatile reference.  The nmethod has to be
   792     // deoptimized so that the code can be regenerated correctly.
   793     // This check is only needed for access_field_patching since this
   794     // is the path for patching field offsets.  load_klass is only
   795     // used for patching references to oops which don't need special
   796     // handling in the volatile case.
   797     deoptimize_for_volatile = result.access_flags().is_volatile();
   799 #ifndef PRODUCT
   800     patch_field_type = result.field_type();
   801 #endif
   802   } else if (stub_id == Runtime1::load_klass_patching_id) {
   803     oop k;
   804     switch (code) {
   805       case Bytecodes::_putstatic:
   806       case Bytecodes::_getstatic:
   807         { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
   808           // Save a reference to the class that has to be checked for initialization
   809           init_klass = KlassHandle(THREAD, klass);
   810           k = klass;
   811         }
   812         break;
   813       case Bytecodes::_new:
   814         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
   815           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
   816         }
   817         break;
   818       case Bytecodes::_multianewarray:
   819         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
   820           k = caller_method->constants()->klass_at(mna.index(), CHECK);
   821         }
   822         break;
   823       case Bytecodes::_instanceof:
   824         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
   825           k = caller_method->constants()->klass_at(io.index(), CHECK);
   826         }
   827         break;
   828       case Bytecodes::_checkcast:
   829         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
   830           k = caller_method->constants()->klass_at(cc.index(), CHECK);
   831         }
   832         break;
   833       case Bytecodes::_anewarray:
   834         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
   835           klassOop ek = caller_method->constants()->klass_at(anew.index(), CHECK);
   836           k = Klass::cast(ek)->array_klass(CHECK);
   837         }
   838         break;
   839       case Bytecodes::_ldc:
   840       case Bytecodes::_ldc_w:
   841         {
   842           Bytecode_loadconstant cc(caller_method, bci);
   843           k = cc.resolve_constant(CHECK);
   844           assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
   845         }
   846         break;
   847       default: Unimplemented();
   848     }
   849     // convert to handle
   850     load_klass = Handle(THREAD, k);
   851   } else {
   852     ShouldNotReachHere();
   853   }
   855   if (deoptimize_for_volatile) {
   856     // At compile time we assumed the field wasn't volatile but after
   857     // loading it turns out it was volatile so we have to throw the
   858     // compiled code out and let it be regenerated.
   859     if (TracePatching) {
   860       tty->print_cr("Deoptimizing for patching volatile field reference");
   861     }
   862     // It's possible the nmethod was invalidated in the last
   863     // safepoint, but if it's still alive then make it not_entrant.
   864     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   865     if (nm != NULL) {
   866       nm->make_not_entrant();
   867     }
   869     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   871     // Return to the now deoptimized frame.
   872   }
   874   // If we are patching in a non-perm oop, make sure the nmethod
   875   // is on the right list.
   876   if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
   877     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
   878     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   879     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
   880     if (!nm->on_scavenge_root_list())
   881       CodeCache::add_scavenge_root_nmethod(nm);
   882   }
   884   // Now copy code back
   886   {
   887     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
   888     //
   889     // Deoptimization may have happened while we waited for the lock.
   890     // In that case we don't bother to do any patching we just return
   891     // and let the deopt happen
   892     if (!caller_is_deopted()) {
   893       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
   894       address instr_pc = jump->jump_destination();
   895       NativeInstruction* ni = nativeInstruction_at(instr_pc);
   896       if (ni->is_jump() ) {
   897         // the jump has not been patched yet
   898         // The jump destination is slow case and therefore not part of the stubs
   899         // (stubs are only for StaticCalls)
   901         // format of buffer
   902         //    ....
   903         //    instr byte 0     <-- copy_buff
   904         //    instr byte 1
   905         //    ..
   906         //    instr byte n-1
   907         //      n
   908         //    ....             <-- call destination
   910         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
   911         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
   912         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
   913         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
   914         address copy_buff = stub_location - *byte_skip - *byte_count;
   915         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
   916         if (TracePatching) {
   917           tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
   918                         instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
   919           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
   920           assert(caller_code != NULL, "nmethod not found");
   922           // NOTE we use pc() not original_pc() because we already know they are
   923           // identical otherwise we'd have never entered this block of code
   925           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
   926           assert(map != NULL, "null check");
   927           map->print();
   928           tty->cr();
   930           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   931         }
   932         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
   933         bool do_patch = true;
   934         if (stub_id == Runtime1::access_field_patching_id) {
   935           // The offset may not be correct if the class was not loaded at code generation time.
   936           // Set it now.
