src/share/vm/c1/c1_Instruction.hpp

Thu, 20 Sep 2012 16:49:17 +0200

author
roland
date
Thu, 20 Sep 2012 16:49:17 +0200
changeset 4106
7eca5de9e0b6
parent 4037
da91efe96a93
child 4860
46f6f063b272
permissions
-rw-r--r--

7023898: Intrinsify AtomicLongFieldUpdater.getAndIncrement()
Summary: use shorter instruction sequences for atomic add and atomic exchange when possible.
Reviewed-by: kvn, jrose

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_C1_C1_INSTRUCTION_HPP
    26 #define SHARE_VM_C1_C1_INSTRUCTION_HPP
    28 #include "c1/c1_Compilation.hpp"
    29 #include "c1/c1_LIR.hpp"
    30 #include "c1/c1_ValueType.hpp"
    31 #include "ci/ciField.hpp"
    33 // Predefined classes
    34 class ciField;
    35 class ValueStack;
    36 class InstructionPrinter;
    37 class IRScope;
    38 class LIR_OprDesc;
    39 typedef LIR_OprDesc* LIR_Opr;
    42 // Instruction class hierarchy
    43 //
    44 // All leaf classes in the class hierarchy are concrete classes
    45 // (i.e., are instantiated). All other classes are abstract and
    46 // serve factoring.
    48 class Instruction;
    49 class   Phi;
    50 class   Local;
    51 class   Constant;
    52 class   AccessField;
    53 class     LoadField;
    54 class     StoreField;
    55 class   AccessArray;
    56 class     ArrayLength;
    57 class     AccessIndexed;
    58 class       LoadIndexed;
    59 class       StoreIndexed;
    60 class   NegateOp;
    61 class   Op2;
    62 class     ArithmeticOp;
    63 class     ShiftOp;
    64 class     LogicOp;
    65 class     CompareOp;
    66 class     IfOp;
    67 class   Convert;
    68 class   NullCheck;
    69 class   TypeCast;
    70 class   OsrEntry;
    71 class   ExceptionObject;
    72 class   StateSplit;
    73 class     Invoke;
    74 class     NewInstance;
    75 class     NewArray;
    76 class       NewTypeArray;
    77 class       NewObjectArray;
    78 class       NewMultiArray;
    79 class     TypeCheck;
    80 class       CheckCast;
    81 class       InstanceOf;
    82 class     AccessMonitor;
    83 class       MonitorEnter;
    84 class       MonitorExit;
    85 class     Intrinsic;
    86 class     BlockBegin;
    87 class     BlockEnd;
    88 class       Goto;
    89 class       If;
    90 class       IfInstanceOf;
    91 class       Switch;
    92 class         TableSwitch;
    93 class         LookupSwitch;
    94 class       Return;
    95 class       Throw;
    96 class       Base;
    97 class   RoundFP;
    98 class   UnsafeOp;
    99 class     UnsafeRawOp;
   100 class       UnsafeGetRaw;
   101 class       UnsafePutRaw;
   102 class     UnsafeObjectOp;
   103 class       UnsafeGetObject;
   104 class       UnsafePutObject;
   105 class         UnsafeGetAndSetObject;
   106 class       UnsafePrefetch;
   107 class         UnsafePrefetchRead;
   108 class         UnsafePrefetchWrite;
   109 class   ProfileCall;
   110 class   ProfileInvoke;
   111 class   RuntimeCall;
   112 class   MemBar;
   114 // A Value is a reference to the instruction creating the value
   115 typedef Instruction* Value;
   116 define_array(ValueArray, Value)
   117 define_stack(Values, ValueArray)
   119 define_array(ValueStackArray, ValueStack*)
   120 define_stack(ValueStackStack, ValueStackArray)
   122 // BlockClosure is the base class for block traversal/iteration.
   124 class BlockClosure: public CompilationResourceObj {
   125  public:
   126   virtual void block_do(BlockBegin* block)       = 0;
   127 };
   130 // A simple closure class for visiting the values of an Instruction
   131 class ValueVisitor: public StackObj {
   132  public:
   133   virtual void visit(Value* v) = 0;
   134 };
   137 // Some array and list classes
   138 define_array(BlockBeginArray, BlockBegin*)
   139 define_stack(_BlockList, BlockBeginArray)
   141 class BlockList: public _BlockList {
   142  public:
   143   BlockList(): _BlockList() {}
   144   BlockList(const int size): _BlockList(size) {}
   145   BlockList(const int size, BlockBegin* init): _BlockList(size, init) {}
   147   void iterate_forward(BlockClosure* closure);
   148   void iterate_backward(BlockClosure* closure);
   149   void blocks_do(void f(BlockBegin*));
   150   void values_do(ValueVisitor* f);
   151   void print(bool cfg_only = false, bool live_only = false) PRODUCT_RETURN;
   152 };
   155 // InstructionVisitors provide type-based dispatch for instructions.
   156 // For each concrete Instruction class X, a virtual function do_X is
   157 // provided. Functionality that needs to be implemented for all classes
   158 // (e.g., printing, code generation) is factored out into a specialised
   159 // visitor instead of added to the Instruction classes itself.
   161 class InstructionVisitor: public StackObj {
   162  public:
   163   virtual void do_Phi            (Phi*             x) = 0;
   164   virtual void do_Local          (Local*           x) = 0;
   165   virtual void do_Constant       (Constant*        x) = 0;
   166   virtual void do_LoadField      (LoadField*       x) = 0;
   167   virtual void do_StoreField     (StoreField*      x) = 0;
   168   virtual void do_ArrayLength    (ArrayLength*     x) = 0;
   169   virtual void do_LoadIndexed    (LoadIndexed*     x) = 0;
   170   virtual void do_StoreIndexed   (StoreIndexed*    x) = 0;
   171   virtual void do_NegateOp       (NegateOp*        x) = 0;
   172   virtual void do_ArithmeticOp   (ArithmeticOp*    x) = 0;
   173   virtual void do_ShiftOp        (ShiftOp*         x) = 0;
   174   virtual void do_LogicOp        (LogicOp*         x) = 0;
   175   virtual void do_CompareOp      (CompareOp*       x) = 0;
   176   virtual void do_IfOp           (IfOp*            x) = 0;
   177   virtual void do_Convert        (Convert*         x) = 0;
   178   virtual void do_NullCheck      (NullCheck*       x) = 0;
   179   virtual void do_TypeCast       (TypeCast*        x) = 0;
   180   virtual void do_Invoke         (Invoke*          x) = 0;
   181   virtual void do_NewInstance    (NewInstance*     x) = 0;
   182   virtual void do_NewTypeArray   (NewTypeArray*    x) = 0;
   183   virtual void do_NewObjectArray (NewObjectArray*  x) = 0;
   184   virtual void do_NewMultiArray  (NewMultiArray*   x) = 0;
   185   virtual void do_CheckCast      (CheckCast*       x) = 0;
   186   virtual void do_InstanceOf     (InstanceOf*      x) = 0;
   187   virtual void do_MonitorEnter   (MonitorEnter*    x) = 0;
   188   virtual void do_MonitorExit    (MonitorExit*     x) = 0;
   189   virtual void do_Intrinsic      (Intrinsic*       x) = 0;
   190   virtual void do_BlockBegin     (BlockBegin*      x) = 0;
   191   virtual void do_Goto           (Goto*            x) = 0;
   192   virtual void do_If             (If*              x) = 0;
   193   virtual void do_IfInstanceOf   (IfInstanceOf*    x) = 0;
   194   virtual void do_TableSwitch    (TableSwitch*     x) = 0;
   195   virtual void do_LookupSwitch   (LookupSwitch*    x) = 0;
   196   virtual void do_Return         (Return*          x) = 0;
   197   virtual void do_Throw          (Throw*           x) = 0;
   198   virtual void do_Base           (Base*            x) = 0;
   199   virtual void do_OsrEntry       (OsrEntry*        x) = 0;
   200   virtual void do_ExceptionObject(ExceptionObject* x) = 0;
   201   virtual void do_RoundFP        (RoundFP*         x) = 0;
   202   virtual void do_UnsafeGetRaw   (UnsafeGetRaw*    x) = 0;
   203   virtual void do_UnsafePutRaw   (UnsafePutRaw*    x) = 0;
   204   virtual void do_UnsafeGetObject(UnsafeGetObject* x) = 0;
   205   virtual void do_UnsafePutObject(UnsafePutObject* x) = 0;
   206   virtual void do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) = 0;
   207   virtual void do_UnsafePrefetchRead (UnsafePrefetchRead*  x) = 0;
   208   virtual void do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) = 0;
   209   virtual void do_ProfileCall    (ProfileCall*     x) = 0;
   210   virtual void do_ProfileInvoke  (ProfileInvoke*   x) = 0;
   211   virtual void do_RuntimeCall    (RuntimeCall*     x) = 0;
   212   virtual void do_MemBar         (MemBar*          x) = 0;
   213 };
   216 // Hashing support
   217 //
   218 // Note: This hash functions affect the performance
   219 //       of ValueMap - make changes carefully!
   221 #define HASH1(x1            )                    ((intx)(x1))
   222 #define HASH2(x1, x2        )                    ((HASH1(x1        ) << 7) ^ HASH1(x2))
   223 #define HASH3(x1, x2, x3    )                    ((HASH2(x1, x2    ) << 7) ^ HASH1(x3))
   224 #define HASH4(x1, x2, x3, x4)                    ((HASH3(x1, x2, x3) << 7) ^ HASH1(x4))
   227 // The following macros are used to implement instruction-specific hashing.
   228 // By default, each instruction implements hash() and is_equal(Value), used
   229 // for value numbering/common subexpression elimination. The default imple-
   230 // mentation disables value numbering. Each instruction which can be value-
   231 // numbered, should define corresponding hash() and is_equal(Value) functions
   232 // via the macros below. The f arguments specify all the values/op codes, etc.
   233 // that need to be identical for two instructions to be identical.
   234 //
   235 // Note: The default implementation of hash() returns 0 in order to indicate
   236 //       that the instruction should not be considered for value numbering.
   237 //       The currently used hash functions do not guarantee that never a 0
   238 //       is produced. While this is still correct, it may be a performance
   239 //       bug (no value numbering for that node). However, this situation is
   240 //       so unlikely, that we are not going to handle it specially.
   242 #define HASHING1(class_name, enabled, f1)             \
   243   virtual intx hash() const {                         \
   244     return (enabled) ? HASH2(name(), f1) : 0;         \
   245   }                                                   \
   246   virtual bool is_equal(Value v) const {              \
   247     if (!(enabled)  ) return false;                   \
   248     class_name* _v = v->as_##class_name();            \
   249     if (_v == NULL  ) return false;                   \
   250     if (f1 != _v->f1) return false;                   \
   251     return true;                                      \
   252   }                                                   \
   255 #define HASHING2(class_name, enabled, f1, f2)         \
   256   virtual intx hash() const {                         \
   257     return (enabled) ? HASH3(name(), f1, f2) : 0;     \
   258   }                                                   \
   259   virtual bool is_equal(Value v) const {              \
   260     if (!(enabled)  ) return false;                   \
   261     class_name* _v = v->as_##class_name();            \
   262     if (_v == NULL  ) return false;                   \
   263     if (f1 != _v->f1) return false;                   \
   264     if (f2 != _v->f2) return false;                   \
   265     return true;                                      \
   266   }                                                   \
   269 #define HASHING3(class_name, enabled, f1, f2, f3)     \
   270   virtual intx hash() const {                          \
   271     return (enabled) ? HASH4(name(), f1, f2, f3) : 0; \
   272   }                                                   \
   273   virtual bool is_equal(Value v) const {              \
   274     if (!(enabled)  ) return false;                   \
   275     class_name* _v = v->as_##class_name();            \
   276     if (_v == NULL  ) return false;                   \
   277     if (f1 != _v->f1) return false;                   \
   278     if (f2 != _v->f2) return false;                   \
   279     if (f3 != _v->f3) return false;                   \
   280     return true;                                      \
   281   }                                                   \
   284 // The mother of all instructions...
