src/cpu/sparc/vm/templateInterpreter_sparc.cpp

Fri, 25 Mar 2011 09:35:39 +0100

author
roland
date
Fri, 25 Mar 2011 09:35:39 +0100
changeset 2683
7e88bdae86ec
parent 2438
dd031b2226de
child 2781
e1162778c1c8
permissions
-rw-r--r--

7029017: Additional architecture support for c2 compiler
Summary: Enables cross building of a c2 VM. Support masking of shift counts when the processor architecture mandates it.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodDataOop.hpp"
    34 #include "oops/methodOop.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    48 #ifndef CC_INTERP
    49 #ifndef FAST_DISPATCH
    50 #define FAST_DISPATCH 1
    51 #endif
    52 #undef FAST_DISPATCH
    55 // Generation of Interpreter
    56 //
    57 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
    60 #define __ _masm->
    63 //----------------------------------------------------------------------------------------------------
    66 void InterpreterGenerator::save_native_result(void) {
    67   // result potentially in O0/O1: save it across calls
    68   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    70   // result potentially in F0/F1: save it across calls
    71   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    73   // save and restore any potential method result value around the unlocking operation
    74   __ stf(FloatRegisterImpl::D, F0, d_tmp);
    75 #ifdef _LP64
    76   __ stx(O0, l_tmp);
    77 #else
    78   __ std(O0, l_tmp);
    79 #endif
    80 }
    82 void InterpreterGenerator::restore_native_result(void) {
    83   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    84   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    86   // Restore any method result value
    87   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
    88 #ifdef _LP64
    89   __ ldx(l_tmp, O0);
    90 #else
    91   __ ldd(l_tmp, O0);
    92 #endif
    93 }
    95 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
    96   assert(!pass_oop || message == NULL, "either oop or message but not both");
    97   address entry = __ pc();
    98   // expression stack must be empty before entering the VM if an exception happened
    99   __ empty_expression_stack();
   100   // load exception object
   101   __ set((intptr_t)name, G3_scratch);
   102   if (pass_oop) {
   103     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
   104   } else {
   105     __ set((intptr_t)message, G4_scratch);
   106     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
   107   }
   108   // throw exception
   109   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
   110   AddressLiteral thrower(Interpreter::throw_exception_entry());
   111   __ jump_to(thrower, G3_scratch);
   112   __ delayed()->nop();
   113   return entry;
   114 }
   116 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   117   address entry = __ pc();
   118   // expression stack must be empty before entering the VM if an exception
   119   // happened
   120   __ empty_expression_stack();
   121   // load exception object
   122   __ call_VM(Oexception,
   123              CAST_FROM_FN_PTR(address,
   124                               InterpreterRuntime::throw_ClassCastException),
   125              Otos_i);
   126   __ should_not_reach_here();
   127   return entry;
   128 }
   131 // Arguments are: required type in G5_method_type, and
   132 // failing object (or NULL) in G3_method_handle.
   133 address TemplateInterpreterGenerator::generate_WrongMethodType_handler() {
   134   address entry = __ pc();
   135   // expression stack must be empty before entering the VM if an exception
   136   // happened
   137   __ empty_expression_stack();
   138   // load exception object
   139   __ call_VM(Oexception,
   140              CAST_FROM_FN_PTR(address,
   141                               InterpreterRuntime::throw_WrongMethodTypeException),
   142              G5_method_type,    // required
   143              G3_method_handle); // actual
   144   __ should_not_reach_here();
   145   return entry;
   146 }
   149 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
   150   address entry = __ pc();
   151   // expression stack must be empty before entering the VM if an exception happened
   152   __ empty_expression_stack();
   153   // convention: expect aberrant index in register G3_scratch, then shuffle the
   154   // index to G4_scratch for the VM call
   155   __ mov(G3_scratch, G4_scratch);
   156   __ set((intptr_t)name, G3_scratch);
   157   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
   158   __ should_not_reach_here();
   159   return entry;
   160 }
   163 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
   164   address entry = __ pc();
   165   // expression stack must be empty before entering the VM if an exception happened
   166   __ empty_expression_stack();
   167   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   168   __ should_not_reach_here();
   169   return entry;
   170 }
   173 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   174   TosState incoming_state = state;
   176   Label cont;
   177   address compiled_entry = __ pc();
   179   address entry = __ pc();
   180 #if !defined(_LP64) && defined(COMPILER2)
   181   // All return values are where we want them, except for Longs.  C2 returns
   182   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   183   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   184   // build even if we are returning from interpreted we just do a little
   185   // stupid shuffing.
   186   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   187   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   188   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   190   if (incoming_state == ltos) {
   191     __ srl (G1,  0, O1);
   192     __ srlx(G1, 32, O0);
   193   }
   194 #endif // !_LP64 && COMPILER2
   196   __ bind(cont);
   198   // The callee returns with the stack possibly adjusted by adapter transition
   199   // We remove that possible adjustment here.
   200   // All interpreter local registers are untouched. Any result is passed back
   201   // in the O0/O1 or float registers. Before continuing, the arguments must be
   202   // popped from the java expression stack; i.e., Lesp must be adjusted.
   204   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
   206   Label L_got_cache, L_giant_index;
   207   const Register cache = G3_scratch;
   208   const Register size  = G1_scratch;
   209   if (EnableInvokeDynamic) {
   210     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode.
   211     __ cmp(G1_scratch, Bytecodes::_invokedynamic);
   212     __ br(Assembler::equal, false, Assembler::pn, L_giant_index);
   213     __ delayed()->nop();
   214   }
   215   __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
   216   __ bind(L_got_cache);
   217   __ ld_ptr(cache, constantPoolCacheOopDesc::base_offset() +
   218                    ConstantPoolCacheEntry::flags_offset(), size);
   219   __ and3(size, 0xFF, size);                   // argument size in words
   220   __ sll(size, Interpreter::logStackElementSize, size); // each argument size in bytes
   221   __ add(Lesp, size, Lesp);                    // pop arguments
   222   __ dispatch_next(state, step);
   224   // out of the main line of code...
   225   if (EnableInvokeDynamic) {
   226     __ bind(L_giant_index);
   227     __ get_cache_and_index_at_bcp(cache, G1_scratch, 1, sizeof(u4));
   228     __ ba(false, L_got_cache);
   229     __ delayed()->nop();
   230   }
   232   return entry;
   233 }
   236 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   237   address entry = __ pc();
   238   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
   239   { Label L;
   240     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   241     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
   242     __ tst(Gtemp);
   243     __ brx(Assembler::equal, false, Assembler::pt, L);
   244     __ delayed()->nop();
   245     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   246     __ should_not_reach_here();
   247     __ bind(L);
   248   }
   249   __ dispatch_next(state, step);
   250   return entry;
   251 }
   253 // A result handler converts/unboxes a native call result into
   254 // a java interpreter/compiler result. The current frame is an
   255 // interpreter frame. The activation frame unwind code must be
   256 // consistent with that of TemplateTable::_return(...). In the
   257 // case of native methods, the caller's SP was not modified.
   258 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   259   address entry = __ pc();
   260   Register Itos_i  = Otos_i ->after_save();
   261   Register Itos_l  = Otos_l ->after_save();
   262   Register Itos_l1 = Otos_l1->after_save();
   263   Register Itos_l2 = Otos_l2->after_save();
   264   switch (type) {
   265     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
   266     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
   267     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
   268     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
   269     case T_LONG   :
   270 #ifndef _LP64
   271                     __ mov(O1, Itos_l2);  // move other half of long
   272 #endif              // ifdef or no ifdef, fall through to the T_INT case
   273     case T_INT    : __ mov(O0, Itos_i);                         break;
   274     case T_VOID   : /* nothing to do */                         break;
   275     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
   276     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
   277     case T_OBJECT :
   278       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
   279       __ verify_oop(Itos_i);
   280       break;
   281     default       : ShouldNotReachHere();
   282   }
   283   __ ret();                           // return from interpreter activation
   284   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   285   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
   286   return entry;
   287 }
   289 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   290   address entry = __ pc();
   291   __ push(state);
   292   __ call_VM(noreg, runtime_entry);
   293   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
   294   return entry;
   295 }
   298 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   299   address entry = __ pc();
   300   __ dispatch_next(state);
   301   return entry;
   302 }
   304 //
   305 // Helpers for commoning out cases in the various type of method entries.
