src/share/vm/opto/loopnode.cpp

Fri, 25 Mar 2011 09:35:39 +0100

author
roland
date
Fri, 25 Mar 2011 09:35:39 +0100
changeset 2683
7e88bdae86ec
parent 2665
9dc311b8473e
child 2685
1927db75dd85
permissions
-rw-r--r--

7029017: Additional architecture support for c2 compiler
Summary: Enables cross building of a c2 VM. Support masking of shift counts when the processor architecture mandates it.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/loopnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/superword.hpp"
    40 //=============================================================================
    41 //------------------------------is_loop_iv-------------------------------------
    42 // Determine if a node is Counted loop induction variable.
    43 // The method is declared in node.hpp.
    44 const Node* Node::is_loop_iv() const {
    45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    46       this->as_Phi()->region()->is_CountedLoop() &&
    47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    48     return this;
    49   } else {
    50     return NULL;
    51   }
    52 }
    54 //=============================================================================
    55 //------------------------------dump_spec--------------------------------------
    56 // Dump special per-node info
    57 #ifndef PRODUCT
    58 void LoopNode::dump_spec(outputStream *st) const {
    59   if (is_inner_loop()) st->print( "inner " );
    60   if (is_partial_peel_loop()) st->print( "partial_peel " );
    61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
    62 }
    63 #endif
    65 //------------------------------is_valid_counted_loop-------------------------
    66 bool LoopNode::is_valid_counted_loop() const {
    67   if (is_CountedLoop()) {
    68     CountedLoopNode*    l  = as_CountedLoop();
    69     CountedLoopEndNode* le = l->loopexit();
    70     if (le != NULL &&
    71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
    72       Node* phi  = l->phi();
    73       Node* exit = le->proj_out(0 /* false */);
    74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
    75           phi != NULL && phi->is_Phi() &&
    76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
    77           le->loopnode() == l && le->stride_is_con()) {
    78         return true;
    79       }
    80     }
    81   }
    82   return false;
    83 }
    85 //------------------------------get_early_ctrl---------------------------------
    86 // Compute earliest legal control
    87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    89   uint i;
    90   Node *early;
    91   if( n->in(0) ) {
    92     early = n->in(0);
    93     if( !early->is_CFG() ) // Might be a non-CFG multi-def
    94       early = get_ctrl(early);        // So treat input as a straight data input
    95     i = 1;
    96   } else {
    97     early = get_ctrl(n->in(1));
    98     i = 2;
    99   }
   100   uint e_d = dom_depth(early);
   101   assert( early, "" );
   102   for( ; i < n->req(); i++ ) {
   103     Node *cin = get_ctrl(n->in(i));
   104     assert( cin, "" );
   105     // Keep deepest dominator depth
   106     uint c_d = dom_depth(cin);
   107     if( c_d > e_d ) {           // Deeper guy?
   108       early = cin;              // Keep deepest found so far
   109       e_d = c_d;
   110     } else if( c_d == e_d &&    // Same depth?
   111                early != cin ) { // If not equal, must use slower algorithm
   112       // If same depth but not equal, one _must_ dominate the other
   113       // and we want the deeper (i.e., dominated) guy.
   114       Node *n1 = early;
   115       Node *n2 = cin;
   116       while( 1 ) {
   117         n1 = idom(n1);          // Walk up until break cycle
   118         n2 = idom(n2);
   119         if( n1 == cin ||        // Walked early up to cin
   120             dom_depth(n2) < c_d )
   121           break;                // early is deeper; keep him
   122         if( n2 == early ||      // Walked cin up to early
   123             dom_depth(n1) < c_d ) {
   124           early = cin;          // cin is deeper; keep him
   125           break;
   126         }
   127       }
   128       e_d = dom_depth(early);   // Reset depth register cache
   129     }
   130   }
   132   // Return earliest legal location
   133   assert(early == find_non_split_ctrl(early), "unexpected early control");
   135   return early;
   136 }
   138 //------------------------------set_early_ctrl---------------------------------
   139 // Set earliest legal control
   140 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   141   Node *early = get_early_ctrl(n);
   143   // Record earliest legal location
   144   set_ctrl(n, early);
   145 }
   147 //------------------------------set_subtree_ctrl-------------------------------
   148 // set missing _ctrl entries on new nodes
   149 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   150   // Already set?  Get out.
   151   if( _nodes[n->_idx] ) return;
   152   // Recursively set _nodes array to indicate where the Node goes
   153   uint i;
   154   for( i = 0; i < n->req(); ++i ) {
   155     Node *m = n->in(i);
   156     if( m && m != C->root() )
   157       set_subtree_ctrl( m );
   158   }
   160   // Fixup self
   161   set_early_ctrl( n );
   162 }
   164 //------------------------------is_counted_loop--------------------------------
   165 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   166   PhaseGVN *gvn = &_igvn;
   168   // Counted loop head must be a good RegionNode with only 3 not NULL
   169   // control input edges: Self, Entry, LoopBack.
   170   if (x->in(LoopNode::Self) == NULL || x->req() != 3)
   171     return false;
   173   Node *init_control = x->in(LoopNode::EntryControl);
   174   Node *back_control = x->in(LoopNode::LoopBackControl);
   175   if (init_control == NULL || back_control == NULL)    // Partially dead
   176     return false;
   177   // Must also check for TOP when looking for a dead loop
   178   if (init_control->is_top() || back_control->is_top())
   179     return false;
   181   // Allow funny placement of Safepoint
   182   if (back_control->Opcode() == Op_SafePoint)
   183     back_control = back_control->in(TypeFunc::Control);
   185   // Controlling test for loop
   186   Node *iftrue = back_control;
   187   uint iftrue_op = iftrue->Opcode();
   188   if (iftrue_op != Op_IfTrue &&
   189       iftrue_op != Op_IfFalse)
   190     // I have a weird back-control.  Probably the loop-exit test is in
   191     // the middle of the loop and I am looking at some trailing control-flow
   192     // merge point.  To fix this I would have to partially peel the loop.
   193     return false; // Obscure back-control
   195   // Get boolean guarding loop-back test
   196   Node *iff = iftrue->in(0);
   197   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
   198     return false;
   199   BoolNode *test = iff->in(1)->as_Bool();
   200   BoolTest::mask bt = test->_test._test;
   201   float cl_prob = iff->as_If()->_prob;
   202   if (iftrue_op == Op_IfFalse) {
   203     bt = BoolTest(bt).negate();
   204     cl_prob = 1.0 - cl_prob;
   205   }
   206   // Get backedge compare
   207   Node *cmp = test->in(1);
   208   int cmp_op = cmp->Opcode();
   209   if( cmp_op != Op_CmpI )
   210     return false;                // Avoid pointer & float compares
   212   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   213   Node *incr  = cmp->in(1);
   214   Node *limit = cmp->in(2);
   216   // ---------
   217   // need 'loop()' test to tell if limit is loop invariant
   218   // ---------
   220   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
   221     Node *tmp = incr;            // Then reverse order into the CmpI
   222     incr = limit;
   223     limit = tmp;
   224     bt = BoolTest(bt).commute(); // And commute the exit test
   225   }
   226   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
   227     return false;
   228   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   229     return false;
   231   Node* phi_incr = NULL;
   232   // Trip-counter increment must be commutative & associative.
   233   if (incr->is_Phi()) {
   234     if (incr->as_Phi()->region() != x || incr->req() != 3)
   235       return false; // Not simple trip counter expression
   236     phi_incr = incr;
   237     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
   238     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   239       return false;
   240   }
   242   Node* trunc1 = NULL;
   243   Node* trunc2 = NULL;
   244   const TypeInt* iv_trunc_t = NULL;
   245   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   246     return false; // Funny increment opcode
   247   }
   248   assert(incr->Opcode() == Op_AddI, "wrong increment code");
   250   // Get merge point
   251   Node *xphi = incr->in(1);
   252   Node *stride = incr->in(2);
   253   if (!stride->is_Con()) {     // Oops, swap these
   254     if (!xphi->is_Con())       // Is the other guy a constant?
   255       return false;             // Nope, unknown stride, bail out
   256     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   257     xphi = stride;
   258     stride = tmp;
   259   }
   260   // Stride must be constant
   261   int stride_con = stride->get_int();
   262   assert(stride_con != 0, "missed some peephole opt");
   264   if (!xphi->is_Phi())
   265     return false; // Too much math on the trip counter
   266   if (phi_incr != NULL && phi_incr != xphi)
   267     return false;
   268   PhiNode *phi = xphi->as_Phi();
   270   // Phi must be of loop header; backedge must wrap to increment
   271   if (phi->region() != x)
   272     return false;
   273   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   274       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
   275     return false;
   276   }
   277   Node *init_trip = phi->in(LoopNode::EntryControl);
   279   // If iv trunc type is smaller than int, check for possible wrap.
   280   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   281     assert(trunc1 != NULL, "must have found some truncation");
   283     // Get a better type for the phi (filtered thru if's)
   284     const TypeInt* phi_ft = filtered_type(phi);
   286     // Can iv take on a value that will wrap?
   287     //
   288     // Ensure iv's limit is not within "stride" of the wrap value.
   289     //
   290     // Example for "short" type
   291     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   292     //    If the stride is +10, then the last value of the induction
   293     //    variable before the increment (phi_ft->_hi) must be
   294     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   295     //    ensure no truncation occurs after the increment.
   297     if (stride_con > 0) {
   298       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   299           iv_trunc_t->_lo > phi_ft->_lo) {
   300         return false;  // truncation may occur
   301       }
   302     } else if (stride_con < 0) {
   303       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   304           iv_trunc_t->_hi < phi_ft->_hi) {
   305         return false;  // truncation may occur
   306       }
   307     }
   308     // No possibility of wrap so truncation can be discarded
   309     // Promote iv type to Int
   310   } else {
   311     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   312   }
   314   // If the condition is inverted and we will be rolling
   315   // through MININT to MAXINT, then bail out.
   316   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
   317       // Odd stride
   318       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
   319       // Count down loop rolls through MAXINT
   320       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
   321       // Count up loop rolls through MININT
   322       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0 ) {
   323     return false; // Bail out
   324   }
   326   const TypeInt* init_t = gvn->type(init_trip)->is_int();
   327   const TypeInt* limit_t = gvn->type(limit)->is_int();
   329   if (stride_con > 0) {
   330     long init_p = (long)init_t->_lo + stride_con;
   331     if (init_p > (long)max_jint || init_p > (long)limit_t->_hi)
   332       return false; // cyclic loop or this loop trips only once
   333   } else {
   334     long init_p = (long)init_t->_hi + stride_con;
   335     if (init_p < (long)min_jint || init_p < (long)limit_t->_lo)
   336       return false; // cyclic loop or this loop trips only once
   337   }
   339   // =================================================
   340   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   341   //
   342   assert(x->Opcode() == Op_Loop, "regular loops only");
   343   C->print_method("Before CountedLoop", 3);
   345   // If compare points to incr, we are ok.  Otherwise the compare
   346   // can directly point to the phi; in this case adjust the compare so that
   347   // it points to the incr by adjusting the limit.
   348   if (cmp->in(1) == phi || cmp->in(2) == phi)
   349     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
   351   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   352   // Final value for iterator should be: trip_count * stride + init_trip.
   353   Node *one_p = gvn->intcon( 1);
   354   Node *one_m = gvn->intcon(-1);
   356   Node *trip_count = NULL;
   357   Node *hook = new (C, 6) Node(6);
   358   switch( bt ) {
   359   case BoolTest::eq:
   360     ShouldNotReachHere();
   361   case BoolTest::ne:            // Ahh, the case we desire
   362     if (stride_con == 1)
   363       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   364     else if (stride_con == -1)
   365       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
   366     else
   367       ShouldNotReachHere();
   368     set_subtree_ctrl(trip_count);
   369     //_loop.map(trip_count->_idx,loop(limit));
   370     break;
   371   case BoolTest::le:            // Maybe convert to '<' case
   372     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
   373     set_subtree_ctrl( limit );
   374     hook->init_req(4, limit);
   376     bt = BoolTest::lt;
   377     // Make the new limit be in the same loop nest as the old limit
   378     //_loop.map(limit->_idx,limit_loop);
   379     // Fall into next case
   380   case BoolTest::lt: {          // Maybe convert to '!=' case
   381     if (stride_con < 0) // Count down loop rolls through MAXINT
   382       ShouldNotReachHere();
   383     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   384     set_subtree_ctrl( range );
   385     hook->init_req(0, range);
   387     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   388     set_subtree_ctrl( bias );
   389     hook->init_req(1, bias);
   391     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
   392     set_subtree_ctrl( bias1 );
   393     hook->init_req(2, bias1);
   395     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   396     set_subtree_ctrl( trip_count );
   397     hook->init_req(3, trip_count);
   398     break;
   399   }
   401   case BoolTest::ge:            // Maybe convert to '>' case
   402     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
   403     set_subtree_ctrl( limit );
   404     hook->init_req(4 ,limit);
   406     bt = BoolTest::gt;
   407     // Make the new limit be in the same loop nest as the old limit
   408     //_loop.map(limit->_idx,limit_loop);
   409     // Fall into next case
   410   case BoolTest::gt: {          // Maybe convert to '!=' case
   411     if (stride_con > 0) // count up loop rolls through MININT
   412       ShouldNotReachHere();
   413     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   414     set_subtree_ctrl( range );
   415     hook->init_req(0, range);
   417     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   418     set_subtree_ctrl( bias );
   419     hook->init_req(1, bias);
   421     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
   422     set_subtree_ctrl( bias1 );
   423     hook->init_req(2, bias1);
   425     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   426     set_subtree_ctrl( trip_count );
   427     hook->init_req(3, trip_count);
   428     break;
   429   }
   430   } // switch( bt )
   432   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
   433   set_subtree_ctrl( span );
   434   hook->init_req(5, span);
   436   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
   437   set_subtree_ctrl( limit );
   439   // Check for SafePoint on backedge and remove
   440   Node *sfpt = x->in(LoopNode::LoopBackControl);
   441   if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   442     lazy_replace( sfpt, iftrue );
   443     loop->_tail = iftrue;
   444   }
   446   // Build a canonical trip test.