   286 class Instruction: public CompilationResourceObj {
   287  private:
   288   int          _id;                              // the unique instruction id
   289 #ifndef PRODUCT
   290   int          _printable_bci;                   // the bci of the instruction for printing
   291 #endif
   292   int          _use_count;                       // the number of instructions refering to this value (w/o prev/next); only roots can have use count = 0 or > 1
   293   int          _pin_state;                       // set of PinReason describing the reason for pinning
   294   ValueType*   _type;                            // the instruction value type
   295   Instruction* _next;                            // the next instruction if any (NULL for BlockEnd instructions)
   296   Instruction* _subst;                           // the substitution instruction if any
   297   LIR_Opr      _operand;                         // LIR specific information
   298   unsigned int _flags;                           // Flag bits
   300   ValueStack*  _state_before;                    // Copy of state with input operands still on stack (or NULL)
   301   ValueStack*  _exception_state;                 // Copy of state for exception handling
   302   XHandlers*   _exception_handlers;              // Flat list of exception handlers covering this instruction
   304   friend class UseCountComputer;
   305   friend class BlockBegin;
   307   void update_exception_state(ValueStack* state);
   309  //protected:
   310  public:
   311   void set_type(ValueType* type) {
   312     assert(type != NULL, "type must exist");
   313     _type = type;
   314   }
   316  public:
   317   void* operator new(size_t size) {
   318     Compilation* c = Compilation::current();
   319     void* res = c->arena()->Amalloc(size);
   320     ((Instruction*)res)->_id = c->get_next_id();
   321     return res;
   322   }
   324   static const int no_bci = -99;
   326   enum InstructionFlag {
   327     NeedsNullCheckFlag = 0,
   328     CanTrapFlag,
   329     DirectCompareFlag,
   330     IsEliminatedFlag,
   331     IsSafepointFlag,
   332     IsStaticFlag,
   333     IsStrictfpFlag,
   334     NeedsStoreCheckFlag,
   335     NeedsWriteBarrierFlag,
   336     PreservesStateFlag,
   337     TargetIsFinalFlag,
   338     TargetIsLoadedFlag,
   339     TargetIsStrictfpFlag,
   340     UnorderedIsTrueFlag,
   341     NeedsPatchingFlag,
   342     ThrowIncompatibleClassChangeErrorFlag,
   343     ProfileMDOFlag,
   344     IsLinkedInBlockFlag,
   345     InstructionLastFlag
   346   };
   348  public:
   349   bool check_flag(InstructionFlag id) const      { return (_flags & (1 << id)) != 0;    }
   350   void set_flag(InstructionFlag id, bool f)      { _flags = f ? (_flags | (1 << id)) : (_flags & ~(1 << id)); };
   352   // 'globally' used condition values
   353   enum Condition {
   354     eql, neq, lss, leq, gtr, geq
   355   };
   357   // Instructions may be pinned for many reasons and under certain conditions
   358   // with enough knowledge it's possible to safely unpin them.
   359   enum PinReason {
   360       PinUnknown           = 1 << 0
   361     , PinExplicitNullCheck = 1 << 3
   362     , PinStackForStateSplit= 1 << 12
   363     , PinStateSplitConstructor= 1 << 13
   364     , PinGlobalValueNumbering= 1 << 14
   365   };
   367   static Condition mirror(Condition cond);
   368   static Condition negate(Condition cond);
   370   // initialization
   371   static int number_of_instructions() {
   372     return Compilation::current()->number_of_instructions();
   373   }
   375   // creation
   376   Instruction(ValueType* type, ValueStack* state_before = NULL, bool type_is_constant = false)
   377   : _use_count(0)
   378 #ifndef PRODUCT
   379   , _printable_bci(-99)
   380 #endif
   381   , _pin_state(0)
   382   , _type(type)
   383   , _next(NULL)
   384   , _subst(NULL)
   385   , _flags(0)
   386   , _operand(LIR_OprFact::illegalOpr)
   387   , _state_before(state_before)
   388   , _exception_handlers(NULL)
   389   {
   390     check_state(state_before);
   391     assert(type != NULL && (!type->is_constant() || type_is_constant), "type must exist");
   392     update_exception_state(_state_before);
   393   }
   395   // accessors
   396   int id() const                                 { return _id; }
   397 #ifndef PRODUCT
   398   bool has_printable_bci() const                 { return _printable_bci != -99; }
   399   int printable_bci() const                      { assert(has_printable_bci(), "_printable_bci should have been set"); return _printable_bci; }
   400   void set_printable_bci(int bci)                { _printable_bci = bci; }
   401 #endif
   402   int use_count() const                          { return _use_count; }
   403   int pin_state() const                          { return _pin_state; }
   404   bool is_pinned() const                         { return _pin_state != 0 || PinAllInstructions; }
   405   ValueType* type() const                        { return _type; }
   406   Instruction* prev(BlockBegin* block);          // use carefully, expensive operation
   407   Instruction* next() const                      { return _next; }
   408   bool has_subst() const                         { return _subst != NULL; }
   409   Instruction* subst()                           { return _subst == NULL ? this : _subst->subst(); }
   410   LIR_Opr operand() const                        { return _operand; }
   412   void set_needs_null_check(bool f)              { set_flag(NeedsNullCheckFlag, f); }
   413   bool needs_null_check() const                  { return check_flag(NeedsNullCheckFlag); }
   414   bool is_linked() const                         { return check_flag(IsLinkedInBlockFlag); }
   415   bool can_be_linked()                           { return as_Local() == NULL && as_Phi() == NULL; }
   417   bool has_uses() const                          { return use_count() > 0; }
   418   ValueStack* state_before() const               { return _state_before; }
   419   ValueStack* exception_state() const            { return _exception_state; }
   420   virtual bool needs_exception_state() const     { return true; }
   421   XHandlers* exception_handlers() const          { return _exception_handlers; }
   423   // manipulation
   424   void pin(PinReason reason)                     { _pin_state |= reason; }
   425   void pin()                                     { _pin_state |= PinUnknown; }
   426   // DANGEROUS: only used by EliminateStores
   427   void unpin(PinReason reason)                   { assert((reason & PinUnknown) == 0, "can't unpin unknown state"); _pin_state &= ~reason; }
   429   Instruction* set_next(Instruction* next) {
   430     assert(next->has_printable_bci(), "_printable_bci should have been set");
   431     assert(next != NULL, "must not be NULL");
   432     assert(as_BlockEnd() == NULL, "BlockEnd instructions must have no next");
   433     assert(next->can_be_linked(), "shouldn't link these instructions into list");
   435     next->set_flag(Instruction::IsLinkedInBlockFlag, true);
   436     _next = next;
   437     return next;
   438   }
   440   Instruction* set_next(Instruction* next, int bci) {
   441 #ifndef PRODUCT
   442     next->set_printable_bci(bci);
   443 #endif
   444     return set_next(next);
   445   }
   447   void set_subst(Instruction* subst)             {
   448     assert(subst == NULL ||
   449            type()->base() == subst->type()->base() ||
   450            subst->type()->base() == illegalType, "type can't change");
   451     _subst = subst;
   452   }
   453   void set_exception_handlers(XHandlers *xhandlers) { _exception_handlers = xhandlers; }
   454   void set_exception_state(ValueStack* s)        { check_state(s); _exception_state = s; }
   456   // machine-specifics
   457   void set_operand(LIR_Opr operand)              { assert(operand != LIR_OprFact::illegalOpr, "operand must exist"); _operand = operand; }
   458   void clear_operand()                           { _operand = LIR_OprFact::illegalOpr; }
   460   // generic
   461   virtual Instruction*      as_Instruction()     { return this; } // to satisfy HASHING1 macro
   462   virtual Phi*              as_Phi()             { return NULL; }
   463   virtual Local*            as_Local()           { return NULL; }
   464   virtual Constant*         as_Constant()        { return NULL; }
   465   virtual AccessField*      as_AccessField()     { return NULL; }
   466   virtual LoadField*        as_LoadField()       { return NULL; }
   467   virtual StoreField*       as_StoreField()      { return NULL; }
   468   virtual AccessArray*      as_AccessArray()     { return NULL; }
   469   virtual ArrayLength*      as_ArrayLength()     { return NULL; }
   470   virtual AccessIndexed*    as_AccessIndexed()   { return NULL; }
   471   virtual LoadIndexed*      as_LoadIndexed()     { return NULL; }
   472   virtual StoreIndexed*     as_StoreIndexed()    { return NULL; }
   473   virtual NegateOp*         as_NegateOp()        { return NULL; }
   474   virtual Op2*              as_Op2()             { return NULL; }
   475   virtual ArithmeticOp*     as_ArithmeticOp()    { return NULL; }
   476   virtual ShiftOp*          as_ShiftOp()         { return NULL; }
   477   virtual LogicOp*          as_LogicOp()         { return NULL; }
   478   virtual CompareOp*        as_CompareOp()       { return NULL; }
   479   virtual IfOp*             as_IfOp()            { return NULL; }
   480   virtual Convert*          as_Convert()         { return NULL; }
   481   virtual NullCheck*        as_NullCheck()       { return NULL; }
   482   virtual OsrEntry*         as_OsrEntry()        { return NULL; }
   483   virtual StateSplit*       as_StateSplit()      { return NULL; }
   484   virtual Invoke*           as_Invoke()          { return NULL; }
   485   virtual NewInstance*      as_NewInstance()     { return NULL; }
   486   virtual NewArray*         as_NewArray()        { return NULL; }
   487   virtual NewTypeArray*     as_NewTypeArray()    { return NULL; }
   488   virtual NewObjectArray*   as_NewObjectArray()  { return NULL; }
   489   virtual NewMultiArray*    as_NewMultiArray()   { return NULL; }
   490   virtual TypeCheck*        as_TypeCheck()       { return NULL; }
   491   virtual CheckCast*        as_CheckCast()       { return NULL; }
   492   virtual InstanceOf*       as_InstanceOf()      { return NULL; }
   493   virtual TypeCast*         as_TypeCast()        { return NULL; }
   494   virtual AccessMonitor*    as_AccessMonitor()   { return NULL; }
   495   virtual MonitorEnter*     as_MonitorEnter()    { return NULL; }
   496   virtual MonitorExit*      as_MonitorExit()     { return NULL; }
   497   virtual Intrinsic*        as_Intrinsic()       { return NULL; }
   498   virtual BlockBegin*       as_BlockBegin()      { return NULL; }
   499   virtual BlockEnd*         as_BlockEnd()        { return NULL; }
   500   virtual Goto*             as_Goto()            { return NULL; }
   501   virtual If*               as_If()              { return NULL; }
   502   virtual IfInstanceOf*     as_IfInstanceOf()    { return NULL; }
   503   virtual TableSwitch*      as_TableSwitch()     { return NULL; }
   504   virtual LookupSwitch*     as_LookupSwitch()    { return NULL; }
   505   virtual Return*           as_Return()          { return NULL; }
   506   virtual Throw*            as_Throw()           { return NULL; }
   507   virtual Base*             as_Base()            { return NULL; }
   508   virtual RoundFP*          as_RoundFP()         { return NULL; }
   509   virtual ExceptionObject*  as_ExceptionObject() { return NULL; }
   510   virtual UnsafeOp*         as_UnsafeOp()        { return NULL; }
   511   virtual ProfileInvoke*    as_ProfileInvoke()   { return NULL; }
   513   virtual void visit(InstructionVisitor* v)      = 0;
   515   virtual bool can_trap() const                  { return false; }
   517   virtual void input_values_do(ValueVisitor* f)   = 0;
   518   virtual void state_values_do(ValueVisitor* f);
   519   virtual void other_values_do(ValueVisitor* f)   { /* usually no other - override on demand */ }
   520           void       values_do(ValueVisitor* f)   { input_values_do(f); state_values_do(f); other_values_do(f); }
   522   virtual ciType* exact_type() const             { return NULL; }
   523   virtual ciType* declared_type() const          { return NULL; }
   525   // hashing
   526   virtual const char* name() const               = 0;
   527   HASHING1(Instruction, false, id())             // hashing disabled by default
   529   // debugging
   530   static void check_state(ValueStack* state)     PRODUCT_RETURN;
   531   void print()                                   PRODUCT_RETURN;
   532   void print_line()                              PRODUCT_RETURN;
   533   void print(InstructionPrinter& ip)             PRODUCT_RETURN;
   534 };
   537 // The following macros are used to define base (i.e., non-leaf)
   538 // and leaf instruction classes. They define class-name related
   539 // generic functionality in one place.
