src/share/vm/c1/c1_Runtime1.cpp

Wed, 20 Apr 2011 14:07:57 -0400

author
vladidan
date
Wed, 20 Apr 2011 14:07:57 -0400
changeset 2801
7ec4bb02d5f0
parent 2728
13bc79b5c9c8
child 2988
2c359f27615c
permissions
-rw-r--r--

7035861: linux-armsflt: assert(ni->data() == (int)(x + o)) failed: instructions must match
Summary: The change avoids generating relocation info entry for the staging area patching stub on systems that don't support movw/movt instructions
Reviewed-by: bdelsart

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/codeBuffer.hpp"
    27 #include "c1/c1_CodeStubs.hpp"
    28 #include "c1/c1_Defs.hpp"
    29 #include "c1/c1_FrameMap.hpp"
    30 #include "c1/c1_LIRAssembler.hpp"
    31 #include "c1/c1_MacroAssembler.hpp"
    32 #include "c1/c1_Runtime1.hpp"
    33 #include "classfile/systemDictionary.hpp"
    34 #include "classfile/vmSymbols.hpp"
    35 #include "code/codeBlob.hpp"
    36 #include "code/compiledIC.hpp"
    37 #include "code/pcDesc.hpp"
    38 #include "code/scopeDesc.hpp"
    39 #include "code/vtableStubs.hpp"
    40 #include "compiler/disassembler.hpp"
    41 #include "gc_interface/collectedHeap.hpp"
    42 #include "interpreter/bytecode.hpp"
    43 #include "interpreter/interpreter.hpp"
    44 #include "memory/allocation.inline.hpp"
    45 #include "memory/barrierSet.hpp"
    46 #include "memory/oopFactory.hpp"
    47 #include "memory/resourceArea.hpp"
    48 #include "oops/objArrayKlass.hpp"
    49 #include "oops/oop.inline.hpp"
    50 #include "runtime/biasedLocking.hpp"
    51 #include "runtime/compilationPolicy.hpp"
    52 #include "runtime/interfaceSupport.hpp"
    53 #include "runtime/javaCalls.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/vframe.hpp"
    57 #include "runtime/vframeArray.hpp"
    58 #include "utilities/copy.hpp"
    59 #include "utilities/events.hpp"
    62 // Implementation of StubAssembler
    64 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
    65   _name = name;
    66   _must_gc_arguments = false;
    67   _frame_size = no_frame_size;
    68   _num_rt_args = 0;
    69   _stub_id = stub_id;
    70 }
    73 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
    74   _name = name;
    75   _must_gc_arguments = must_gc_arguments;
    76 }
    79 void StubAssembler::set_frame_size(int size) {
    80   if (_frame_size == no_frame_size) {
    81     _frame_size = size;
    82   }
    83   assert(_frame_size == size, "can't change the frame size");
    84 }
    87 void StubAssembler::set_num_rt_args(int args) {
    88   if (_num_rt_args == 0) {
    89     _num_rt_args = args;
    90   }
    91   assert(_num_rt_args == args, "can't change the number of args");
    92 }
    94 // Implementation of Runtime1
    96 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
    97 const char *Runtime1::_blob_names[] = {
    98   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
    99 };
   101 #ifndef PRODUCT
   102 // statistics
   103 int Runtime1::_generic_arraycopy_cnt = 0;
   104 int Runtime1::_primitive_arraycopy_cnt = 0;
   105 int Runtime1::_oop_arraycopy_cnt = 0;
   106 int Runtime1::_generic_arraycopystub_cnt = 0;
   107 int Runtime1::_arraycopy_slowcase_cnt = 0;
   108 int Runtime1::_arraycopy_checkcast_cnt = 0;
   109 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
   110 int Runtime1::_new_type_array_slowcase_cnt = 0;
   111 int Runtime1::_new_object_array_slowcase_cnt = 0;
   112 int Runtime1::_new_instance_slowcase_cnt = 0;
   113 int Runtime1::_new_multi_array_slowcase_cnt = 0;
   114 int Runtime1::_monitorenter_slowcase_cnt = 0;
   115 int Runtime1::_monitorexit_slowcase_cnt = 0;
   116 int Runtime1::_patch_code_slowcase_cnt = 0;
   117 int Runtime1::_throw_range_check_exception_count = 0;
   118 int Runtime1::_throw_index_exception_count = 0;
   119 int Runtime1::_throw_div0_exception_count = 0;
   120 int Runtime1::_throw_null_pointer_exception_count = 0;
   121 int Runtime1::_throw_class_cast_exception_count = 0;
   122 int Runtime1::_throw_incompatible_class_change_error_count = 0;
   123 int Runtime1::_throw_array_store_exception_count = 0;
   124 int Runtime1::_throw_count = 0;
   126 static int _byte_arraycopy_cnt = 0;
   127 static int _short_arraycopy_cnt = 0;
   128 static int _int_arraycopy_cnt = 0;
   129 static int _long_arraycopy_cnt = 0;
   130 static int _oop_arraycopy_cnt = 0;
   132 address Runtime1::arraycopy_count_address(BasicType type) {
   133   switch (type) {
   134   case T_BOOLEAN:
   135   case T_BYTE:   return (address)&_byte_arraycopy_cnt;
   136   case T_CHAR:
   137   case T_SHORT:  return (address)&_short_arraycopy_cnt;
   138   case T_FLOAT:
   139   case T_INT:    return (address)&_int_arraycopy_cnt;
   140   case T_DOUBLE:
   141   case T_LONG:   return (address)&_long_arraycopy_cnt;
   142   case T_ARRAY:
   143   case T_OBJECT: return (address)&_oop_arraycopy_cnt;
   144   default:
   145     ShouldNotReachHere();
   146     return NULL;
   147   }
   148 }
   151 #endif
   153 // Simple helper to see if the caller of a runtime stub which
   154 // entered the VM has been deoptimized
   156 static bool caller_is_deopted() {
   157   JavaThread* thread = JavaThread::current();
   158   RegisterMap reg_map(thread, false);
   159   frame runtime_frame = thread->last_frame();
   160   frame caller_frame = runtime_frame.sender(&reg_map);