   447   // Clone code, as old values may be in use.
   448   Node* nphi = PhiNode::make(x, init_trip, TypeInt::INT);
   449   nphi = _igvn.register_new_node_with_optimizer(nphi);
   450   set_ctrl(nphi, get_ctrl(phi));
   452   incr = incr->clone();
   453   incr->set_req(1,nphi);
   454   incr->set_req(2,stride);
   455   incr = _igvn.register_new_node_with_optimizer(incr);
   456   set_early_ctrl( incr );
   458   nphi->set_req(LoopNode::LoopBackControl, incr);
   459   _igvn.replace_node(phi, nphi);
   460   phi = nphi->as_Phi();
   462   cmp = cmp->clone();
   463   cmp->set_req(1,incr);
   464   cmp->set_req(2,limit);
   465   cmp = _igvn.register_new_node_with_optimizer(cmp);
   466   set_ctrl(cmp, iff->in(0));
   468   test = test->clone()->as_Bool();
   469   (*(BoolTest*)&test->_test)._test = bt;
   470   test->set_req(1,cmp);
   471   _igvn.register_new_node_with_optimizer(test);
   472   set_ctrl(test, iff->in(0));
   474   // Replace the old IfNode with a new LoopEndNode
   475   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
   476   IfNode *le = lex->as_If();
   477   uint dd = dom_depth(iff);
   478   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   479   set_loop(le, loop);
   481   // Get the loop-exit control
   482   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   484   // Need to swap loop-exit and loop-back control?
   485   if (iftrue_op == Op_IfFalse) {
   486     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
   487     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
   489     loop->_tail = back_control = ift2;
   490     set_loop(ift2, loop);
   491     set_loop(iff2, get_loop(iffalse));
   493     // Lazy update of 'get_ctrl' mechanism.
   494     lazy_replace_proj( iffalse, iff2 );
   495     lazy_replace_proj( iftrue,  ift2 );
   497     // Swap names
   498     iffalse = iff2;
   499     iftrue  = ift2;
   500   } else {
   501     _igvn.hash_delete(iffalse);
   502     _igvn.hash_delete(iftrue);
   503     iffalse->set_req_X( 0, le, &_igvn );
   504     iftrue ->set_req_X( 0, le, &_igvn );
   505   }
   507   set_idom(iftrue,  le, dd+1);
   508   set_idom(iffalse, le, dd+1);
   509   assert(iff->outcnt() == 0, "should be dead now");
   510   lazy_replace( iff, le ); // fix 'get_ctrl'
   512   // Now setup a new CountedLoopNode to replace the existing LoopNode
   513   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
   514   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
   515   // The following assert is approximately true, and defines the intention
   516   // of can_be_counted_loop.  It fails, however, because phase->type
   517   // is not yet initialized for this loop and its parts.
   518   //assert(l->can_be_counted_loop(this), "sanity");
   519   _igvn.register_new_node_with_optimizer(l);
   520   set_loop(l, loop);
   521   loop->_head = l;
   522   // Fix all data nodes placed at the old loop head.
   523   // Uses the lazy-update mechanism of 'get_ctrl'.
   524   lazy_replace( x, l );
   525   set_idom(l, init_control, dom_depth(x));
   527   // Check for immediately preceding SafePoint and remove
   528   Node *sfpt2 = le->in(0);
   529   if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
   530     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   532   // Free up intermediate goo
   533   _igvn.remove_dead_node(hook);
   535 #ifdef ASSERT
   536   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
   537   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
   538 #endif
   540   C->print_method("After CountedLoop", 3);
   542   return true;
   543 }
   546 //------------------------------Ideal------------------------------------------
   547 // Return a node which is more "ideal" than the current node.
   548 // Attempt to convert into a counted-loop.
   549 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   550   if (!can_be_counted_loop(phase)) {
   551     phase->C->set_major_progress();
   552   }
   553   return RegionNode::Ideal(phase, can_reshape);
   554 }
   557 //=============================================================================
   558 //------------------------------Ideal------------------------------------------
   559 // Return a node which is more "ideal" than the current node.
   560 // Attempt to convert into a counted-loop.
   561 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   562   return RegionNode::Ideal(phase, can_reshape);
   563 }
   565 //------------------------------dump_spec--------------------------------------
   566 // Dump special per-node info
   567 #ifndef PRODUCT
   568 void CountedLoopNode::dump_spec(outputStream *st) const {
   569   LoopNode::dump_spec(st);
   570   if( stride_is_con() ) {
   571     st->print("stride: %d ",stride_con());
   572   } else {
   573     st->print("stride: not constant ");
   574   }
   575   if( is_pre_loop () ) st->print("pre of N%d" , _main_idx );
   576   if( is_main_loop() ) st->print("main of N%d", _idx );
   577   if( is_post_loop() ) st->print("post of N%d", _main_idx );
   578 }
   579 #endif
   581 //=============================================================================
   582 int CountedLoopEndNode::stride_con() const {
   583   return stride()->bottom_type()->is_int()->get_con();
   584 }
   587 //----------------------match_incr_with_optional_truncation--------------------
   588 // Match increment with optional truncation:
   589 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
   590 // Return NULL for failure. Success returns the increment node.
   591 Node* CountedLoopNode::match_incr_with_optional_truncation(
   592                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
   593   // Quick cutouts:
   594   if (expr == NULL || expr->req() != 3)  return false;
   596   Node *t1 = NULL;
   597   Node *t2 = NULL;
   598   const TypeInt* trunc_t = TypeInt::INT;
   599   Node* n1 = expr;
   600   int   n1op = n1->Opcode();
   602   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
   603   if (n1op == Op_AndI &&
   604       n1->in(2)->is_Con() &&
   605       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
   606     // %%% This check should match any mask of 2**K-1.
   607     t1 = n1;
   608     n1 = t1->in(1);
   609     n1op = n1->Opcode();
   610     trunc_t = TypeInt::CHAR;
   611   } else if (n1op == Op_RShiftI &&
   612              n1->in(1) != NULL &&
   613              n1->in(1)->Opcode() == Op_LShiftI &&
   614              n1->in(2) == n1->in(1)->in(2) &&
   615              n1->in(2)->is_Con()) {
   616     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
   617     // %%% This check should match any shift in [1..31].
   618     if (shift == 16 || shift == 8) {
   619       t1 = n1;
   620       t2 = t1->in(1);
   621       n1 = t2->in(1);
   622       n1op = n1->Opcode();
   623       if (shift == 16) {
   624         trunc_t = TypeInt::SHORT;
   625       } else if (shift == 8) {
   626         trunc_t = TypeInt::BYTE;
   627       }
   628     }
   629   }
   631   // If (maybe after stripping) it is an AddI, we won:
   632   if (n1op == Op_AddI) {
   633     *trunc1 = t1;
   634     *trunc2 = t2;
   635     *trunc_type = trunc_t;
   636     return n1;
   637   }
   639   // failed
   640   return NULL;
   641 }
   644 //------------------------------filtered_type--------------------------------
   645 // Return a type based on condition control flow
   646 // A successful return will be a type that is restricted due
   647 // to a series of dominating if-tests, such as:
   648 //    if (i < 10) {
   649 //       if (i > 0) {
   650 //          here: "i" type is [1..10)
   651 //       }
   652 //    }
   653 // or a control flow merge
   654 //    if (i < 10) {
   655 //       do {
   656 //          phi( , ) -- at top of loop type is [min_int..10)
   657 //         i = ?
   658 //       } while ( i < 10)
   659 //
   660 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
   661   assert(n && n->bottom_type()->is_int(), "must be int");
   662   const TypeInt* filtered_t = NULL;
   663   if (!n->is_Phi()) {
   664     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
   665     filtered_t = filtered_type_from_dominators(n, n_ctrl);
   667   } else {
   668     Node* phi    = n->as_Phi();
   669     Node* region = phi->in(0);
   670     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
   671     if (region && region != C->top()) {
   672       for (uint i = 1; i < phi->req(); i++) {
   673         Node* val   = phi->in(i);
   674         Node* use_c = region->in(i);
   675         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
   676         if (val_t != NULL) {
   677           if (filtered_t == NULL) {
   678             filtered_t = val_t;
   679           } else {
   680             filtered_t = filtered_t->meet(val_t)->is_int();
   681           }
   682         }
   683       }
   684     }
   685   }
   686   const TypeInt* n_t = _igvn.type(n)->is_int();
   687   if (filtered_t != NULL) {
   688     n_t = n_t->join(filtered_t)->is_int();
   689   }
   690   return n_t;
   691 }
   694 //------------------------------filtered_type_from_dominators--------------------------------
   695 // Return a possibly more restrictive type for val based on condition control flow of dominators
   696 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
   697   if (val->is_Con()) {
   698      return val->bottom_type()->is_int();
   699   }
   700   uint if_limit = 10; // Max number of dominating if's visited
   701   const TypeInt* rtn_t = NULL;
   703   if (use_ctrl && use_ctrl != C->top()) {
   704     Node* val_ctrl = get_ctrl(val);
   705     uint val_dom_depth = dom_depth(val_ctrl);
   706     Node* pred = use_ctrl;
   707     uint if_cnt = 0;
   708     while (if_cnt < if_limit) {
   709       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
   710         if_cnt++;
   711         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
   712         if (if_t != NULL) {
   713           if (rtn_t == NULL) {
   714             rtn_t = if_t;
   715           } else {
   716             rtn_t = rtn_t->join(if_t)->is_int();
   717           }
   718         }
   719       }
   720       pred = idom(pred);
   721       if (pred == NULL || pred == C->top()) {
   722         break;
   723       }
   724       // Stop if going beyond definition block of val
   725       if (dom_depth(pred) < val_dom_depth) {
   726         break;
   727       }
   728     }
   729   }
   730   return rtn_t;
   731 }
   734 //------------------------------dump_spec--------------------------------------
   735 // Dump special per-node info
   736 #ifndef PRODUCT
   737 void CountedLoopEndNode::dump_spec(outputStream *st) const {
   738   if( in(TestValue)->is_Bool() ) {
   739     BoolTest bt( test_trip()); // Added this for g++.
   741     st->print("[");
   742     bt.dump_on(st);
   743     st->print("]");
   744   }
   745   st->print(" ");
   746   IfNode::dump_spec(st);
   747 }
   748 #endif
   750 //=============================================================================
   751 //------------------------------is_member--------------------------------------
   752 // Is 'l' a member of 'this'?
   753 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
   754   while( l->_nest > _nest ) l = l->_parent;
   755   return l == this;
   756 }
   758 //------------------------------set_nest---------------------------------------
   759 // Set loop tree nesting depth.  Accumulate _has_call bits.
   760 int IdealLoopTree::set_nest( uint depth ) {
   761   _nest = depth;
   762   int bits = _has_call;
   763   if( _child ) bits |= _child->set_nest(depth+1);
   764   if( bits ) _has_call = 1;
   765   if( _next  ) bits |= _next ->set_nest(depth  );
   766   return bits;
   767 }
   769 //------------------------------split_fall_in----------------------------------
   770 // Split out multiple fall-in edges from the loop header.  Move them to a
   771 // private RegionNode before the loop.  This becomes the loop landing pad.
   772 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
   773   PhaseIterGVN &igvn = phase->_igvn;
   774   uint i;
   776   // Make a new RegionNode to be the landing pad.
   777   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
   778   phase->set_loop(landing_pad,_parent);
   779   // Gather all the fall-in control paths into the landing pad
   780   uint icnt = fall_in_cnt;
   781   uint oreq = _head->req();
   782   for( i = oreq-1; i>0; i-- )
   783     if( !phase->is_member( this, _head->in(i) ) )
   784       landing_pad->set_req(icnt--,_head->in(i));
   786   // Peel off PhiNode edges as well
   787   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   788     Node *oj = _head->fast_out(j);
   789     if( oj->is_Phi() ) {
   790       PhiNode* old_phi = oj->as_Phi();
   791       assert( old_phi->region() == _head, "" );
   792       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
   793       Node *p = PhiNode::make_blank(landing_pad, old_phi);
   794       uint icnt = fall_in_cnt;
   795       for( i = oreq-1; i>0; i-- ) {
   796         if( !phase->is_member( this, _head->in(i) ) ) {
   797           p->init_req(icnt--, old_phi->in(i));
   798           // Go ahead and clean out old edges from old phi
   799           old_phi->del_req(i);
   800         }
   801       }
   802       // Search for CSE's here, because ZKM.jar does a lot of
   803       // loop hackery and we need to be a little incremental
   804       // with the CSE to avoid O(N^2) node blow-up.
   805       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
   806       if( p2 ) {                // Found CSE
   807         p->destruct();          // Recover useless new node
   808         p = p2;                 // Use old node
   809       } else {
   810         igvn.register_new_node_with_optimizer(p, old_phi);
   811       }
   812       // Make old Phi refer to new Phi.