   306 //
   308 // increment invocation count & check for overflow
   309 //
   310 // Note: checking for negative value instead of overflow
   311 //       so we have a 'sticky' overflow test
   312 //
   313 // Lmethod: method
   314 // ??: invocation counter
   315 //
   316 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   317   // Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
   318   if (TieredCompilation) {
   319     const int increment = InvocationCounter::count_increment;
   320     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
   321     Label no_mdo, done;
   322     if (ProfileInterpreter) {
   323       // If no method data exists, go to profile_continue.
   324       __ ld_ptr(Lmethod, methodOopDesc::method_data_offset(), G4_scratch);
   325       __ br_null(G4_scratch, false, Assembler::pn, no_mdo);
   326       __ delayed()->nop();
   327       // Increment counter
   328       Address mdo_invocation_counter(G4_scratch,
   329                                      in_bytes(methodDataOopDesc::invocation_counter_offset()) +
   330                                      in_bytes(InvocationCounter::counter_offset()));
   331       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
   332                                  G3_scratch, Lscratch,
   333                                  Assembler::zero, overflow);
   334       __ ba(false, done);
   335       __ delayed()->nop();
   336     }
   338     // Increment counter in methodOop
   339     __ bind(no_mdo);
   340     Address invocation_counter(Lmethod,
   341                                in_bytes(methodOopDesc::invocation_counter_offset()) +
   342                                in_bytes(InvocationCounter::counter_offset()));
   343     __ increment_mask_and_jump(invocation_counter, increment, mask,
   344                                G3_scratch, Lscratch,
   345                                Assembler::zero, overflow);
   346     __ bind(done);
   347   } else {
   348     // Update standard invocation counters
   349     __ increment_invocation_counter(O0, G3_scratch);
   350     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
   351       Address interpreter_invocation_counter(Lmethod,in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
   352       __ ld(interpreter_invocation_counter, G3_scratch);
   353       __ inc(G3_scratch);
   354       __ st(G3_scratch, interpreter_invocation_counter);
   355     }
   357     if (ProfileInterpreter && profile_method != NULL) {
   358       // Test to see if we should create a method data oop
   359       AddressLiteral profile_limit((address)&InvocationCounter::InterpreterProfileLimit);
   360       __ load_contents(profile_limit, G3_scratch);
   361       __ cmp(O0, G3_scratch);
   362       __ br(Assembler::lessUnsigned, false, Assembler::pn, *profile_method_continue);
   363       __ delayed()->nop();
   365       // if no method data exists, go to profile_method
   366       __ test_method_data_pointer(*profile_method);
   367     }
   369     AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit);
   370     __ load_contents(invocation_limit, G3_scratch);
   371     __ cmp(O0, G3_scratch);
   372     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
   373     __ delayed()->nop();
   374   }
   376 }
   378 // Allocate monitor and lock method (asm interpreter)
   379 // ebx - methodOop
   380 //
   381 void InterpreterGenerator::lock_method(void) {
   382   __ ld(Lmethod, in_bytes(methodOopDesc::access_flags_offset()), O0);  // Load access flags.
   384 #ifdef ASSERT
   385  { Label ok;
   386    __ btst(JVM_ACC_SYNCHRONIZED, O0);
   387    __ br( Assembler::notZero, false, Assembler::pt, ok);
   388    __ delayed()->nop();
   389    __ stop("method doesn't need synchronization");
   390    __ bind(ok);
   391   }
   392 #endif // ASSERT
   394   // get synchronization object to O0
   395   { Label done;
   396     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   397     __ btst(JVM_ACC_STATIC, O0);
   398     __ br( Assembler::zero, true, Assembler::pt, done);
   399     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
   401     __ ld_ptr( Lmethod, in_bytes(methodOopDesc::constants_offset()), O0);
   402     __ ld_ptr( O0, constantPoolOopDesc::pool_holder_offset_in_bytes(), O0);
   404     // lock the mirror, not the klassOop
   405     __ ld_ptr( O0, mirror_offset, O0);
   407 #ifdef ASSERT
   408     __ tst(O0);
   409     __ breakpoint_trap(Assembler::zero);
   410 #endif // ASSERT
   412     __ bind(done);
   413   }
   415   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
   416   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
   417   // __ untested("lock_object from method entry");
   418   __ lock_object(Lmonitors, O0);
   419 }
   422 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
   423                                                          Register Rscratch,
   424                                                          Register Rscratch2) {
   425   const int page_size = os::vm_page_size();
   426   Address saved_exception_pc(G2_thread, JavaThread::saved_exception_pc_offset());
   427   Label after_frame_check;
   429   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
   431   __ set( page_size,   Rscratch );
   432   __ cmp( Rframe_size, Rscratch );
   434   __ br( Assembler::lessEqual, false, Assembler::pt, after_frame_check );
   435   __ delayed()->nop();
   437   // get the stack base, and in debug, verify it is non-zero
   438   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
   439 #ifdef ASSERT
   440   Label base_not_zero;
   441   __ cmp( Rscratch, G0 );
   442   __ brx( Assembler::notEqual, false, Assembler::pn, base_not_zero );
   443   __ delayed()->nop();
   444   __ stop("stack base is zero in generate_stack_overflow_check");
   445   __ bind(base_not_zero);
   446 #endif
   448   // get the stack size, and in debug, verify it is non-zero
   449   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
   450   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
   451 #ifdef ASSERT
   452   Label size_not_zero;
   453   __ cmp( Rscratch2, G0 );
   454   __ brx( Assembler::notEqual, false, Assembler::pn, size_not_zero );
   455   __ delayed()->nop();
   456   __ stop("stack size is zero in generate_stack_overflow_check");
   457   __ bind(size_not_zero);
   458 #endif
   460   // compute the beginning of the protected zone minus the requested frame size
   461   __ sub( Rscratch, Rscratch2,   Rscratch );
   462   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
   463   __ add( Rscratch, Rscratch2,   Rscratch );
   465   // Add in the size of the frame (which is the same as subtracting it from the
   466   // SP, which would take another register
   467   __ add( Rscratch, Rframe_size, Rscratch );
   469   // the frame is greater than one page in size, so check against
   470   // the bottom of the stack
   471   __ cmp( SP, Rscratch );
   472   __ brx( Assembler::greater, false, Assembler::pt, after_frame_check );
   473   __ delayed()->nop();
   475   // Save the return address as the exception pc
   476   __ st_ptr(O7, saved_exception_pc);
   478   // the stack will overflow, throw an exception
   479   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   481   // if you get to here, then there is enough stack space
   482   __ bind( after_frame_check );
   483 }
   486 //
   487 // Generate a fixed interpreter frame. This is identical setup for interpreted
   488 // methods and for native methods hence the shared code.
   490 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   491   //
   492   //
   493   // The entry code sets up a new interpreter frame in 4 steps:
   494   //
   495   // 1) Increase caller's SP by for the extra local space needed:
   496   //    (check for overflow)
   497   //    Efficient implementation of xload/xstore bytecodes requires
   498   //    that arguments and non-argument locals are in a contigously
   499   //    addressable memory block => non-argument locals must be
   500   //    allocated in the caller's frame.
   501   //
   502   // 2) Create a new stack frame and register window:
   503   //    The new stack frame must provide space for the standard
   504   //    register save area, the maximum java expression stack size,
   505   //    the monitor slots (0 slots initially), and some frame local
   506   //    scratch locations.
   507   //
   508   // 3) The following interpreter activation registers must be setup:
   509   //    Lesp       : expression stack pointer
   510   //    Lbcp       : bytecode pointer
   511   //    Lmethod    : method
   512   //    Llocals    : locals pointer
   513   //    Lmonitors  : monitor pointer
   514   //    LcpoolCache: constant pool cache
   515   //
   516   // 4) Initialize the non-argument locals if necessary:
   517   //    Non-argument locals may need to be initialized to NULL
   518   //    for GC to work. If the oop-map information is accurate
   519   //    (in the absence of the JSR problem), no initialization
   520   //    is necessary.