   161   assert(caller_frame.is_compiled_frame(), "must be compiled");
   162   return caller_frame.is_deoptimized_frame();
   163 }
   165 // Stress deoptimization
   166 static void deopt_caller() {
   167   if ( !caller_is_deopted()) {
   168     JavaThread* thread = JavaThread::current();
   169     RegisterMap reg_map(thread, false);
   170     frame runtime_frame = thread->last_frame();
   171     frame caller_frame = runtime_frame.sender(&reg_map);
   172     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   173     assert(caller_is_deopted(), "Must be deoptimized");
   174   }
   175 }
   178 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
   179   assert(0 <= id && id < number_of_ids, "illegal stub id");
   180   ResourceMark rm;
   181   // create code buffer for code storage
   182   CodeBuffer code(buffer_blob);
   184   Compilation::setup_code_buffer(&code, 0);
   186   // create assembler for code generation
   187   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
   188   // generate code for runtime stub
   189   OopMapSet* oop_maps;
   190   oop_maps = generate_code_for(id, sasm);
   191   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
   192          "if stub has an oop map it must have a valid frame size");
   194 #ifdef ASSERT
   195   // Make sure that stubs that need oopmaps have them
   196   switch (id) {
   197     // These stubs don't need to have an oopmap
   198     case dtrace_object_alloc_id:
   199     case g1_pre_barrier_slow_id:
   200     case g1_post_barrier_slow_id:
   201     case slow_subtype_check_id:
   202     case fpu2long_stub_id:
   203     case unwind_exception_id:
   204     case counter_overflow_id:
   205 #if defined(SPARC) || defined(PPC)
   206     case handle_exception_nofpu_id:  // Unused on sparc
   207 #endif
   208       break;
   210     // All other stubs should have oopmaps
   211     default:
   212       assert(oop_maps != NULL, "must have an oopmap");
   213   }
   214 #endif
   216   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
   217   sasm->align(BytesPerWord);
   218   // make sure all code is in code buffer
   219   sasm->flush();
   220   // create blob - distinguish a few special cases
   221   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
   222                                                  &code,
   223                                                  CodeOffsets::frame_never_safe,
   224                                                  sasm->frame_size(),
   225                                                  oop_maps,
   226                                                  sasm->must_gc_arguments());
   227   // install blob
   228   assert(blob != NULL, "blob must exist");
   229   _blobs[id] = blob;
   230 }
   233 void Runtime1::initialize(BufferBlob* blob) {
   234   // platform-dependent initialization
   235   initialize_pd();
   236   // generate stubs
   237   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
   238   // printing
   239 #ifndef PRODUCT
   240   if (PrintSimpleStubs) {
   241     ResourceMark rm;
   242     for (int id = 0; id < number_of_ids; id++) {
   243       _blobs[id]->print();
   244       if (_blobs[id]->oop_maps() != NULL) {
   245         _blobs[id]->oop_maps()->print();
   246       }
   247     }
   248   }
   249 #endif
   250 }
   253 CodeBlob* Runtime1::blob_for(StubID id) {
   254   assert(0 <= id && id < number_of_ids, "illegal stub id");
   255   return _blobs[id];
   256 }
   259 const char* Runtime1::name_for(StubID id) {
   260   assert(0 <= id && id < number_of_ids, "illegal stub id");
   261   return _blob_names[id];
   262 }
   264 const char* Runtime1::name_for_address(address entry) {
   265   for (int id = 0; id < number_of_ids; id++) {
   266     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
   267   }
   269 #define FUNCTION_CASE(a, f) \
   270   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
   272   FUNCTION_CASE(entry, os::javaTimeMillis);
   273   FUNCTION_CASE(entry, os::javaTimeNanos);
   274   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
   275   FUNCTION_CASE(entry, SharedRuntime::d2f);
   276   FUNCTION_CASE(entry, SharedRuntime::d2i);
   277   FUNCTION_CASE(entry, SharedRuntime::d2l);
   278   FUNCTION_CASE(entry, SharedRuntime::dcos);
   279   FUNCTION_CASE(entry, SharedRuntime::dexp);
   280   FUNCTION_CASE(entry, SharedRuntime::dlog);
   281   FUNCTION_CASE(entry, SharedRuntime::dlog10);
   282   FUNCTION_CASE(entry, SharedRuntime::dpow);
   283   FUNCTION_CASE(entry, SharedRuntime::drem);
   284   FUNCTION_CASE(entry, SharedRuntime::dsin);
   285   FUNCTION_CASE(entry, SharedRuntime::dtan);
   286   FUNCTION_CASE(entry, SharedRuntime::f2i);
   287   FUNCTION_CASE(entry, SharedRuntime::f2l);
   288   FUNCTION_CASE(entry, SharedRuntime::frem);
   289   FUNCTION_CASE(entry, SharedRuntime::l2d);
   290   FUNCTION_CASE(entry, SharedRuntime::l2f);
   291   FUNCTION_CASE(entry, SharedRuntime::ldiv);
   292   FUNCTION_CASE(entry, SharedRuntime::lmul);
   293   FUNCTION_CASE(entry, SharedRuntime::lrem);
   294   FUNCTION_CASE(entry, SharedRuntime::lrem);
   295   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
   296   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
   297   FUNCTION_CASE(entry, trace_block_entry);
   299 #undef FUNCTION_CASE
   301   // Soft float adds more runtime names.