   813       old_phi->add_req(p);
   814       // Check for the special case of making the old phi useless and
   815       // disappear it.  In JavaGrande I have a case where this useless
   816       // Phi is the loop limit and prevents recognizing a CountedLoop
   817       // which in turn prevents removing an empty loop.
   818       Node *id_old_phi = old_phi->Identity( &igvn );
   819       if( id_old_phi != old_phi ) { // Found a simple identity?
   820         // Note that I cannot call 'replace_node' here, because
   821         // that will yank the edge from old_phi to the Region and
   822         // I'm mid-iteration over the Region's uses.
   823         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
   824           Node* use = old_phi->last_out(i);
   825           igvn.hash_delete(use);
   826           igvn._worklist.push(use);
   827           uint uses_found = 0;
   828           for (uint j = 0; j < use->len(); j++) {
   829             if (use->in(j) == old_phi) {
   830               if (j < use->req()) use->set_req (j, id_old_phi);
   831               else                use->set_prec(j, id_old_phi);
   832               uses_found++;
   833             }
   834           }
   835           i -= uses_found;    // we deleted 1 or more copies of this edge
   836         }
   837       }
   838       igvn._worklist.push(old_phi);
   839     }
   840   }
   841   // Finally clean out the fall-in edges from the RegionNode
   842   for( i = oreq-1; i>0; i-- ) {
   843     if( !phase->is_member( this, _head->in(i) ) ) {
   844       _head->del_req(i);
   845     }
   846   }
   847   // Transform landing pad
   848   igvn.register_new_node_with_optimizer(landing_pad, _head);
   849   // Insert landing pad into the header
   850   _head->add_req(landing_pad);
   851 }
   853 //------------------------------split_outer_loop-------------------------------
   854 // Split out the outermost loop from this shared header.
   855 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
   856   PhaseIterGVN &igvn = phase->_igvn;
   858   // Find index of outermost loop; it should also be my tail.
   859   uint outer_idx = 1;
   860   while( _head->in(outer_idx) != _tail ) outer_idx++;
   862   // Make a LoopNode for the outermost loop.
   863   Node *ctl = _head->in(LoopNode::EntryControl);
   864   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
   865   outer = igvn.register_new_node_with_optimizer(outer, _head);
   866   phase->set_created_loop_node();
   867   // Outermost loop falls into '_head' loop
   868   _head->set_req(LoopNode::EntryControl, outer);
   869   _head->del_req(outer_idx);
   870   // Split all the Phis up between '_head' loop and 'outer' loop.
   871   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   872     Node *out = _head->fast_out(j);
   873     if( out->is_Phi() ) {
   874       PhiNode *old_phi = out->as_Phi();
   875       assert( old_phi->region() == _head, "" );
   876       Node *phi = PhiNode::make_blank(outer, old_phi);
   877       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
   878       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
   879       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
   880       // Make old Phi point to new Phi on the fall-in path
   881       igvn.hash_delete(old_phi);
   882       old_phi->set_req(LoopNode::EntryControl, phi);
   883       old_phi->del_req(outer_idx);
   884       igvn._worklist.push(old_phi);
   885     }
   886   }
   888   // Use the new loop head instead of the old shared one
   889   _head = outer;
   890   phase->set_loop(_head, this);
   891 }
   893 //------------------------------fix_parent-------------------------------------
   894 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
   895   loop->_parent = parent;
   896   if( loop->_child ) fix_parent( loop->_child, loop   );
   897   if( loop->_next  ) fix_parent( loop->_next , parent );
   898 }
   900 //------------------------------estimate_path_freq-----------------------------
   901 static float estimate_path_freq( Node *n ) {
   902   // Try to extract some path frequency info
   903   IfNode *iff;
   904   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
   905     uint nop = n->Opcode();
   906     if( nop == Op_SafePoint ) {   // Skip any safepoint
   907       n = n->in(0);
   908       continue;
   909     }
   910     if( nop == Op_CatchProj ) {   // Get count from a prior call
   911       // Assume call does not always throw exceptions: means the call-site
   912       // count is also the frequency of the fall-through path.
   913       assert( n->is_CatchProj(), "" );
   914       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
   915         return 0.0f;            // Assume call exception path is rare
   916       Node *call = n->in(0)->in(0)->in(0);
   917       assert( call->is_Call(), "expect a call here" );
   918       const JVMState *jvms = ((CallNode*)call)->jvms();
   919       ciMethodData* methodData = jvms->method()->method_data();
   920       if (!methodData->is_mature())  return 0.0f; // No call-site data
   921       ciProfileData* data = methodData->bci_to_data(jvms->bci());
   922       if ((data == NULL) || !data->is_CounterData()) {
   923         // no call profile available, try call's control input
   924         n = n->in(0);
   925         continue;
   926       }
   927       return data->as_CounterData()->count()/FreqCountInvocations;
   928     }
   929     // See if there's a gating IF test
   930     Node *n_c = n->in(0);
   931     if( !n_c->is_If() ) break;       // No estimate available
   932     iff = n_c->as_If();
   933     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
   934       // Compute how much count comes on this path
   935       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
   936     // Have no count info.  Skip dull uncommon-trap like branches.
   937     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
   938         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
   939       break;
   940     // Skip through never-taken branch; look for a real loop exit.
   941     n = iff->in(0);
   942   }
   943   return 0.0f;                  // No estimate available
   944 }
   946 //------------------------------merge_many_backedges---------------------------
   947 // Merge all the backedges from the shared header into a private Region.
   948 // Feed that region as the one backedge to this loop.
   949 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
   950   uint i;
   952   // Scan for the top 2 hottest backedges
   953   float hotcnt = 0.0f;
   954   float warmcnt = 0.0f;
   955   uint hot_idx = 0;
   956   // Loop starts at 2 because slot 1 is the fall-in path
   957   for( i = 2; i < _head->req(); i++ ) {
   958     float cnt = estimate_path_freq(_head->in(i));
   959     if( cnt > hotcnt ) {       // Grab hottest path
   960       warmcnt = hotcnt;
   961       hotcnt = cnt;
   962       hot_idx = i;
   963     } else if( cnt > warmcnt ) { // And 2nd hottest path
   964       warmcnt = cnt;
   965     }
   966   }
   968   // See if the hottest backedge is worthy of being an inner loop
   969   // by being much hotter than the next hottest backedge.
   970   if( hotcnt <= 0.0001 ||
   971       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
   973   // Peel out the backedges into a private merge point; peel
   974   // them all except optionally hot_idx.
   975   PhaseIterGVN &igvn = phase->_igvn;
   977   Node *hot_tail = NULL;
   978   // Make a Region for the merge point
   979   Node *r = new (phase->C, 1) RegionNode(1);
   980   for( i = 2; i < _head->req(); i++ ) {
   981     if( i != hot_idx )
   982       r->add_req( _head->in(i) );
   983     else hot_tail = _head->in(i);
   984   }
   985   igvn.register_new_node_with_optimizer(r, _head);
   986   // Plug region into end of loop _head, followed by hot_tail
   987   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
   988   _head->set_req(2, r);
   989   if( hot_idx ) _head->add_req(hot_tail);
   991   // Split all the Phis up between '_head' loop and the Region 'r'
   992   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   993     Node *out = _head->fast_out(j);
   994     if( out->is_Phi() ) {
   995       PhiNode* n = out->as_Phi();
   996       igvn.hash_delete(n);      // Delete from hash before hacking edges
   997       Node *hot_phi = NULL;
   998       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
   999       // Check all inputs for the ones to peel out
  1000       uint j = 1;
  1001       for( uint i = 2; i < n->req(); i++ ) {
  1002         if( i != hot_idx )
  1003           phi->set_req( j++, n->in(i) );
  1004         else hot_phi = n->in(i);
  1006       // Register the phi but do not transform until whole place transforms
  1007       igvn.register_new_node_with_optimizer(phi, n);
  1008       // Add the merge phi to the old Phi
  1009       while( n->req() > 3 ) n->del_req( n->req()-1 );
  1010       n->set_req(2, phi);
  1011       if( hot_idx ) n->add_req(hot_phi);
  1016   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
  1017   // of self loop tree.  Turn self into a loop headed by _head and with
  1018   // tail being the new merge point.
  1019   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
  1020   phase->set_loop(_tail,ilt);   // Adjust tail
  1021   _tail = r;                    // Self's tail is new merge point
  1022   phase->set_loop(r,this);
  1023   ilt->_child = _child;         // New guy has my children
  1024   _child = ilt;                 // Self has new guy as only child
  1025   ilt->_parent = this;          // new guy has self for parent
  1026   ilt->_nest = _nest;           // Same nesting depth (for now)
  1028   // Starting with 'ilt', look for child loop trees using the same shared
  1029   // header.  Flatten these out; they will no longer be loops in the end.
  1030   IdealLoopTree **pilt = &_child;
  1031   while( ilt ) {
  1032     if( ilt->_head == _head ) {
  1033       uint i;
  1034       for( i = 2; i < _head->req(); i++ )
  1035         if( _head->in(i) == ilt->_tail )
  1036           break;                // Still a loop
  1037       if( i == _head->req() ) { // No longer a loop
  1038         // Flatten ilt.  Hang ilt's "_next" list from the end of
  1039         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
  1040         IdealLoopTree **cp = &ilt->_child;
  1041         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
  1042         *cp = ilt->_next;       // Hang next list at end of child list
  1043         *pilt = ilt->_child;    // Move child up to replace ilt
  1044         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1045         ilt = ilt->_child;      // Repeat using new ilt
  1046         continue;               // do not advance over ilt->_child
  1048       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1049       phase->set_loop(_head,ilt);
  1051     pilt = &ilt->_child;        // Advance to next
  1052     ilt = *pilt;
  1055   if( _child ) fix_parent( _child, this );
  1058 //------------------------------beautify_loops---------------------------------
  1059 // Split shared headers and insert loop landing pads.
  1060 // Insert a LoopNode to replace the RegionNode.
  1061 // Return TRUE if loop tree is structurally changed.
  1062 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1063   bool result = false;
  1064   // Cache parts in locals for easy
  1065   PhaseIterGVN &igvn = phase->_igvn;
  1067   phase->C->print_method("Before beautify loops", 3);
  1069   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1071   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1072   int fall_in_cnt = 0;
  1073   for( uint i = 1; i < _head->req(); i++ )
  1074     if( !phase->is_member( this, _head->in(i) ) )
  1075       fall_in_cnt++;
  1076   assert( fall_in_cnt, "at least 1 fall-in path" );
  1077   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1078     split_fall_in( phase, fall_in_cnt );
  1080   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1081   // the left.
  1082   fall_in_cnt = 1;
  1083   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1084     fall_in_cnt++;
  1085   if( fall_in_cnt > 1 ) {
  1086     // Since I am just swapping inputs I do not need to update def-use info
  1087     Node *tmp = _head->in(1);
  1088     _head->set_req( 1, _head->in(fall_in_cnt) );
  1089     _head->set_req( fall_in_cnt, tmp );
  1090     // Swap also all Phis
  1091     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1092       Node* phi = _head->fast_out(i);
  1093       if( phi->is_Phi() ) {
  1094         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1095         tmp = phi->in(1);
  1096         phi->set_req( 1, phi->in(fall_in_cnt) );
  1097         phi->set_req( fall_in_cnt, tmp );
  1101   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1102   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1104   // If I am a shared header (multiple backedges), peel off the many
  1105   // backedges into a private merge point and use the merge point as
  1106   // the one true backedge.
  1107   if( _head->req() > 3 ) {
  1108     // Merge the many backedges into a single backedge.
  1109     merge_many_backedges( phase );
  1110     result = true;
  1113   // If I am a shared header (multiple backedges), peel off myself loop.
  1114   // I better be the outermost loop.
  1115   if( _head->req() > 3 ) {
  1116     split_outer_loop( phase );
  1117     result = true;
  1119   } else if( !_head->is_Loop() && !_irreducible ) {
  1120     // Make a new LoopNode to replace the old loop head
  1121     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
  1122     l = igvn.register_new_node_with_optimizer(l, _head);
  1123     phase->set_created_loop_node();
  1124     // Go ahead and replace _head
  1125     phase->_igvn.replace_node( _head, l );
  1126     _head = l;
  1127     phase->set_loop(_head, this);
  1130   // Now recursively beautify nested loops
  1131   if( _child ) result |= _child->beautify_loops( phase );
  1132   if( _next  ) result |= _next ->beautify_loops( phase );
  1133   return result;
  1136 //------------------------------allpaths_check_safepts----------------------------
  1137 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1138 // encountered.  Helper for check_safepts.
  1139 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1140   assert(stack.size() == 0, "empty stack");
  1141   stack.push(_tail);
  1142   visited.Clear();
  1143   visited.set(_tail->_idx);
  1144   while (stack.size() > 0) {
  1145     Node* n = stack.pop();
  1146     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1147       // Terminate this path
  1148     } else if (n->Opcode() == Op_SafePoint) {
  1149       if (_phase->get_loop(n) != this) {
  1150         if (_required_safept == NULL) _required_safept = new Node_List();
  1151         _required_safept->push(n);  // save the one closest to the tail
  1153       // Terminate this path
  1154     } else {
  1155       uint start = n->is_Region() ? 1 : 0;
  1156       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1157       for (uint i = start; i < end; i++) {
  1158         Node* in = n->in(i);
  1159         assert(in->is_CFG(), "must be");
  1160         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1161           stack.push(in);
  1168 //------------------------------check_safepts----------------------------
  1169 // Given dominators, try to find loops with calls that must always be
  1170 // executed (call dominates loop tail).  These loops do not need non-call
  1171 // safepoints (ncsfpt).