   521   //
   522   // (gri - 2/25/2000)
   525   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
   526   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
   527   const Address max_stack         (G5_method, methodOopDesc::max_stack_offset());
   528   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
   530   const int extra_space =
   531     rounded_vm_local_words +                   // frame local scratch space
   532     //6815692//methodOopDesc::extra_stack_words() +       // extra push slots for MH adapters
   533     frame::memory_parameter_word_sp_offset +   // register save area
   534     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
   536   const Register Glocals_size = G3;
   537   const Register Otmp1 = O3;
   538   const Register Otmp2 = O4;
   539   // Lscratch can't be used as a temporary because the call_stub uses
   540   // it to assert that the stack frame was setup correctly.
   542   __ lduh( size_of_parameters, Glocals_size);
   544   // Gargs points to first local + BytesPerWord
   545   // Set the saved SP after the register window save
   546   //
   547   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
   548   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
   549   __ add(Gargs, Otmp1, Gargs);
   551   if (native_call) {
   552     __ calc_mem_param_words( Glocals_size, Gframe_size );
   553     __ add( Gframe_size,  extra_space, Gframe_size);
   554     __ round_to( Gframe_size, WordsPerLong );
   555     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
   556   } else {
   558     //
   559     // Compute number of locals in method apart from incoming parameters
   560     //
   561     __ lduh( size_of_locals, Otmp1 );
   562     __ sub( Otmp1, Glocals_size, Glocals_size );
   563     __ round_to( Glocals_size, WordsPerLong );
   564     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
   566     // see if the frame is greater than one page in size. If so,
   567     // then we need to verify there is enough stack space remaining
   568     // Frame_size = (max_stack + extra_space) * BytesPerWord;
   569     __ lduh( max_stack, Gframe_size );
   570     __ add( Gframe_size, extra_space, Gframe_size );
   571     __ round_to( Gframe_size, WordsPerLong );
   572     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
   574     // Add in java locals size for stack overflow check only
   575     __ add( Gframe_size, Glocals_size, Gframe_size );
   577     const Register Otmp2 = O4;
   578     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
   579     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
   581     __ sub( Gframe_size, Glocals_size, Gframe_size);
   583     //
   584     // bump SP to accomodate the extra locals
   585     //
   586     __ sub( SP, Glocals_size, SP );
   587   }
   589   //
   590   // now set up a stack frame with the size computed above
   591   //
   592   __ neg( Gframe_size );
   593   __ save( SP, Gframe_size, SP );
   595   //
   596   // now set up all the local cache registers
   597   //
   598   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
   599   // that all present references to Lbyte_code initialize the register
   600   // immediately before use
   601   if (native_call) {
   602     __ mov(G0, Lbcp);
   603   } else {
   604     __ ld_ptr(G5_method, methodOopDesc::const_offset(), Lbcp);
   605     __ add(Lbcp, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
   606   }
   607   __ mov( G5_method, Lmethod);                 // set Lmethod
   608   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
   609   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
   610 #ifdef _LP64
   611   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
   612 #endif
   613   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
   615   // setup interpreter activation registers
   616   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
   618   if (ProfileInterpreter) {
   619 #ifdef FAST_DISPATCH
   620     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
   621     // they both use I2.
   622     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
   623 #endif // FAST_DISPATCH
   624     __ set_method_data_pointer();
   625   }
   627 }
   629 // Empty method, generate a very fast return.
   631 address InterpreterGenerator::generate_empty_entry(void) {
   633   // A method that does nother but return...
   635   address entry = __ pc();
   636   Label slow_path;
   638   __ verify_oop(G5_method);
   640   // do nothing for empty methods (do not even increment invocation counter)
   641   if ( UseFastEmptyMethods) {
   642     // If we need a safepoint check, generate full interpreter entry.
   643     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   644     __ set(sync_state, G3_scratch);
   645     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   646     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   647     __ delayed()->nop();
   649     // Code: _return
   650     __ retl();
   651     __ delayed()->mov(O5_savedSP, SP);
   653     __ bind(slow_path);
   654     (void) generate_normal_entry(false);
   656     return entry;
   657   }
   658   return NULL;
   659 }
   661 // Call an accessor method (assuming it is resolved, otherwise drop into
   662 // vanilla (slow path) entry
   664 // Generates code to elide accessor methods
   665 // Uses G3_scratch and G1_scratch as scratch
   666 address InterpreterGenerator::generate_accessor_entry(void) {
   668   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   669   // parameter size = 1
   670   // Note: We can only use this code if the getfield has been resolved
   671   //       and if we don't have a null-pointer exception => check for
   672   //       these conditions first and use slow path if necessary.
   673   address entry = __ pc();
   674   Label slow_path;
   677   // XXX: for compressed oops pointer loading and decoding doesn't fit in
   678   // delay slot and damages G1
   679   if ( UseFastAccessorMethods && !UseCompressedOops ) {
   680     // Check if we need to reach a safepoint and generate full interpreter
   681     // frame if so.
   682     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   683     __ load_contents(sync_state, G3_scratch);
   684     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   685     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   686     __ delayed()->nop();
   688     // Check if local 0 != NULL
   689     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   690     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
   691     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
   692     __ delayed()->nop();
   695     // read first instruction word and extract bytecode @ 1 and index @ 2
   696     // get first 4 bytes of the bytecodes (big endian!)
   697     __ ld_ptr(G5_method, methodOopDesc::const_offset(), G1_scratch);
   698     __ ld(G1_scratch, constMethodOopDesc::codes_offset(), G1_scratch);
   700     // move index @ 2 far left then to the right most two bytes.
   701     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
   702     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
   703                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
   705     // get constant pool cache
   706     __ ld_ptr(G5_method, methodOopDesc::constants_offset(), G3_scratch);
   707     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
   709     // get specific constant pool cache entry
   710     __ add(G3_scratch, G1_scratch, G3_scratch);
   712     // Check the constant Pool cache entry to see if it has been resolved.
   713     // If not, need the slow path.
   714     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
   715     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
   716     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
   717     __ and3(G1_scratch, 0xFF, G1_scratch);
   718     __ cmp(G1_scratch, Bytecodes::_getfield);
   719     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   720     __ delayed()->nop();
   722     // Get the type and return field offset from the constant pool cache
   723     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
   724     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
   726     Label xreturn_path;
   727     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   728     // because they are different sizes.
   729     // Get the type from the constant pool cache
   730     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
   731     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
   732     ConstantPoolCacheEntry::verify_tosBits();
   733     __ cmp(G1_scratch, atos );
   734     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   735     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
   736     __ cmp(G1_scratch, itos);
   737     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   738     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
   739     __ cmp(G1_scratch, stos);
   740     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   741     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
   742     __ cmp(G1_scratch, ctos);
   743     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   744     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
   745 #ifdef ASSERT
   746     __ cmp(G1_scratch, btos);
   747     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   748     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   749     __ should_not_reach_here();
   750 #endif
   751     __ ldsb(Otos_i, G3_scratch, Otos_i);
   752     __ bind(xreturn_path);
   754     // _ireturn/_areturn
   755     __ retl();                      // return from leaf routine
   756     __ delayed()->mov(O5_savedSP, SP);
   758     // Generate regular method entry
   759     __ bind(slow_path);
   760     (void) generate_normal_entry(false);
   761     return entry;
   762   }
   763   return NULL;
   764 }
   766 //
   767 // Interpreter stub for calling a native method. (asm interpreter)
   768 // This sets up a somewhat different looking stack for calling the native method
   769 // than the typical interpreter frame setup.
   770 //
   772 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   773   address entry = __ pc();
   775   // the following temporary registers are used during frame creation
   776   const Register Gtmp1 = G3_scratch ;
   777   const Register Gtmp2 = G1_scratch;
   778   bool inc_counter  = UseCompiler || CountCompiledCalls;
   780   // make sure registers are different!