   302   return pd_name_for_address(entry);
   303 }
   306 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
   307   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
   309   assert(oop(klass)->is_klass(), "not a class");
   310   instanceKlassHandle h(thread, klass);
   311   h->check_valid_for_instantiation(true, CHECK);
   312   // make sure klass is initialized
   313   h->initialize(CHECK);
   314   // allocate instance and return via TLS
   315   oop obj = h->allocate_instance(CHECK);
   316   thread->set_vm_result(obj);
   317 JRT_END
   320 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
   321   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
   322   // Note: no handle for klass needed since they are not used
   323   //       anymore after new_typeArray() and no GC can happen before.
   324   //       (This may have to change if this code changes!)
   325   assert(oop(klass)->is_klass(), "not a class");
   326   BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
   327   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
   328   thread->set_vm_result(obj);
   329   // This is pretty rare but this runtime patch is stressful to deoptimization
   330   // if we deoptimize here so force a deopt to stress the path.
   331   if (DeoptimizeALot) {
   332     deopt_caller();
   333   }
   335 JRT_END
   338 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
   339   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
   341   // Note: no handle for klass needed since they are not used
   342   //       anymore after new_objArray() and no GC can happen before.
   343   //       (This may have to change if this code changes!)
   344   assert(oop(array_klass)->is_klass(), "not a class");
   345   klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
   346   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
   347   thread->set_vm_result(obj);
   348   // This is pretty rare but this runtime patch is stressful to deoptimization
   349   // if we deoptimize here so force a deopt to stress the path.
   350   if (DeoptimizeALot) {
   351     deopt_caller();
   352   }
   353 JRT_END
   356 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
   357   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
   359   assert(oop(klass)->is_klass(), "not a class");
   360   assert(rank >= 1, "rank must be nonzero");
   361   oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
   362   thread->set_vm_result(obj);
   363 JRT_END
   366 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
   367   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
   368 JRT_END
   371 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
   372   ResourceMark rm(thread);
   373   const char* klass_name = Klass::cast(obj->klass())->external_name();
   374   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
   375 JRT_END
   378 JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
   379   if (JvmtiExport::can_post_on_exceptions()) {
   380     vframeStream vfst(thread, true);
   381     address bcp = vfst.method()->bcp_from(vfst.bci());
   382     JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
   383   }
   384 JRT_END
   386 // This is a helper to allow us to safepoint but allow the outer entry
   387 // to be safepoint free if we need to do an osr
   388 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, methodOopDesc* m) {
   389   nmethod* osr_nm = NULL;
   390   methodHandle method(THREAD, m);
   392   RegisterMap map(THREAD, false);
   393   frame fr =  THREAD->last_frame().sender(&map);
   394   nmethod* nm = (nmethod*) fr.cb();
   395   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
   396   methodHandle enclosing_method(THREAD, nm->method());
   398   CompLevel level = (CompLevel)nm->comp_level();
   399   int bci = InvocationEntryBci;
   400   if (branch_bci != InvocationEntryBci) {
   401     // Compute desination bci
   402     address pc = method()->code_base() + branch_bci;
   403     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
   404     int offset = 0;
   405     switch (branch) {
   406       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
   407       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
   408       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
   409       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
   410       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
   411       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
   412       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
   413         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
   414         break;
   415       case Bytecodes::_goto_w:
   416         offset = Bytes::get_Java_u4(pc + 1);
   417         break;
   418       default: ;
   419     }
   420     bci = branch_bci + offset;
   421   }
   423   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, THREAD);
   424   return osr_nm;
   425 }
   427 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, methodOopDesc* method))
   428   nmethod* osr_nm;
   429   JRT_BLOCK
   430     osr_nm = counter_overflow_helper(thread, bci, method);
   431     if (osr_nm != NULL) {
   432       RegisterMap map(thread, false);
   433       frame fr =  thread->last_frame().sender(&map);
   434       Deoptimization::deoptimize_frame(thread, fr.id());
   435     }
   436   JRT_BLOCK_END
   437   return NULL;
   438 JRT_END
   440 extern void vm_exit(int code);
   442 // Enter this method from compiled code handler below. This is where we transition
   443 // to VM mode. This is done as a helper routine so that the method called directly
   444 // from compiled code does not have to transition to VM. This allows the entry
   445 // method to see if the nmethod that we have just looked up a handler for has
   446 // been deoptimized while we were in the vm. This simplifies the assembly code
   447 // cpu directories.
   448 //
   449 // We are entering here from exception stub (via the entry method below)
   450 // If there is a compiled exception handler in this method, we will continue there;
   451 // otherwise we will unwind the stack and continue at the caller of top frame method
   452 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
   453 // control the area where we can allow a safepoint. After we exit the safepoint area we can
   454 // check to see if the handler we are going to return is now in a nmethod that has
   455 // been deoptimized. If that is the case we return the deopt blob
   456 // unpack_with_exception entry instead. This makes life for the exception blob easier
   457 // because making that same check and diverting is painful from assembly language.