   541 #define BASE(class_name, super_class_name)       \
   542   class class_name: public super_class_name {    \
   543    public:                                       \
   544     virtual class_name* as_##class_name()        { return this; }              \
   547 #define LEAF(class_name, super_class_name)       \
   548   BASE(class_name, super_class_name)             \
   549    public:                                       \
   550     virtual const char* name() const             { return #class_name; }       \
   551     virtual void visit(InstructionVisitor* v)    { v->do_##class_name(this); } \
   554 // Debugging support
   557 #ifdef ASSERT
   558 class AssertValues: public ValueVisitor {
   559   void visit(Value* x)             { assert((*x) != NULL, "value must exist"); }
   560 };
   561   #define ASSERT_VALUES                          { AssertValues assert_value; values_do(&assert_value); }
   562 #else
   563   #define ASSERT_VALUES
   564 #endif // ASSERT
   567 // A Phi is a phi function in the sense of SSA form. It stands for
   568 // the value of a local variable at the beginning of a join block.
   569 // A Phi consists of n operands, one for every incoming branch.
   571 LEAF(Phi, Instruction)
   572  private:
   573   BlockBegin* _block;    // the block to which the phi function belongs
   574   int         _pf_flags; // the flags of the phi function
   575   int         _index;    // to value on operand stack (index < 0) or to local
   576  public:
   577   // creation
   578   Phi(ValueType* type, BlockBegin* b, int index)
   579   : Instruction(type->base())
   580   , _pf_flags(0)
   581   , _block(b)
   582   , _index(index)
   583   {
   584     NOT_PRODUCT(set_printable_bci(Value(b)->printable_bci()));
   585     if (type->is_illegal()) {
   586       make_illegal();
   587     }
   588   }
   590   // flags
   591   enum Flag {
   592     no_flag         = 0,
   593     visited         = 1 << 0,
   594     cannot_simplify = 1 << 1
   595   };
   597   // accessors
   598   bool  is_local() const          { return _index >= 0; }
   599   bool  is_on_stack() const       { return !is_local(); }
   600   int   local_index() const       { assert(is_local(), ""); return _index; }
   601   int   stack_index() const       { assert(is_on_stack(), ""); return -(_index+1); }
   603   Value operand_at(int i) const;
   604   int   operand_count() const;
   606   BlockBegin* block() const       { return _block; }
   608   void   set(Flag f)              { _pf_flags |=  f; }
   609   void   clear(Flag f)            { _pf_flags &= ~f; }
   610   bool   is_set(Flag f) const     { return (_pf_flags & f) != 0; }
   612   // Invalidates phis corresponding to merges of locals of two different types
   613   // (these should never be referenced, otherwise the bytecodes are illegal)
   614   void   make_illegal() {
   615     set(cannot_simplify);
   616     set_type(illegalType);
   617   }
   619   bool is_illegal() const {
   620     return type()->is_illegal();
   621   }
   623   // generic
   624   virtual void input_values_do(ValueVisitor* f) {
   625   }
   626 };
   629 // A local is a placeholder for an incoming argument to a function call.
   630 LEAF(Local, Instruction)
   631  private:
   632   int      _java_index;                          // the local index within the method to which the local belongs
   633   ciType*  _declared_type;
   634  public:
   635   // creation
   636   Local(ciType* declared, ValueType* type, int index)
   637     : Instruction(type)
   638     , _java_index(index)
   639     , _declared_type(declared)
   640   {
   641     NOT_PRODUCT(set_printable_bci(-1));
   642   }
   644   // accessors
   645   int java_index() const                         { return _java_index; }
   647   virtual ciType* declared_type() const          { return _declared_type; }
   648   virtual ciType* exact_type() const;
   650   // generic
   651   virtual void input_values_do(ValueVisitor* f)   { /* no values */ }
   652 };
   655 LEAF(Constant, Instruction)
   656  public:
   657   // creation
   658   Constant(ValueType* type):
   659       Instruction(type, NULL, /*type_is_constant*/ true)
   660   {
   661     assert(type->is_constant(), "must be a constant");
   662   }
   664   Constant(ValueType* type, ValueStack* state_before):
   665     Instruction(type, state_before, /*type_is_constant*/ true)
   666   {
   667     assert(state_before != NULL, "only used for constants which need patching");
   668     assert(type->is_constant(), "must be a constant");
   669     // since it's patching it needs to be pinned
   670     pin();
   671   }
   673   virtual bool can_trap() const                  { return state_before() != NULL; }
   674   virtual void input_values_do(ValueVisitor* f)   { /* no values */ }
   676   virtual intx hash() const;
   677   virtual bool is_equal(Value v) const;
   679   virtual ciType* exact_type() const;
   681   enum CompareResult { not_comparable = -1, cond_false, cond_true };
   683   virtual CompareResult compare(Instruction::Condition condition, Value right) const;
   684   BlockBegin* compare(Instruction::Condition cond, Value right,
   685                       BlockBegin* true_sux, BlockBegin* false_sux) const {
   686     switch (compare(cond, right)) {
   687     case not_comparable:
   688       return NULL;
   689     case cond_false:
   690       return false_sux;
   691     case cond_true:
   692       return true_sux;
   693     default:
   694       ShouldNotReachHere();
   695       return NULL;
   696     }
   697   }
   698 };
   701 BASE(AccessField, Instruction)
   702  private:
   703   Value       _obj;
   704   int         _offset;
   705   ciField*    _field;
   706   NullCheck*  _explicit_null_check;              // For explicit null check elimination
   708  public:
   709   // creation
   710   AccessField(Value obj, int offset, ciField* field, bool is_static,
   711               ValueStack* state_before, bool needs_patching)
   712   : Instruction(as_ValueType(field->type()->basic_type()), state_before)
   713   , _obj(obj)
   714   , _offset(offset)
   715   , _field(field)
   716   , _explicit_null_check(NULL)
   717   {
   718     set_needs_null_check(!is_static);
   719     set_flag(IsStaticFlag, is_static);
   720     set_flag(NeedsPatchingFlag, needs_patching);
   721     ASSERT_VALUES
   722     // pin of all instructions with memory access
   723     pin();
   724   }
   726   // accessors
   727   Value obj() const                              { return _obj; }
   728   int offset() const                             { return _offset; }
   729   ciField* field() const                         { return _field; }
   730   BasicType field_type() const                   { return _field->type()->basic_type(); }
   731   bool is_static() const                         { return check_flag(IsStaticFlag); }
   732   NullCheck* explicit_null_check() const         { return _explicit_null_check; }
   733   bool needs_patching() const                    { return check_flag(NeedsPatchingFlag); }
   735   // Unresolved getstatic and putstatic can cause initialization.
   736   // Technically it occurs at the Constant that materializes the base
   737   // of the static fields but it's simpler to model it here.
   738   bool is_init_point() const                     { return is_static() && (needs_patching() || !_field->holder()->is_initialized()); }
   740   // manipulation
   742   // Under certain circumstances, if a previous NullCheck instruction
   743   // proved the target object non-null, we can eliminate the explicit
   744   // null check and do an implicit one, simply specifying the debug
   745   // information from the NullCheck. This field should only be consulted
   746   // if needs_null_check() is true.
   747   void set_explicit_null_check(NullCheck* check) { _explicit_null_check = check; }
   749   // generic
   750   virtual bool can_trap() const                  { return needs_null_check() || needs_patching(); }
   751   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_obj); }
   752 };
   755 LEAF(LoadField, AccessField)
   756  public:
   757   // creation
   758   LoadField(Value obj, int offset, ciField* field, bool is_static,
   759             ValueStack* state_before, bool needs_patching)
   760   : AccessField(obj, offset, field, is_static, state_before, needs_patching)
   761   {}
   763   ciType* declared_type() const;
   764   ciType* exact_type() const;
   766   // generic
   767   HASHING2(LoadField, !needs_patching() && !field()->is_volatile(), obj()->subst(), offset())  // cannot be eliminated if needs patching or if volatile
   768 };
   771 LEAF(StoreField, AccessField)
   772  private:
   773   Value _value;
   775  public:
   776   // creation
   777   StoreField(Value obj, int offset, ciField* field, Value value, bool is_static,
   778              ValueStack* state_before, bool needs_patching)
   779   : AccessField(obj, offset, field, is_static, state_before, needs_patching)
   780   , _value(value)
   781   {
   782     set_flag(NeedsWriteBarrierFlag, as_ValueType(field_type())->is_object());
   783     ASSERT_VALUES
   784     pin();
   785   }
   787   // accessors
   788   Value value() const                            { return _value; }
   789   bool needs_write_barrier() const               { return check_flag(NeedsWriteBarrierFlag); }
   791   // generic
   792   virtual void input_values_do(ValueVisitor* f)   { AccessField::input_values_do(f); f->visit(&_value); }
   793 };
   796 BASE(AccessArray, Instruction)
   797  private:
   798   Value       _array;
   800  public:
   801   // creation
   802   AccessArray(ValueType* type, Value array, ValueStack* state_before)
   803   : Instruction(type, state_before)
   804   , _array(array)
   805   {
   806     set_needs_null_check(true);
   807     ASSERT_VALUES
   808     pin(); // instruction with side effect (null exception or range check throwing)
   809   }
   811   Value array() const                            { return _array; }
   813   // generic
   814   virtual bool can_trap() const                  { return needs_null_check(); }
   815   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_array); }
   816 };
   819 LEAF(ArrayLength, AccessArray)
   820  private:
   821   NullCheck*  _explicit_null_check;              // For explicit null check elimination
   823  public:
   824   // creation
   825   ArrayLength(Value array, ValueStack* state_before)
   826   : AccessArray(intType, array, state_before)
   827   , _explicit_null_check(NULL) {}
   829   // accessors
   830   NullCheck* explicit_null_check() const         { return _explicit_null_check; }
   832   // setters
   833   // See LoadField::set_explicit_null_check for documentation
   834   void set_explicit_null_check(NullCheck* check) { _explicit_null_check = check; }
   836   // generic
   837   HASHING1(ArrayLength, true, array()->subst())
   838 };
   841 BASE(AccessIndexed, AccessArray)
   842  private:
   843   Value     _index;
   844   Value     _length;
   845   BasicType _elt_type;
   847  public:
   848   // creation
   849   AccessIndexed(Value array, Value index, Value length, BasicType elt_type, ValueStack* state_before)
   850   : AccessArray(as_ValueType(elt_type), array, state_before)
   851   , _index(index)
   852   , _length(length)
   853   , _elt_type(elt_type)
   854   {
   855     ASSERT_VALUES
   856   }
   858   // accessors
   859   Value index() const                            { return _index; }
   860   Value length() const                           { return _length; }
   861   BasicType elt_type() const                     { return _elt_type; }
   863   // perform elimination of range checks involving constants
   864   bool compute_needs_range_check();
   866   // generic
   867   virtual void input_values_do(ValueVisitor* f)   { AccessArray::input_values_do(f); f->visit(&_index); if (_length != NULL) f->visit(&_length); }
   868 };
   871 LEAF(LoadIndexed, AccessIndexed)
   872  private:
   873   NullCheck*  _explicit_null_check;              // For explicit null check elimination
   875  public:
   876   // creation
   877   LoadIndexed(Value array, Value index, Value length, BasicType elt_type, ValueStack* state_before)
   878   : AccessIndexed(array, index, length, elt_type, state_before)
   879   , _explicit_null_check(NULL) {}