   781   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
   783   const Address Laccess_flags(Lmethod, methodOopDesc::access_flags_offset());
   785   __ verify_oop(G5_method);
   787   const Register Glocals_size = G3;
   788   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
   790   // make sure method is native & not abstract
   791   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
   792 #ifdef ASSERT
   793   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
   794   {
   795     Label L;
   796     __ btst(JVM_ACC_NATIVE, Gtmp1);
   797     __ br(Assembler::notZero, false, Assembler::pt, L);
   798     __ delayed()->nop();
   799     __ stop("tried to execute non-native method as native");
   800     __ bind(L);
   801   }
   802   { Label L;
   803     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
   804     __ br(Assembler::zero, false, Assembler::pt, L);
   805     __ delayed()->nop();
   806     __ stop("tried to execute abstract method as non-abstract");
   807     __ bind(L);
   808   }
   809 #endif // ASSERT
   811  // generate the code to allocate the interpreter stack frame
   812   generate_fixed_frame(true);
   814   //
   815   // No locals to initialize for native method
   816   //
   818   // this slot will be set later, we initialize it to null here just in
   819   // case we get a GC before the actual value is stored later
   820   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
   822   const Address do_not_unlock_if_synchronized(G2_thread,
   823     JavaThread::do_not_unlock_if_synchronized_offset());
   824   // Since at this point in the method invocation the exception handler
   825   // would try to exit the monitor of synchronized methods which hasn't
   826   // been entered yet, we set the thread local variable
   827   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   828   // runtime, exception handling i.e. unlock_if_synchronized_method will
   829   // check this thread local flag.
   830   // This flag has two effects, one is to force an unwind in the topmost
   831   // interpreter frame and not perform an unlock while doing so.
   833   __ movbool(true, G3_scratch);
   834   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
   836   // increment invocation counter and check for overflow
   837   //
   838   // Note: checking for negative value instead of overflow
   839   //       so we have a 'sticky' overflow test (may be of
   840   //       importance as soon as we have true MT/MP)
   841   Label invocation_counter_overflow;
   842   Label Lcontinue;
   843   if (inc_counter) {
   844     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   846   }
   847   __ bind(Lcontinue);
   849   bang_stack_shadow_pages(true);
   851   // reset the _do_not_unlock_if_synchronized flag
   852   __ stbool(G0, do_not_unlock_if_synchronized);
   854   // check for synchronized methods
   855   // Must happen AFTER invocation_counter check and stack overflow check,
   856   // so method is not locked if overflows.
   858   if (synchronized) {
   859     lock_method();
   860   } else {
   861 #ifdef ASSERT
   862     { Label ok;
   863       __ ld(Laccess_flags, O0);
   864       __ btst(JVM_ACC_SYNCHRONIZED, O0);
   865       __ br( Assembler::zero, false, Assembler::pt, ok);
   866       __ delayed()->nop();
   867       __ stop("method needs synchronization");
   868       __ bind(ok);
   869     }
   870 #endif // ASSERT
   871   }
   874   // start execution
   875   __ verify_thread();
   877   // JVMTI support
   878   __ notify_method_entry();
   880   // native call
   882   // (note that O0 is never an oop--at most it is a handle)
   883   // It is important not to smash any handles created by this call,
   884   // until any oop handle in O0 is dereferenced.
   886   // (note that the space for outgoing params is preallocated)
   888   // get signature handler
   889   { Label L;
   890     Address signature_handler(Lmethod, methodOopDesc::signature_handler_offset());
   891     __ ld_ptr(signature_handler, G3_scratch);
   892     __ tst(G3_scratch);
   893     __ brx(Assembler::notZero, false, Assembler::pt, L);
   894     __ delayed()->nop();
   895     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
   896     __ ld_ptr(signature_handler, G3_scratch);
   897     __ bind(L);
   898   }
   900   // Push a new frame so that the args will really be stored in
   901   // Copy a few locals across so the new frame has the variables
   902   // we need but these values will be dead at the jni call and
   903   // therefore not gc volatile like the values in the current
   904   // frame (Lmethod in particular)
   906   // Flush the method pointer to the register save area
   907   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
   908   __ mov(Llocals, O1);
   910   // calculate where the mirror handle body is allocated in the interpreter frame:
   911   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
   913   // Calculate current frame size
   914   __ sub(SP, FP, O3);         // Calculate negative of current frame size
   915   __ save(SP, O3, SP);        // Allocate an identical sized frame
   917   // Note I7 has leftover trash. Slow signature handler will fill it in
   918   // should we get there. Normal jni call will set reasonable last_Java_pc
   919   // below (and fix I7 so the stack trace doesn't have a meaningless frame
   920   // in it).
   922   // Load interpreter frame's Lmethod into same register here
   924   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   926   __ mov(I1, Llocals);
   927   __ mov(I2, Lscratch2);     // save the address of the mirror
   930   // ONLY Lmethod and Llocals are valid here!
   932   // call signature handler, It will move the arg properly since Llocals in current frame
   933   // matches that in outer frame
   935   __ callr(G3_scratch, 0);
   936   __ delayed()->nop();
   938   // Result handler is in Lscratch
   940   // Reload interpreter frame's Lmethod since slow signature handler may block
   941   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   943   { Label not_static;
   945     __ ld(Laccess_flags, O0);
   946     __ btst(JVM_ACC_STATIC, O0);
   947     __ br( Assembler::zero, false, Assembler::pt, not_static);
   948     // get native function entry point(O0 is a good temp until the very end)
   949     __ delayed()->ld_ptr(Lmethod, in_bytes(methodOopDesc::native_function_offset()), O0);
   950     // for static methods insert the mirror argument
   951     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   953     __ ld_ptr(Lmethod, methodOopDesc:: constants_offset(), O1);
   954     __ ld_ptr(O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
   955     __ ld_ptr(O1, mirror_offset, O1);
   956 #ifdef ASSERT
   957     if (!PrintSignatureHandlers)  // do not dirty the output with this
   958     { Label L;
   959       __ tst(O1);
   960       __ brx(Assembler::notZero, false, Assembler::pt, L);
   961       __ delayed()->nop();
   962       __ stop("mirror is missing");
   963       __ bind(L);
   964     }
   965 #endif // ASSERT
   966     __ st_ptr(O1, Lscratch2, 0);
   967     __ mov(Lscratch2, O1);
   968     __ bind(not_static);
   969   }
   971   // At this point, arguments have been copied off of stack into
   972   // their JNI positions, which are O1..O5 and SP[68..].
   973   // Oops are boxed in-place on the stack, with handles copied to arguments.
   974   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
   976 #ifdef ASSERT
   977   { Label L;
   978     __ tst(O0);
   979     __ brx(Assembler::notZero, false, Assembler::pt, L);
   980     __ delayed()->nop();
   981     __ stop("native entry point is missing");
   982     __ bind(L);
   983   }
   984 #endif // ASSERT
   986   //
   987   // setup the frame anchor
   988   //
   989   // The scavenge function only needs to know that the PC of this frame is
   990   // in the interpreter method entry code, it doesn't need to know the exact
   991   // PC and hence we can use O7 which points to the return address from the
   992   // previous call in the code stream (signature handler function)
   993   //
   994   // The other trick is we set last_Java_sp to FP instead of the usual SP because
   995   // we have pushed the extra frame in order to protect the volatile register(s)
   996   // in that frame when we return from the jni call
   997   //
   999   __ set_last_Java_frame(FP, O7);
  1000   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
  1001                    // not meaningless information that'll confuse me.
  1003   // flush the windows now. We don't care about the current (protection) frame
  1004   // only the outer frames
  1006   __ flush_windows();
  1008   // mark windows as flushed
  1009   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  1010   __ set(JavaFrameAnchor::flushed, G3_scratch);
  1011   __ st(G3_scratch, flags);
  1013   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
  1015   Address thread_state(G2_thread, JavaThread::thread_state_offset());
  1016 #ifdef ASSERT
  1017   { Label L;
  1018     __ ld(thread_state, G3_scratch);
  1019     __ cmp(G3_scratch, _thread_in_Java);
  1020     __ br(Assembler::equal, false, Assembler::pt, L);
  1021     __ delayed()->nop();
  1022     __ stop("Wrong thread state in native stub");
  1023     __ bind(L);
  1025 #endif // ASSERT
  1026   __ set(_thread_in_native, G3_scratch);
  1027   __ st(G3_scratch, thread_state);
  1029   // Call the jni method, using the delay slot to set the JNIEnv* argument.
  1030   __ save_thread(L7_thread_cache); // save Gthread
  1031   __ callr(O0, 0);
  1032   __ delayed()->
  1033      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
  1035   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
  1037   __ restore_thread(L7_thread_cache); // restore G2_thread
  1038   __ reinit_heapbase();
  1040   // must we block?
  1042   // Block, if necessary, before resuming in _thread_in_Java state.
  1043   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  1044   { Label no_block;
  1045     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  1047     // Switch thread to "native transition" state before reading the synchronization state.