   458 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
   459   // Reset method handle flag.
   460   thread->set_is_method_handle_return(false);
   462   Handle exception(thread, ex);
   463   nm = CodeCache::find_nmethod(pc);
   464   assert(nm != NULL, "this is not an nmethod");
   465   // Adjust the pc as needed/
   466   if (nm->is_deopt_pc(pc)) {
   467     RegisterMap map(thread, false);
   468     frame exception_frame = thread->last_frame().sender(&map);
   469     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
   470     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
   471     pc = exception_frame.pc();
   472   }
   473 #ifdef ASSERT
   474   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
   475   assert(exception->is_oop(), "just checking");
   476   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
   477   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   478     if (ExitVMOnVerifyError) vm_exit(-1);
   479     ShouldNotReachHere();
   480   }
   481 #endif
   483   // Check the stack guard pages and reenable them if necessary and there is
   484   // enough space on the stack to do so.  Use fast exceptions only if the guard
   485   // pages are enabled.
   486   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   487   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   489   if (JvmtiExport::can_post_on_exceptions()) {
   490     // To ensure correct notification of exception catches and throws
   491     // we have to deoptimize here.  If we attempted to notify the
   492     // catches and throws during this exception lookup it's possible
   493     // we could deoptimize on the way out of the VM and end back in
   494     // the interpreter at the throw site.  This would result in double
   495     // notifications since the interpreter would also notify about
   496     // these same catches and throws as it unwound the frame.
   498     RegisterMap reg_map(thread);
   499     frame stub_frame = thread->last_frame();
   500     frame caller_frame = stub_frame.sender(&reg_map);
   502     // We don't really want to deoptimize the nmethod itself since we
   503     // can actually continue in the exception handler ourselves but I
   504     // don't see an easy way to have the desired effect.
   505     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   506     assert(caller_is_deopted(), "Must be deoptimized");
   508     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   509   }
   511   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
   512   if (guard_pages_enabled) {
   513     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
   514     if (fast_continuation != NULL) {
   515       // Set flag if return address is a method handle call site.
   516       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
   517       return fast_continuation;
   518     }
   519   }
   521   // If the stack guard pages are enabled, check whether there is a handler in
   522   // the current method.  Otherwise (guard pages disabled), force an unwind and
   523   // skip the exception cache update (i.e., just leave continuation==NULL).
   524   address continuation = NULL;
   525   if (guard_pages_enabled) {
   527     // New exception handling mechanism can support inlined methods
   528     // with exception handlers since the mappings are from PC to PC
   530     // debugging support
   531     // tracing
   532     if (TraceExceptions) {
   533       ttyLocker ttyl;
   534       ResourceMark rm;
   535       tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
   536                     exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
   537     }
   538     // for AbortVMOnException flag
   539     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   541     // Clear out the exception oop and pc since looking up an
   542     // exception handler can cause class loading, which might throw an
   543     // exception and those fields are expected to be clear during
   544     // normal bytecode execution.
   545     thread->set_exception_oop(NULL);
   546     thread->set_exception_pc(NULL);
   548     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
   549     // If an exception was thrown during exception dispatch, the exception oop may have changed
   550     thread->set_exception_oop(exception());
   551     thread->set_exception_pc(pc);
   553     // the exception cache is used only by non-implicit exceptions
   554     if (continuation != NULL) {
   555       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
   556     }
   557   }
   559   thread->set_vm_result(exception());
   560   // Set flag if return address is a method handle call site.
   561   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
   563   if (TraceExceptions) {
   564     ttyLocker ttyl;
   565     ResourceMark rm;
   566     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
   567                   thread, continuation, pc);
   568   }
   570   return continuation;
   571 JRT_END
   573 // Enter this method from compiled code only if there is a Java exception handler
   574 // in the method handling the exception.
   575 // We are entering here from exception stub. We don't do a normal VM transition here.
   576 // We do it in a helper. This is so we can check to see if the nmethod we have just
   577 // searched for an exception handler has been deoptimized in the meantime.
   578 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
   579   oop exception = thread->exception_oop();
   580   address pc = thread->exception_pc();
   581   // Still in Java mode
   582   DEBUG_ONLY(ResetNoHandleMark rnhm);
   583   nmethod* nm = NULL;
   584   address continuation = NULL;
   585   {
   586     // Enter VM mode by calling the helper
   587     ResetNoHandleMark rnhm;
   588     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
   589   }
   590   // Back in JAVA, use no oops DON'T safepoint
   592   // Now check to see if the nmethod we were called from is now deoptimized.