   881   // accessors
   882   NullCheck* explicit_null_check() const         { return _explicit_null_check; }
   884   // setters
   885   // See LoadField::set_explicit_null_check for documentation
   886   void set_explicit_null_check(NullCheck* check) { _explicit_null_check = check; }
   888   ciType* exact_type() const;
   889   ciType* declared_type() const;
   891   // generic
   892   HASHING2(LoadIndexed, true, array()->subst(), index()->subst())
   893 };
   896 LEAF(StoreIndexed, AccessIndexed)
   897  private:
   898   Value       _value;
   900   ciMethod* _profiled_method;
   901   int       _profiled_bci;
   902  public:
   903   // creation
   904   StoreIndexed(Value array, Value index, Value length, BasicType elt_type, Value value, ValueStack* state_before)
   905   : AccessIndexed(array, index, length, elt_type, state_before)
   906   , _value(value), _profiled_method(NULL), _profiled_bci(0)
   907   {
   908     set_flag(NeedsWriteBarrierFlag, (as_ValueType(elt_type)->is_object()));
   909     set_flag(NeedsStoreCheckFlag, (as_ValueType(elt_type)->is_object()));
   910     ASSERT_VALUES
   911     pin();
   912   }
   914   // accessors
   915   Value value() const                            { return _value; }
   916   bool needs_write_barrier() const               { return check_flag(NeedsWriteBarrierFlag); }
   917   bool needs_store_check() const                 { return check_flag(NeedsStoreCheckFlag); }
   918   // Helpers for MethodData* profiling
   919   void set_should_profile(bool value)                { set_flag(ProfileMDOFlag, value); }
   920   void set_profiled_method(ciMethod* method)         { _profiled_method = method;   }
   921   void set_profiled_bci(int bci)                     { _profiled_bci = bci;         }
   922   bool      should_profile() const                   { return check_flag(ProfileMDOFlag); }
   923   ciMethod* profiled_method() const                  { return _profiled_method;     }
   924   int       profiled_bci() const                     { return _profiled_bci;        }
   925   // generic
   926   virtual void input_values_do(ValueVisitor* f)   { AccessIndexed::input_values_do(f); f->visit(&_value); }
   927 };
   930 LEAF(NegateOp, Instruction)
   931  private:
   932   Value _x;
   934  public:
   935   // creation
   936   NegateOp(Value x) : Instruction(x->type()->base()), _x(x) {
   937     ASSERT_VALUES
   938   }
   940   // accessors
   941   Value x() const                                { return _x; }
   943   // generic
   944   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_x); }
   945 };
   948 BASE(Op2, Instruction)
   949  private:
   950   Bytecodes::Code _op;
   951   Value           _x;
   952   Value           _y;
   954  public:
   955   // creation
   956   Op2(ValueType* type, Bytecodes::Code op, Value x, Value y, ValueStack* state_before = NULL)
   957   : Instruction(type, state_before)
   958   , _op(op)
   959   , _x(x)
   960   , _y(y)
   961   {
   962     ASSERT_VALUES
   963   }
   965   // accessors
   966   Bytecodes::Code op() const                     { return _op; }
   967   Value x() const                                { return _x; }
   968   Value y() const                                { return _y; }
   970   // manipulators
   971   void swap_operands() {
   972     assert(is_commutative(), "operation must be commutative");
   973     Value t = _x; _x = _y; _y = t;
   974   }
   976   // generic
   977   virtual bool is_commutative() const            { return false; }
   978   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_x); f->visit(&_y); }
   979 };
   982 LEAF(ArithmeticOp, Op2)
   983  public:
   984   // creation
   985   ArithmeticOp(Bytecodes::Code op, Value x, Value y, bool is_strictfp, ValueStack* state_before)
   986   : Op2(x->type()->meet(y->type()), op, x, y, state_before)
   987   {
   988     set_flag(IsStrictfpFlag, is_strictfp);
   989     if (can_trap()) pin();
   990   }
   992   // accessors
   993   bool        is_strictfp() const                { return check_flag(IsStrictfpFlag); }
   995   // generic
   996   virtual bool is_commutative() const;
   997   virtual bool can_trap() const;
   998   HASHING3(Op2, true, op(), x()->subst(), y()->subst())
   999 };
  1002 LEAF(ShiftOp, Op2)
  1003  public:
  1004   // creation
  1005   ShiftOp(Bytecodes::Code op, Value x, Value s) : Op2(x->type()->base(), op, x, s) {}
  1007   // generic
  1008   HASHING3(Op2, true, op(), x()->subst(), y()->subst())
  1009 };
  1012 LEAF(LogicOp, Op2)
  1013  public:
  1014   // creation
  1015   LogicOp(Bytecodes::Code op, Value x, Value y) : Op2(x->type()->meet(y->type()), op, x, y) {}
  1017   // generic
  1018   virtual bool is_commutative() const;
  1019   HASHING3(Op2, true, op(), x()->subst(), y()->subst())
  1020 };
  1023 LEAF(CompareOp, Op2)
  1024  public:
  1025   // creation
  1026   CompareOp(Bytecodes::Code op, Value x, Value y, ValueStack* state_before)
  1027   : Op2(intType, op, x, y, state_before)
  1028   {}
  1030   // generic
  1031   HASHING3(Op2, true, op(), x()->subst(), y()->subst())
  1032 };
  1035 LEAF(IfOp, Op2)
  1036  private:
  1037   Value _tval;
  1038   Value _fval;
  1040  public:
  1041   // creation
  1042   IfOp(Value x, Condition cond, Value y, Value tval, Value fval)
  1043   : Op2(tval->type()->meet(fval->type()), (Bytecodes::Code)cond, x, y)
  1044   , _tval(tval)
  1045   , _fval(fval)
  1047     ASSERT_VALUES
  1048     assert(tval->type()->tag() == fval->type()->tag(), "types must match");
  1051   // accessors
  1052   virtual bool is_commutative() const;
  1053   Bytecodes::Code op() const                     { ShouldNotCallThis(); return Bytecodes::_illegal; }
  1054   Condition cond() const                         { return (Condition)Op2::op(); }
  1055   Value tval() const                             { return _tval; }
  1056   Value fval() const                             { return _fval; }
  1058   // generic
  1059   virtual void input_values_do(ValueVisitor* f)   { Op2::input_values_do(f); f->visit(&_tval); f->visit(&_fval); }
  1060 };
  1063 LEAF(Convert, Instruction)
  1064  private:
  1065   Bytecodes::Code _op;
  1066   Value           _value;
  1068  public:
  1069   // creation
  1070   Convert(Bytecodes::Code op, Value value, ValueType* to_type) : Instruction(to_type), _op(op), _value(value) {
  1071     ASSERT_VALUES
  1074   // accessors
  1075   Bytecodes::Code op() const                     { return _op; }
  1076   Value value() const                            { return _value; }
  1078   // generic
  1079   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_value); }
  1080   HASHING2(Convert, true, op(), value()->subst())
  1081 };
  1084 LEAF(NullCheck, Instruction)
  1085  private:
  1086   Value       _obj;
  1088  public:
  1089   // creation
  1090   NullCheck(Value obj, ValueStack* state_before)
  1091   : Instruction(obj->type()->base(), state_before)
  1092   , _obj(obj)
  1094     ASSERT_VALUES
  1095     set_can_trap(true);
  1096     assert(_obj->type()->is_object(), "null check must be applied to objects only");
  1097     pin(Instruction::PinExplicitNullCheck);
  1100   // accessors
  1101   Value obj() const                              { return _obj; }
  1103   // setters
  1104   void set_can_trap(bool can_trap)               { set_flag(CanTrapFlag, can_trap); }
  1106   // generic
  1107   virtual bool can_trap() const                  { return check_flag(CanTrapFlag); /* null-check elimination sets to false */ }
  1108   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_obj); }
  1109   HASHING1(NullCheck, true, obj()->subst())
  1110 };
  1113 // This node is supposed to cast the type of another node to a more precise
  1114 // declared type.
  1115 LEAF(TypeCast, Instruction)
  1116  private:
  1117   ciType* _declared_type;
  1118   Value   _obj;
  1120  public:
  1121   // The type of this node is the same type as the object type (and it might be constant).
  1122   TypeCast(ciType* type, Value obj, ValueStack* state_before)
  1123   : Instruction(obj->type(), state_before, obj->type()->is_constant()),
  1124     _declared_type(type),
  1125     _obj(obj) {}
  1127   // accessors
  1128   ciType* declared_type() const                  { return _declared_type; }
  1129   Value   obj() const                            { return _obj; }
  1131   // generic
  1132   virtual void input_values_do(ValueVisitor* f)  { f->visit(&_obj); }
  1133 };
  1136 BASE(StateSplit, Instruction)
  1137  private:
  1138   ValueStack* _state;
  1140  protected:
  1141   static void substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block);
  1143  public:
  1144   // creation
  1145   StateSplit(ValueType* type, ValueStack* state_before = NULL)
  1146   : Instruction(type, state_before)
  1147   , _state(NULL)
  1149     pin(PinStateSplitConstructor);
  1152   // accessors
  1153   ValueStack* state() const                      { return _state; }
  1154   IRScope* scope() const;                        // the state's scope
  1156   // manipulation
  1157   void set_state(ValueStack* state)              { assert(_state == NULL, "overwriting existing state"); check_state(state); _state = state; }
  1159   // generic
  1160   virtual void input_values_do(ValueVisitor* f)   { /* no values */ }
  1161   virtual void state_values_do(ValueVisitor* f);
  1162 };
  1165 LEAF(Invoke, StateSplit)
  1166  private:
  1167   Bytecodes::Code _code;
  1168   Value           _recv;
  1169   Values*         _args;
  1170   BasicTypeList*  _signature;
  1171   int             _vtable_index;
  1172   ciMethod*       _target;
  1174  public:
  1175   // creation
  1176   Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
  1177          int vtable_index, ciMethod* target, ValueStack* state_before);
  1179   // accessors
  1180   Bytecodes::Code code() const                   { return _code; }
  1181   Value receiver() const                         { return _recv; }
  1182   bool has_receiver() const                      { return receiver() != NULL; }
  1183   int number_of_arguments() const                { return _args->length(); }
  1184   Value argument_at(int i) const                 { return _args->at(i); }
  1185   int vtable_index() const                       { return _vtable_index; }
  1186   BasicTypeList* signature() const               { return _signature; }
  1187   ciMethod* target() const                       { return _target; }
  1189   ciType* declared_type() const;
  1191   // Returns false if target is not loaded
  1192   bool target_is_final() const                   { return check_flag(TargetIsFinalFlag); }
  1193   bool target_is_loaded() const                  { return check_flag(TargetIsLoadedFlag); }
  1194   // Returns false if target is not loaded
  1195   bool target_is_strictfp() const                { return check_flag(TargetIsStrictfpFlag); }
  1197   // JSR 292 support
  1198   bool is_invokedynamic() const                  { return code() == Bytecodes::_invokedynamic; }
  1199   bool is_method_handle_intrinsic() const        { return target()->is_method_handle_intrinsic(); }
  1201   virtual bool needs_exception_state() const     { return false; }
  1203   // generic
  1204   virtual bool can_trap() const                  { return true; }
  1205   virtual void input_values_do(ValueVisitor* f) {
  1206     StateSplit::input_values_do(f);
  1207     if (has_receiver()) f->visit(&_recv);
  1208     for (int i = 0; i < _args->length(); i++) f->visit(_args->adr_at(i));
  1210   virtual void state_values_do(ValueVisitor *f);
  1211 };
  1214 LEAF(NewInstance, StateSplit)
  1215  private:
  1216   ciInstanceKlass* _klass;
  1218  public:
  1219   // creation
  1220   NewInstance(ciInstanceKlass* klass, ValueStack* state_before)
  1221   : StateSplit(instanceType, state_before)
  1222   , _klass(klass)
  1223   {}
  1225   // accessors
  1226   ciInstanceKlass* klass() const                 { return _klass; }
  1228   virtual bool needs_exception_state() const     { return false; }
  1230   // generic
  1231   virtual bool can_trap() const                  { return true; }
  1232   ciType* exact_type() const;
  1233   ciType* declared_type() const;
  1234 };
  1237 BASE(NewArray, StateSplit)
  1238  private:
  1239   Value       _length;
  1241  public:
  1242   // creation
  1243   NewArray(Value length, ValueStack* state_before)