   937           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
   938           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
   939           assert(patch_field_offset >= 0, "illegal offset");
   940           n_move->add_offset_in_bytes(patch_field_offset);
   941         } else if (stub_id == Runtime1::load_klass_patching_id) {
   942           // If a getstatic or putstatic is referencing a klass which
   943           // isn't fully initialized, the patch body isn't copied into
   944           // place until initialization is complete.  In this case the
   945           // patch site is setup so that any threads besides the
   946           // initializing thread are forced to come into the VM and
   947           // block.
   948           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
   949                      instanceKlass::cast(init_klass())->is_initialized();
   950           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
   951           if (jump->jump_destination() == being_initialized_entry) {
   952             assert(do_patch == true, "initialization must be complete at this point");
   953           } else {
   954             // patch the instruction <move reg, klass>
   955             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
   957             assert(n_copy->data() == 0 ||
   958                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
   959                    "illegal init value");
   960             assert(load_klass() != NULL, "klass not set");
   961             n_copy->set_data((intx) (load_klass()));
   963             if (TracePatching) {
   964               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   965             }
   967 #if defined(SPARC) || defined(PPC)
   968             // Update the oop location in the nmethod with the proper
   969             // oop.  When the code was generated, a NULL was stuffed
   970             // in the oop table and that table needs to be update to
   971             // have the right value.  On intel the value is kept
   972             // directly in the instruction instead of in the oop
   973             // table, so set_data above effectively updated the value.
   974             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   975             assert(nm != NULL, "invalid nmethod_pc");
   976             RelocIterator oops(nm, copy_buff, copy_buff + 1);
   977             bool found = false;
   978             while (oops.next() && !found) {
   979               if (oops.type() == relocInfo::oop_type) {
   980                 oop_Relocation* r = oops.oop_reloc();
   981                 oop* oop_adr = r->oop_addr();
   982                 *oop_adr = load_klass();
   983                 r->fix_oop_relocation();
   984                 found = true;
   985               }
   986             }
   987             assert(found, "the oop must exist!");
   988 #endif
   990           }
   991         } else {
   992           ShouldNotReachHere();
   993         }
   994         if (do_patch) {
   995           // replace instructions
   996           // first replace the tail, then the call
   997 #ifdef ARM
   998           if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
   999             copy_buff -= *byte_count;
  1000             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
  1001             n_copy2->set_data((intx) (load_klass()), instr_pc);
  1003 #endif
  1005           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
  1006             address ptr = copy_buff + i;
  1007             int a_byte = (*ptr) & 0xFF;
  1008             address dst = instr_pc + i;
  1009             *(unsigned char*)dst = (unsigned char) a_byte;
  1011           ICache::invalidate_range(instr_pc, *byte_count);
  1012           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
  1014           if (stub_id == Runtime1::load_klass_patching_id) {
  1015             // update relocInfo to oop
  1016             nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1017             assert(nm != NULL, "invalid nmethod_pc");
  1019             // The old patch site is now a move instruction so update
  1020             // the reloc info so that it will get updated during
  1021             // future GCs.
  1022             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
  1023             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
  1024                                                      relocInfo::none, relocInfo::oop_type);
  1025 #ifdef SPARC
  1026             // Sparc takes two relocations for an oop so update the second one.
  1027             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
  1028             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1029             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
  1030                                                      relocInfo::none, relocInfo::oop_type);
  1031 #endif
  1032 #ifdef PPC
  1033           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
  1034             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1035             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
  1037 #endif
  1040         } else {
  1041           ICache::invalidate_range(copy_buff, *byte_count);
  1042           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
  1047 JRT_END
  1049 //
  1050 // Entry point for compiled code. We want to patch a nmethod.
  1051 // We don't do a normal VM transition here because we want to
  1052 // know after the patching is complete and any safepoint(s) are taken
  1053 // if the calling nmethod was deoptimized. We do this by calling a
  1054 // helper method which does the normal VM transition and when it
  1055 // completes we can check for deoptimization. This simplifies the
  1056 // assembly code in the cpu directories.
  1057 //
  1058 int Runtime1::move_klass_patching(JavaThread* thread) {
  1059 //
  1060 // NOTE: we are still in Java
  1061 //
  1062   Thread* THREAD = thread;
  1063   debug_only(NoHandleMark nhm;)
  1065     // Enter VM mode
  1067     ResetNoHandleMark rnhm;
  1068     patch_code(thread, load_klass_patching_id);
  1070   // Back in JAVA, use no oops DON'T safepoint
  1072   // Return true if calling code is deoptimized
  1074   return caller_is_deopted();
  1077 //
  1078 // Entry point for compiled code. We want to patch a nmethod.
  1079 // We don't do a normal VM transition here because we want to
  1080 // know after the patching is complete and any safepoint(s) are taken
  1081 // if the calling nmethod was deoptimized. We do this by calling a
  1082 // helper method which does the normal VM transition and when it
  1083 // completes we can check for deoptimization. This simplifies the
  1084 // assembly code in the cpu directories.
