src/share/vm/runtime/vframeArray.cpp

Fri, 31 Jul 2009 10:41:29 -0700

author
ysr
date
Fri, 31 Jul 2009 10:41:29 -0700
changeset 1320
7f807f55161a
parent 1279
bd02caa94611
child 1338
15bbd3f505c0
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_vframeArray.cpp.incl"
    29 int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
    31 void vframeArrayElement::free_monitors(JavaThread* jt) {
    32   if (_monitors != NULL) {
    33      MonitorChunk* chunk = _monitors;
    34      _monitors = NULL;
    35      jt->remove_monitor_chunk(chunk);
    36      delete chunk;
    37   }
    38 }
    40 void vframeArrayElement::fill_in(compiledVFrame* vf) {
    42 // Copy the information from the compiled vframe to the
    43 // interpreter frame we will be creating to replace vf
    45   _method = vf->method();
    46   _bci    = vf->raw_bci();
    48   int index;
    50   // Get the monitors off-stack
    52   GrowableArray<MonitorInfo*>* list = vf->monitors();
    53   if (list->is_empty()) {
    54     _monitors = NULL;
    55   } else {
    57     // Allocate monitor chunk
    58     _monitors = new MonitorChunk(list->length());
    59     vf->thread()->add_monitor_chunk(_monitors);
    61     // Migrate the BasicLocks from the stack to the monitor chunk
    62     for (index = 0; index < list->length(); index++) {
    63       MonitorInfo* monitor = list->at(index);
    64       assert(!monitor->owner_is_scalar_replaced(), "object should be reallocated already");
    65       assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
    66       BasicObjectLock* dest = _monitors->at(index);
    67       dest->set_obj(monitor->owner());
    68       monitor->lock()->move_to(monitor->owner(), dest->lock());
    69     }
    70   }
    72   // Convert the vframe locals and expressions to off stack
    73   // values. Because we will not gc all oops can be converted to
    74   // intptr_t (i.e. a stack slot) and we are fine. This is
    75   // good since we are inside a HandleMark and the oops in our
    76   // collection would go away between packing them here and
    77   // unpacking them in unpack_on_stack.
    79   // First the locals go off-stack
    81   // FIXME this seems silly it creates a StackValueCollection
    82   // in order to get the size to then copy them and
    83   // convert the types to intptr_t size slots. Seems like it
    84   // could do it in place... Still uses less memory than the
    85   // old way though
    87   StackValueCollection *locs = vf->locals();
    88   _locals = new StackValueCollection(locs->size());
    89   for(index = 0; index < locs->size(); index++) {
    90     StackValue* value = locs->at(index);
    91     switch(value->type()) {
    92       case T_OBJECT:
    93         assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
    94         // preserve object type
    95         _locals->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
    96         break;
    97       case T_CONFLICT:
    98         // A dead local.  Will be initialized to null/zero.
    99         _locals->add( new StackValue());
   100         break;
   101       case T_INT:
   102         _locals->add( new StackValue(value->get_int()));
   103         break;
   104       default:
   105         ShouldNotReachHere();
   106     }
   107   }
   109   // Now the expressions off-stack
   110   // Same silliness as above
   112   StackValueCollection *exprs = vf->expressions();
   113   _expressions = new StackValueCollection(exprs->size());
   114   for(index = 0; index < exprs->size(); index++) {
   115     StackValue* value = exprs->at(index);
   116     switch(value->type()) {
   117       case T_OBJECT:
   118         assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
   119         // preserve object type
   120         _expressions->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
   121         break;
   122       case T_CONFLICT:
   123         // A dead stack element.  Will be initialized to null/zero.
   124         // This can occur when the compiler emits a state in which stack
   125         // elements are known to be dead (because of an imminent exception).