  1244   : StateSplit(objectType, state_before)
  1245   , _length(length)
  1247     // Do not ASSERT_VALUES since length is NULL for NewMultiArray
  1250   // accessors
  1251   Value length() const                           { return _length; }
  1253   virtual bool needs_exception_state() const     { return false; }
  1255   ciType* declared_type() const;
  1257   // generic
  1258   virtual bool can_trap() const                  { return true; }
  1259   virtual void input_values_do(ValueVisitor* f)   { StateSplit::input_values_do(f); f->visit(&_length); }
  1260 };
  1263 LEAF(NewTypeArray, NewArray)
  1264  private:
  1265   BasicType _elt_type;
  1267  public:
  1268   // creation
  1269   NewTypeArray(Value length, BasicType elt_type, ValueStack* state_before)
  1270   : NewArray(length, state_before)
  1271   , _elt_type(elt_type)
  1272   {}
  1274   // accessors
  1275   BasicType elt_type() const                     { return _elt_type; }
  1276   ciType* exact_type() const;
  1277 };
  1280 LEAF(NewObjectArray, NewArray)
  1281  private:
  1282   ciKlass* _klass;
  1284  public:
  1285   // creation
  1286   NewObjectArray(ciKlass* klass, Value length, ValueStack* state_before) : NewArray(length, state_before), _klass(klass) {}
  1288   // accessors
  1289   ciKlass* klass() const                         { return _klass; }
  1290   ciType* exact_type() const;
  1291 };
  1294 LEAF(NewMultiArray, NewArray)
  1295  private:
  1296   ciKlass* _klass;
  1297   Values*  _dims;
  1299  public:
  1300   // creation
  1301   NewMultiArray(ciKlass* klass, Values* dims, ValueStack* state_before) : NewArray(NULL, state_before), _klass(klass), _dims(dims) {
  1302     ASSERT_VALUES
  1305   // accessors
  1306   ciKlass* klass() const                         { return _klass; }
  1307   Values* dims() const                           { return _dims; }
  1308   int rank() const                               { return dims()->length(); }
  1310   // generic
  1311   virtual void input_values_do(ValueVisitor* f) {
  1312     // NOTE: we do not call NewArray::input_values_do since "length"
  1313     // is meaningless for a multi-dimensional array; passing the
  1314     // zeroth element down to NewArray as its length is a bad idea
  1315     // since there will be a copy in the "dims" array which doesn't
  1316     // get updated, and the value must not be traversed twice. Was bug
  1317     // - kbr 4/10/2001
  1318     StateSplit::input_values_do(f);
  1319     for (int i = 0; i < _dims->length(); i++) f->visit(_dims->adr_at(i));
  1321 };
  1324 BASE(TypeCheck, StateSplit)
  1325  private:
  1326   ciKlass*    _klass;
  1327   Value       _obj;
  1329   ciMethod* _profiled_method;
  1330   int       _profiled_bci;
  1332  public:
  1333   // creation
  1334   TypeCheck(ciKlass* klass, Value obj, ValueType* type, ValueStack* state_before)
  1335   : StateSplit(type, state_before), _klass(klass), _obj(obj),
  1336     _profiled_method(NULL), _profiled_bci(0) {
  1337     ASSERT_VALUES
  1338     set_direct_compare(false);
  1341   // accessors
  1342   ciKlass* klass() const                         { return _klass; }
  1343   Value obj() const                              { return _obj; }
  1344   bool is_loaded() const                         { return klass() != NULL; }
  1345   bool direct_compare() const                    { return check_flag(DirectCompareFlag); }
  1347   // manipulation
  1348   void set_direct_compare(bool flag)             { set_flag(DirectCompareFlag, flag); }
  1350   // generic
  1351   virtual bool can_trap() const                  { return true; }
  1352   virtual void input_values_do(ValueVisitor* f)   { StateSplit::input_values_do(f); f->visit(&_obj); }
  1354   // Helpers for MethodData* profiling
  1355   void set_should_profile(bool value)                { set_flag(ProfileMDOFlag, value); }
  1356   void set_profiled_method(ciMethod* method)         { _profiled_method = method;   }
  1357   void set_profiled_bci(int bci)                     { _profiled_bci = bci;         }
  1358   bool      should_profile() const                   { return check_flag(ProfileMDOFlag); }
  1359   ciMethod* profiled_method() const                  { return _profiled_method;     }
  1360   int       profiled_bci() const                     { return _profiled_bci;        }
  1361 };
  1364 LEAF(CheckCast, TypeCheck)
  1365  public:
  1366   // creation
  1367   CheckCast(ciKlass* klass, Value obj, ValueStack* state_before)
  1368   : TypeCheck(klass, obj, objectType, state_before) {}
  1370   void set_incompatible_class_change_check() {
  1371     set_flag(ThrowIncompatibleClassChangeErrorFlag, true);
  1373   bool is_incompatible_class_change_check() const {
  1374     return check_flag(ThrowIncompatibleClassChangeErrorFlag);
  1377   ciType* declared_type() const;
  1378   ciType* exact_type() const;
  1379 };
  1382 LEAF(InstanceOf, TypeCheck)
  1383  public:
  1384   // creation
  1385   InstanceOf(ciKlass* klass, Value obj, ValueStack* state_before) : TypeCheck(klass, obj, intType, state_before) {}
  1387   virtual bool needs_exception_state() const     { return false; }
  1388 };
  1391 BASE(AccessMonitor, StateSplit)
  1392  private:
  1393   Value       _obj;
  1394   int         _monitor_no;
  1396  public:
  1397   // creation
  1398   AccessMonitor(Value obj, int monitor_no, ValueStack* state_before = NULL)
  1399   : StateSplit(illegalType, state_before)
  1400   , _obj(obj)
  1401   , _monitor_no(monitor_no)
  1403     set_needs_null_check(true);
  1404     ASSERT_VALUES
  1407   // accessors
  1408   Value obj() const                              { return _obj; }
  1409   int monitor_no() const                         { return _monitor_no; }
  1411   // generic
  1412   virtual void input_values_do(ValueVisitor* f)   { StateSplit::input_values_do(f); f->visit(&_obj); }
  1413 };
  1416 LEAF(MonitorEnter, AccessMonitor)
  1417  public:
  1418   // creation
  1419   MonitorEnter(Value obj, int monitor_no, ValueStack* state_before)
  1420   : AccessMonitor(obj, monitor_no, state_before)
  1422     ASSERT_VALUES
  1425   // generic
  1426   virtual bool can_trap() const                  { return true; }
  1427 };
  1430 LEAF(MonitorExit, AccessMonitor)
  1431  public:
  1432   // creation
  1433   MonitorExit(Value obj, int monitor_no)
  1434   : AccessMonitor(obj, monitor_no, NULL)
  1436     ASSERT_VALUES
  1438 };
  1441 LEAF(Intrinsic, StateSplit)
  1442  private:
  1443   vmIntrinsics::ID _id;
  1444   Values*          _args;
  1445   Value            _recv;
  1446   int              _nonnull_state; // mask identifying which args are nonnull
  1448  public:
  1449   // preserves_state can be set to true for Intrinsics
  1450   // which are guaranteed to preserve register state across any slow
  1451   // cases; setting it to true does not mean that the Intrinsic can
  1452   // not trap, only that if we continue execution in the same basic
  1453   // block after the Intrinsic, all of the registers are intact. This
  1454   // allows load elimination and common expression elimination to be
  1455   // performed across the Intrinsic.  The default value is false.
  1456   Intrinsic(ValueType* type,
  1457             vmIntrinsics::ID id,
  1458             Values* args,
  1459             bool has_receiver,
  1460             ValueStack* state_before,
  1461             bool preserves_state,
  1462             bool cantrap = true)
  1463   : StateSplit(type, state_before)
  1464   , _id(id)
  1465   , _args(args)
  1466   , _recv(NULL)
  1467   , _nonnull_state(AllBits)
  1469     assert(args != NULL, "args must exist");
  1470     ASSERT_VALUES
  1471     set_flag(PreservesStateFlag, preserves_state);
  1472     set_flag(CanTrapFlag,        cantrap);
  1473     if (has_receiver) {
  1474       _recv = argument_at(0);
  1476     set_needs_null_check(has_receiver);
  1478     // some intrinsics can't trap, so don't force them to be pinned
  1479     if (!can_trap()) {
  1480       unpin(PinStateSplitConstructor);
  1484   // accessors
  1485   vmIntrinsics::ID id() const                    { return _id; }
  1486   int number_of_arguments() const                { return _args->length(); }
  1487   Value argument_at(int i) const                 { return _args->at(i); }
  1489   bool has_receiver() const                      { return (_recv != NULL); }
  1490   Value receiver() const                         { assert(has_receiver(), "must have receiver"); return _recv; }
  1491   bool preserves_state() const                   { return check_flag(PreservesStateFlag); }
  1493   bool arg_needs_null_check(int i) {
  1494     if (i >= 0 && i < (int)sizeof(_nonnull_state) * BitsPerByte) {
  1495       return is_set_nth_bit(_nonnull_state, i);
  1497     return true;
  1500   void set_arg_needs_null_check(int i, bool check) {
  1501     if (i >= 0 && i < (int)sizeof(_nonnull_state) * BitsPerByte) {
  1502       if (check) {
  1503         _nonnull_state |= nth_bit(i);
  1504       } else {
  1505         _nonnull_state &= ~(nth_bit(i));
  1510   // generic
  1511   virtual bool can_trap() const                  { return check_flag(CanTrapFlag); }
  1512   virtual void input_values_do(ValueVisitor* f) {
  1513     StateSplit::input_values_do(f);
  1514     for (int i = 0; i < _args->length(); i++) f->visit(_args->adr_at(i));
  1516 };
  1519 class LIR_List;
  1521 LEAF(BlockBegin, StateSplit)
  1522  private:
  1523   int        _block_id;                          // the unique block id
  1524   int        _bci;                               // start-bci of block
  1525   int        _depth_first_number;                // number of this block in a depth-first ordering
  1526   int        _linear_scan_number;                // number of this block in linear-scan ordering
  1527   int        _loop_depth;                        // the loop nesting level of this block
  1528   int        _loop_index;                        // number of the innermost loop of this block
  1529   int        _flags;                             // the flags associated with this block
  1531   // fields used by BlockListBuilder
  1532   int        _total_preds;                       // number of predecessors found by BlockListBuilder
  1533   BitMap     _stores_to_locals;                  // bit is set when a local variable is stored in the block
  1535   // SSA specific fields: (factor out later)
  1536   BlockList   _successors;                       // the successors of this block
  1537   BlockList   _predecessors;                     // the predecessors of this block
  1538   BlockBegin* _dominator;                        // the dominator of this block
  1539   // SSA specific ends
  1540   BlockEnd*  _end;                               // the last instruction of this block
  1541   BlockList  _exception_handlers;                // the exception handlers potentially invoked by this block
  1542   ValueStackStack* _exception_states;            // only for xhandler entries: states of all instructions that have an edge to this xhandler
  1543   int        _exception_handler_pco;             // if this block is the start of an exception handler,
  1544                                                  // this records the PC offset in the assembly code of the
  1545                                                  // first instruction in this block
  1546   Label      _label;                             // the label associated with this block
  1547   LIR_List*  _lir;                               // the low level intermediate representation for this block
  1549   BitMap      _live_in;                          // set of live LIR_Opr registers at entry to this block
  1550   BitMap      _live_out;                         // set of live LIR_Opr registers at exit from this block
  1551   BitMap      _live_gen;                         // set of registers used before any redefinition in this block
  1552   BitMap      _live_kill;                        // set of registers defined in this block
  1554   BitMap      _fpu_register_usage;
  1555   intArray*   _fpu_stack_state;                  // For x86 FPU code generation with UseLinearScan
  1556   int         _first_lir_instruction_id;         // ID of first LIR instruction in this block
  1557   int         _last_lir_instruction_id;          // ID of last LIR instruction in this block