  1048     // This additional state is necessary because reading and testing the synchronization
  1049     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1050     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1051     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1052     //     Thread A is resumed to finish this native method, but doesn't block here since it
  1053     //     didn't see any synchronization is progress, and escapes.
  1054     __ set(_thread_in_native_trans, G3_scratch);
  1055     __ st(G3_scratch, thread_state);
  1056     if(os::is_MP()) {
  1057       if (UseMembar) {
  1058         // Force this write out before the read below
  1059         __ membar(Assembler::StoreLoad);
  1060       } else {
  1061         // Write serialization page so VM thread can do a pseudo remote membar.
  1062         // We use the current thread pointer to calculate a thread specific
  1063         // offset to write to within the page. This minimizes bus traffic
  1064         // due to cache line collision.
  1065         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  1068     __ load_contents(sync_state, G3_scratch);
  1069     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  1071     Label L;
  1072     __ br(Assembler::notEqual, false, Assembler::pn, L);
  1073     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
  1074     __ cmp(G3_scratch, 0);
  1075     __ br(Assembler::equal, false, Assembler::pt, no_block);
  1076     __ delayed()->nop();
  1077     __ bind(L);
  1079     // Block.  Save any potential method result value before the operation and
  1080     // use a leaf call to leave the last_Java_frame setup undisturbed.
  1081     save_native_result();
  1082     __ call_VM_leaf(L7_thread_cache,
  1083                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1084                     G2_thread);
  1086     // Restore any method result value
  1087     restore_native_result();
  1088     __ bind(no_block);
  1091   // Clear the frame anchor now
  1093   __ reset_last_Java_frame();
  1095   // Move the result handler address
  1096   __ mov(Lscratch, G3_scratch);
  1097   // return possible result to the outer frame
  1098 #ifndef __LP64
  1099   __ mov(O0, I0);
  1100   __ restore(O1, G0, O1);
  1101 #else
  1102   __ restore(O0, G0, O0);
  1103 #endif /* __LP64 */
  1105   // Move result handler to expected register
  1106   __ mov(G3_scratch, Lscratch);
  1108   // Back in normal (native) interpreter frame. State is thread_in_native_trans
  1109   // switch to thread_in_Java.
  1111   __ set(_thread_in_Java, G3_scratch);
  1112   __ st(G3_scratch, thread_state);
  1114   // reset handle block
  1115   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
  1116   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
  1118   // If we have an oop result store it where it will be safe for any further gc
  1119   // until we return now that we've released the handle it might be protected by
  1122     Label no_oop, store_result;
  1124     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
  1125     __ cmp(G3_scratch, Lscratch);
  1126     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
  1127     __ delayed()->nop();
  1128     __ addcc(G0, O0, O0);
  1129     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
  1130     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
  1131     __ mov(G0, O0);
  1133     __ bind(store_result);
  1134     // Store it where gc will look for it and result handler expects it.
  1135     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
  1137     __ bind(no_oop);
  1142   // handle exceptions (exception handling will handle unlocking!)
  1143   { Label L;
  1144     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1145     __ ld_ptr(exception_addr, Gtemp);
  1146     __ tst(Gtemp);
  1147     __ brx(Assembler::equal, false, Assembler::pt, L);
  1148     __ delayed()->nop();
  1149     // Note: This could be handled more efficiently since we know that the native
  1150     //       method doesn't have an exception handler. We could directly return
  1151     //       to the exception handler for the caller.
  1152     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1153     __ should_not_reach_here();
  1154     __ bind(L);
  1157   // JVMTI support (preserves thread register)
  1158   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
  1160   if (synchronized) {
  1161     // save and restore any potential method result value around the unlocking operation
  1162     save_native_result();
  1164     __ add( __ top_most_monitor(), O1);
  1165     __ unlock_object(O1);
  1167     restore_native_result();
  1170 #if defined(COMPILER2) && !defined(_LP64)
  1172   // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1173   // or compiled so just be safe.
  1175   __ sllx(O0, 32, G1);          // Shift bits into high G1
  1176   __ srl (O1, 0, O1);           // Zero extend O1
  1177   __ or3 (O1, G1, G1);          // OR 64 bits into G1
  1179 #endif /* COMPILER2 && !_LP64 */
  1181   // dispose of return address and remove activation
  1182 #ifdef ASSERT
  1184     Label ok;
  1185     __ cmp(I5_savedSP, FP);
  1186     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
  1187     __ delayed()->nop();
  1188     __ stop("bad I5_savedSP value");
  1189     __ should_not_reach_here();
  1190     __ bind(ok);
  1192 #endif
  1193   if (TraceJumps) {
  1194     // Move target to register that is recordable
  1195     __ mov(Lscratch, G3_scratch);
  1196     __ JMP(G3_scratch, 0);
  1197   } else {
  1198     __ jmp(Lscratch, 0);
  1200   __ delayed()->nop();
  1203   if (inc_counter) {
  1204     // handle invocation counter overflow
  1205     __ bind(invocation_counter_overflow);
  1206     generate_counter_overflow(Lcontinue);
  1211   return entry;
  1215 // Generic method entry to (asm) interpreter
  1216 //------------------------------------------------------------------------------------------------------------------------
  1217 //
  1218 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1219   address entry = __ pc();
  1221   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1223   // the following temporary registers are used during frame creation
  1224   const Register Gtmp1 = G3_scratch ;
  1225   const Register Gtmp2 = G1_scratch;
  1227   // make sure registers are different!
  1228   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
  1230   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
  1231   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
  1232   // Seems like G5_method is live at the point this is used. So we could make this look consistent
  1233   // and use in the asserts.
  1234   const Address access_flags      (Lmethod,   methodOopDesc::access_flags_offset());
  1236   __ verify_oop(G5_method);
  1238   const Register Glocals_size = G3;
  1239   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
  1241   // make sure method is not native & not abstract
  1242   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
  1243 #ifdef ASSERT
  1244   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
  1246     Label L;
  1247     __ btst(JVM_ACC_NATIVE, Gtmp1);
  1248     __ br(Assembler::zero, false, Assembler::pt, L);
  1249     __ delayed()->nop();
  1250     __ stop("tried to execute native method as non-native");
  1251     __ bind(L);
  1253   { Label L;
  1254     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
  1255     __ br(Assembler::zero, false, Assembler::pt, L);
  1256     __ delayed()->nop();
  1257     __ stop("tried to execute abstract method as non-abstract");
  1258     __ bind(L);
  1260 #endif // ASSERT
  1262   // generate the code to allocate the interpreter stack frame
  1264   generate_fixed_frame(false);
  1266 #ifdef FAST_DISPATCH
  1267   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
  1268                                           // set bytecode dispatch table base
  1269 #endif
  1271   //
  1272   // Code to initialize the extra (i.e. non-parm) locals
  1273   //
  1274   Register init_value = noreg;    // will be G0 if we must clear locals
  1275   // The way the code was setup before zerolocals was always true for vanilla java entries.
  1276   // It could only be false for the specialized entries like accessor or empty which have
  1277   // no extra locals so the testing was a waste of time and the extra locals were always
  1278   // initialized. We removed this extra complication to already over complicated code.
  1280   init_value = G0;
  1281   Label clear_loop;
  1283   // NOTE: If you change the frame layout, this code will need to
  1284   // be updated!
  1285   __ lduh( size_of_locals, O2 );
  1286   __ lduh( size_of_parameters, O1 );
  1287   __ sll( O2, Interpreter::logStackElementSize, O2);
  1288   __ sll( O1, Interpreter::logStackElementSize, O1 );
  1289   __ sub( Llocals, O2, O2 );
  1290   __ sub( Llocals, O1, O1 );
  1292   __ bind( clear_loop );
  1293   __ inc( O2, wordSize );
  1295   __ cmp( O2, O1 );
  1296   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
  1297   __ delayed()->st_ptr( init_value, O2, 0 );
  1299   const Address do_not_unlock_if_synchronized(G2_thread,
  1300     JavaThread::do_not_unlock_if_synchronized_offset());
  1301   // Since at this point in the method invocation the exception handler
  1302   // would try to exit the monitor of synchronized methods which hasn't
  1303   // been entered yet, we set the thread local variable
  1304   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
  1305   // runtime, exception handling i.e. unlock_if_synchronized_method will
  1306   // check this thread local flag.