  1085 //
  1087 int Runtime1::access_field_patching(JavaThread* thread) {
  1088 //
  1089 // NOTE: we are still in Java
  1090 //
  1091   Thread* THREAD = thread;
  1092   debug_only(NoHandleMark nhm;)
  1094     // Enter VM mode
  1096     ResetNoHandleMark rnhm;
  1097     patch_code(thread, access_field_patching_id);
  1099   // Back in JAVA, use no oops DON'T safepoint
  1101   // Return true if calling code is deoptimized
  1103   return caller_is_deopted();
  1104 JRT_END
  1107 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
  1108   // for now we just print out the block id
  1109   tty->print("%d ", block_id);
  1110 JRT_END
  1113 // Array copy return codes.
  1114 enum {
  1115   ac_failed = -1, // arraycopy failed
  1116   ac_ok = 0       // arraycopy succeeded
  1117 };
  1120 // Below length is the # elements copied.
  1121 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
  1122                                           oopDesc* dst, T* dst_addr,
  1123                                           int length) {
  1125   // For performance reasons, we assume we are using a card marking write
  1126   // barrier. The assert will fail if this is not the case.
  1127   // Note that we use the non-virtual inlineable variant of write_ref_array.
  1128   BarrierSet* bs = Universe::heap()->barrier_set();
  1129   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1130   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1131   if (src == dst) {
  1132     // same object, no check
  1133     bs->write_ref_array_pre(dst_addr, length);
  1134     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1135     bs->write_ref_array((HeapWord*)dst_addr, length);
  1136     return ac_ok;
  1137   } else {
  1138     klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
  1139     klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
  1140     if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
  1141       // Elements are guaranteed to be subtypes, so no check necessary
  1142       bs->write_ref_array_pre(dst_addr, length);
  1143       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1144       bs->write_ref_array((HeapWord*)dst_addr, length);
  1145       return ac_ok;
  1148   return ac_failed;
  1151 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
  1152 // and we did not copy anything
  1153 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
  1154 #ifndef PRODUCT
  1155   _generic_arraycopy_cnt++;        // Slow-path oop array copy
  1156 #endif
  1158   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
  1159   if (!dst->is_array() || !src->is_array()) return ac_failed;
  1160   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
  1161   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
  1163   if (length == 0) return ac_ok;
  1164   if (src->is_typeArray()) {
  1165     const klassOop klass_oop = src->klass();
  1166     if (klass_oop != dst->klass()) return ac_failed;
  1167     typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
  1168     const int l2es = klass->log2_element_size();
  1169     const int ihs = klass->array_header_in_bytes() / wordSize;
  1170     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
  1171     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
  1172     // Potential problem: memmove is not guaranteed to be word atomic
  1173     // Revisit in Merlin
  1174     memmove(dst_addr, src_addr, length << l2es);
  1175     return ac_ok;
  1176   } else if (src->is_objArray() && dst->is_objArray()) {
  1177     if (UseCompressedOops) {
  1178       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
  1179       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
  1180       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1181     } else {
  1182       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
  1183       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
  1184       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1187   return ac_failed;
  1188 JRT_END
  1191 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
  1192 #ifndef PRODUCT
  1193   _primitive_arraycopy_cnt++;
  1194 #endif
  1196   if (length == 0) return;
  1197   // Not guaranteed to be word atomic, but that doesn't matter
  1198   // for anything but an oop array, which is covered by oop_arraycopy.
  1199   Copy::conjoint_jbytes(src, dst, length);
  1200 JRT_END
  1202 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
  1203 #ifndef PRODUCT
  1204   _oop_arraycopy_cnt++;
  1205 #endif
  1207   if (num == 0) return;
  1208   BarrierSet* bs = Universe::heap()->barrier_set();
  1209   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1210   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1211   if (UseCompressedOops) {
  1212     bs->write_ref_array_pre((narrowOop*)dst, num);
  1213     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
  1214   } else {
  1215     bs->write_ref_array_pre((oop*)dst, num);
  1216     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
  1218   bs->write_ref_array(dst, num);
  1219 JRT_END
  1222 #ifndef PRODUCT
  1223 void Runtime1::print_statistics() {
  1224   tty->print_cr("C1 Runtime statistics:");
  1225   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
  1226   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
  1227   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
  1228   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
  1229   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
  1230   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
  1231   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
  1232   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
  1233   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
  1235   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
  1236   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
  1237   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
  1238   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
  1239   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
  1240   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
  1241   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
  1243   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
  1244   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
  1245   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
  1246   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
  1247   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
  1248   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
  1249   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
  1250   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
  1252   SharedRuntime::print_ic_miss_histogram();
  1253   tty->cr();
  1255 #endif // PRODUCT

mercurial