  1559   void iterate_preorder (boolArray& mark, BlockClosure* closure);
  1560   void iterate_postorder(boolArray& mark, BlockClosure* closure);
  1562   friend class SuxAndWeightAdjuster;
  1564  public:
  1565    void* operator new(size_t size) {
  1566     Compilation* c = Compilation::current();
  1567     void* res = c->arena()->Amalloc(size);
  1568     ((BlockBegin*)res)->_id = c->get_next_id();
  1569     ((BlockBegin*)res)->_block_id = c->get_next_block_id();
  1570     return res;
  1573   // initialization/counting
  1574   static int  number_of_blocks() {
  1575     return Compilation::current()->number_of_blocks();
  1578   // creation
  1579   BlockBegin(int bci)
  1580   : StateSplit(illegalType)
  1581   , _bci(bci)
  1582   , _depth_first_number(-1)
  1583   , _linear_scan_number(-1)
  1584   , _loop_depth(0)
  1585   , _flags(0)
  1586   , _dominator(NULL)
  1587   , _end(NULL)
  1588   , _predecessors(2)
  1589   , _successors(2)
  1590   , _exception_handlers(1)
  1591   , _exception_states(NULL)
  1592   , _exception_handler_pco(-1)
  1593   , _lir(NULL)
  1594   , _loop_index(-1)
  1595   , _live_in()
  1596   , _live_out()
  1597   , _live_gen()
  1598   , _live_kill()
  1599   , _fpu_register_usage()
  1600   , _fpu_stack_state(NULL)
  1601   , _first_lir_instruction_id(-1)
  1602   , _last_lir_instruction_id(-1)
  1603   , _total_preds(0)
  1604   , _stores_to_locals()
  1606 #ifndef PRODUCT
  1607     set_printable_bci(bci);
  1608 #endif
  1611   // accessors
  1612   int block_id() const                           { return _block_id; }
  1613   int bci() const                                { return _bci; }
  1614   BlockList* successors()                        { return &_successors; }
  1615   BlockBegin* dominator() const                  { return _dominator; }
  1616   int loop_depth() const                         { return _loop_depth; }
  1617   int depth_first_number() const                 { return _depth_first_number; }
  1618   int linear_scan_number() const                 { return _linear_scan_number; }
  1619   BlockEnd* end() const                          { return _end; }
  1620   Label* label()                                 { return &_label; }
  1621   LIR_List* lir() const                          { return _lir; }
  1622   int exception_handler_pco() const              { return _exception_handler_pco; }
  1623   BitMap& live_in()                              { return _live_in;        }
  1624   BitMap& live_out()                             { return _live_out;       }
  1625   BitMap& live_gen()                             { return _live_gen;       }
  1626   BitMap& live_kill()                            { return _live_kill;      }
  1627   BitMap& fpu_register_usage()                   { return _fpu_register_usage; }
  1628   intArray* fpu_stack_state() const              { return _fpu_stack_state;    }
  1629   int first_lir_instruction_id() const           { return _first_lir_instruction_id; }
  1630   int last_lir_instruction_id() const            { return _last_lir_instruction_id; }
  1631   int total_preds() const                        { return _total_preds; }
  1632   BitMap& stores_to_locals()                     { return _stores_to_locals; }
  1634   // manipulation
  1635   void set_dominator(BlockBegin* dom)            { _dominator = dom; }
  1636   void set_loop_depth(int d)                     { _loop_depth = d; }
  1637   void set_depth_first_number(int dfn)           { _depth_first_number = dfn; }
  1638   void set_linear_scan_number(int lsn)           { _linear_scan_number = lsn; }
  1639   void set_end(BlockEnd* end);
  1640   void clear_end();
  1641   void disconnect_from_graph();
  1642   static void disconnect_edge(BlockBegin* from, BlockBegin* to);
  1643   BlockBegin* insert_block_between(BlockBegin* sux);
  1644   void substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux);
  1645   void set_lir(LIR_List* lir)                    { _lir = lir; }
  1646   void set_exception_handler_pco(int pco)        { _exception_handler_pco = pco; }
  1647   void set_live_in       (BitMap map)            { _live_in = map;        }
  1648   void set_live_out      (BitMap map)            { _live_out = map;       }
  1649   void set_live_gen      (BitMap map)            { _live_gen = map;       }
  1650   void set_live_kill     (BitMap map)            { _live_kill = map;      }
  1651   void set_fpu_register_usage(BitMap map)        { _fpu_register_usage = map; }
  1652   void set_fpu_stack_state(intArray* state)      { _fpu_stack_state = state;  }
  1653   void set_first_lir_instruction_id(int id)      { _first_lir_instruction_id = id;  }
  1654   void set_last_lir_instruction_id(int id)       { _last_lir_instruction_id = id;  }
  1655   void increment_total_preds(int n = 1)          { _total_preds += n; }
  1656   void init_stores_to_locals(int locals_count)   { _stores_to_locals = BitMap(locals_count); _stores_to_locals.clear(); }
  1658   // generic
  1659   virtual void state_values_do(ValueVisitor* f);
  1661   // successors and predecessors
  1662   int number_of_sux() const;
  1663   BlockBegin* sux_at(int i) const;
  1664   void add_successor(BlockBegin* sux);
  1665   void remove_successor(BlockBegin* pred);
  1666   bool is_successor(BlockBegin* sux) const       { return _successors.contains(sux); }
  1668   void add_predecessor(BlockBegin* pred);
  1669   void remove_predecessor(BlockBegin* pred);
  1670   bool is_predecessor(BlockBegin* pred) const    { return _predecessors.contains(pred); }
  1671   int number_of_preds() const                    { return _predecessors.length(); }
  1672   BlockBegin* pred_at(int i) const               { return _predecessors[i]; }
  1674   // exception handlers potentially invoked by this block
  1675   void add_exception_handler(BlockBegin* b);
  1676   bool is_exception_handler(BlockBegin* b) const { return _exception_handlers.contains(b); }
  1677   int  number_of_exception_handlers() const      { return _exception_handlers.length(); }
  1678   BlockBegin* exception_handler_at(int i) const  { return _exception_handlers.at(i); }
  1680   // states of the instructions that have an edge to this exception handler
  1681   int number_of_exception_states()               { assert(is_set(exception_entry_flag), "only for xhandlers"); return _exception_states == NULL ? 0 : _exception_states->length(); }
  1682   ValueStack* exception_state_at(int idx) const  { assert(is_set(exception_entry_flag), "only for xhandlers"); return _exception_states->at(idx); }
  1683   int add_exception_state(ValueStack* state);
  1685   // flags
  1686   enum Flag {
  1687     no_flag                       = 0,
  1688     std_entry_flag                = 1 << 0,
  1689     osr_entry_flag                = 1 << 1,
  1690     exception_entry_flag          = 1 << 2,
  1691     subroutine_entry_flag         = 1 << 3,
  1692     backward_branch_target_flag   = 1 << 4,
  1693     is_on_work_list_flag          = 1 << 5,
  1694     was_visited_flag              = 1 << 6,
  1695     parser_loop_header_flag       = 1 << 7,  // set by parser to identify blocks where phi functions can not be created on demand
  1696     critical_edge_split_flag      = 1 << 8, // set for all blocks that are introduced when critical edges are split
  1697     linear_scan_loop_header_flag  = 1 << 9, // set during loop-detection for LinearScan
  1698     linear_scan_loop_end_flag     = 1 << 10  // set during loop-detection for LinearScan
  1699   };
  1701   void set(Flag f)                               { _flags |= f; }
  1702   void clear(Flag f)                             { _flags &= ~f; }
  1703   bool is_set(Flag f) const                      { return (_flags & f) != 0; }
  1704   bool is_entry_block() const {
  1705     const int entry_mask = std_entry_flag | osr_entry_flag | exception_entry_flag;
  1706     return (_flags & entry_mask) != 0;
  1709   // iteration
  1710   void iterate_preorder   (BlockClosure* closure);
  1711   void iterate_postorder  (BlockClosure* closure);
  1713   void block_values_do(ValueVisitor* f);
  1715   // loops
  1716   void set_loop_index(int ix)                    { _loop_index = ix;        }
  1717   int  loop_index() const                        { return _loop_index;      }
  1719   // merging
  1720   bool try_merge(ValueStack* state);             // try to merge states at block begin
  1721   void merge(ValueStack* state)                  { bool b = try_merge(state); assert(b, "merge failed"); }
  1723   // debugging
  1724   void print_block()                             PRODUCT_RETURN;
  1725   void print_block(InstructionPrinter& ip, bool live_only = false) PRODUCT_RETURN;
  1726 };
  1729 BASE(BlockEnd, StateSplit)
  1730  private:
  1731   BlockBegin* _begin;
  1732   BlockList*  _sux;
  1734  protected:
  1735   BlockList* sux() const                         { return _sux; }
  1737   void set_sux(BlockList* sux) {
  1738 #ifdef ASSERT
  1739     assert(sux != NULL, "sux must exist");
  1740     for (int i = sux->length() - 1; i >= 0; i--) assert(sux->at(i) != NULL, "sux must exist");
  1741 #endif
  1742     _sux = sux;
  1745  public:
  1746   // creation
  1747   BlockEnd(ValueType* type, ValueStack* state_before, bool is_safepoint)
  1748   : StateSplit(type, state_before)
  1749   , _begin(NULL)
  1750   , _sux(NULL)
  1752     set_flag(IsSafepointFlag, is_safepoint);
  1755   // accessors
  1756   bool is_safepoint() const                      { return check_flag(IsSafepointFlag); }
  1757   BlockBegin* begin() const                      { return _begin; }
  1759   // manipulation
  1760   void set_begin(BlockBegin* begin);
  1762   // successors
  1763   int number_of_sux() const                      { return _sux != NULL ? _sux->length() : 0; }
  1764   BlockBegin* sux_at(int i) const                { return _sux->at(i); }
  1765   BlockBegin* default_sux() const                { return sux_at(number_of_sux() - 1); }
  1766   BlockBegin** addr_sux_at(int i) const          { return _sux->adr_at(i); }
  1767   int sux_index(BlockBegin* sux) const           { return _sux->find(sux); }
  1768   void substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux);
  1769 };
  1772 LEAF(Goto, BlockEnd)
  1773  public:
  1774   enum Direction {
  1775     none,            // Just a regular goto
  1776     taken, not_taken // Goto produced from If
  1777   };
  1778  private:
  1779   ciMethod*   _profiled_method;
  1780   int         _profiled_bci;
  1781   Direction   _direction;
  1782  public:
  1783   // creation
  1784   Goto(BlockBegin* sux, ValueStack* state_before, bool is_safepoint = false)
  1785     : BlockEnd(illegalType, state_before, is_safepoint)
  1786     , _direction(none)
  1787     , _profiled_method(NULL)
  1788     , _profiled_bci(0) {
  1789     BlockList* s = new BlockList(1);
  1790     s->append(sux);
  1791     set_sux(s);
  1794   Goto(BlockBegin* sux, bool is_safepoint) : BlockEnd(illegalType, NULL, is_safepoint)
  1795                                            , _direction(none)
  1796                                            , _profiled_method(NULL)
  1797                                            , _profiled_bci(0) {
  1798     BlockList* s = new BlockList(1);
  1799     s->append(sux);
  1800     set_sux(s);
  1803   bool should_profile() const                    { return check_flag(ProfileMDOFlag); }
  1804   ciMethod* profiled_method() const              { return _profiled_method; } // set only for profiled branches
  1805   int profiled_bci() const                       { return _profiled_bci; }
  1806   Direction direction() const                    { return _direction; }
  1808   void set_should_profile(bool value)            { set_flag(ProfileMDOFlag, value); }
  1809   void set_profiled_method(ciMethod* method)     { _profiled_method = method; }
  1810   void set_profiled_bci(int bci)                 { _profiled_bci = bci; }
  1811   void set_direction(Direction d)                { _direction = d; }
  1812 };
  1815 LEAF(If, BlockEnd)
  1816  private:
  1817   Value       _x;
  1818   Condition   _cond;
  1819   Value       _y;
  1820   ciMethod*   _profiled_method;
  1821   int         _profiled_bci; // Canonicalizer may alter bci of If node
  1822   bool        _swapped;      // Is the order reversed with respect to the original If in the
  1823                              // bytecode stream?