  1307   __ movbool(true, G3_scratch);
  1308   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
  1310   // increment invocation counter and check for overflow
  1311   //
  1312   // Note: checking for negative value instead of overflow
  1313   //       so we have a 'sticky' overflow test (may be of
  1314   //       importance as soon as we have true MT/MP)
  1315   Label invocation_counter_overflow;
  1316   Label profile_method;
  1317   Label profile_method_continue;
  1318   Label Lcontinue;
  1319   if (inc_counter) {
  1320     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1321     if (ProfileInterpreter) {
  1322       __ bind(profile_method_continue);
  1325   __ bind(Lcontinue);
  1327   bang_stack_shadow_pages(false);
  1329   // reset the _do_not_unlock_if_synchronized flag
  1330   __ stbool(G0, do_not_unlock_if_synchronized);
  1332   // check for synchronized methods
  1333   // Must happen AFTER invocation_counter check and stack overflow check,
  1334   // so method is not locked if overflows.
  1336   if (synchronized) {
  1337     lock_method();
  1338   } else {
  1339 #ifdef ASSERT
  1340     { Label ok;
  1341       __ ld(access_flags, O0);
  1342       __ btst(JVM_ACC_SYNCHRONIZED, O0);
  1343       __ br( Assembler::zero, false, Assembler::pt, ok);
  1344       __ delayed()->nop();
  1345       __ stop("method needs synchronization");
  1346       __ bind(ok);
  1348 #endif // ASSERT
  1351   // start execution
  1353   __ verify_thread();
  1355   // jvmti support
  1356   __ notify_method_entry();
  1358   // start executing instructions
  1359   __ dispatch_next(vtos);
  1362   if (inc_counter) {
  1363     if (ProfileInterpreter) {
  1364       // We have decided to profile this method in the interpreter
  1365       __ bind(profile_method);
  1367       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1368       __ set_method_data_pointer_for_bcp();
  1369       __ ba(false, profile_method_continue);
  1370       __ delayed()->nop();
  1373     // handle invocation counter overflow
  1374     __ bind(invocation_counter_overflow);
  1375     generate_counter_overflow(Lcontinue);
  1379   return entry;
  1383 //----------------------------------------------------------------------------------------------------
  1384 // Entry points & stack frame layout
  1385 //
  1386 // Here we generate the various kind of entries into the interpreter.
  1387 // The two main entry type are generic bytecode methods and native call method.
  1388 // These both come in synchronized and non-synchronized versions but the
  1389 // frame layout they create is very similar. The other method entry
  1390 // types are really just special purpose entries that are really entry
  1391 // and interpretation all in one. These are for trivial methods like
  1392 // accessor, empty, or special math methods.
  1393 //
  1394 // When control flow reaches any of the entry types for the interpreter
  1395 // the following holds ->
  1396 //
  1397 // C2 Calling Conventions:
  1398 //
  1399 // The entry code below assumes that the following registers are set
  1400 // when coming in:
  1401 //    G5_method: holds the methodOop of the method to call
  1402 //    Lesp:    points to the TOS of the callers expression stack
  1403 //             after having pushed all the parameters
  1404 //
  1405 // The entry code does the following to setup an interpreter frame
  1406 //   pop parameters from the callers stack by adjusting Lesp
  1407 //   set O0 to Lesp
  1408 //   compute X = (max_locals - num_parameters)
  1409 //   bump SP up by X to accomadate the extra locals
  1410 //   compute X = max_expression_stack
  1411 //               + vm_local_words
  1412 //               + 16 words of register save area
  1413 //   save frame doing a save sp, -X, sp growing towards lower addresses
  1414 //   set Lbcp, Lmethod, LcpoolCache
  1415 //   set Llocals to i0
  1416 //   set Lmonitors to FP - rounded_vm_local_words
  1417 //   set Lesp to Lmonitors - 4
  1418 //
  1419 //  The frame has now been setup to do the rest of the entry code
  1421 // Try this optimization:  Most method entries could live in a
  1422 // "one size fits all" stack frame without all the dynamic size
  1423 // calculations.  It might be profitable to do all this calculation
  1424 // statically and approximately for "small enough" methods.
  1426 //-----------------------------------------------------------------------------------------------
  1428 // C1 Calling conventions
  1429 //
  1430 // Upon method entry, the following registers are setup:
  1431 //
  1432 // g2 G2_thread: current thread
  1433 // g5 G5_method: method to activate
  1434 // g4 Gargs  : pointer to last argument
  1435 //
  1436 //
  1437 // Stack:
  1438 //
  1439 // +---------------+ <--- sp
  1440 // |               |
  1441 // : reg save area :
  1442 // |               |
  1443 // +---------------+ <--- sp + 0x40
  1444 // |               |
  1445 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1446 // |               |
  1447 // +---------------+ <--- sp + 0x5c
  1448 // |               |
  1449 // :     free      :
  1450 // |               |
  1451 // +---------------+ <--- Gargs
  1452 // |               |
  1453 // :   arguments   :
  1454 // |               |
  1455 // +---------------+
  1456 // |               |
  1457 //
  1458 //
  1459 //
  1460 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
  1461 //
  1462 // +---------------+ <--- sp
  1463 // |               |
  1464 // : reg save area :
  1465 // |               |
  1466 // +---------------+ <--- sp + 0x40
  1467 // |               |
  1468 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1469 // |               |
  1470 // +---------------+ <--- sp + 0x5c
  1471 // |               |
  1472 // :               :
  1473 // |               | <--- Lesp
  1474 // +---------------+ <--- Lmonitors (fp - 0x18)
  1475 // |   VM locals   |
  1476 // +---------------+ <--- fp
  1477 // |               |
  1478 // : reg save area :
  1479 // |               |
  1480 // +---------------+ <--- fp + 0x40
  1481 // |               |
  1482 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1483 // |               |
  1484 // +---------------+ <--- fp + 0x5c
  1485 // |               |
  1486 // :     free      :
  1487 // |               |
  1488 // +---------------+
  1489 // |               |
  1490 // : nonarg locals :
  1491 // |               |
  1492 // +---------------+
  1493 // |               |
  1494 // :   arguments   :
  1495 // |               | <--- Llocals
  1496 // +---------------+ <--- Gargs
  1497 // |               |
  1499 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  1501   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  1502   // expression stack, the callee will have callee_extra_locals (so we can account for
  1503   // frame extension) and monitor_size for monitors. Basically we need to calculate
  1504   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  1505   //
  1506   //
  1507   // The big complicating thing here is that we must ensure that the stack stays properly
  1508   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  1509   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  1510   // the caller so we must ensure that it is properly aligned for our callee.
  1511   //
  1512   const int rounded_vm_local_words =
  1513        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1514   // callee_locals and max_stack are counts, not the size in frame.
  1515   const int locals_size =
  1516        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
  1517   const int max_stack_words = max_stack * Interpreter::stackElementWords;
  1518   return (round_to((max_stack_words
  1519                    //6815692//+ methodOopDesc::extra_stack_words()
  1520                    + rounded_vm_local_words
  1521                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
  1522                    // already rounded
  1523                    + locals_size + monitor_size);
  1526 // How much stack a method top interpreter activation needs in words.
  1527 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  1529   // See call_stub code
  1530   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  1531                                  WordsPerLong);    // 7 + register save area
  1533   // Save space for one monitor to get into the interpreted method in case
  1534   // the method is synchronized
  1535   int monitor_size    = method->is_synchronized() ?
  1536                                 1*frame::interpreter_frame_monitor_size() : 0;
  1537   return size_activation_helper(method->max_locals(), method->max_stack(),
  1538                                  monitor_size) + call_stub_size;
  1541 int AbstractInterpreter::layout_activation(methodOop method,
  1542                                            int tempcount,
  1543                                            int popframe_extra_args,
  1544                                            int moncount,
  1545                                            int callee_param_count,
  1546                                            int callee_local_count,
  1547                                            frame* caller,
  1548                                            frame* interpreter_frame,
  1549                                            bool is_top_frame) {
  1550   // Note: This calculation must exactly parallel the frame setup
  1551   // in InterpreterGenerator::generate_fixed_frame.