  1172 //
  1173 // A complication is that a safepoint in a inner loop may be needed
  1174 // by an outer loop. In the following, the inner loop sees it has a
  1175 // call (block 3) on every path from the head (block 2) to the
  1176 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1177 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1178 //
  1179 //          entry  0
  1180 //                 |
  1181 //                 v
  1182 // outer 1,2    +->1
  1183 //              |  |
  1184 //              |  v
  1185 //              |  2<---+  ncsfpt in 2
  1186 //              |_/|\   |
  1187 //                 | v  |
  1188 // inner 2,3      /  3  |  call in 3
  1189 //               /   |  |
  1190 //              v    +--+
  1191 //        exit  4
  1192 //
  1193 //
  1194 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1195 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1196 // is first looked for in the lists for the outer loops of the current loop.
  1197 //
  1198 // The insights into the problem:
  1199 //  A) counted loops are okay
  1200 //  B) innermost loops are okay (only an inner loop can delete
  1201 //     a ncsfpt needed by an outer loop)
  1202 //  C) a loop is immune from an inner loop deleting a safepoint
  1203 //     if the loop has a call on the idom-path
  1204 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1205 //     idom-path that is not in a nested loop
  1206 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1207 //     loop needs to be prevented from deletion by an inner loop
  1208 //
  1209 // There are two analyses:
  1210 //  1) The first, and cheaper one, scans the loop body from
  1211 //     tail to head following the idom (immediate dominator)
  1212 //     chain, looking for the cases (C,D,E) above.
  1213 //     Since inner loops are scanned before outer loops, there is summary
  1214 //     information about inner loops.  Inner loops can be skipped over
  1215 //     when the tail of an inner loop is encountered.
  1216 //
  1217 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1218 //     the idom path (which is rare), scans all predecessor control paths
  1219 //     from the tail to the head, terminating a path when a call or sfpt
  1220 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1221 //
  1222 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1223   // Bottom up traversal
  1224   IdealLoopTree* ch = _child;
  1225   while (ch != NULL) {
  1226     ch->check_safepts(visited, stack);
  1227     ch = ch->_next;
  1230   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1231     bool  has_call         = false; // call on dom-path
  1232     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1233     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1234     // Scan the dom-path nodes from tail to head
  1235     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1236       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1237         has_call = true;
  1238         _has_sfpt = 1;          // Then no need for a safept!
  1239         break;
  1240       } else if (n->Opcode() == Op_SafePoint) {
  1241         if (_phase->get_loop(n) == this) {
  1242           has_local_ncsfpt = true;
  1243           break;
  1245         if (nonlocal_ncsfpt == NULL) {
  1246           nonlocal_ncsfpt = n; // save the one closest to the tail
  1248       } else {
  1249         IdealLoopTree* nlpt = _phase->get_loop(n);
  1250         if (this != nlpt) {
  1251           // If at an inner loop tail, see if the inner loop has already
  1252           // recorded seeing a call on the dom-path (and stop.)  If not,
  1253           // jump to the head of the inner loop.
  1254           assert(is_member(nlpt), "nested loop");
  1255           Node* tail = nlpt->_tail;
  1256           if (tail->in(0)->is_If()) tail = tail->in(0);
  1257           if (n == tail) {
  1258             // If inner loop has call on dom-path, so does outer loop
  1259             if (nlpt->_has_sfpt) {
  1260               has_call = true;
  1261               _has_sfpt = 1;
  1262               break;
  1264             // Skip to head of inner loop
  1265             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1266             n = nlpt->_head;
  1271     // Record safept's that this loop needs preserved when an
  1272     // inner loop attempts to delete it's safepoints.
  1273     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1274       if (nonlocal_ncsfpt != NULL) {
  1275         if (_required_safept == NULL) _required_safept = new Node_List();
  1276         _required_safept->push(nonlocal_ncsfpt);
  1277       } else {
  1278         // Failed to find a suitable safept on the dom-path.  Now use
  1279         // an all paths walk from tail to head, looking for safepoints to preserve.
  1280         allpaths_check_safepts(visited, stack);
  1286 //---------------------------is_deleteable_safept----------------------------
  1287 // Is safept not required by an outer loop?
  1288 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1289   assert(sfpt->Opcode() == Op_SafePoint, "");
  1290   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1291   while (lp != NULL) {
  1292     Node_List* sfpts = lp->_required_safept;
  1293     if (sfpts != NULL) {
  1294       for (uint i = 0; i < sfpts->size(); i++) {
  1295         if (sfpt == sfpts->at(i))
  1296           return false;
  1299     lp = lp->_parent;
  1301   return true;
  1304 //---------------------------replace_parallel_iv-------------------------------
  1305 // Replace parallel induction variable (parallel to trip counter)
  1306 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
  1307   assert(loop->_head->is_CountedLoop(), "");
  1308   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1309   Node *incr = cl->incr();
  1310   if (incr == NULL)
  1311     return;         // Dead loop?
  1312   Node *init = cl->init_trip();
  1313   Node *phi  = cl->phi();
  1314   // protect against stride not being a constant
  1315   if (!cl->stride_is_con())
  1316     return;
  1317   int stride_con = cl->stride_con();
  1319   PhaseGVN *gvn = &_igvn;
  1321   // Visit all children, looking for Phis
  1322   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1323     Node *out = cl->out(i);
  1324     // Look for other phis (secondary IVs). Skip dead ones
  1325     if (!out->is_Phi() || out == phi || !has_node(out))
  1326       continue;
  1327     PhiNode* phi2 = out->as_Phi();
  1328     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1329     // Look for induction variables of the form:  X += constant
  1330     if (phi2->region() != loop->_head ||
  1331         incr2->req() != 3 ||
  1332         incr2->in(1) != phi2 ||
  1333         incr2 == incr ||
  1334         incr2->Opcode() != Op_AddI ||
  1335         !incr2->in(2)->is_Con())
  1336       continue;
  1338     // Check for parallel induction variable (parallel to trip counter)
  1339     // via an affine function.  In particular, count-down loops with
  1340     // count-up array indices are common. We only RCE references off
  1341     // the trip-counter, so we need to convert all these to trip-counter
  1342     // expressions.
  1343     Node *init2 = phi2->in( LoopNode::EntryControl );
  1344     int stride_con2 = incr2->in(2)->get_int();
  1346     // The general case here gets a little tricky.  We want to find the
  1347     // GCD of all possible parallel IV's and make a new IV using this
  1348     // GCD for the loop.  Then all possible IVs are simple multiples of
  1349     // the GCD.  In practice, this will cover very few extra loops.
  1350     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1351     // where +/-1 is the common case, but other integer multiples are
  1352     // also easy to handle.
  1353     int ratio_con = stride_con2/stride_con;
  1355     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
  1356       // Convert to using the trip counter.  The parallel induction
  1357       // variable differs from the trip counter by a loop-invariant
  1358       // amount, the difference between their respective initial values.
  1359       // It is scaled by the 'ratio_con'.
  1360       // Perform local Ideal transformation since in most cases ratio == 1.
  1361       Node* ratio = _igvn.intcon(ratio_con);
  1362       set_ctrl(ratio, C->root());
  1363       Node* hook = new (C, 3) Node(3);
  1364       Node* ratio_init = gvn->transform(new (C, 3) MulINode(init, ratio));
  1365       hook->init_req(0, ratio_init);
  1366       Node* diff = gvn->transform(new (C, 3) SubINode(init2, ratio_init));
  1367       hook->init_req(1, diff);
  1368       Node* ratio_idx = gvn->transform(new (C, 3) MulINode(phi, ratio));
  1369       hook->init_req(2, ratio_idx);
  1370       Node* add  = gvn->transform(new (C, 3) AddINode(ratio_idx, diff));
  1371       set_subtree_ctrl(add);
  1372       _igvn.replace_node( phi2, add );
  1373       // Free up intermediate goo
  1374       _igvn.remove_dead_node(hook);
  1375       // Sometimes an induction variable is unused
  1376       if (add->outcnt() == 0) {
  1377         _igvn.remove_dead_node(add);
  1379       --i; // deleted this phi; rescan starting with next position
  1380       continue;
  1385 //------------------------------counted_loop-----------------------------------
  1386 // Convert to counted loops where possible
  1387 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1389   // For grins, set the inner-loop flag here
  1390   if (!_child) {
  1391     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
  1394   if (_head->is_CountedLoop() ||
  1395       phase->is_counted_loop(_head, this)) {
  1396     _has_sfpt = 1;              // Indicate we do not need a safepoint here
  1398     // Look for a safepoint to remove
  1399     for (Node* n = tail(); n != _head; n = phase->idom(n))
  1400       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1401           phase->is_deleteable_safept(n))
  1402         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1404     // Look for induction variables
  1405     phase->replace_parallel_iv(this);
  1407   } else if (_parent != NULL && !_irreducible) {
  1408     // Not a counted loop.
  1409     // Look for a safepoint on the idom-path to remove, preserving the first one
  1410     bool found = false;
  1411     Node* n = tail();
  1412     for (; n != _head && !found; n = phase->idom(n)) {
  1413       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
  1414         found = true; // Found one
  1416     // Skip past it and delete the others
  1417     for (; n != _head; n = phase->idom(n)) {
  1418       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1419           phase->is_deleteable_safept(n))
  1420         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1424   // Recursively
  1425   if (_child) _child->counted_loop( phase );
  1426   if (_next)  _next ->counted_loop( phase );
  1429 #ifndef PRODUCT
  1430 //------------------------------dump_head--------------------------------------
  1431 // Dump 1 liner for loop header info
  1432 void IdealLoopTree::dump_head( ) const {
  1433   for (uint i=0; i<_nest; i++)
  1434     tty->print("  ");
  1435   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1436   if (_irreducible) tty->print(" IRREDUCIBLE");
  1437   if (UseLoopPredicate) {
  1438     Node* entry = _head->in(LoopNode::EntryControl);
  1439     if (entry != NULL && entry->is_Proj() &&
  1440         PhaseIdealLoop::is_uncommon_trap_if_pattern(entry->as_Proj(), Deoptimization::Reason_predicate)) {
  1441       tty->print(" predicated");
  1444   if (_head->is_CountedLoop()) {
  1445     CountedLoopNode *cl = _head->as_CountedLoop();
  1446     tty->print(" counted");
  1447     if (cl->is_pre_loop ()) tty->print(" pre" );
  1448     if (cl->is_main_loop()) tty->print(" main");
  1449     if (cl->is_post_loop()) tty->print(" post");
  1451   tty->cr();
  1454 //------------------------------dump-------------------------------------------
  1455 // Dump loops by loop tree
  1456 void IdealLoopTree::dump( ) const {
  1457   dump_head();
  1458   if (_child) _child->dump();
  1459   if (_next)  _next ->dump();
  1462 #endif
  1464 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
  1465   if (loop == root) {
  1466     if (loop->_child != NULL) {
  1467       log->begin_head("loop_tree");
  1468       log->end_head();
  1469       if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1470       log->tail("loop_tree");
  1471       assert(loop->_next == NULL, "what?");
  1473   } else {
  1474     Node* head = loop->_head;
  1475     log->begin_head("loop");
  1476     log->print(" idx='%d' ", head->_idx);
  1477     if (loop->_irreducible) log->print("irreducible='1' ");
  1478     if (head->is_Loop()) {
  1479       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
  1480       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
  1482     if (head->is_CountedLoop()) {
  1483       CountedLoopNode* cl = head->as_CountedLoop();
  1484       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
  1485       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
  1486       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
  1488     log->end_head();
  1489     if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1490     log->tail("loop");
  1491     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
  1495 //---------------------collect_potentially_useful_predicates-----------------------
  1496 // Helper function to collect potentially useful predicates to prevent them from
  1497 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
  1498 void PhaseIdealLoop::collect_potentially_useful_predicates(
  1499                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
  1500   if (loop->_child) { // child
  1501     collect_potentially_useful_predicates(loop->_child, useful_predicates);
  1504   // self (only loops that we can apply loop predication may use their predicates)
  1505   if (loop->_head->is_Loop() &&
  1506       !loop->_irreducible    &&
  1507       !loop->tail()->is_top()) {
  1508     LoopNode* lpn = loop->_head->as_Loop();
  1509     Node* entry = lpn->in(LoopNode::EntryControl);
  1510     Node* predicate_proj = find_predicate(entry);
  1511     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
  1512       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
  1513       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1517   if (loop->_next) { // sibling
  1518     collect_potentially_useful_predicates(loop->_next, useful_predicates);
  1522 //------------------------eliminate_useless_predicates-----------------------------
  1523 // Eliminate all inserted predicates if they could not be used by loop predication.