  1824  public:
  1825   // creation
  1826   // unordered_is_true is valid for float/double compares only
  1827   If(Value x, Condition cond, bool unordered_is_true, Value y, BlockBegin* tsux, BlockBegin* fsux, ValueStack* state_before, bool is_safepoint)
  1828     : BlockEnd(illegalType, state_before, is_safepoint)
  1829   , _x(x)
  1830   , _cond(cond)
  1831   , _y(y)
  1832   , _profiled_method(NULL)
  1833   , _profiled_bci(0)
  1834   , _swapped(false)
  1836     ASSERT_VALUES
  1837     set_flag(UnorderedIsTrueFlag, unordered_is_true);
  1838     assert(x->type()->tag() == y->type()->tag(), "types must match");
  1839     BlockList* s = new BlockList(2);
  1840     s->append(tsux);
  1841     s->append(fsux);
  1842     set_sux(s);
  1845   // accessors
  1846   Value x() const                                { return _x; }
  1847   Condition cond() const                         { return _cond; }
  1848   bool unordered_is_true() const                 { return check_flag(UnorderedIsTrueFlag); }
  1849   Value y() const                                { return _y; }
  1850   BlockBegin* sux_for(bool is_true) const        { return sux_at(is_true ? 0 : 1); }
  1851   BlockBegin* tsux() const                       { return sux_for(true); }
  1852   BlockBegin* fsux() const                       { return sux_for(false); }
  1853   BlockBegin* usux() const                       { return sux_for(unordered_is_true()); }
  1854   bool should_profile() const                    { return check_flag(ProfileMDOFlag); }
  1855   ciMethod* profiled_method() const              { return _profiled_method; } // set only for profiled branches
  1856   int profiled_bci() const                       { return _profiled_bci; }    // set for profiled branches and tiered
  1857   bool is_swapped() const                        { return _swapped; }
  1859   // manipulation
  1860   void swap_operands() {
  1861     Value t = _x; _x = _y; _y = t;
  1862     _cond = mirror(_cond);
  1865   void swap_sux() {
  1866     assert(number_of_sux() == 2, "wrong number of successors");
  1867     BlockList* s = sux();
  1868     BlockBegin* t = s->at(0); s->at_put(0, s->at(1)); s->at_put(1, t);
  1869     _cond = negate(_cond);
  1870     set_flag(UnorderedIsTrueFlag, !check_flag(UnorderedIsTrueFlag));
  1873   void set_should_profile(bool value)             { set_flag(ProfileMDOFlag, value); }
  1874   void set_profiled_method(ciMethod* method)      { _profiled_method = method; }
  1875   void set_profiled_bci(int bci)                  { _profiled_bci = bci;       }
  1876   void set_swapped(bool value)                    { _swapped = value;         }
  1877   // generic
  1878   virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_x); f->visit(&_y); }
  1879 };
  1882 LEAF(IfInstanceOf, BlockEnd)
  1883  private:
  1884   ciKlass* _klass;
  1885   Value    _obj;
  1886   bool     _test_is_instance;                    // jump if instance
  1887   int      _instanceof_bci;
  1889  public:
  1890   IfInstanceOf(ciKlass* klass, Value obj, bool test_is_instance, int instanceof_bci, BlockBegin* tsux, BlockBegin* fsux)
  1891   : BlockEnd(illegalType, NULL, false) // temporary set to false
  1892   , _klass(klass)
  1893   , _obj(obj)
  1894   , _test_is_instance(test_is_instance)
  1895   , _instanceof_bci(instanceof_bci)
  1897     ASSERT_VALUES
  1898     assert(instanceof_bci >= 0, "illegal bci");
  1899     BlockList* s = new BlockList(2);
  1900     s->append(tsux);
  1901     s->append(fsux);
  1902     set_sux(s);
  1905   // accessors
  1906   //
  1907   // Note 1: If test_is_instance() is true, IfInstanceOf tests if obj *is* an
  1908   //         instance of klass; otherwise it tests if it is *not* and instance
  1909   //         of klass.
  1910   //
  1911   // Note 2: IfInstanceOf instructions are created by combining an InstanceOf
  1912   //         and an If instruction. The IfInstanceOf bci() corresponds to the
  1913   //         bci that the If would have had; the (this->) instanceof_bci() is
  1914   //         the bci of the original InstanceOf instruction.
  1915   ciKlass* klass() const                         { return _klass; }
  1916   Value obj() const                              { return _obj; }
  1917   int instanceof_bci() const                     { return _instanceof_bci; }
  1918   bool test_is_instance() const                  { return _test_is_instance; }
  1919   BlockBegin* sux_for(bool is_true) const        { return sux_at(is_true ? 0 : 1); }
  1920   BlockBegin* tsux() const                       { return sux_for(true); }
  1921   BlockBegin* fsux() const                       { return sux_for(false); }
  1923   // manipulation
  1924   void swap_sux() {
  1925     assert(number_of_sux() == 2, "wrong number of successors");
  1926     BlockList* s = sux();
  1927     BlockBegin* t = s->at(0); s->at_put(0, s->at(1)); s->at_put(1, t);
  1928     _test_is_instance = !_test_is_instance;
  1931   // generic
  1932   virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_obj); }
  1933 };
  1936 BASE(Switch, BlockEnd)
  1937  private:
  1938   Value       _tag;
  1940  public:
  1941   // creation
  1942   Switch(Value tag, BlockList* sux, ValueStack* state_before, bool is_safepoint)
  1943   : BlockEnd(illegalType, state_before, is_safepoint)
  1944   , _tag(tag) {
  1945     ASSERT_VALUES
  1946     set_sux(sux);
  1949   // accessors
  1950   Value tag() const                              { return _tag; }
  1951   int length() const                             { return number_of_sux() - 1; }
  1953   virtual bool needs_exception_state() const     { return false; }
  1955   // generic
  1956   virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_tag); }
  1957 };
  1960 LEAF(TableSwitch, Switch)
  1961  private:
  1962   int _lo_key;
  1964  public:
  1965   // creation
  1966   TableSwitch(Value tag, BlockList* sux, int lo_key, ValueStack* state_before, bool is_safepoint)
  1967     : Switch(tag, sux, state_before, is_safepoint)
  1968   , _lo_key(lo_key) {}
  1970   // accessors
  1971   int lo_key() const                             { return _lo_key; }
  1972   int hi_key() const                             { return _lo_key + length() - 1; }
  1973 };
  1976 LEAF(LookupSwitch, Switch)
  1977  private:
  1978   intArray* _keys;
  1980  public:
  1981   // creation
  1982   LookupSwitch(Value tag, BlockList* sux, intArray* keys, ValueStack* state_before, bool is_safepoint)
  1983   : Switch(tag, sux, state_before, is_safepoint)
  1984   , _keys(keys) {
  1985     assert(keys != NULL, "keys must exist");
  1986     assert(keys->length() == length(), "sux & keys have incompatible lengths");
  1989   // accessors
  1990   int key_at(int i) const                        { return _keys->at(i); }
  1991 };
  1994 LEAF(Return, BlockEnd)
  1995  private:
  1996   Value _result;
  1998  public:
  1999   // creation
  2000   Return(Value result) :
  2001     BlockEnd(result == NULL ? voidType : result->type()->base(), NULL, true),
  2002     _result(result) {}
  2004   // accessors
  2005   Value result() const                           { return _result; }
  2006   bool has_result() const                        { return result() != NULL; }
  2008   // generic
  2009   virtual void input_values_do(ValueVisitor* f) {
  2010     BlockEnd::input_values_do(f);
  2011     if (has_result()) f->visit(&_result);
  2013 };
  2016 LEAF(Throw, BlockEnd)
  2017  private:
  2018   Value _exception;
  2020  public:
  2021   // creation
  2022   Throw(Value exception, ValueStack* state_before) : BlockEnd(illegalType, state_before, true), _exception(exception) {
  2023     ASSERT_VALUES
  2026   // accessors
  2027   Value exception() const                        { return _exception; }
  2029   // generic
  2030   virtual bool can_trap() const                  { return true; }
  2031   virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_exception); }
  2032 };
  2035 LEAF(Base, BlockEnd)
  2036  public:
  2037   // creation
  2038   Base(BlockBegin* std_entry, BlockBegin* osr_entry) : BlockEnd(illegalType, NULL, false) {
  2039     assert(std_entry->is_set(BlockBegin::std_entry_flag), "std entry must be flagged");
  2040     assert(osr_entry == NULL || osr_entry->is_set(BlockBegin::osr_entry_flag), "osr entry must be flagged");
  2041     BlockList* s = new BlockList(2);
  2042     if (osr_entry != NULL) s->append(osr_entry);
  2043     s->append(std_entry); // must be default sux!
  2044     set_sux(s);
  2047   // accessors
  2048   BlockBegin* std_entry() const                  { return default_sux(); }
  2049   BlockBegin* osr_entry() const                  { return number_of_sux() < 2 ? NULL : sux_at(0); }
  2050 };
  2053 LEAF(OsrEntry, Instruction)
  2054  public:
  2055   // creation
  2056 #ifdef _LP64
  2057   OsrEntry() : Instruction(longType) { pin(); }
  2058 #else
  2059   OsrEntry() : Instruction(intType)  { pin(); }
  2060 #endif
  2062   // generic
  2063   virtual void input_values_do(ValueVisitor* f)   { }
  2064 };
  2067 // Models the incoming exception at a catch site
  2068 LEAF(ExceptionObject, Instruction)
  2069  public:
  2070   // creation
  2071   ExceptionObject() : Instruction(objectType) {
  2072     pin();
  2075   // generic
  2076   virtual void input_values_do(ValueVisitor* f)   { }
  2077 };
  2080 // Models needed rounding for floating-point values on Intel.
  2081 // Currently only used to represent rounding of double-precision
  2082 // values stored into local variables, but could be used to model
  2083 // intermediate rounding of single-precision values as well.
  2084 LEAF(RoundFP, Instruction)
  2085  private:
  2086   Value _input;             // floating-point value to be rounded
  2088  public:
  2089   RoundFP(Value input)
  2090   : Instruction(input->type()) // Note: should not be used for constants
  2091   , _input(input)
  2093     ASSERT_VALUES
  2096   // accessors
  2097   Value input() const                            { return _input; }
  2099   // generic
  2100   virtual void input_values_do(ValueVisitor* f)   { f->visit(&_input); }
  2101 };
  2104 BASE(UnsafeOp, Instruction)
  2105  private:
  2106   BasicType _basic_type;    // ValueType can not express byte-sized integers
  2108  protected:
  2109   // creation
  2110   UnsafeOp(BasicType basic_type, bool is_put)
  2111   : Instruction(is_put ? voidType : as_ValueType(basic_type))
  2112   , _basic_type(basic_type)
  2114     //Note:  Unsafe ops are not not guaranteed to throw NPE.
  2115     // Convservatively, Unsafe operations must be pinned though we could be
  2116     // looser about this if we wanted to..
  2117     pin();
  2120  public:
  2121   // accessors
  2122   BasicType basic_type()                         { return _basic_type; }
  2124   // generic
  2125   virtual void input_values_do(ValueVisitor* f)   { }
  2126 };
  2129 BASE(UnsafeRawOp, UnsafeOp)
  2130  private:
  2131   Value _base;                                   // Base address (a Java long)
  2132   Value _index;                                  // Index if computed by optimizer; initialized to NULL
  2133   int   _log2_scale;                             // Scale factor: 0, 1, 2, or 3.
