src/share/vm/opto/runtime.cpp

Wed, 09 Nov 2011 06:14:32 -0800

author
kvn
date
Wed, 09 Nov 2011 06:14:32 -0800
changeset 3259
7e0e43cf86d6
parent 3244
cec1757a0134
child 3709
0105f367a14c
child 3853
1e76463170b3
permissions
-rw-r--r--

7109887: java/util/Arrays/CopyMethods.java fails with -XX:+DeoptimizeALot
Summary: zero array when compiled code is deoptimized.
Reviewed-by: never, twisti

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/compilerOracle.hpp"
    36 #include "compiler/oopMap.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #include "gc_implementation/g1/heapRegion.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/bytecode.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/linkResolver.hpp"
    43 #include "memory/barrierSet.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/oopFactory.hpp"
    46 #include "oops/objArrayKlass.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "opto/addnode.hpp"
    49 #include "opto/callnode.hpp"
    50 #include "opto/cfgnode.hpp"
    51 #include "opto/connode.hpp"
    52 #include "opto/graphKit.hpp"
    53 #include "opto/machnode.hpp"
    54 #include "opto/matcher.hpp"
    55 #include "opto/memnode.hpp"
    56 #include "opto/mulnode.hpp"
    57 #include "opto/runtime.hpp"
    58 #include "opto/subnode.hpp"
    59 #include "runtime/fprofiler.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/interfaceSupport.hpp"
    62 #include "runtime/javaCalls.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/vframe.hpp"
    67 #include "runtime/vframeArray.hpp"
    68 #include "runtime/vframe_hp.hpp"
    69 #include "utilities/copy.hpp"
    70 #include "utilities/preserveException.hpp"
    71 #ifdef TARGET_ARCH_MODEL_x86_32
    72 # include "adfiles/ad_x86_32.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_MODEL_x86_64
    75 # include "adfiles/ad_x86_64.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_MODEL_sparc
    78 # include "adfiles/ad_sparc.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_zero
    81 # include "adfiles/ad_zero.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_MODEL_arm
    84 # include "adfiles/ad_arm.hpp"
    85 #endif
    86 #ifdef TARGET_ARCH_MODEL_ppc
    87 # include "adfiles/ad_ppc.hpp"
    88 #endif
    91 // For debugging purposes:
    92 //  To force FullGCALot inside a runtime function, add the following two lines
    93 //
    94 //  Universe::release_fullgc_alot_dummy();
    95 //  MarkSweep::invoke(0, "Debugging");
    96 //
    97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
   102 // Compiled code entry points
   103 address OptoRuntime::_new_instance_Java                           = NULL;
   104 address OptoRuntime::_new_array_Java                              = NULL;
   105 address OptoRuntime::_new_array_nozero_Java                       = NULL;
   106 address OptoRuntime::_multianewarray2_Java                        = NULL;
   107 address OptoRuntime::_multianewarray3_Java                        = NULL;
   108 address OptoRuntime::_multianewarray4_Java                        = NULL;
   109 address OptoRuntime::_multianewarray5_Java                        = NULL;
   110 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   111 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   112 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   113 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   114 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   115 address OptoRuntime::_rethrow_Java                                = NULL;
   117 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   118 address OptoRuntime::_register_finalizer_Java                     = NULL;
   120 # ifdef ENABLE_ZAP_DEAD_LOCALS
   121 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   122 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   123 # endif
   125 ExceptionBlob* OptoRuntime::_exception_blob;
   127 // This should be called in an assertion at the start of OptoRuntime routines
   128 // which are entered from compiled code (all of them)
   129 #ifndef PRODUCT
   130 static bool check_compiled_frame(JavaThread* thread) {
   131   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   132 #ifdef ASSERT
   133   RegisterMap map(thread, false);
   134   frame caller = thread->last_frame().sender(&map);
   135   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   136 #endif  /* ASSERT */
   137   return true;
   138 }
   139 #endif
   142 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   143   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
   145 void OptoRuntime::generate(ciEnv* env) {
   147   generate_exception_blob();
   149   // Note: tls: Means fetching the return oop out of the thread-local storage
   150   //
   151   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   152   // -------------------------------------------------------------------------------------------------------------------------------
   153   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   154   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   155   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