   593   // If so we must return to the deopt blob and deoptimize the nmethod
   594   if (nm != NULL && caller_is_deopted()) {
   595     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   596   }
   598   assert(continuation != NULL, "no handler found");
   599   return continuation;
   600 }
   603 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
   604   NOT_PRODUCT(_throw_range_check_exception_count++;)
   605   Events::log("throw_range_check");
   606   char message[jintAsStringSize];
   607   sprintf(message, "%d", index);
   608   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
   609 JRT_END
   612 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
   613   NOT_PRODUCT(_throw_index_exception_count++;)
   614   Events::log("throw_index");
   615   char message[16];
   616   sprintf(message, "%d", index);
   617   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
   618 JRT_END
   621 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
   622   NOT_PRODUCT(_throw_div0_exception_count++;)
   623   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   624 JRT_END
   627 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
   628   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
   629   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   630 JRT_END
   633 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
   634   NOT_PRODUCT(_throw_class_cast_exception_count++;)
   635   ResourceMark rm(thread);
   636   char* message = SharedRuntime::generate_class_cast_message(
   637     thread, Klass::cast(object->klass())->external_name());
   638   SharedRuntime::throw_and_post_jvmti_exception(
   639     thread, vmSymbols::java_lang_ClassCastException(), message);
   640 JRT_END
   643 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
   644   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
   645   ResourceMark rm(thread);
   646   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
   647 JRT_END
   650 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
   651   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
   652   if (PrintBiasedLockingStatistics) {
   653     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
   654   }
   655   Handle h_obj(thread, obj);
   656   assert(h_obj()->is_oop(), "must be NULL or an object");
   657   if (UseBiasedLocking) {
   658     // Retry fast entry if bias is revoked to avoid unnecessary inflation
   659     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
   660   } else {
   661     if (UseFastLocking) {
   662       // When using fast locking, the compiled code has already tried the fast case
   663       assert(obj == lock->obj(), "must match");
   664       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
   665     } else {
   666       lock->set_obj(obj);
   667       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
   668     }
   669   }
   670 JRT_END
   673 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
   674   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
   675   assert(thread == JavaThread::current(), "threads must correspond");
   676   assert(thread->last_Java_sp(), "last_Java_sp must be set");
   677   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
   678   EXCEPTION_MARK;
   680   oop obj = lock->obj();
   681   assert(obj->is_oop(), "must be NULL or an object");
   682   if (UseFastLocking) {
   683     // When using fast locking, the compiled code has already tried the fast case
   684     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
   685   } else {
   686     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
   687   }
   688 JRT_END
   691 static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
   692   Bytecode_field field_access(caller, bci);
   693   // This can be static or non-static field access
   694   Bytecodes::Code code       = field_access.code();
   696   // We must load class, initialize class and resolvethe field
   697   FieldAccessInfo result; // initialize class if needed
   698   constantPoolHandle constants(THREAD, caller->constants());
   699   LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK_NULL);
   700   return result.klass()();
   701 }
   704 //
   705 // This routine patches sites where a class wasn't loaded or
   706 // initialized at the time the code was generated.  It handles
   707 // references to classes, fields and forcing of initialization.  Most
   708 // of the cases are straightforward and involving simply forcing
   709 // resolution of a class, rewriting the instruction stream with the
   710 // needed constant and replacing the call in this function with the
   711 // patched code.  The case for static field is more complicated since
   712 // the thread which is in the process of initializing a class can
   713 // access it's static fields but other threads can't so the code
   714 // either has to deoptimize when this case is detected or execute a
   715 // check that the current thread is the initializing thread.  The
   716 // current
   717 //
   718 // Patches basically look like this:
   719 //
   720 //
   721 // patch_site: jmp patch stub     ;; will be patched
   722 // continue:   ...
   723 //             ...
   724 //             ...
   725 //             ...
   726 //
   727 // They have a stub which looks like this:
   728 //
   729 //             ;; patch body
   730 //             movl <const>, reg           (for class constants)
   731 //        <or> movl [reg1 + <const>], reg  (for field offsets)
   732 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
   733 //             <being_init offset> <bytes to copy> <bytes to skip>
   734 // patch_stub: call Runtime1::patch_code (through a runtime stub)
   735 //             jmp patch_site
   736 //
   737 //
   738 // A normal patch is done by rewriting the patch body, usually a move,
   739 // and then copying it into place over top of the jmp instruction
   740 // being careful to flush caches and doing it in an MP-safe way.  The
   741 // constants following the patch body are used to find various pieces
   742 // of the patch relative to the call site for Runtime1::patch_code.
   743 // The case for getstatic and putstatic is more complicated because
   744 // getstatic and putstatic have special semantics when executing while
   745 // the class is being initialized.  getstatic/putstatic on a class
   746 // which is being_initialized may be executed by the initializing
   747 // thread but other threads have to block when they execute it.  This
   748 // is accomplished in compiled code by executing a test of the current
   749 // thread against the initializing thread of the class.  It's emitted
   750 // as boilerplate in their stub which allows the patched code to be
   751 // executed before it's copied back into the main body of the nmethod.
   752 //
   753 // being_init: get_thread(<tmp reg>
   754 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
   755 //             jne patch_stub
   756 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
   757 //             movl reg, [reg1 + <const>]  (for field offsets)
   758 //             jmp continue
   759 //             <being_init offset> <bytes to copy> <bytes to skip>
   760 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
   761 //             jmp patch_site
   762 //
   763 // If the class is being initialized the patch body is rewritten and
   764 // the patch site is rewritten to jump to being_init, instead of
   765 // patch_stub.  Whenever this code is executed it checks the current
   766 // thread against the intializing thread so other threads will enter
   767 // the runtime and end up blocked waiting the class to finish
   768 // initializing inside the calls to resolve_field below.  The
   769 // initializing class will continue on it's way.  Once the class is
   770 // fully_initialized, the intializing_thread of the class becomes
   771 // NULL, so the next thread to execute this code will fail the test,
   772 // call into patch_code and complete the patching process by copying
   773 // the patch body back into the main part of the nmethod and resume
   774 // executing.