   126         _expressions->add( new StackValue());
   127         break;
   128       case T_INT:
   129         _expressions->add( new StackValue(value->get_int()));
   130         break;
   131       default:
   132         ShouldNotReachHere();
   133     }
   134   }
   135 }
   137 int unpack_counter = 0;
   139 void vframeArrayElement::unpack_on_stack(int callee_parameters,
   140                                          int callee_locals,
   141                                          frame* caller,
   142                                          bool is_top_frame,
   143                                          int exec_mode) {
   144   JavaThread* thread = (JavaThread*) Thread::current();
   146   // Look at bci and decide on bcp and continuation pc
   147   address bcp;
   148   // C++ interpreter doesn't need a pc since it will figure out what to do when it
   149   // begins execution
   150   address pc;
   151   bool use_next_mdp; // true if we should use the mdp associated with the next bci
   152                      // rather than the one associated with bcp
   153   if (raw_bci() == SynchronizationEntryBCI) {
   154     // We are deoptimizing while hanging in prologue code for synchronized method
   155     bcp = method()->bcp_from(0); // first byte code
   156     pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
   157     use_next_mdp = false;
   158   } else {
   159     bcp = method()->bcp_from(bci());
   160     pc  = Interpreter::continuation_for(method(), bcp, callee_parameters, is_top_frame, use_next_mdp);
   161   }
   162   assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
   164   // Monitorenter and pending exceptions:
   165   //
   166   // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
   167   // because there is no safepoint at the null pointer check (it is either handled explicitly
   168   // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
   169   // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
   170   // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
   171   // the monitorenter to place it in the proper exception range.
   172   //
   173   // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
   174   // in which case bcp should point to the monitorenter since it is within the exception's range.
   176   assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
   177   // TIERED Must know the compiler of the deoptee QQQ
   178   COMPILER2_PRESENT(guarantee(*bcp != Bytecodes::_monitorenter || exec_mode != Deoptimization::Unpack_exception,
   179                               "shouldn't get exception during monitorenter");)
   181   int popframe_preserved_args_size_in_bytes = 0;
   182   int popframe_preserved_args_size_in_words = 0;
   183   if (is_top_frame) {
   184   JvmtiThreadState *state = thread->jvmti_thread_state();
   185     if (JvmtiExport::can_pop_frame() &&
   186         (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
   187       if (thread->has_pending_popframe()) {
   188         // Pop top frame after deoptimization
   189 #ifndef CC_INTERP
   190         pc = Interpreter::remove_activation_preserving_args_entry();
   191 #else
   192         // Do an uncommon trap type entry. c++ interpreter will know
   193         // to pop frame and preserve the args
   194         pc = Interpreter::deopt_entry(vtos, 0);
   195         use_next_mdp = false;
   196 #endif
   197       } else {
   198         // Reexecute invoke in top frame
   199         pc = Interpreter::deopt_entry(vtos, 0);
   200         use_next_mdp = false;
   201         popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
   202         // Note: the PopFrame-related extension of the expression stack size is done in
   203         // Deoptimization::fetch_unroll_info_helper
   204         popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
   205       }
   206     } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
   207       // Force early return from top frame after deoptimization
   208 #ifndef CC_INTERP
   209       pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
   210 #else
   211      // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64)
   212 #endif
   213     } else {
   214       // Possibly override the previous pc computation of the top (youngest) frame
   215       switch (exec_mode) {
   216       case Deoptimization::Unpack_deopt:
   217         // use what we've got
   218         break;
   219       case Deoptimization::Unpack_exception:
   220         // exception is pending
   221         pc = SharedRuntime::raw_exception_handler_for_return_address(pc);
   222         // [phh] We're going to end up in some handler or other, so it doesn't
   223         // matter what mdp we point to.  See exception_handler_for_exception()
   224         // in interpreterRuntime.cpp.