   156   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   157   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   158   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   159   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   160   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   161   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   162   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   163   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
   164   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   166   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   167   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   169 # ifdef ENABLE_ZAP_DEAD_LOCALS
   170   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   171   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   172 # endif
   174 }
   176 #undef gen
   179 // Helper method to do generation of RunTimeStub's
   180 address OptoRuntime::generate_stub( ciEnv* env,
   181                                     TypeFunc_generator gen, address C_function,
   182                                     const char *name, int is_fancy_jump,
   183                                     bool pass_tls,
   184                                     bool save_argument_registers,
   185                                     bool return_pc ) {
   186   ResourceMark rm;
   187   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   188   return  C.stub_entry_point();
   189 }
   191 const char* OptoRuntime::stub_name(address entry) {
   192 #ifndef PRODUCT
   193   CodeBlob* cb = CodeCache::find_blob(entry);
   194   RuntimeStub* rs =(RuntimeStub *)cb;
   195   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   196   return rs->name();
   197 #else
   198   // Fast implementation for product mode (maybe it should be inlined too)
   199   return "runtime stub";
   200 #endif
   201 }
   204 //=============================================================================
   205 // Opto compiler runtime routines
   206 //=============================================================================
   209 //=============================allocation======================================
   210 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   211 // and try allocation again.
   213 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   214   // After any safepoint, just before going back to compiled code,
   215   // we inform the GC that we will be doing initializing writes to
   216   // this object in the future without emitting card-marks, so
   217   // GC may take any compensating steps.
   218   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   220   oop new_obj = thread->vm_result();
   221   if (new_obj == NULL)  return;
   223   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   224          "compiler must check this first");
   225   // GC may decide to give back a safer copy of new_obj.
   226   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   227   thread->set_vm_result(new_obj);
   228 }
   230 // object allocation
   231 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
   232   JRT_BLOCK;
   233 #ifndef PRODUCT
   234   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   235 #endif
   236   assert(check_compiled_frame(thread), "incorrect caller");
   238   // These checks are cheap to make and support reflective allocation.
   239   int lh = Klass::cast(klass)->layout_helper();
   240   if (Klass::layout_helper_needs_slow_path(lh)
   241       || !instanceKlass::cast(klass)->is_initialized()) {
   242     KlassHandle kh(THREAD, klass);
   243     kh->check_valid_for_instantiation(false, THREAD);
   244     if (!HAS_PENDING_EXCEPTION) {
   245       instanceKlass::cast(kh())->initialize(THREAD);
   246     }
   247     if (!HAS_PENDING_EXCEPTION) {
   248       klass = kh();
   249     } else {
   250       klass = NULL;
   251     }
   252   }
   254   if (klass != NULL) {
   255     // Scavenge and allocate an instance.
   256     oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
   257     thread->set_vm_result(result);
   259     // Pass oops back through thread local storage.  Our apparent type to Java
   260     // is that we return an oop, but we can block on exit from this routine and
   261     // a GC can trash the oop in C's return register.  The generated stub will
   262     // fetch the oop from TLS after any possible GC.
   263   }
   265   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   266   JRT_BLOCK_END;
   268   if (GraphKit::use_ReduceInitialCardMarks()) {
   269     // inform GC that we won't do card marks for initializing writes.
   270     new_store_pre_barrier(thread);
   271   }
   272 JRT_END
   275 // array allocation
   276 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
   277   JRT_BLOCK;
   278 #ifndef PRODUCT
   279   SharedRuntime::_new_array_ctr++;            // new array requires GC
   280 #endif
   281   assert(check_compiled_frame(thread), "incorrect caller");
   283   // Scavenge and allocate an instance.
   284   oop result;
   286   if (Klass::cast(array_type)->oop_is_typeArray()) {
   287     // The oopFactory likes to work with the element type.
   288     // (We could bypass the oopFactory, since it doesn't add much value.)