  1552   // If f!=NULL, set up the following variables:
  1553   //   - Lmethod
  1554   //   - Llocals
  1555   //   - Lmonitors (to the indicated number of monitors)
  1556   //   - Lesp (to the indicated number of temps)
  1557   // The frame f (if not NULL) on entry is a description of the caller of the frame
  1558   // we are about to layout. We are guaranteed that we will be able to fill in a
  1559   // new interpreter frame as its callee (i.e. the stack space is allocated and
  1560   // the amount was determined by an earlier call to this method with f == NULL).
  1561   // On return f (if not NULL) while describe the interpreter frame we just layed out.
  1563   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
  1564   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1566   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
  1567   //
  1568   // Note: if you look closely this appears to be doing something much different
  1569   // than generate_fixed_frame. What is happening is this. On sparc we have to do
  1570   // this dance with interpreter_sp_adjustment because the window save area would
  1571   // appear just below the bottom (tos) of the caller's java expression stack. Because
  1572   // the interpreter want to have the locals completely contiguous generate_fixed_frame
  1573   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
  1574   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
  1575   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
  1576   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
  1577   // because the oldest frame would have adjust its callers frame and yet that frame
  1578   // already exists and isn't part of this array of frames we are unpacking. So at first
  1579   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
  1580   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
  1581   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
  1582   // add up. It does seem like it simpler to account for the adjustment here (and remove the
  1583   // callee... parameters here). However this would mean that this routine would have to take
  1584   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
  1585   // and run the calling loop in the reverse order. This would also would appear to mean making
  1586   // this code aware of what the interactions are when that initial caller fram was an osr or
  1587   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
  1588   // there is no sense in messing working code.
  1589   //
  1591   int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
  1592   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
  1594   int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
  1595                                               monitor_size);
  1597   if (interpreter_frame != NULL) {
  1598     // The skeleton frame must already look like an interpreter frame
  1599     // even if not fully filled out.
  1600     assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
  1602     intptr_t* fp = interpreter_frame->fp();
  1604     JavaThread* thread = JavaThread::current();
  1605     RegisterMap map(thread, false);
  1606     // More verification that skeleton frame is properly walkable
  1607     assert(fp == caller->sp(), "fp must match");
  1609     intptr_t* montop     = fp - rounded_vm_local_words;
  1611     // preallocate monitors (cf. __ add_monitor_to_stack)
  1612     intptr_t* monitors = montop - monitor_size;
  1614     // preallocate stack space
  1615     intptr_t*  esp = monitors - 1 -
  1616                      (tempcount * Interpreter::stackElementWords) -
  1617                      popframe_extra_args;
  1619     int local_words = method->max_locals() * Interpreter::stackElementWords;
  1620     int parm_words  = method->size_of_parameters() * Interpreter::stackElementWords;
  1621     NEEDS_CLEANUP;
  1622     intptr_t* locals;
  1623     if (caller->is_interpreted_frame()) {
  1624       // Can force the locals area to end up properly overlapping the top of the expression stack.
  1625       intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
  1626       // Note that this computation means we replace size_of_parameters() values from the caller
  1627       // interpreter frame's expression stack with our argument locals
  1628       locals = Lesp_ptr + parm_words;
  1629       int delta = local_words - parm_words;
  1630       int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
  1631       *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
  1632     } else {
  1633       assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
  1634       // Don't have Lesp available; lay out locals block in the caller
  1635       // adjacent to the register window save area.
  1636       //
  1637       // Compiled frames do not allocate a varargs area which is why this if
  1638       // statement is needed.
  1639       //
  1640       if (caller->is_compiled_frame()) {
  1641         locals = fp + frame::register_save_words + local_words - 1;
  1642       } else {
  1643         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
  1645       if (!caller->is_entry_frame()) {
  1646         // Caller wants his own SP back
  1647         int caller_frame_size = caller->cb()->frame_size();
  1648         *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
  1651     if (TraceDeoptimization) {
  1652       if (caller->is_entry_frame()) {
  1653         // make sure I5_savedSP and the entry frames notion of saved SP
  1654         // agree.  This assertion duplicate a check in entry frame code
  1655         // but catches the failure earlier.
  1656         assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
  1657                "would change callers SP");
  1659       if (caller->is_entry_frame()) {
  1660         tty->print("entry ");
  1662       if (caller->is_compiled_frame()) {
  1663         tty->print("compiled ");
  1664         if (caller->is_deoptimized_frame()) {
  1665           tty->print("(deopt) ");
  1668       if (caller->is_interpreted_frame()) {
  1669         tty->print("interpreted ");
  1671       tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
  1672       tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
  1673       tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
  1674       tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
  1675       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
  1676       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
  1677       tty->print_cr("Llocals = 0x%x", locals);
  1678       tty->print_cr("Lesp = 0x%x", esp);
  1679       tty->print_cr("Lmonitors = 0x%x", monitors);
  1682     if (method->max_locals() > 0) {
  1683       assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
  1684       assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
  1685       assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
  1686       assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
  1688 #ifdef _LP64
  1689     assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
  1690 #endif
  1692     *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
  1693     *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
  1694     *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
  1695     *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
  1696     // Llast_SP will be same as SP as there is no adapter space
  1697     *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
  1698     *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
  1699 #ifdef FAST_DISPATCH
  1700     *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
  1701 #endif
  1704 #ifdef ASSERT
  1705     BasicObjectLock* mp = (BasicObjectLock*)monitors;
  1707     assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
  1708     assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
  1709     assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
  1710     assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
  1711     assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
  1713     // check bounds
  1714     intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
  1715     intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
  1716     assert(lo < monitors && montop <= hi, "monitors in bounds");
  1717     assert(lo <= esp && esp < monitors, "esp in bounds");
  1718 #endif // ASSERT
  1721   return raw_frame_size;
  1724 //----------------------------------------------------------------------------------------------------
  1725 // Exceptions
  1726 void TemplateInterpreterGenerator::generate_throw_exception() {
  1728   // Entry point in previous activation (i.e., if the caller was interpreted)
  1729   Interpreter::_rethrow_exception_entry = __ pc();
  1730   // O0: exception
  1732   // entry point for exceptions thrown within interpreter code
  1733   Interpreter::_throw_exception_entry = __ pc();
  1734   __ verify_thread();
  1735   // expression stack is undefined here
  1736   // O0: exception, i.e. Oexception
  1737   // Lbcp: exception bcx
  1738   __ verify_oop(Oexception);
  1741   // expression stack must be empty before entering the VM in case of an exception
  1742   __ empty_expression_stack();
  1743   // find exception handler address and preserve exception oop
  1744   // call C routine to find handler and jump to it
  1745   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
  1746   __ push_ptr(O1); // push exception for exception handler bytecodes
  1748   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
  1749   __ delayed()->nop();
  1752   // if the exception is not handled in the current frame
  1753   // the frame is removed and the exception is rethrown
  1754   // (i.e. exception continuation is _rethrow_exception)
  1755   //
  1756   // Note: At this point the bci is still the bxi for the instruction which caused
  1757   //       the exception and the expression stack is empty. Thus, for any VM calls
  1758   //       at this point, GC will find a legal oop map (with empty expression stack).
  1760   // in current activation
  1761   // tos: exception
  1762   // Lbcp: exception bcp
  1764   //
  1765   // JVMTI PopFrame support
  1766   //
  1768   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1769   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
  1770   // Set the popframe_processing bit in popframe_condition indicating that we are
  1771   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1772   // popframe handling cycles.
  1774   __ ld(popframe_condition_addr, G3_scratch);
  1775   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
  1776   __ stw(G3_scratch, popframe_condition_addr);
  1778   // Empty the expression stack, as in normal exception handling
  1779   __ empty_expression_stack();
  1780   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
  1783     // Check to see whether we are returning to a deoptimized frame.
  1784     // (The PopFrame call ensures that the caller of the popped frame is
  1785     // either interpreted or compiled and deoptimizes it if compiled.)
  1786     // In this case, we can't call dispatch_next() after the frame is
  1787     // popped, but instead must save the incoming arguments and restore
  1788     // them after deoptimization has occurred.
  1789     //
  1790     // Note that we don't compare the return PC against the
  1791     // deoptimization blob's unpack entry because of the presence of
  1792     // adapter frames in C2.