   775 //
   776 //
   778 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
   779   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
   781   ResourceMark rm(thread);
   782   RegisterMap reg_map(thread, false);
   783   frame runtime_frame = thread->last_frame();
   784   frame caller_frame = runtime_frame.sender(&reg_map);
   786   // last java frame on stack
   787   vframeStream vfst(thread, true);
   788   assert(!vfst.at_end(), "Java frame must exist");
   790   methodHandle caller_method(THREAD, vfst.method());
   791   // Note that caller_method->code() may not be same as caller_code because of OSR's
   792   // Note also that in the presence of inlining it is not guaranteed
   793   // that caller_method() == caller_code->method()
   796   int bci = vfst.bci();
   798   Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
   800   Bytecodes::Code code = caller_method()->java_code_at(bci);
   802 #ifndef PRODUCT
   803   // this is used by assertions in the access_field_patching_id
   804   BasicType patch_field_type = T_ILLEGAL;
   805 #endif // PRODUCT
   806   bool deoptimize_for_volatile = false;
   807   int patch_field_offset = -1;
   808   KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
   809   Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
   810   if (stub_id == Runtime1::access_field_patching_id) {
   812     Bytecode_field field_access(caller_method, bci);
   813     FieldAccessInfo result; // initialize class if needed
   814     Bytecodes::Code code = field_access.code();
   815     constantPoolHandle constants(THREAD, caller_method->constants());
   816     LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK);
   817     patch_field_offset = result.field_offset();
   819     // If we're patching a field which is volatile then at compile it
   820     // must not have been know to be volatile, so the generated code
   821     // isn't correct for a volatile reference.  The nmethod has to be
   822     // deoptimized so that the code can be regenerated correctly.
   823     // This check is only needed for access_field_patching since this
   824     // is the path for patching field offsets.  load_klass is only
   825     // used for patching references to oops which don't need special
   826     // handling in the volatile case.
   827     deoptimize_for_volatile = result.access_flags().is_volatile();
   829 #ifndef PRODUCT
   830     patch_field_type = result.field_type();
   831 #endif
   832   } else if (stub_id == Runtime1::load_klass_patching_id) {
   833     oop k;
   834     switch (code) {
   835       case Bytecodes::_putstatic:
   836       case Bytecodes::_getstatic:
   837         { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
   838           // Save a reference to the class that has to be checked for initialization
   839           init_klass = KlassHandle(THREAD, klass);
   840           k = klass->java_mirror();
   841         }
   842         break;
   843       case Bytecodes::_new:
   844         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
   845           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
   846         }
   847         break;
   848       case Bytecodes::_multianewarray:
   849         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
   850           k = caller_method->constants()->klass_at(mna.index(), CHECK);
   851         }
   852         break;
   853       case Bytecodes::_instanceof:
   854         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
   855           k = caller_method->constants()->klass_at(io.index(), CHECK);
   856         }
   857         break;
   858       case Bytecodes::_checkcast:
   859         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
   860           k = caller_method->constants()->klass_at(cc.index(), CHECK);
   861         }
   862         break;
   863       case Bytecodes::_anewarray:
   864         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
   865           klassOop ek = caller_method->constants()->klass_at(anew.index(), CHECK);
   866           k = Klass::cast(ek)->array_klass(CHECK);
   867         }
   868         break;
   869       case Bytecodes::_ldc:
   870       case Bytecodes::_ldc_w:
   871         {
   872           Bytecode_loadconstant cc(caller_method, bci);
   873           k = cc.resolve_constant(CHECK);
   874           assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
   875         }
   876         break;
   877       default: Unimplemented();
   878     }
   879     // convert to handle
   880     load_klass = Handle(THREAD, k);
   881   } else {
   882     ShouldNotReachHere();
   883   }
   885   if (deoptimize_for_volatile) {
   886     // At compile time we assumed the field wasn't volatile but after
   887     // loading it turns out it was volatile so we have to throw the
   888     // compiled code out and let it be regenerated.
   889     if (TracePatching) {
   890       tty->print_cr("Deoptimizing for patching volatile field reference");
   891     }
   892     // It's possible the nmethod was invalidated in the last
   893     // safepoint, but if it's still alive then make it not_entrant.
   894     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   895     if (nm != NULL) {
   896       nm->make_not_entrant();
   897     }
   899     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   901     // Return to the now deoptimized frame.
   902   }
   904   // If we are patching in a non-perm oop, make sure the nmethod
   905   // is on the right list.
   906   if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
   907     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
   908     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   909     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
   910     if (!nm->on_scavenge_root_list())
   911       CodeCache::add_scavenge_root_nmethod(nm);
   912   }
   914   // Now copy code back
   916   {
   917     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
   918     //
   919     // Deoptimization may have happened while we waited for the lock.
   920     // In that case we don't bother to do any patching we just return
   921     // and let the deopt happen
   922     if (!caller_is_deopted()) {
   923       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
   924       address instr_pc = jump->jump_destination();
   925       NativeInstruction* ni = nativeInstruction_at(instr_pc);
   926       if (ni->is_jump() ) {
   927         // the jump has not been patched yet
   928         // The jump destination is slow case and therefore not part of the stubs
   929         // (stubs are only for StaticCalls)
   931         // format of buffer
   932         //    ....
   933         //    instr byte 0     <-- copy_buff
   934         //    instr byte 1
   935         //    ..