  1524 void PhaseIdealLoop::eliminate_useless_predicates() {
  1525   if (C->predicate_count() == 0)
  1526     return; // no predicate left
  1528   Unique_Node_List useful_predicates; // to store useful predicates
  1529   if (C->has_loops()) {
  1530     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
  1533   for (int i = C->predicate_count(); i > 0; i--) {
  1534      Node * n = C->predicate_opaque1_node(i-1);
  1535      assert(n->Opcode() == Op_Opaque1, "must be");
  1536      if (!useful_predicates.member(n)) { // not in the useful list
  1537        _igvn.replace_node(n, n->in(1));
  1542 //=============================================================================
  1543 //----------------------------build_and_optimize-------------------------------
  1544 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  1545 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  1546 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool do_loop_pred) {
  1547   ResourceMark rm;
  1549   int old_progress = C->major_progress();
  1551   // Reset major-progress flag for the driver's heuristics
  1552   C->clear_major_progress();
  1554 #ifndef PRODUCT
  1555   // Capture for later assert
  1556   uint unique = C->unique();
  1557   _loop_invokes++;
  1558   _loop_work += unique;
  1559 #endif
  1561   // True if the method has at least 1 irreducible loop
  1562   _has_irreducible_loops = false;
  1564   _created_loop_node = false;
  1566   Arena *a = Thread::current()->resource_area();
  1567   VectorSet visited(a);
  1568   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  1569   _nodes.map(C->unique(), NULL);
  1570   memset(_nodes.adr(), 0, wordSize * C->unique());
  1572   // Pre-build the top-level outermost loop tree entry
  1573   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  1574   // Do not need a safepoint at the top level
  1575   _ltree_root->_has_sfpt = 1;
  1577   // Empty pre-order array
  1578   allocate_preorders();
  1580   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  1581   // IdealLoopTree entries.  Data nodes are NOT walked.
  1582   build_loop_tree();
  1583   // Check for bailout, and return
  1584   if (C->failing()) {
  1585     return;
  1588   // No loops after all
  1589   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
  1591   // There should always be an outer loop containing the Root and Return nodes.
  1592   // If not, we have a degenerate empty program.  Bail out in this case.
  1593   if (!has_node(C->root())) {
  1594     if (!_verify_only) {
  1595       C->clear_major_progress();
  1596       C->record_method_not_compilable("empty program detected during loop optimization");
  1598     return;
  1601   // Nothing to do, so get out
  1602   if( !C->has_loops() && !do_split_ifs && !_verify_me && !_verify_only ) {
  1603     _igvn.optimize();           // Cleanup NeverBranches
  1604     return;
  1607   // Set loop nesting depth
  1608   _ltree_root->set_nest( 0 );
  1610   // Split shared headers and insert loop landing pads.
  1611   // Do not bother doing this on the Root loop of course.
  1612   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
  1613     if( _ltree_root->_child->beautify_loops( this ) ) {
  1614       // Re-build loop tree!
  1615       _ltree_root->_child = NULL;
  1616       _nodes.clear();
  1617       reallocate_preorders();
  1618       build_loop_tree();
  1619       // Check for bailout, and return
  1620       if (C->failing()) {
  1621         return;
  1623       // Reset loop nesting depth
  1624       _ltree_root->set_nest( 0 );
  1626       C->print_method("After beautify loops", 3);
  1630   // Build Dominators for elision of NULL checks & loop finding.
  1631   // Since nodes do not have a slot for immediate dominator, make
  1632   // a persistent side array for that info indexed on node->_idx.
  1633   _idom_size = C->unique();
  1634   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  1635   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  1636   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  1637   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  1639   Dominators();
  1641   if (!_verify_only) {
  1642     // As a side effect, Dominators removed any unreachable CFG paths
  1643     // into RegionNodes.  It doesn't do this test against Root, so
  1644     // we do it here.
  1645     for( uint i = 1; i < C->root()->req(); i++ ) {
  1646       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  1647         _igvn.hash_delete(C->root());
  1648         C->root()->del_req(i);
  1649         _igvn._worklist.push(C->root());
  1650         i--;                      // Rerun same iteration on compressed edges
  1654     // Given dominators, try to find inner loops with calls that must
  1655     // always be executed (call dominates loop tail).  These loops do
  1656     // not need a separate safepoint.
  1657     Node_List cisstack(a);
  1658     _ltree_root->check_safepts(visited, cisstack);
  1661   // Walk the DATA nodes and place into loops.  Find earliest control
  1662   // node.  For CFG nodes, the _nodes array starts out and remains
  1663   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  1664   // _nodes array holds the earliest legal controlling CFG node.
  1666   // Allocate stack with enough space to avoid frequent realloc
  1667   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
  1668   Node_Stack nstack( a, stack_size );
  1670   visited.Clear();
  1671   Node_List worklist(a);
  1672   // Don't need C->root() on worklist since
  1673   // it will be processed among C->top() inputs
  1674   worklist.push( C->top() );
  1675   visited.set( C->top()->_idx ); // Set C->top() as visited now
  1676   build_loop_early( visited, worklist, nstack );
  1678   // Given early legal placement, try finding counted loops.  This placement
  1679   // is good enough to discover most loop invariants.
  1680   if( !_verify_me && !_verify_only )
  1681     _ltree_root->counted_loop( this );
  1683   // Find latest loop placement.  Find ideal loop placement.
  1684   visited.Clear();
  1685   init_dom_lca_tags();
  1686   // Need C->root() on worklist when processing outs
  1687   worklist.push( C->root() );
  1688   NOT_PRODUCT( C->verify_graph_edges(); )
  1689   worklist.push( C->top() );
  1690   build_loop_late( visited, worklist, nstack );
  1692   if (_verify_only) {
  1693     // restore major progress flag
  1694     for (int i = 0; i < old_progress; i++)
  1695       C->set_major_progress();
  1696     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
  1697     assert(_igvn._worklist.size() == 0, "shouldn't push anything");
  1698     return;
  1701   // some parser-inserted loop predicates could never be used by loop
  1702   // predication. Eliminate them before loop optimization
  1703   if (UseLoopPredicate) {
  1704     eliminate_useless_predicates();
  1707   // clear out the dead code
  1708   while(_deadlist.size()) {
  1709     _igvn.remove_globally_dead_node(_deadlist.pop());
  1712 #ifndef PRODUCT
  1713   C->verify_graph_edges();
  1714   if (_verify_me) {             // Nested verify pass?
  1715     // Check to see if the verify mode is broken
  1716     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  1717     return;
  1719   if(VerifyLoopOptimizations) verify();
  1720   if(TraceLoopOpts && C->has_loops()) {
  1721     _ltree_root->dump();
  1723 #endif
  1725   if (ReassociateInvariants) {
  1726     // Reassociate invariants and prep for split_thru_phi
  1727     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  1728       IdealLoopTree* lpt = iter.current();
  1729       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  1731       lpt->reassociate_invariants(this);
  1733       // Because RCE opportunities can be masked by split_thru_phi,
  1734       // look for RCE candidates and inhibit split_thru_phi
  1735       // on just their loop-phi's for this pass of loop opts
  1736       if (SplitIfBlocks && do_split_ifs) {
  1737         if (lpt->policy_range_check(this)) {
  1738           lpt->_rce_candidate = 1; // = true
  1744   // Check for aggressive application of split-if and other transforms
  1745   // that require basic-block info (like cloning through Phi's)
  1746   if( SplitIfBlocks && do_split_ifs ) {
  1747     visited.Clear();
  1748     split_if_with_blocks( visited, nstack );
  1749     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  1752   // Perform loop predication before iteration splitting
  1753   if (do_loop_pred && C->has_loops() && !C->major_progress()) {
  1754     _ltree_root->_child->loop_predication(this);
  1757   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
  1758     if (do_intrinsify_fill()) {
  1759       C->set_major_progress();
  1763   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  1764   // range checks or one-shot null checks.
  1766   // If split-if's didn't hack the graph too bad (no CFG changes)
  1767   // then do loop opts.
  1768   if (C->has_loops() && !C->major_progress()) {
  1769     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  1770     _ltree_root->_child->iteration_split( this, worklist );
  1771     // No verify after peeling!  GCM has hoisted code out of the loop.
  1772     // After peeling, the hoisted code could sink inside the peeled area.
  1773     // The peeling code does not try to recompute the best location for
  1774     // all the code before the peeled area, so the verify pass will always
  1775     // complain about it.
  1777   // Do verify graph edges in any case
  1778   NOT_PRODUCT( C->verify_graph_edges(); );
  1780   if (!do_split_ifs) {
  1781     // We saw major progress in Split-If to get here.  We forced a
  1782     // pass with unrolling and not split-if, however more split-if's
  1783     // might make progress.  If the unrolling didn't make progress
  1784     // then the major-progress flag got cleared and we won't try
  1785     // another round of Split-If.  In particular the ever-common
  1786     // instance-of/check-cast pattern requires at least 2 rounds of
  1787     // Split-If to clear out.
  1788     C->set_major_progress();
  1791   // Repeat loop optimizations if new loops were seen
  1792   if (created_loop_node()) {
  1793     C->set_major_progress();
  1796   // Convert scalar to superword operations
  1798   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  1799     // SuperWord transform
  1800     SuperWord sw(this);
  1801     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  1802       IdealLoopTree* lpt = iter.current();
  1803       if (lpt->is_counted()) {
  1804         sw.transform_loop(lpt);
  1809   // Cleanup any modified bits
  1810   _igvn.optimize();
  1812   // disable assert until issue with split_flow_path is resolved (6742111)
  1813   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
  1814   //        "shouldn't introduce irreducible loops");
  1816   if (C->log() != NULL) {
  1817     log_loop_tree(_ltree_root, _ltree_root, C->log());
  1821 #ifndef PRODUCT
  1822 //------------------------------print_statistics-------------------------------
  1823 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  1824 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  1825 void PhaseIdealLoop::print_statistics() {
  1826   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  1829 //------------------------------verify-----------------------------------------
  1830 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  1831 static int fail;                // debug only, so its multi-thread dont care
  1832 void PhaseIdealLoop::verify() const {
  1833   int old_progress = C->major_progress();
  1834   ResourceMark rm;
  1835   PhaseIdealLoop loop_verify( _igvn, this );
  1836   VectorSet visited(Thread::current()->resource_area());
  1838   fail = 0;
  1839   verify_compare( C->root(), &loop_verify, visited );
  1840   assert( fail == 0, "verify loops failed" );
  1841   // Verify loop structure is the same
  1842   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  1843   // Reset major-progress.  It was cleared by creating a verify version of
  1844   // PhaseIdealLoop.
  1845   for( int i=0; i<old_progress; i++ )
  1846     C->set_major_progress();
  1849 //------------------------------verify_compare---------------------------------
  1850 // Make sure me and the given PhaseIdealLoop agree on key data structures
  1851 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  1852   if( !n ) return;
  1853   if( visited.test_set( n->_idx ) ) return;
  1854   if( !_nodes[n->_idx] ) {      // Unreachable
  1855     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  1856     return;
  1859   uint i;
  1860   for( i = 0; i < n->req(); i++ )
  1861     verify_compare( n->in(i), loop_verify, visited );
  1863   // Check the '_nodes' block/loop structure
  1864   i = n->_idx;
  1865   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  1866     if( _nodes[i] != loop_verify->_nodes[i] &&
  1867         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  1868       tty->print("Mismatched control setting for: ");
  1869       n->dump();
  1870       if( fail++ > 10 ) return;
  1871       Node *c = get_ctrl_no_update(n);
  1872       tty->print("We have it as: ");
  1873       if( c->in(0) ) c->dump();
  1874         else tty->print_cr("N%d",c->_idx);
  1875       tty->print("Verify thinks: ");
  1876       if( loop_verify->has_ctrl(n) )
  1877         loop_verify->get_ctrl_no_update(n)->dump();
  1878       else
  1879         loop_verify->get_loop_idx(n)->dump();
  1880       tty->cr();
  1882   } else {                    // We have a loop
  1883     IdealLoopTree *us = get_loop_idx(n);
  1884     if( loop_verify->has_ctrl(n) ) {
  1885       tty->print("Mismatched loop setting for: ");
  1886       n->dump();
  1887       if( fail++ > 10 ) return;
  1888       tty->print("We have it as: ");
  1889       us->dump();
  1890       tty->print("Verify thinks: ");
  1891       loop_verify->get_ctrl_no_update(n)->dump();
  1892       tty->cr();
  1893     } else if (!C->major_progress()) {
  1894       // Loop selection can be messed up if we did a major progress
  1895       // operation, like split-if.  Do not verify in that case.
  1896       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  1897       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  1898         tty->print("Unequals loops for: ");
  1899         n->dump();
  1900         if( fail++ > 10 ) return;
  1901         tty->print("We have it as: ");
  1902         us->dump();
  1903         tty->print("Verify thinks: ");
  1904         them->dump();
  1905         tty->cr();
  1910   // Check for immediate dominators being equal
  1911   if( i >= _idom_size ) {
  1912     if( !n->is_CFG() ) return;
  1913     tty->print("CFG Node with no idom: ");
  1914     n->dump();
  1915     return;
  1917   if( !n->is_CFG() ) return;
  1918   if( n == C->root() ) return; // No IDOM here
  1920   assert(n->_idx == i, "sanity");
  1921   Node *id = idom_no_update(n);
  1922   if( id != loop_verify->idom_no_update(n) ) {
  1923     tty->print("Unequals idoms for: ");
  1924     n->dump();
  1925     if( fail++ > 10 ) return;
  1926     tty->print("We have it as: ");
  1927     id->dump();
  1928     tty->print("Verify thinks: ");
  1929     loop_verify->idom_no_update(n)->dump();
  1930     tty->cr();
  1935 //------------------------------verify_tree------------------------------------
  1936 // Verify that tree structures match.  Because the CFG can change, siblings
  1937 // within the loop tree can be reordered.  We attempt to deal with that by
  1938 // reordering the verify's loop tree if possible.
  1939 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  1940   assert( _parent == parent, "Badly formed loop tree" );
  1942   // Siblings not in same order?  Attempt to re-order.