  2134                                                  // Indicates log2 of number of bytes (1, 2, 4, or 8)
  2135                                                  // to scale index by.
  2137  protected:
  2138   UnsafeRawOp(BasicType basic_type, Value addr, bool is_put)
  2139   : UnsafeOp(basic_type, is_put)
  2140   , _base(addr)
  2141   , _index(NULL)
  2142   , _log2_scale(0)
  2144     // Can not use ASSERT_VALUES because index may be NULL
  2145     assert(addr != NULL && addr->type()->is_long(), "just checking");
  2148   UnsafeRawOp(BasicType basic_type, Value base, Value index, int log2_scale, bool is_put)
  2149   : UnsafeOp(basic_type, is_put)
  2150   , _base(base)
  2151   , _index(index)
  2152   , _log2_scale(log2_scale)
  2156  public:
  2157   // accessors
  2158   Value base()                                   { return _base; }
  2159   Value index()                                  { return _index; }
  2160   bool  has_index()                              { return (_index != NULL); }
  2161   int   log2_scale()                             { return _log2_scale; }
  2163   // setters
  2164   void set_base (Value base)                     { _base  = base; }
  2165   void set_index(Value index)                    { _index = index; }
  2166   void set_log2_scale(int log2_scale)            { _log2_scale = log2_scale; }
  2168   // generic
  2169   virtual void input_values_do(ValueVisitor* f)   { UnsafeOp::input_values_do(f);
  2170                                                    f->visit(&_base);
  2171                                                    if (has_index()) f->visit(&_index); }
  2172 };
  2175 LEAF(UnsafeGetRaw, UnsafeRawOp)
  2176  private:
  2177  bool _may_be_unaligned, _is_wide;  // For OSREntry
  2179  public:
  2180  UnsafeGetRaw(BasicType basic_type, Value addr, bool may_be_unaligned, bool is_wide = false)
  2181   : UnsafeRawOp(basic_type, addr, false) {
  2182     _may_be_unaligned = may_be_unaligned;
  2183     _is_wide = is_wide;
  2186  UnsafeGetRaw(BasicType basic_type, Value base, Value index, int log2_scale, bool may_be_unaligned, bool is_wide = false)
  2187   : UnsafeRawOp(basic_type, base, index, log2_scale, false) {
  2188     _may_be_unaligned = may_be_unaligned;
  2189     _is_wide = is_wide;
  2192   bool may_be_unaligned()                         { return _may_be_unaligned; }
  2193   bool is_wide()                                  { return _is_wide; }
  2194 };
  2197 LEAF(UnsafePutRaw, UnsafeRawOp)
  2198  private:
  2199   Value _value;                                  // Value to be stored
  2201  public:
  2202   UnsafePutRaw(BasicType basic_type, Value addr, Value value)
  2203   : UnsafeRawOp(basic_type, addr, true)
  2204   , _value(value)
  2206     assert(value != NULL, "just checking");
  2207     ASSERT_VALUES
  2210   UnsafePutRaw(BasicType basic_type, Value base, Value index, int log2_scale, Value value)
  2211   : UnsafeRawOp(basic_type, base, index, log2_scale, true)
  2212   , _value(value)
  2214     assert(value != NULL, "just checking");
  2215     ASSERT_VALUES
  2218   // accessors
  2219   Value value()                                  { return _value; }
  2221   // generic
  2222   virtual void input_values_do(ValueVisitor* f)   { UnsafeRawOp::input_values_do(f);
  2223                                                    f->visit(&_value); }
  2224 };
  2227 BASE(UnsafeObjectOp, UnsafeOp)
  2228  private:
  2229   Value _object;                                 // Object to be fetched from or mutated
  2230   Value _offset;                                 // Offset within object
  2231   bool  _is_volatile;                            // true if volatile - dl/JSR166
  2232  public:
  2233   UnsafeObjectOp(BasicType basic_type, Value object, Value offset, bool is_put, bool is_volatile)
  2234     : UnsafeOp(basic_type, is_put), _object(object), _offset(offset), _is_volatile(is_volatile)
  2238   // accessors
  2239   Value object()                                 { return _object; }
  2240   Value offset()                                 { return _offset; }
  2241   bool  is_volatile()                            { return _is_volatile; }
  2242   // generic
  2243   virtual void input_values_do(ValueVisitor* f)   { UnsafeOp::input_values_do(f);
  2244                                                    f->visit(&_object);
  2245                                                    f->visit(&_offset); }
  2246 };
  2249 LEAF(UnsafeGetObject, UnsafeObjectOp)
  2250  public:
  2251   UnsafeGetObject(BasicType basic_type, Value object, Value offset, bool is_volatile)
  2252   : UnsafeObjectOp(basic_type, object, offset, false, is_volatile)
  2254     ASSERT_VALUES
  2256 };
  2259 LEAF(UnsafePutObject, UnsafeObjectOp)
  2260  private:
  2261   Value _value;                                  // Value to be stored
  2262  public:
  2263   UnsafePutObject(BasicType basic_type, Value object, Value offset, Value value, bool is_volatile)
  2264   : UnsafeObjectOp(basic_type, object, offset, true, is_volatile)
  2265     , _value(value)
  2267     ASSERT_VALUES
  2270   // accessors
  2271   Value value()                                  { return _value; }
  2273   // generic
  2274   virtual void input_values_do(ValueVisitor* f)   { UnsafeObjectOp::input_values_do(f);
  2275                                                    f->visit(&_value); }
  2276 };
  2278 LEAF(UnsafeGetAndSetObject, UnsafeObjectOp)
  2279  private:
  2280   Value _value;                                  // Value to be stored
  2281   bool  _is_add;
  2282  public:
  2283   UnsafeGetAndSetObject(BasicType basic_type, Value object, Value offset, Value value, bool is_add)
  2284   : UnsafeObjectOp(basic_type, object, offset, false, false)
  2285     , _value(value)
  2286     , _is_add(is_add)
  2288     ASSERT_VALUES
  2291   // accessors
  2292   bool is_add() const                            { return _is_add; }
  2293   Value value()                                  { return _value; }
  2295   // generic
  2296   virtual void input_values_do(ValueVisitor* f)   { UnsafeObjectOp::input_values_do(f);
  2297                                                    f->visit(&_value); }
  2298 };
  2300 BASE(UnsafePrefetch, UnsafeObjectOp)
  2301  public:
  2302   UnsafePrefetch(Value object, Value offset)
  2303   : UnsafeObjectOp(T_VOID, object, offset, false, false)
  2306 };
  2309 LEAF(UnsafePrefetchRead, UnsafePrefetch)
  2310  public:
  2311   UnsafePrefetchRead(Value object, Value offset)
  2312   : UnsafePrefetch(object, offset)
  2314     ASSERT_VALUES
  2316 };
  2319 LEAF(UnsafePrefetchWrite, UnsafePrefetch)
  2320  public:
  2321   UnsafePrefetchWrite(Value object, Value offset)
  2322   : UnsafePrefetch(object, offset)
  2324     ASSERT_VALUES
  2326 };
  2328 LEAF(ProfileCall, Instruction)
  2329  private:
  2330   ciMethod* _method;
  2331   int       _bci_of_invoke;
  2332   ciMethod* _callee;         // the method that is called at the given bci
  2333   Value     _recv;
  2334   ciKlass*  _known_holder;
  2336  public:
  2337   ProfileCall(ciMethod* method, int bci, ciMethod* callee, Value recv, ciKlass* known_holder)
  2338     : Instruction(voidType)
  2339     , _method(method)
  2340     , _bci_of_invoke(bci)
  2341     , _callee(callee)
  2342     , _recv(recv)
  2343     , _known_holder(known_holder)
  2345     // The ProfileCall has side-effects and must occur precisely where located
  2346     pin();
  2349   ciMethod* method()      { return _method; }
  2350   int bci_of_invoke()     { return _bci_of_invoke; }
  2351   ciMethod* callee()      { return _callee; }
  2352   Value recv()            { return _recv; }
  2353   ciKlass* known_holder() { return _known_holder; }
  2355   virtual void input_values_do(ValueVisitor* f)   { if (_recv != NULL) f->visit(&_recv); }
  2356 };
  2359 // Call some C runtime function that doesn't safepoint,
  2360 // optionally passing the current thread as the first argument.
  2361 LEAF(RuntimeCall, Instruction)
  2362  private:
  2363   const char* _entry_name;
  2364   address     _entry;
  2365   Values*     _args;
  2366   bool        _pass_thread;  // Pass the JavaThread* as an implicit first argument
  2368  public:
  2369   RuntimeCall(ValueType* type, const char* entry_name, address entry, Values* args, bool pass_thread = true)
  2370     : Instruction(type)
  2371     , _entry(entry)
  2372     , _args(args)
  2373     , _entry_name(entry_name)
  2374     , _pass_thread(pass_thread) {
  2375     ASSERT_VALUES
  2376     pin();
  2379   const char* entry_name() const  { return _entry_name; }
  2380   address entry() const           { return _entry; }
  2381   int number_of_arguments() const { return _args->length(); }
  2382   Value argument_at(int i) const  { return _args->at(i); }
  2383   bool pass_thread() const        { return _pass_thread; }
  2385   virtual void input_values_do(ValueVisitor* f)   {
  2386     for (int i = 0; i < _args->length(); i++) f->visit(_args->adr_at(i));
  2388 };
  2390 // Use to trip invocation counter of an inlined method
  2392 LEAF(ProfileInvoke, Instruction)
  2393  private:
  2394   ciMethod*   _inlinee;
  2395   ValueStack* _state;
  2397  public:
  2398   ProfileInvoke(ciMethod* inlinee,  ValueStack* state)
  2399     : Instruction(voidType)
  2400     , _inlinee(inlinee)
  2401     , _state(state)
  2403     // The ProfileInvoke has side-effects and must occur precisely where located QQQ???
  2404     pin();
  2407   ciMethod* inlinee()      { return _inlinee; }
  2408   ValueStack* state()      { return _state; }
  2409   virtual void input_values_do(ValueVisitor*)   {}
  2410   virtual void state_values_do(ValueVisitor*);
  2411 };
  2413 LEAF(MemBar, Instruction)
  2414  private:
  2415   LIR_Code _code;
  2417  public:
  2418   MemBar(LIR_Code code)
  2419     : Instruction(voidType)
  2420     , _code(code)
  2422     pin();
  2425   LIR_Code code()           { return _code; }
  2427   virtual void input_values_do(ValueVisitor*)   {}
  2428 };
  2430 class BlockPair: public CompilationResourceObj {
  2431  private:
  2432   BlockBegin* _from;
  2433   BlockBegin* _to;
  2434  public:
  2435   BlockPair(BlockBegin* from, BlockBegin* to): _from(from), _to(to) {}
  2436   BlockBegin* from() const { return _from; }
  2437   BlockBegin* to() const   { return _to;   }
  2438   bool is_same(BlockBegin* from, BlockBegin* to) const { return  _from == from && _to == to; }
  2439   bool is_same(BlockPair* p) const { return  _from == p->from() && _to == p->to(); }
  2440   void set_to(BlockBegin* b)   { _to = b; }
  2441   void set_from(BlockBegin* b) { _from = b; }
  2442 };
  2445 define_array(BlockPairArray, BlockPair*)
  2446 define_stack(BlockPairList, BlockPairArray)
  2449 inline int         BlockBegin::number_of_sux() const            { assert(_end == NULL || _end->number_of_sux() == _successors.length(), "mismatch"); return _successors.length(); }
  2450 inline BlockBegin* BlockBegin::sux_at(int i) const              { assert(_end == NULL || _end->sux_at(i) == _successors.at(i), "mismatch");          return _successors.at(i); }
  2451 inline void        BlockBegin::add_successor(BlockBegin* sux)   { assert(_end == NULL, "Would create mismatch with successors of BlockEnd");         _successors.append(sux); }
  2453 #undef ASSERT_VALUES
  2455 #endif // SHARE_VM_C1_C1_INSTRUCTION_HPP

mercurial