   936         //    instr byte n-1
   937         //      n
   938         //    ....             <-- call destination
   940         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
   941         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
   942         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
   943         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
   944         address copy_buff = stub_location - *byte_skip - *byte_count;
   945         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
   946         if (TracePatching) {
   947           tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
   948                         instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
   949           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
   950           assert(caller_code != NULL, "nmethod not found");
   952           // NOTE we use pc() not original_pc() because we already know they are
   953           // identical otherwise we'd have never entered this block of code
   955           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
   956           assert(map != NULL, "null check");
   957           map->print();
   958           tty->cr();
   960           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   961         }
   962         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
   963         bool do_patch = true;
   964         if (stub_id == Runtime1::access_field_patching_id) {
   965           // The offset may not be correct if the class was not loaded at code generation time.
   966           // Set it now.
   967           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
   968           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
   969           assert(patch_field_offset >= 0, "illegal offset");
   970           n_move->add_offset_in_bytes(patch_field_offset);
   971         } else if (stub_id == Runtime1::load_klass_patching_id) {
   972           // If a getstatic or putstatic is referencing a klass which
   973           // isn't fully initialized, the patch body isn't copied into
   974           // place until initialization is complete.  In this case the
   975           // patch site is setup so that any threads besides the
   976           // initializing thread are forced to come into the VM and
   977           // block.
   978           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
   979                      instanceKlass::cast(init_klass())->is_initialized();
   980           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
   981           if (jump->jump_destination() == being_initialized_entry) {
   982             assert(do_patch == true, "initialization must be complete at this point");
   983           } else {
   984             // patch the instruction <move reg, klass>
   985             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
   987             assert(n_copy->data() == 0 ||
   988                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
   989                    "illegal init value");
   990             assert(load_klass() != NULL, "klass not set");
   991             n_copy->set_data((intx) (load_klass()));
   993             if (TracePatching) {
   994               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   995             }
   997 #if defined(SPARC) || defined(PPC)
   998             // Update the oop location in the nmethod with the proper
   999             // oop.  When the code was generated, a NULL was stuffed
  1000             // in the oop table and that table needs to be update to
  1001             // have the right value.  On intel the value is kept
  1002             // directly in the instruction instead of in the oop
  1003             // table, so set_data above effectively updated the value.
  1004             nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1005             assert(nm != NULL, "invalid nmethod_pc");
  1006             RelocIterator oops(nm, copy_buff, copy_buff + 1);
  1007             bool found = false;
  1008             while (oops.next() && !found) {
  1009               if (oops.type() == relocInfo::oop_type) {
  1010                 oop_Relocation* r = oops.oop_reloc();
  1011                 oop* oop_adr = r->oop_addr();
  1012                 *oop_adr = load_klass();
  1013                 r->fix_oop_relocation();
  1014                 found = true;
  1017             assert(found, "the oop must exist!");
  1018 #endif
  1021         } else {
  1022           ShouldNotReachHere();
  1024         if (do_patch) {
  1025           // replace instructions
  1026           // first replace the tail, then the call
  1027 #ifdef ARM
  1028           if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
  1029             nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1030             oop* oop_addr = NULL;
  1031             assert(nm != NULL, "invalid nmethod_pc");
  1032             RelocIterator oops(nm, copy_buff, copy_buff + 1);
  1033             while (oops.next()) {
  1034               if (oops.type() == relocInfo::oop_type) {
  1035                 oop_Relocation* r = oops.oop_reloc();
  1036                 oop_addr = r->oop_addr();
  1037                 break;
  1040             assert(oop_addr != NULL, "oop relocation must exist");
  1041             copy_buff -= *byte_count;
  1042             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
  1043             n_copy2->set_pc_relative_offset((address)oop_addr, instr_pc);
  1045 #endif
  1047           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
  1048             address ptr = copy_buff + i;
  1049             int a_byte = (*ptr) & 0xFF;
  1050             address dst = instr_pc + i;
  1051             *(unsigned char*)dst = (unsigned char) a_byte;
  1053           ICache::invalidate_range(instr_pc, *byte_count);
  1054           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
  1056           if (stub_id == Runtime1::load_klass_patching_id) {
  1057             // update relocInfo to oop
  1058             nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1059             assert(nm != NULL, "invalid nmethod_pc");
  1061             // The old patch site is now a move instruction so update
  1062             // the reloc info so that it will get updated during
  1063             // future GCs.
  1064             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
  1065             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
  1066                                                      relocInfo::none, relocInfo::oop_type);
  1067 #ifdef SPARC
  1068             // Sparc takes two relocations for an oop so update the second one.
  1069             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
  1070             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1071             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
  1072                                                      relocInfo::none, relocInfo::oop_type);
  1073 #endif
  1074 #ifdef PPC
  1075           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
  1076             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1077             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
  1079 #endif
  1082         } else {
  1083           ICache::invalidate_range(copy_buff, *byte_count);
  1084           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
  1089 JRT_END
  1091 //
  1092 // Entry point for compiled code. We want to patch a nmethod.
  1093 // We don't do a normal VM transition here because we want to
  1094 // know after the patching is complete and any safepoint(s) are taken
  1095 // if the calling nmethod was deoptimized. We do this by calling a
  1096 // helper method which does the normal VM transition and when it
  1097 // completes we can check for deoptimization. This simplifies the
  1098 // assembly code in the cpu directories.
  1099 //
  1100 int Runtime1::move_klass_patching(JavaThread* thread) {
  1101 //
  1102 // NOTE: we are still in Java
  1103 //
  1104   Thread* THREAD = thread;
  1105   debug_only(NoHandleMark nhm;)
  1107     // Enter VM mode
  1109     ResetNoHandleMark rnhm;
  1110     patch_code(thread, load_klass_patching_id);
  1112   // Back in JAVA, use no oops DON'T safepoint
  1114   // Return true if calling code is deoptimized
  1116   return caller_is_deopted();
  1119 //
  1120 // Entry point for compiled code. We want to patch a nmethod.