  1943   if( _head != loop->_head ) {
  1944     // Find _next pointer to update
  1945     IdealLoopTree **pp = &loop->_parent->_child;
  1946     while( *pp != loop )
  1947       pp = &((*pp)->_next);
  1948     // Find proper sibling to be next
  1949     IdealLoopTree **nn = &loop->_next;
  1950     while( (*nn) && (*nn)->_head != _head )
  1951       nn = &((*nn)->_next);
  1953     // Check for no match.
  1954     if( !(*nn) ) {
  1955       // Annoyingly, irreducible loops can pick different headers
  1956       // after a major_progress operation, so the rest of the loop
  1957       // tree cannot be matched.
  1958       if (_irreducible && Compile::current()->major_progress())  return;
  1959       assert( 0, "failed to match loop tree" );
  1962     // Move (*nn) to (*pp)
  1963     IdealLoopTree *hit = *nn;
  1964     *nn = hit->_next;
  1965     hit->_next = loop;
  1966     *pp = loop;
  1967     loop = hit;
  1968     // Now try again to verify
  1971   assert( _head  == loop->_head , "mismatched loop head" );
  1972   Node *tail = _tail;           // Inline a non-updating version of
  1973   while( !tail->in(0) )         // the 'tail()' call.
  1974     tail = tail->in(1);
  1975   assert( tail == loop->_tail, "mismatched loop tail" );
  1977   // Counted loops that are guarded should be able to find their guards
  1978   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  1979     CountedLoopNode *cl = _head->as_CountedLoop();
  1980     Node *init = cl->init_trip();
  1981     Node *ctrl = cl->in(LoopNode::EntryControl);
  1982     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1983     Node *iff  = ctrl->in(0);
  1984     assert( iff->Opcode() == Op_If, "" );
  1985     Node *bol  = iff->in(1);
  1986     assert( bol->Opcode() == Op_Bool, "" );
  1987     Node *cmp  = bol->in(1);
  1988     assert( cmp->Opcode() == Op_CmpI, "" );
  1989     Node *add  = cmp->in(1);
  1990     Node *opaq;
  1991     if( add->Opcode() == Op_Opaque1 ) {
  1992       opaq = add;
  1993     } else {
  1994       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  1995       assert( add == init, "" );
  1996       opaq = cmp->in(2);
  1998     assert( opaq->Opcode() == Op_Opaque1, "" );
  2002   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  2003   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  2004   // Innermost loops need to verify loop bodies,
  2005   // but only if no 'major_progress'
  2006   int fail = 0;
  2007   if (!Compile::current()->major_progress() && _child == NULL) {
  2008     for( uint i = 0; i < _body.size(); i++ ) {
  2009       Node *n = _body.at(i);
  2010       if (n->outcnt() == 0)  continue; // Ignore dead
  2011       uint j;
  2012       for( j = 0; j < loop->_body.size(); j++ )
  2013         if( loop->_body.at(j) == n )
  2014           break;
  2015       if( j == loop->_body.size() ) { // Not found in loop body
  2016         // Last ditch effort to avoid assertion: Its possible that we
  2017         // have some users (so outcnt not zero) but are still dead.
  2018         // Try to find from root.
  2019         if (Compile::current()->root()->find(n->_idx)) {
  2020           fail++;
  2021           tty->print("We have that verify does not: ");
  2022           n->dump();
  2026     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  2027       Node *n = loop->_body.at(i2);
  2028       if (n->outcnt() == 0)  continue; // Ignore dead
  2029       uint j;
  2030       for( j = 0; j < _body.size(); j++ )
  2031         if( _body.at(j) == n )
  2032           break;
  2033       if( j == _body.size() ) { // Not found in loop body
  2034         // Last ditch effort to avoid assertion: Its possible that we
  2035         // have some users (so outcnt not zero) but are still dead.
  2036         // Try to find from root.
  2037         if (Compile::current()->root()->find(n->_idx)) {
  2038           fail++;
  2039           tty->print("Verify has that we do not: ");
  2040           n->dump();
  2044     assert( !fail, "loop body mismatch" );
  2048 #endif
  2050 //------------------------------set_idom---------------------------------------
  2051 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  2052   uint idx = d->_idx;
  2053   if (idx >= _idom_size) {
  2054     uint newsize = _idom_size<<1;
  2055     while( idx >= newsize ) {
  2056       newsize <<= 1;
  2058     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  2059     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  2060     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  2061     _idom_size = newsize;
  2063   _idom[idx] = n;
  2064   _dom_depth[idx] = dom_depth;
  2067 //------------------------------recompute_dom_depth---------------------------------------
  2068 // The dominator tree is constructed with only parent pointers.
  2069 // This recomputes the depth in the tree by first tagging all
  2070 // nodes as "no depth yet" marker.  The next pass then runs up
  2071 // the dom tree from each node marked "no depth yet", and computes
  2072 // the depth on the way back down.
  2073 void PhaseIdealLoop::recompute_dom_depth() {
  2074   uint no_depth_marker = C->unique();
  2075   uint i;
  2076   // Initialize depth to "no depth yet"
  2077   for (i = 0; i < _idom_size; i++) {
  2078     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  2079      _dom_depth[i] = no_depth_marker;
  2082   if (_dom_stk == NULL) {
  2083     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
  2084     if (init_size < 10) init_size = 10;
  2085     _dom_stk = new GrowableArray<uint>(init_size);
  2087   // Compute new depth for each node.
  2088   for (i = 0; i < _idom_size; i++) {
  2089     uint j = i;
  2090     // Run up the dom tree to find a node with a depth
  2091     while (_dom_depth[j] == no_depth_marker) {
  2092       _dom_stk->push(j);
  2093       j = _idom[j]->_idx;
  2095     // Compute the depth on the way back down this tree branch
  2096     uint dd = _dom_depth[j] + 1;
  2097     while (_dom_stk->length() > 0) {
  2098       uint j = _dom_stk->pop();
  2099       _dom_depth[j] = dd;
  2100       dd++;
  2105 //------------------------------sort-------------------------------------------
  2106 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  2107 // loop tree, not the root.
  2108 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  2109   if( !innermost ) return loop; // New innermost loop
  2111   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  2112   assert( loop_preorder, "not yet post-walked loop" );
  2113   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  2114   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  2116   // Insert at start of list
  2117   while( l ) {                  // Insertion sort based on pre-order
  2118     if( l == loop ) return innermost; // Already on list!
  2119     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  2120     assert( l_preorder, "not yet post-walked l" );
  2121     // Check header pre-order number to figure proper nesting
  2122     if( loop_preorder > l_preorder )
  2123       break;                    // End of insertion
  2124     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  2125     // Since I split shared headers, you'd think this could not happen.
  2126     // BUT: I must first do the preorder numbering before I can discover I
  2127     // have shared headers, so the split headers all get the same preorder
  2128     // number as the RegionNode they split from.
  2129     if( loop_preorder == l_preorder &&
  2130         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  2131       break;                    // Also check for shared headers (same pre#)
  2132     pp = &l->_parent;           // Chain up list
  2133     l = *pp;
  2135   // Link into list
  2136   // Point predecessor to me
  2137   *pp = loop;
  2138   // Point me to successor
  2139   IdealLoopTree *p = loop->_parent;
  2140   loop->_parent = l;            // Point me to successor
  2141   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2142   return innermost;
  2145 //------------------------------build_loop_tree--------------------------------
  2146 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2147 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2148 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2149 // tightest enclosing IdealLoopTree for post-walked.
  2150 //
  2151 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2152 // a loop backedge with that doesn't have any work on the backedge.  This
  2153 // helps me construct nested loops with shared headers better.
  2154 //
  2155 // Once I've done the forward recursion, I do the post-work.  For each child
  2156 // I check to see if there is a backedge.  Backedges define a loop!  I
  2157 // insert an IdealLoopTree at the target of the backedge.
  2158 //
  2159 // During the post-work I also check to see if I have several children
  2160 // belonging to different loops.  If so, then this Node is a decision point
  2161 // where control flow can choose to change loop nests.  It is at this
  2162 // decision point where I can figure out how loops are nested.  At this
  2163 // time I can properly order the different loop nests from my children.
  2164 // Note that there may not be any backedges at the decision point!
  2165 //
  2166 // Since the decision point can be far removed from the backedges, I can't
  2167 // order my loops at the time I discover them.  Thus at the decision point
  2168 // I need to inspect loop header pre-order numbers to properly nest my
  2169 // loops.  This means I need to sort my childrens' loops by pre-order.
  2170 // The sort is of size number-of-control-children, which generally limits
  2171 // it to size 2 (i.e., I just choose between my 2 target loops).
  2172 void PhaseIdealLoop::build_loop_tree() {
  2173   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2174   GrowableArray <Node *> bltstack(C->unique() >> 1);
  2175   Node *n = C->root();
  2176   bltstack.push(n);
  2177   int pre_order = 1;
  2178   int stack_size;
  2180   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2181     n = bltstack.top(); // Leave node on stack
  2182     if ( !is_visited(n) ) {
  2183       // ---- Pre-pass Work ----
  2184       // Pre-walked but not post-walked nodes need a pre_order number.
  2186       set_preorder_visited( n, pre_order ); // set as visited
  2188       // ---- Scan over children ----
  2189       // Scan first over control projections that lead to loop headers.
  2190       // This helps us find inner-to-outer loops with shared headers better.
  2192       // Scan children's children for loop headers.
  2193       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2194         Node* m = n->raw_out(i);       // Child
  2195         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2196           // Scan over children's children to find loop
  2197           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2198             Node* l = m->fast_out(j);
  2199             if( is_visited(l) &&       // Been visited?
  2200                 !is_postvisited(l) &&  // But not post-visited
  2201                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2202               // Found!  Scan the DFS down this path before doing other paths
  2203               bltstack.push(m);
  2204               break;
  2209       pre_order++;
  2211     else if ( !is_postvisited(n) ) {
  2212       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2213       // such as com.sun.rsasign.am::a.
  2214       // For non-recursive version, first, process current children.
  2215       // On next iteration, check if additional children were added.
  2216       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2217         Node* u = n->raw_out(k);
  2218         if ( u->is_CFG() && !is_visited(u) ) {
  2219           bltstack.push(u);
  2222       if ( bltstack.length() == stack_size ) {
  2223         // There were no additional children, post visit node now
  2224         (void)bltstack.pop(); // Remove node from stack
  2225         pre_order = build_loop_tree_impl( n, pre_order );
  2226         // Check for bailout
  2227         if (C->failing()) {
  2228           return;
  2230         // Check to grow _preorders[] array for the case when
  2231         // build_loop_tree_impl() adds new nodes.
  2232         check_grow_preorders();
  2235     else {
  2236       (void)bltstack.pop(); // Remove post-visited node from stack
  2241 //------------------------------build_loop_tree_impl---------------------------
  2242 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2243   // ---- Post-pass Work ----
  2244   // Pre-walked but not post-walked nodes need a pre_order number.
  2246   // Tightest enclosing loop for this Node
  2247   IdealLoopTree *innermost = NULL;
  2249   // For all children, see if any edge is a backedge.  If so, make a loop
  2250   // for it.  Then find the tightest enclosing loop for the self Node.
  2251   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2252     Node* m = n->fast_out(i);   // Child
  2253     if( n == m ) continue;      // Ignore control self-cycles
  2254     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2256     IdealLoopTree *l;           // Child's loop
  2257     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2258       // Found a backedge
  2259       assert( get_preorder(m) < pre_order, "should be backedge" );
  2260       // Check for the RootNode, which is already a LoopNode and is allowed
  2261       // to have multiple "backedges".
  2262       if( m == C->root()) {     // Found the root?
  2263         l = _ltree_root;        // Root is the outermost LoopNode
  2264       } else {                  // Else found a nested loop
  2265         // Insert a LoopNode to mark this loop.
  2266         l = new IdealLoopTree(this, m, n);
  2267       } // End of Else found a nested loop
  2268       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2269         set_loop(m, l);         // Set loop header to loop now
  2271     } else {                    // Else not a nested loop
  2272       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2273       l = get_loop(m);          // Get previously determined loop
  2274       // If successor is header of a loop (nest), move up-loop till it
  2275       // is a member of some outer enclosing loop.  Since there are no
  2276       // shared headers (I've split them already) I only need to go up
  2277       // at most 1 level.
  2278       while( l && l->_head == m ) // Successor heads loop?
  2279         l = l->_parent;         // Move up 1 for me
  2280       // If this loop is not properly parented, then this loop
  2281       // has no exit path out, i.e. its an infinite loop.
  2282       if( !l ) {
  2283         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2284         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2285         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2286         // many backedges as well.
  2288         // Here I set the loop to be the root loop.  I could have, after
  2289         // inserting a bogus loop exit, restarted the recursion and found my
  2290         // new loop exit.  This would make the infinite loop a first-class
  2291         // loop and it would then get properly optimized.  What's the use of
  2292         // optimizing an infinite loop?
  2293         l = _ltree_root;        // Oops, found infinite loop
  2295         if (!_verify_only) {
  2296           // Insert the NeverBranch between 'm' and it's control user.
  2297           NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
  2298           _igvn.register_new_node_with_optimizer(iff);
  2299           set_loop(iff, l);
  2300           Node *if_t = new (C, 1) CProjNode( iff, 0 );
  2301           _igvn.register_new_node_with_optimizer(if_t);
  2302           set_loop(if_t, l);
  2304           Node* cfg = NULL;       // Find the One True Control User of m
  2305           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2306             Node* x = m->fast_out(j);
  2307             if (x->is_CFG() && x != m && x != iff)
  2308               { cfg = x; break; }
  2310           assert(cfg != NULL, "must find the control user of m");
  2311           uint k = 0;             // Probably cfg->in(0)
  2312           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2313           cfg->set_req( k, if_t ); // Now point to NeverBranch
  2315           // Now create the never-taken loop exit
  2316           Node *if_f = new (C, 1) CProjNode( iff, 1 );
  2317           _igvn.register_new_node_with_optimizer(if_f);
  2318           set_loop(if_f, l);
  2319           // Find frame ptr for Halt.  Relies on the optimizer
  2320           // V-N'ing.  Easier and quicker than searching through
  2321           // the program structure.