   225         break;
   226       case Deoptimization::Unpack_uncommon_trap:
   227       case Deoptimization::Unpack_reexecute:
   228         // redo last byte code
   229         pc  = Interpreter::deopt_entry(vtos, 0);
   230         use_next_mdp = false;
   231         break;
   232       default:
   233         ShouldNotReachHere();
   234       }
   235     }
   236   }
   238   // Setup the interpreter frame
   240   assert(method() != NULL, "method must exist");
   241   int temps = expressions()->size();
   243   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
   245   Interpreter::layout_activation(method(),
   246                                  temps + callee_parameters,
   247                                  popframe_preserved_args_size_in_words,
   248                                  locks,
   249                                  callee_parameters,
   250                                  callee_locals,
   251                                  caller,
   252                                  iframe(),
   253                                  is_top_frame);
   255   // Update the pc in the frame object and overwrite the temporary pc
   256   // we placed in the skeletal frame now that we finally know the
   257   // exact interpreter address we should use.
   259   _frame.patch_pc(thread, pc);
   261   assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
   263   BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
   264   for (int index = 0; index < locks; index++) {
   265     top = iframe()->previous_monitor_in_interpreter_frame(top);
   266     BasicObjectLock* src = _monitors->at(index);
   267     top->set_obj(src->obj());
   268     src->lock()->move_to(src->obj(), top->lock());
   269   }
   270   if (ProfileInterpreter) {
   271     iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
   272   }
   273   iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
   274   if (ProfileInterpreter) {
   275     methodDataOop mdo = method()->method_data();
   276     if (mdo != NULL) {
   277       int bci = iframe()->interpreter_frame_bci();
   278       if (use_next_mdp) ++bci;
   279       address mdp = mdo->bci_to_dp(bci);
   280       iframe()->interpreter_frame_set_mdp(mdp);
   281     }
   282   }
   284   // Unpack expression stack
   285   // If this is an intermediate frame (i.e. not top frame) then this
   286   // only unpacks the part of the expression stack not used by callee
   287   // as parameters. The callee parameters are unpacked as part of the
   288   // callee locals.
   289   int i;
   290   for(i = 0; i < expressions()->size(); i++) {
   291     StackValue *value = expressions()->at(i);
   292     intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
   293     switch(value->type()) {
   294       case T_INT:
   295         *addr = value->get_int();
   296         break;
   297       case T_OBJECT:
   298         *addr = value->get_int(T_OBJECT);
   299         break;
   300       case T_CONFLICT:
   301         // A dead stack slot.  Initialize to null in case it is an oop.
   302         *addr = NULL_WORD;
   303         break;
   304       default:
   305         ShouldNotReachHere();
   306     }
   307     if (TaggedStackInterpreter) {
   308       // Write tag to the stack
   309       iframe()->interpreter_frame_set_expression_stack_tag(i,
   310                                   frame::tag_for_basic_type(value->type()));
   311     }
   312   }
   315   // Unpack the locals
   316   for(i = 0; i < locals()->size(); i++) {
   317     StackValue *value = locals()->at(i);
   318     intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
   319     switch(value->type()) {
   320       case T_INT:
   321         *addr = value->get_int();
   322         break;
   323       case T_OBJECT:
   324         *addr = value->get_int(T_OBJECT);
   325         break;
   326       case T_CONFLICT:
   327         // A dead location. If it is an oop then we need a NULL to prevent GC from following it
   328         *addr = NULL_WORD;
   329         break;
   330       default:
   331         ShouldNotReachHere();
   332     }
   333     if (TaggedStackInterpreter) {
   334       // Write tag to stack
   335       iframe()->interpreter_frame_set_local_tag(i,
   336                                   frame::tag_for_basic_type(value->type()));
   337     }
   338   }
   340   if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   341     // An interpreted frame was popped but it returns to a deoptimized
   342     // frame. The incoming arguments to the interpreted activation
   343     // were preserved in thread-local storage by the
   344     // remove_activation_preserving_args_entry in the interpreter; now
   345     // we put them back into the just-unpacked interpreter frame.
   346     // Note that this assumes that the locals arena grows toward lower
   347     // addresses.