  1121 // We don't do a normal VM transition here because we want to
  1122 // know after the patching is complete and any safepoint(s) are taken
  1123 // if the calling nmethod was deoptimized. We do this by calling a
  1124 // helper method which does the normal VM transition and when it
  1125 // completes we can check for deoptimization. This simplifies the
  1126 // assembly code in the cpu directories.
  1127 //
  1129 int Runtime1::access_field_patching(JavaThread* thread) {
  1130 //
  1131 // NOTE: we are still in Java
  1132 //
  1133   Thread* THREAD = thread;
  1134   debug_only(NoHandleMark nhm;)
  1136     // Enter VM mode
  1138     ResetNoHandleMark rnhm;
  1139     patch_code(thread, access_field_patching_id);
  1141   // Back in JAVA, use no oops DON'T safepoint
  1143   // Return true if calling code is deoptimized
  1145   return caller_is_deopted();
  1146 JRT_END
  1149 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
  1150   // for now we just print out the block id
  1151   tty->print("%d ", block_id);
  1152 JRT_END
  1155 // Array copy return codes.
  1156 enum {
  1157   ac_failed = -1, // arraycopy failed
  1158   ac_ok = 0       // arraycopy succeeded
  1159 };
  1162 // Below length is the # elements copied.
  1163 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
  1164                                           oopDesc* dst, T* dst_addr,
  1165                                           int length) {
  1167   // For performance reasons, we assume we are using a card marking write
  1168   // barrier. The assert will fail if this is not the case.
  1169   // Note that we use the non-virtual inlineable variant of write_ref_array.
  1170   BarrierSet* bs = Universe::heap()->barrier_set();
  1171   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1172   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1173   if (src == dst) {
  1174     // same object, no check
  1175     bs->write_ref_array_pre(dst_addr, length);
  1176     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1177     bs->write_ref_array((HeapWord*)dst_addr, length);
  1178     return ac_ok;
  1179   } else {
  1180     klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
  1181     klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
  1182     if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
  1183       // Elements are guaranteed to be subtypes, so no check necessary
  1184       bs->write_ref_array_pre(dst_addr, length);
  1185       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1186       bs->write_ref_array((HeapWord*)dst_addr, length);
  1187       return ac_ok;
  1190   return ac_failed;
  1193 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
  1194 // and we did not copy anything
  1195 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
  1196 #ifndef PRODUCT
  1197   _generic_arraycopy_cnt++;        // Slow-path oop array copy
  1198 #endif
  1200   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
  1201   if (!dst->is_array() || !src->is_array()) return ac_failed;
  1202   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
  1203   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
  1205   if (length == 0) return ac_ok;
  1206   if (src->is_typeArray()) {
  1207     const klassOop klass_oop = src->klass();
  1208     if (klass_oop != dst->klass()) return ac_failed;
  1209     typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
  1210     const int l2es = klass->log2_element_size();
  1211     const int ihs = klass->array_header_in_bytes() / wordSize;
  1212     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
  1213     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
  1214     // Potential problem: memmove is not guaranteed to be word atomic
  1215     // Revisit in Merlin
  1216     memmove(dst_addr, src_addr, length << l2es);
  1217     return ac_ok;
  1218   } else if (src->is_objArray() && dst->is_objArray()) {
  1219     if (UseCompressedOops) {
  1220       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
  1221       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
  1222       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1223     } else {
  1224       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
  1225       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
  1226       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1229   return ac_failed;
  1230 JRT_END
  1233 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
  1234 #ifndef PRODUCT
  1235   _primitive_arraycopy_cnt++;
  1236 #endif
  1238   if (length == 0) return;
  1239   // Not guaranteed to be word atomic, but that doesn't matter
  1240   // for anything but an oop array, which is covered by oop_arraycopy.
  1241   Copy::conjoint_jbytes(src, dst, length);
  1242 JRT_END
  1244 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
  1245 #ifndef PRODUCT
  1246   _oop_arraycopy_cnt++;
  1247 #endif
  1249   if (num == 0) return;
  1250   BarrierSet* bs = Universe::heap()->barrier_set();
  1251   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1252   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1253   if (UseCompressedOops) {
  1254     bs->write_ref_array_pre((narrowOop*)dst, num);
  1255     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
  1256   } else {
  1257     bs->write_ref_array_pre((oop*)dst, num);
  1258     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
  1260   bs->write_ref_array(dst, num);
  1261 JRT_END
  1264 #ifndef PRODUCT
  1265 void Runtime1::print_statistics() {
  1266   tty->print_cr("C1 Runtime statistics:");
  1267   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
  1268   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
  1269   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
  1270   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
  1271   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
  1272   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
  1273   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
  1274   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_cnt);
  1275   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_cnt);
  1276   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_cnt);
  1277   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_cnt);
  1278   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
  1279   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
  1280   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_cnt);
  1281   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
  1282   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
  1283   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
  1285   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
  1286   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
  1287   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
  1288   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
  1289   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
  1290   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
  1291   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
  1293   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
  1294   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
  1295   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
  1296   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
  1297   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
  1298   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
  1299   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
  1300   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
  1302   SharedRuntime::print_ic_miss_histogram();
  1303   tty->cr();
  1305 #endif // PRODUCT

mercurial