  2322           Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
  2323           _igvn.register_new_node_with_optimizer(frame);
  2324           // Halt & Catch Fire
  2325           Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
  2326           _igvn.register_new_node_with_optimizer(halt);
  2327           set_loop(halt, l);
  2328           C->root()->add_req(halt);
  2330         set_loop(C->root(), _ltree_root);
  2333     // Weeny check for irreducible.  This child was already visited (this
  2334     // IS the post-work phase).  Is this child's loop header post-visited
  2335     // as well?  If so, then I found another entry into the loop.
  2336     if (!_verify_only) {
  2337       while( is_postvisited(l->_head) ) {
  2338         // found irreducible
  2339         l->_irreducible = 1; // = true
  2340         l = l->_parent;
  2341         _has_irreducible_loops = true;
  2342         // Check for bad CFG here to prevent crash, and bailout of compile
  2343         if (l == NULL) {
  2344           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2345           return pre_order;
  2350     // This Node might be a decision point for loops.  It is only if
  2351     // it's children belong to several different loops.  The sort call
  2352     // does a trivial amount of work if there is only 1 child or all
  2353     // children belong to the same loop.  If however, the children
  2354     // belong to different loops, the sort call will properly set the
  2355     // _parent pointers to show how the loops nest.
  2356     //
  2357     // In any case, it returns the tightest enclosing loop.
  2358     innermost = sort( l, innermost );
  2361   // Def-use info will have some dead stuff; dead stuff will have no
  2362   // loop decided on.
  2364   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  2365   if( innermost && innermost->_head == n ) {
  2366     assert( get_loop(n) == innermost, "" );
  2367     IdealLoopTree *p = innermost->_parent;
  2368     IdealLoopTree *l = innermost;
  2369     while( p && l->_head == n ) {
  2370       l->_next = p->_child;     // Put self on parents 'next child'
  2371       p->_child = l;            // Make self as first child of parent
  2372       l = p;                    // Now walk up the parent chain
  2373       p = l->_parent;
  2375   } else {
  2376     // Note that it is possible for a LoopNode to reach here, if the
  2377     // backedge has been made unreachable (hence the LoopNode no longer
  2378     // denotes a Loop, and will eventually be removed).
  2380     // Record tightest enclosing loop for self.  Mark as post-visited.
  2381     set_loop(n, innermost);
  2382     // Also record has_call flag early on
  2383     if( innermost ) {
  2384       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  2385         // Do not count uncommon calls
  2386         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  2387           Node *iff = n->in(0)->in(0);
  2388           if( !iff->is_If() ||
  2389               (n->in(0)->Opcode() == Op_IfFalse &&
  2390                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  2391               (iff->as_If()->_prob >= 0.01) )
  2392             innermost->_has_call = 1;
  2394       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  2395         // Disable loop optimizations if the loop has a scalar replaceable
  2396         // allocation. This disabling may cause a potential performance lost
  2397         // if the allocation is not eliminated for some reason.
  2398         innermost->_allow_optimizations = false;
  2399         innermost->_has_call = 1; // = true
  2404   // Flag as post-visited now
  2405   set_postvisited(n);
  2406   return pre_order;
  2410 //------------------------------build_loop_early-------------------------------
  2411 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2412 // First pass computes the earliest controlling node possible.  This is the
  2413 // controlling input with the deepest dominating depth.
  2414 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  2415   while (worklist.size() != 0) {
  2416     // Use local variables nstack_top_n & nstack_top_i to cache values
  2417     // on nstack's top.
  2418     Node *nstack_top_n = worklist.pop();
  2419     uint  nstack_top_i = 0;
  2420 //while_nstack_nonempty:
  2421     while (true) {
  2422       // Get parent node and next input's index from stack's top.
  2423       Node  *n = nstack_top_n;
  2424       uint   i = nstack_top_i;
  2425       uint cnt = n->req(); // Count of inputs
  2426       if (i == 0) {        // Pre-process the node.
  2427         if( has_node(n) &&            // Have either loop or control already?
  2428             !has_ctrl(n) ) {          // Have loop picked out already?
  2429           // During "merge_many_backedges" we fold up several nested loops
  2430           // into a single loop.  This makes the members of the original
  2431           // loop bodies pointing to dead loops; they need to move up
  2432           // to the new UNION'd larger loop.  I set the _head field of these
  2433           // dead loops to NULL and the _parent field points to the owning
  2434           // loop.  Shades of UNION-FIND algorithm.
  2435           IdealLoopTree *ilt;
  2436           while( !(ilt = get_loop(n))->_head ) {
  2437             // Normally I would use a set_loop here.  But in this one special
  2438             // case, it is legal (and expected) to change what loop a Node
  2439             // belongs to.
  2440             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  2442           // Remove safepoints ONLY if I've already seen I don't need one.
  2443           // (the old code here would yank a 2nd safepoint after seeing a
  2444           // first one, even though the 1st did not dominate in the loop body
  2445           // and thus could be avoided indefinitely)
  2446           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  2447               is_deleteable_safept(n)) {
  2448             Node *in = n->in(TypeFunc::Control);
  2449             lazy_replace(n,in);       // Pull safepoint now
  2450             // Carry on with the recursion "as if" we are walking
  2451             // only the control input
  2452             if( !visited.test_set( in->_idx ) ) {
  2453               worklist.push(in);      // Visit this guy later, using worklist
  2455             // Get next node from nstack:
  2456             // - skip n's inputs processing by setting i > cnt;
  2457             // - we also will not call set_early_ctrl(n) since
  2458             //   has_node(n) == true (see the condition above).
  2459             i = cnt + 1;
  2462       } // if (i == 0)
  2464       // Visit all inputs
  2465       bool done = true;       // Assume all n's inputs will be processed
  2466       while (i < cnt) {
  2467         Node *in = n->in(i);
  2468         ++i;
  2469         if (in == NULL) continue;
  2470         if (in->pinned() && !in->is_CFG())
  2471           set_ctrl(in, in->in(0));
  2472         int is_visited = visited.test_set( in->_idx );
  2473         if (!has_node(in)) {  // No controlling input yet?
  2474           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  2475           assert( !is_visited, "visit only once" );
  2476           nstack.push(n, i);  // Save parent node and next input's index.
  2477           nstack_top_n = in;  // Process current input now.
  2478           nstack_top_i = 0;
  2479           done = false;       // Not all n's inputs processed.
  2480           break; // continue while_nstack_nonempty;
  2481         } else if (!is_visited) {
  2482           // This guy has a location picked out for him, but has not yet
  2483           // been visited.  Happens to all CFG nodes, for instance.
  2484           // Visit him using the worklist instead of recursion, to break
  2485           // cycles.  Since he has a location already we do not need to
  2486           // find his location before proceeding with the current Node.
  2487           worklist.push(in);  // Visit this guy later, using worklist
  2490       if (done) {
  2491         // All of n's inputs have been processed, complete post-processing.
  2493         // Compute earliest point this Node can go.
  2494         // CFG, Phi, pinned nodes already know their controlling input.
  2495         if (!has_node(n)) {
  2496           // Record earliest legal location
  2497           set_early_ctrl( n );
  2499         if (nstack.is_empty()) {
  2500           // Finished all nodes on stack.
  2501           // Process next node on the worklist.
  2502           break;
  2504         // Get saved parent node and next input's index.
  2505         nstack_top_n = nstack.node();
  2506         nstack_top_i = nstack.index();
  2507         nstack.pop();
  2509     } // while (true)
  2513 //------------------------------dom_lca_internal--------------------------------
  2514 // Pair-wise LCA
  2515 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  2516   if( !n1 ) return n2;          // Handle NULL original LCA
  2517   assert( n1->is_CFG(), "" );
  2518   assert( n2->is_CFG(), "" );
  2519   // find LCA of all uses
  2520   uint d1 = dom_depth(n1);
  2521   uint d2 = dom_depth(n2);
  2522   while (n1 != n2) {
  2523     if (d1 > d2) {
  2524       n1 =      idom(n1);
  2525       d1 = dom_depth(n1);
  2526     } else if (d1 < d2) {
  2527       n2 =      idom(n2);
  2528       d2 = dom_depth(n2);
  2529     } else {
  2530       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2531       // of the tree might have the same depth.  These sections have
  2532       // to be searched more carefully.
  2534       // Scan up all the n1's with equal depth, looking for n2.
  2535       Node *t1 = idom(n1);
  2536       while (dom_depth(t1) == d1) {
  2537         if (t1 == n2)  return n2;
  2538         t1 = idom(t1);
  2540       // Scan up all the n2's with equal depth, looking for n1.
  2541       Node *t2 = idom(n2);
  2542       while (dom_depth(t2) == d2) {
  2543         if (t2 == n1)  return n1;
  2544         t2 = idom(t2);
  2546       // Move up to a new dominator-depth value as well as up the dom-tree.
  2547       n1 = t1;
  2548       n2 = t2;
  2549       d1 = dom_depth(n1);
  2550       d2 = dom_depth(n2);
  2553   return n1;
  2556 //------------------------------compute_idom-----------------------------------
  2557 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  2558 // IDOMs are correct.
  2559 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  2560   assert( region->is_Region(), "" );
  2561   Node *LCA = NULL;
  2562   for( uint i = 1; i < region->req(); i++ ) {
  2563     if( region->in(i) != C->top() )
  2564       LCA = dom_lca( LCA, region->in(i) );
  2566   return LCA;
  2569 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
  2570   bool had_error = false;
  2571 #ifdef ASSERT
  2572   if (early != C->root()) {
  2573     // Make sure that there's a dominance path from use to LCA
  2574     Node* d = use;
  2575     while (d != LCA) {
  2576       d = idom(d);
  2577       if (d == C->root()) {
  2578         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
  2579         n->dump();
  2580         use->dump();
  2581         had_error = true;
  2582         break;
  2586 #endif
  2587   return had_error;
  2591 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
  2592   // Compute LCA over list of uses
  2593   bool had_error = false;
  2594   Node *LCA = NULL;
  2595   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  2596     Node* c = n->fast_out(i);
  2597     if (_nodes[c->_idx] == NULL)
  2598       continue;                 // Skip the occasional dead node
  2599     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  2600       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  2601         if( c->in(j) == n ) {   // Found matching input?
  2602           Node *use = c->in(0)->in(j);
  2603           if (_verify_only && use->is_top()) continue;
  2604           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2605           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2608     } else {
  2609       // For CFG data-users, use is in the block just prior
  2610       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  2611       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2612       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2615   assert(!had_error, "bad dominance");
  2616   return LCA;
  2619 //------------------------------get_late_ctrl----------------------------------
  2620 // Compute latest legal control.
  2621 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  2622   assert(early != NULL, "early control should not be NULL");
  2624   Node* LCA = compute_lca_of_uses(n, early);
  2625 #ifdef ASSERT
  2626   if (LCA == C->root() && LCA != early) {
  2627     // def doesn't dominate uses so print some useful debugging output
  2628     compute_lca_of_uses(n, early, true);
  2630 #endif
  2632   // if this is a load, check for anti-dependent stores
  2633   // We use a conservative algorithm to identify potential interfering
  2634   // instructions and for rescheduling the load.  The users of the memory
  2635   // input of this load are examined.  Any use which is not a load and is
  2636   // dominated by early is considered a potentially interfering store.
  2637   // This can produce false positives.
  2638   if (n->is_Load() && LCA != early) {
  2639     Node_List worklist;
  2641     Node *mem = n->in(MemNode::Memory);
  2642     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  2643       Node* s = mem->fast_out(i);
  2644       worklist.push(s);
  2646     while(worklist.size() != 0 && LCA != early) {
  2647       Node* s = worklist.pop();
  2648       if (s->is_Load()) {
  2649         continue;
  2650       } else if (s->is_MergeMem()) {
  2651         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  2652           Node* s1 = s->fast_out(i);
  2653           worklist.push(s1);
  2655       } else {
  2656         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  2657         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  2658         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  2659           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  2665   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  2666   return LCA;
  2669 // true if CFG node d dominates CFG node n
  2670 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  2671   if (d == n)
  2672     return true;
  2673   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  2674   uint dd = dom_depth(d);
  2675   while (dom_depth(n) >= dd) {
  2676     if (n == d)
  2677       return true;
  2678     n = idom(n);
  2680   return false;
  2683 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  2684 // Pair-wise LCA with tags.
  2685 // Tag each index with the node 'tag' currently being processed
  2686 // before advancing up the dominator chain using idom().
  2687 // Later calls that find a match to 'tag' know that this path has already
  2688 // been considered in the current LCA (which is input 'n1' by convention).
  2689 // Since get_late_ctrl() is only called once for each node, the tag array
  2690 // does not need to be cleared between calls to get_late_ctrl().