   348     if (popframe_preserved_args_size_in_words != 0) {
   349       void* saved_args = thread->popframe_preserved_args();
   350       assert(saved_args != NULL, "must have been saved by interpreter");
   351 #ifdef ASSERT
   352       int stack_words = Interpreter::stackElementWords();
   353       assert(popframe_preserved_args_size_in_words <=
   354              iframe()->interpreter_frame_expression_stack_size()*stack_words,
   355              "expression stack size should have been extended");
   356 #endif // ASSERT
   357       int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
   358       intptr_t* base;
   359       if (frame::interpreter_frame_expression_stack_direction() < 0) {
   360         base = iframe()->interpreter_frame_expression_stack_at(top_element);
   361       } else {
   362         base = iframe()->interpreter_frame_expression_stack();
   363       }
   364       Copy::conjoint_bytes(saved_args,
   365                            base,
   366                            popframe_preserved_args_size_in_bytes);
   367       thread->popframe_free_preserved_args();
   368     }
   369   }
   371 #ifndef PRODUCT
   372   if (TraceDeoptimization && Verbose) {
   373     ttyLocker ttyl;
   374     tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
   375     iframe()->print_on(tty);
   376     RegisterMap map(thread);
   377     vframe* f = vframe::new_vframe(iframe(), &map, thread);
   378     f->print();
   379     iframe()->interpreter_frame_print_on(tty);
   381     tty->print_cr("locals size     %d", locals()->size());
   382     tty->print_cr("expression size %d", expressions()->size());
   384     method()->print_value();
   385     tty->cr();
   386     // method()->print_codes();
   387   } else if (TraceDeoptimization) {
   388     tty->print("     ");
   389     method()->print_value();
   390     Bytecodes::Code code = Bytecodes::java_code_at(bcp);
   391     int bci = method()->bci_from(bcp);
   392     tty->print(" - %s", Bytecodes::name(code));
   393     tty->print(" @ bci %d ", bci);
   394     tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
   395   }
   396 #endif // PRODUCT
   398   // The expression stack and locals are in the resource area don't leave
   399   // a dangling pointer in the vframeArray we leave around for debug
   400   // purposes
   402   _locals = _expressions = NULL;
   404 }
   406 int vframeArrayElement::on_stack_size(int callee_parameters,
   407                                       int callee_locals,
   408                                       bool is_top_frame,
   409                                       int popframe_extra_stack_expression_els) const {
   410   assert(method()->max_locals() == locals()->size(), "just checking");
   411   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
   412   int temps = expressions()->size();
   413   return Interpreter::size_activation(method(),
   414                                       temps + callee_parameters,
   415                                       popframe_extra_stack_expression_els,
   416                                       locks,
   417                                       callee_parameters,
   418                                       callee_locals,
   419                                       is_top_frame);
   420 }
   424 vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
   425                                    RegisterMap *reg_map, frame sender, frame caller, frame self) {
   427   // Allocate the vframeArray
   428   vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
   429                                                      sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
   430                                                      "vframeArray::allocate");
   431   result->_frames = chunk->length();
   432   result->_owner_thread = thread;
   433   result->_sender = sender;
   434   result->_caller = caller;
   435   result->_original = self;
   436   result->set_unroll_block(NULL); // initialize it
   437   result->fill_in(thread, frame_size, chunk, reg_map);
   438   return result;
   439 }
   441 void vframeArray::fill_in(JavaThread* thread,
   442                           int frame_size,
   443                           GrowableArray<compiledVFrame*>* chunk,
   444                           const RegisterMap *reg_map) {
   445   // Set owner first, it is used when adding monitor chunks
   447   _frame_size = frame_size;
   448   for(int i = 0; i < chunk->length(); i++) {
   449     element(i)->fill_in(chunk->at(i));
   450   }
   452   // Copy registers for callee-saved registers
   453   if (reg_map != NULL) {
   454     for(int i = 0; i < RegisterMap::reg_count; i++) {
   455 #ifdef AMD64
   456       // The register map has one entry for every int (32-bit value), so
   457       // 64-bit physical registers have two entries in the map, one for
   458       // each half.  Ignore the high halves of 64-bit registers, just like
   459       // frame::oopmapreg_to_location does.