  1793     Label caller_not_deoptimized;
  1794     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
  1795     __ tst(O0);
  1796     __ brx(Assembler::notEqual, false, Assembler::pt, caller_not_deoptimized);
  1797     __ delayed()->nop();
  1799     const Register Gtmp1 = G3_scratch;
  1800     const Register Gtmp2 = G1_scratch;
  1802     // Compute size of arguments for saving when returning to deoptimized caller
  1803     __ lduh(Lmethod, in_bytes(methodOopDesc::size_of_parameters_offset()), Gtmp1);
  1804     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
  1805     __ sub(Llocals, Gtmp1, Gtmp2);
  1806     __ add(Gtmp2, wordSize, Gtmp2);
  1807     // Save these arguments
  1808     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
  1809     // Inform deoptimization that it is responsible for restoring these arguments
  1810     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
  1811     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
  1812     __ st(Gtmp1, popframe_condition_addr);
  1814     // Return from the current method
  1815     // The caller's SP was adjusted upon method entry to accomodate
  1816     // the callee's non-argument locals. Undo that adjustment.
  1817     __ ret();
  1818     __ delayed()->restore(I5_savedSP, G0, SP);
  1820     __ bind(caller_not_deoptimized);
  1823   // Clear the popframe condition flag
  1824   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
  1826   // Get out of the current method (how this is done depends on the particular compiler calling
  1827   // convention that the interpreter currently follows)
  1828   // The caller's SP was adjusted upon method entry to accomodate
  1829   // the callee's non-argument locals. Undo that adjustment.
  1830   __ restore(I5_savedSP, G0, SP);
  1831   // The method data pointer was incremented already during
  1832   // call profiling. We have to restore the mdp for the current bcp.
  1833   if (ProfileInterpreter) {
  1834     __ set_method_data_pointer_for_bcp();
  1836   // Resume bytecode interpretation at the current bcp
  1837   __ dispatch_next(vtos);
  1838   // end of JVMTI PopFrame support
  1840   Interpreter::_remove_activation_entry = __ pc();
  1842   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
  1843   __ pop_ptr(Oexception);                                  // get exception
  1845   // Intel has the following comment:
  1846   //// remove the activation (without doing throws on illegalMonitorExceptions)
  1847   // They remove the activation without checking for bad monitor state.
  1848   // %%% We should make sure this is the right semantics before implementing.
  1850   // %%% changed set_vm_result_2 to set_vm_result and get_vm_result_2 to get_vm_result. Is there a bug here?
  1851   __ set_vm_result(Oexception);
  1852   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
  1854   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
  1856   __ get_vm_result(Oexception);
  1857   __ verify_oop(Oexception);
  1859     const int return_reg_adjustment = frame::pc_return_offset;
  1860   Address issuing_pc_addr(I7, return_reg_adjustment);
  1862   // We are done with this activation frame; find out where to go next.
  1863   // The continuation point will be an exception handler, which expects
  1864   // the following registers set up:
  1865   //
  1866   // Oexception: exception
  1867   // Oissuing_pc: the local call that threw exception
  1868   // Other On: garbage
  1869   // In/Ln:  the contents of the caller's register window
  1870   //
  1871   // We do the required restore at the last possible moment, because we
  1872   // need to preserve some state across a runtime call.
  1873   // (Remember that the caller activation is unknown--it might not be
  1874   // interpreted, so things like Lscratch are useless in the caller.)
  1876   // Although the Intel version uses call_C, we can use the more
  1877   // compact call_VM.  (The only real difference on SPARC is a
  1878   // harmlessly ignored [re]set_last_Java_frame, compared with
  1879   // the Intel code which lacks this.)
  1880   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
  1881   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
  1882   __ super_call_VM_leaf(L7_thread_cache,
  1883                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
  1884                         G2_thread, Oissuing_pc->after_save());
  1886   // The caller's SP was adjusted upon method entry to accomodate
  1887   // the callee's non-argument locals. Undo that adjustment.
  1888   __ JMP(O0, 0);                         // return exception handler in caller
  1889   __ delayed()->restore(I5_savedSP, G0, SP);
  1891   // (same old exception object is already in Oexception; see above)
  1892   // Note that an "issuing PC" is actually the next PC after the call
  1896 //
  1897 // JVMTI ForceEarlyReturn support
  1898 //
  1900 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1901   address entry = __ pc();
  1903   __ empty_expression_stack();
  1904   __ load_earlyret_value(state);
  1906   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
  1907   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
  1909   // Clear the earlyret state
  1910   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
  1912   __ remove_activation(state,
  1913                        /* throw_monitor_exception */ false,
  1914                        /* install_monitor_exception */ false);
  1916   // The caller's SP was adjusted upon method entry to accomodate
  1917   // the callee's non-argument locals. Undo that adjustment.
  1918   __ ret();                             // return to caller
  1919   __ delayed()->restore(I5_savedSP, G0, SP);
  1921   return entry;
  1922 } // end of JVMTI ForceEarlyReturn support
  1925 //------------------------------------------------------------------------------------------------------------------------
  1926 // Helper for vtos entry point generation
  1928 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1929   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1930   Label L;
  1931   aep = __ pc(); __ push_ptr(); __ ba(false, L); __ delayed()->nop();
  1932   fep = __ pc(); __ push_f();   __ ba(false, L); __ delayed()->nop();
  1933   dep = __ pc(); __ push_d();   __ ba(false, L); __ delayed()->nop();
  1934   lep = __ pc(); __ push_l();   __ ba(false, L); __ delayed()->nop();
  1935   iep = __ pc(); __ push_i();
  1936   bep = cep = sep = iep;                        // there aren't any
  1937   vep = __ pc(); __ bind(L);                    // fall through
  1938   generate_and_dispatch(t);
  1941 // --------------------------------------------------------------------------------
  1944 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1945  : TemplateInterpreterGenerator(code) {
  1946    generate_all(); // down here so it can be "virtual"
  1949 // --------------------------------------------------------------------------------
  1951 // Non-product code
  1952 #ifndef PRODUCT
  1953 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1954   address entry = __ pc();
  1956   __ push(state);
  1957   __ mov(O7, Lscratch); // protect return address within interpreter
  1959   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
  1960   __ mov( Otos_l2, G3_scratch );
  1961   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
  1962   __ mov(Lscratch, O7); // restore return address
  1963   __ pop(state);
  1964   __ retl();
  1965   __ delayed()->nop();
  1967   return entry;
  1971 // helpers for generate_and_dispatch
  1973 void TemplateInterpreterGenerator::count_bytecode() {
  1974   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
  1978 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1979   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
  1983 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1984   AddressLiteral index   (&BytecodePairHistogram::_index);
  1985   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
  1987   // get index, shift out old bytecode, bring in new bytecode, and store it
  1988   // _index = (_index >> log2_number_of_codes) |
  1989   //          (bytecode << log2_number_of_codes);
  1991   __ load_contents(index, G4_scratch);
  1992   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
  1993   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
  1994   __ or3( G3_scratch,  G4_scratch, G4_scratch );
  1995   __ store_contents(G4_scratch, index, G3_scratch);
  1997   // bump bucket contents
  1998   // _counters[_index] ++;
  2000   __ set(counters, G3_scratch);                       // loads into G3_scratch
  2001   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
  2002   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
  2003   __ ld (G3_scratch, 0, G4_scratch);
  2004   __ inc (G4_scratch);
  2005   __ st (G4_scratch, 0, G3_scratch);
  2009 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  2010   // Call a little run-time stub to avoid blow-up for each bytecode.
  2011   // The run-time runtime saves the right registers, depending on
  2012   // the tosca in-state for the given template.
  2013   address entry = Interpreter::trace_code(t->tos_in());
  2014   guarantee(entry != NULL, "entry must have been generated");
  2015   __ call(entry, relocInfo::none);
  2016   __ delayed()->nop();
  2020 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2021   AddressLiteral counter(&BytecodeCounter::_counter_value);
  2022   __ load_contents(counter, G3_scratch);
  2023   AddressLiteral stop_at(&StopInterpreterAt);
  2024   __ load_ptr_contents(stop_at, G4_scratch);
  2025   __ cmp(G3_scratch, G4_scratch);
  2026   __ breakpoint_trap(Assembler::equal);
  2028 #endif // not PRODUCT
  2029 #endif // !CC_INTERP

mercurial