  2691 // Algorithm trades a larger constant factor for better asymptotic behavior
  2692 //
  2693 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  2694   uint d1 = dom_depth(n1);
  2695   uint d2 = dom_depth(n2);
  2697   do {
  2698     if (d1 > d2) {
  2699       // current lca is deeper than n2
  2700       _dom_lca_tags.map(n1->_idx, tag);
  2701       n1 =      idom(n1);
  2702       d1 = dom_depth(n1);
  2703     } else if (d1 < d2) {
  2704       // n2 is deeper than current lca
  2705       Node *memo = _dom_lca_tags[n2->_idx];
  2706       if( memo == tag ) {
  2707         return n1;    // Return the current LCA
  2709       _dom_lca_tags.map(n2->_idx, tag);
  2710       n2 =      idom(n2);
  2711       d2 = dom_depth(n2);
  2712     } else {
  2713       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2714       // of the tree might have the same depth.  These sections have
  2715       // to be searched more carefully.
  2717       // Scan up all the n1's with equal depth, looking for n2.
  2718       _dom_lca_tags.map(n1->_idx, tag);
  2719       Node *t1 = idom(n1);
  2720       while (dom_depth(t1) == d1) {
  2721         if (t1 == n2)  return n2;
  2722         _dom_lca_tags.map(t1->_idx, tag);
  2723         t1 = idom(t1);
  2725       // Scan up all the n2's with equal depth, looking for n1.
  2726       _dom_lca_tags.map(n2->_idx, tag);
  2727       Node *t2 = idom(n2);
  2728       while (dom_depth(t2) == d2) {
  2729         if (t2 == n1)  return n1;
  2730         _dom_lca_tags.map(t2->_idx, tag);
  2731         t2 = idom(t2);
  2733       // Move up to a new dominator-depth value as well as up the dom-tree.
  2734       n1 = t1;
  2735       n2 = t2;
  2736       d1 = dom_depth(n1);
  2737       d2 = dom_depth(n2);
  2739   } while (n1 != n2);
  2740   return n1;
  2743 //------------------------------init_dom_lca_tags------------------------------
  2744 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  2745 // Intended use does not involve any growth for the array, so it could
  2746 // be of fixed size.
  2747 void PhaseIdealLoop::init_dom_lca_tags() {
  2748   uint limit = C->unique() + 1;
  2749   _dom_lca_tags.map( limit, NULL );
  2750 #ifdef ASSERT
  2751   for( uint i = 0; i < limit; ++i ) {
  2752     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  2754 #endif // ASSERT
  2757 //------------------------------clear_dom_lca_tags------------------------------
  2758 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  2759 // Intended use does not involve any growth for the array, so it could
  2760 // be of fixed size.
  2761 void PhaseIdealLoop::clear_dom_lca_tags() {
  2762   uint limit = C->unique() + 1;
  2763   _dom_lca_tags.map( limit, NULL );
  2764   _dom_lca_tags.clear();
  2765 #ifdef ASSERT
  2766   for( uint i = 0; i < limit; ++i ) {
  2767     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  2769 #endif // ASSERT
  2772 //------------------------------build_loop_late--------------------------------
  2773 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2774 // Second pass finds latest legal placement, and ideal loop placement.
  2775 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  2776   while (worklist.size() != 0) {
  2777     Node *n = worklist.pop();
  2778     // Only visit once
  2779     if (visited.test_set(n->_idx)) continue;
  2780     uint cnt = n->outcnt();
  2781     uint   i = 0;
  2782     while (true) {
  2783       assert( _nodes[n->_idx], "no dead nodes" );
  2784       // Visit all children
  2785       if (i < cnt) {
  2786         Node* use = n->raw_out(i);
  2787         ++i;
  2788         // Check for dead uses.  Aggressively prune such junk.  It might be
  2789         // dead in the global sense, but still have local uses so I cannot
  2790         // easily call 'remove_dead_node'.
  2791         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  2792           // Due to cycles, we might not hit the same fixed point in the verify
  2793           // pass as we do in the regular pass.  Instead, visit such phis as
  2794           // simple uses of the loop head.
  2795           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  2796             if( !visited.test(use->_idx) )
  2797               worklist.push(use);
  2798           } else if( !visited.test_set(use->_idx) ) {
  2799             nstack.push(n, i); // Save parent and next use's index.
  2800             n   = use;         // Process all children of current use.
  2801             cnt = use->outcnt();
  2802             i   = 0;
  2804         } else {
  2805           // Do not visit around the backedge of loops via data edges.
  2806           // push dead code onto a worklist
  2807           _deadlist.push(use);
  2809       } else {
  2810         // All of n's children have been processed, complete post-processing.
  2811         build_loop_late_post(n);
  2812         if (nstack.is_empty()) {
  2813           // Finished all nodes on stack.
  2814           // Process next node on the worklist.
  2815           break;
  2817         // Get saved parent node and next use's index. Visit the rest of uses.
  2818         n   = nstack.node();
  2819         cnt = n->outcnt();
  2820         i   = nstack.index();
  2821         nstack.pop();
  2827 //------------------------------build_loop_late_post---------------------------
  2828 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2829 // Second pass finds latest legal placement, and ideal loop placement.
  2830 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
  2832   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
  2833     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  2836   // CFG and pinned nodes already handled
  2837   if( n->in(0) ) {
  2838     if( n->in(0)->is_top() ) return; // Dead?
  2840     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  2841     // _must_ be pinned (they have to observe their control edge of course).
  2842     // Unlike Stores (which modify an unallocable resource, the memory
  2843     // state), Mods/Loads can float around.  So free them up.
  2844     bool pinned = true;
  2845     switch( n->Opcode() ) {
  2846     case Op_DivI:
  2847     case Op_DivF:
  2848     case Op_DivD:
  2849     case Op_ModI:
  2850     case Op_ModF:
  2851     case Op_ModD:
  2852     case Op_LoadB:              // Same with Loads; they can sink
  2853     case Op_LoadUS:             // during loop optimizations.
  2854     case Op_LoadD:
  2855     case Op_LoadF:
  2856     case Op_LoadI:
  2857     case Op_LoadKlass:
  2858     case Op_LoadNKlass:
  2859     case Op_LoadL:
  2860     case Op_LoadS:
  2861     case Op_LoadP:
  2862     case Op_LoadN:
  2863     case Op_LoadRange:
  2864     case Op_LoadD_unaligned:
  2865     case Op_LoadL_unaligned:
  2866     case Op_StrComp:            // Does a bunch of load-like effects
  2867     case Op_StrEquals:
  2868     case Op_StrIndexOf:
  2869     case Op_AryEq:
  2870       pinned = false;
  2872     if( pinned ) {
  2873       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  2874       if( !chosen_loop->_child )       // Inner loop?
  2875         chosen_loop->_body.push(n); // Collect inner loops
  2876       return;
  2878   } else {                      // No slot zero
  2879     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  2880       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  2881       return;
  2883     assert(!n->is_CFG() || n->outcnt() == 0, "");
  2886   // Do I have a "safe range" I can select over?
  2887   Node *early = get_ctrl(n);// Early location already computed
  2889   // Compute latest point this Node can go
  2890   Node *LCA = get_late_ctrl( n, early );
  2891   // LCA is NULL due to uses being dead
  2892   if( LCA == NULL ) {
  2893 #ifdef ASSERT
  2894     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  2895       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  2897 #endif
  2898     _nodes.map(n->_idx, 0);     // This node is useless
  2899     _deadlist.push(n);
  2900     return;
  2902   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  2904   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  2905   Node *least = legal;          // Best legal position so far
  2906   while( early != legal ) {     // While not at earliest legal
  2907 #ifdef ASSERT
  2908     if (legal->is_Start() && !early->is_Root()) {
  2909       // Bad graph. Print idom path and fail.
  2910       tty->print_cr( "Bad graph detected in build_loop_late");
  2911       tty->print("n: ");n->dump(); tty->cr();
  2912       tty->print("early: ");early->dump(); tty->cr();
  2913       int ct = 0;
  2914       Node *dbg_legal = LCA;
  2915       while(!dbg_legal->is_Start() && ct < 100) {
  2916         tty->print("idom[%d] ",ct); dbg_legal->dump(); tty->cr();
  2917         ct++;
  2918         dbg_legal = idom(dbg_legal);
  2920       assert(false, "Bad graph detected in build_loop_late");
  2922 #endif
  2923     // Find least loop nesting depth
  2924     legal = idom(legal);        // Bump up the IDOM tree
  2925     // Check for lower nesting depth
  2926     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  2927       least = legal;
  2929   assert(early == legal || legal != C->root(), "bad dominance of inputs");
  2931   // Try not to place code on a loop entry projection
  2932   // which can inhibit range check elimination.
  2933   if (least != early) {
  2934     Node* ctrl_out = least->unique_ctrl_out();
  2935     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  2936         least == ctrl_out->in(LoopNode::EntryControl)) {
  2937       Node* least_dom = idom(least);
  2938       if (get_loop(least_dom)->is_member(get_loop(least))) {
  2939         least = least_dom;
  2944 #ifdef ASSERT
  2945   // If verifying, verify that 'verify_me' has a legal location
  2946   // and choose it as our location.
  2947   if( _verify_me ) {
  2948     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
  2949     Node *legal = LCA;
  2950     while( early != legal ) {   // While not at earliest legal
  2951       if( legal == v_ctrl ) break;  // Check for prior good location
  2952       legal = idom(legal)      ;// Bump up the IDOM tree
  2954     // Check for prior good location
  2955     if( legal == v_ctrl ) least = legal; // Keep prior if found
  2957 #endif
  2959   // Assign discovered "here or above" point
  2960   least = find_non_split_ctrl(least);
  2961   set_ctrl(n, least);
  2963   // Collect inner loop bodies
  2964   IdealLoopTree *chosen_loop = get_loop(least);
  2965   if( !chosen_loop->_child )   // Inner loop?
  2966     chosen_loop->_body.push(n);// Collect inner loops
  2969 #ifndef PRODUCT
  2970 //------------------------------dump-------------------------------------------
  2971 void PhaseIdealLoop::dump( ) const {
  2972   ResourceMark rm;
  2973   Arena* arena = Thread::current()->resource_area();
  2974   Node_Stack stack(arena, C->unique() >> 2);
  2975   Node_List rpo_list;
  2976   VectorSet visited(arena);
  2977   visited.set(C->top()->_idx);
  2978   rpo( C->root(), stack, visited, rpo_list );
  2979   // Dump root loop indexed by last element in PO order
  2980   dump( _ltree_root, rpo_list.size(), rpo_list );
  2983 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  2984   loop->dump_head();
  2986   // Now scan for CFG nodes in the same loop
  2987   for( uint j=idx; j > 0;  j-- ) {
  2988     Node *n = rpo_list[j-1];
  2989     if( !_nodes[n->_idx] )      // Skip dead nodes
  2990       continue;
  2991     if( get_loop(n) != loop ) { // Wrong loop nest
  2992       if( get_loop(n)->_head == n &&    // Found nested loop?
  2993           get_loop(n)->_parent == loop )
  2994         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  2995       continue;
  2998     // Dump controlling node
  2999     for( uint x = 0; x < loop->_nest; x++ )
  3000       tty->print("  ");
  3001     tty->print("C");
  3002     if( n == C->root() ) {
  3003       n->dump();
  3004     } else {
  3005       Node* cached_idom   = idom_no_update(n);
  3006       Node *computed_idom = n->in(0);
  3007       if( n->is_Region() ) {
  3008         computed_idom = compute_idom(n);
  3009         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  3010         // any MultiBranch ctrl node), so apply a similar transform to
  3011         // the cached idom returned from idom_no_update.
  3012         cached_idom = find_non_split_ctrl(cached_idom);
  3014       tty->print(" ID:%d",computed_idom->_idx);
  3015       n->dump();
  3016       if( cached_idom != computed_idom ) {
  3017         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  3018                       computed_idom->_idx, cached_idom->_idx);
  3021     // Dump nodes it controls
  3022     for( uint k = 0; k < _nodes.Size(); k++ ) {
  3023       // (k < C->unique() && get_ctrl(find(k)) == n)
  3024       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  3025         Node *m = C->root()->find(k);
  3026         if( m && m->outcnt() > 0 ) {
  3027           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  3028             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  3029                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  3031           for( uint j = 0; j < loop->_nest; j++ )
  3032             tty->print("  ");
  3033           tty->print(" ");
  3034           m->dump();
  3041 // Collect a R-P-O for the whole CFG.
  3042 // Result list is in post-order (scan backwards for RPO)
  3043 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  3044   stk.push(start, 0);
  3045   visited.set(start->_idx);
  3047   while (stk.is_nonempty()) {
  3048     Node* m   = stk.node();
  3049     uint  idx = stk.index();
  3050     if (idx < m->outcnt()) {
  3051       stk.set_index(idx + 1);
  3052       Node* n = m->raw_out(idx);
  3053       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  3054         stk.push(n, 0);
  3056     } else {
  3057       rpo_list.push(m);
  3058       stk.pop();
  3062 #endif
  3065 //=============================================================================
  3066 //------------------------------LoopTreeIterator-----------------------------------
  3068 // Advance to next loop tree using a preorder, left-to-right traversal.
  3069 void LoopTreeIterator::next() {
  3070   assert(!done(), "must not be done.");
  3071   if (_curnt->_child != NULL) {
  3072     _curnt = _curnt->_child;
  3073   } else if (_curnt->_next != NULL) {
  3074     _curnt = _curnt->_next;
  3075   } else {
  3076     while (_curnt != _root && _curnt->_next == NULL) {
  3077       _curnt = _curnt->_parent;
  3079     if (_curnt == _root) {
  3080       _curnt = NULL;
  3081       assert(done(), "must be done.");
  3082     } else {
  3083       assert(_curnt->_next != NULL, "must be more to do");
  3084       _curnt = _curnt->_next;

mercurial