   460       //
   461       // [phh] FIXME: this is a temporary hack!  This code *should* work
   462       // correctly w/o this hack, possibly by changing RegisterMap::pd_location
   463       // in frame_amd64.cpp and the values of the phantom high half registers
   464       // in amd64.ad.
   465       //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
   466         intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
   467         _callee_registers[i] = src != NULL ? *src : NULL_WORD;
   468         //      } else {
   469         //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
   470         //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
   471         //      }
   472 #else
   473       jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
   474       _callee_registers[i] = src != NULL ? *src : NULL_WORD;
   475 #endif
   476       if (src == NULL) {
   477         set_location_valid(i, false);
   478       } else {
   479         set_location_valid(i, true);
   480         jint* dst = (jint*) register_location(i);
   481         *dst = *src;
   482       }
   483     }
   484   }
   485 }
   487 void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode) {
   488   // stack picture
   489   //   unpack_frame
   490   //   [new interpreter frames ] (frames are skeletal but walkable)
   491   //   caller_frame
   492   //
   493   //  This routine fills in the missing data for the skeletal interpreter frames
   494   //  in the above picture.
   496   // Find the skeletal interpreter frames to unpack into
   497   RegisterMap map(JavaThread::current(), false);
   498   // Get the youngest frame we will unpack (last to be unpacked)
   499   frame me = unpack_frame.sender(&map);
   500   int index;
   501   for (index = 0; index < frames(); index++ ) {
   502     *element(index)->iframe() = me;
   503     // Get the caller frame (possibly skeletal)
   504     me = me.sender(&map);
   505   }
   507   frame caller_frame = me;
   509   // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
   511   // Unpack the frames from the oldest (frames() -1) to the youngest (0)
   513   for (index = frames() - 1; index >= 0 ; index--) {
   514     int callee_parameters = index == 0 ? 0 : element(index-1)->method()->size_of_parameters();
   515     int callee_locals     = index == 0 ? 0 : element(index-1)->method()->max_locals();
   516     element(index)->unpack_on_stack(callee_parameters,
   517                                     callee_locals,
   518                                     &caller_frame,
   519                                     index == 0,
   520                                     exec_mode);
   521     if (index == frames() - 1) {
   522       Deoptimization::unwind_callee_save_values(element(index)->iframe(), this);
   523     }
   524     caller_frame = *element(index)->iframe();
   525   }
   528   deallocate_monitor_chunks();
   529 }
   531 void vframeArray::deallocate_monitor_chunks() {
   532   JavaThread* jt = JavaThread::current();
   533   for (int index = 0; index < frames(); index++ ) {
   534      element(index)->free_monitors(jt);
   535   }
   536 }
   538 #ifndef PRODUCT
   540 bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
   541   if (owner_thread() != thread) return false;
   542   int index = 0;
   543 #if 0 // FIXME can't do this comparison
   545   // Compare only within vframe array.
   546   for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
   547     if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
   548     index++;
   549   }
   550   if (index != chunk->length()) return false;
   551 #endif
   553   return true;
   554 }
   556 #endif
   558 address vframeArray::register_location(int i) const {
   559   assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
   560   return (address) & _callee_registers[i];
   561 }
   564 #ifndef PRODUCT
   566 // Printing
   568 // Note: we cannot have print_on as const, as we allocate inside the method
   569 void vframeArray::print_on_2(outputStream* st)  {
   570   st->print_cr(" - sp: " INTPTR_FORMAT, sp());
   571   st->print(" - thread: ");
   572   Thread::current()->print();
   573   st->print_cr(" - frame size: %d", frame_size());
   574   for (int index = 0; index < frames() ; index++ ) {
   575     element(index)->print(st);
   576   }
   577 }
   579 void vframeArrayElement::print(outputStream* st) {
   580   st->print_cr(" - interpreter_frame -> sp: ", INTPTR_FORMAT, iframe()->sp());
   581 }
   583 void vframeArray::print_value_on(outputStream* st) const {
   584   st->print_cr("vframeArray [%d] ", frames());
   585 }
   588 #endif

mercurial