   289     BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
   290     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   291   } else {
   292     // Although the oopFactory likes to work with the elem_type,
   293     // the compiler prefers the array_type, since it must already have
   294     // that latter value in hand for the fast path.
   295     klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
   296     result = oopFactory::new_objArray(elem_type, len, THREAD);
   297   }
   299   // Pass oops back through thread local storage.  Our apparent type to Java
   300   // is that we return an oop, but we can block on exit from this routine and
   301   // a GC can trash the oop in C's return register.  The generated stub will
   302   // fetch the oop from TLS after any possible GC.
   303   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   304   thread->set_vm_result(result);
   305   JRT_BLOCK_END;
   307   if (GraphKit::use_ReduceInitialCardMarks()) {
   308     // inform GC that we won't do card marks for initializing writes.
   309     new_store_pre_barrier(thread);
   310   }
   311 JRT_END
   313 // array allocation without zeroing
   314 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(klassOopDesc* array_type, int len, JavaThread *thread))
   315   JRT_BLOCK;
   316 #ifndef PRODUCT
   317   SharedRuntime::_new_array_ctr++;            // new array requires GC
   318 #endif
   319   assert(check_compiled_frame(thread), "incorrect caller");
   321   // Scavenge and allocate an instance.
   322   oop result;
   324   assert(Klass::cast(array_type)->oop_is_typeArray(), "should be called only for type array");
   325   // The oopFactory likes to work with the element type.
   326   BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
   327   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
   329   // Pass oops back through thread local storage.  Our apparent type to Java
   330   // is that we return an oop, but we can block on exit from this routine and
   331   // a GC can trash the oop in C's return register.  The generated stub will
   332   // fetch the oop from TLS after any possible GC.
   333   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   334   thread->set_vm_result(result);
   335   JRT_BLOCK_END;
   337   if (GraphKit::use_ReduceInitialCardMarks()) {
   338     // inform GC that we won't do card marks for initializing writes.
   339     new_store_pre_barrier(thread);
   340   }
   342   oop result = thread->vm_result();
   343   if ((len > 0) && (result != NULL) &&
   344       is_deoptimized_caller_frame(thread)) {
   345     // Zero array here if the caller is deoptimized.
   346     int size = ((typeArrayOop)result)->object_size();
   347     BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
   348     const size_t hs = arrayOopDesc::header_size(elem_type);
   349     // Align to next 8 bytes to avoid trashing arrays's length.
   350     const size_t aligned_hs = align_object_offset(hs);
   351     HeapWord* obj = (HeapWord*)result;
   352     if (aligned_hs > hs) {
   353       Copy::zero_to_words(obj+hs, aligned_hs-hs);
   354     }
   355     // Optimized zeroing.
   356     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
   357   }
   359 JRT_END
   361 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   363 // multianewarray for 2 dimensions
   364 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
   365 #ifndef PRODUCT
   366   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   367 #endif
   368   assert(check_compiled_frame(thread), "incorrect caller");
   369   assert(oop(elem_type)->is_klass(), "not a class");
   370   jint dims[2];
   371   dims[0] = len1;
   372   dims[1] = len2;
   373   oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   374   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   375   thread->set_vm_result(obj);
   376 JRT_END
   378 // multianewarray for 3 dimensions
   379 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
   380 #ifndef PRODUCT
   381   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   382 #endif
   383   assert(check_compiled_frame(thread), "incorrect caller");
   384   assert(oop(elem_type)->is_klass(), "not a class");
   385   jint dims[3];
   386   dims[0] = len1;
   387   dims[1] = len2;
   388   dims[2] = len3;
   389   oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   390   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   391   thread->set_vm_result(obj);
   392 JRT_END
   394 // multianewarray for 4 dimensions
   395 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   396 #ifndef PRODUCT
   397   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   398 #endif
   399   assert(check_compiled_frame(thread), "incorrect caller");
   400   assert(oop(elem_type)->is_klass(), "not a class");
   401   jint dims[4];
   402   dims[0] = len1;
   403   dims[1] = len2;
   404   dims[2] = len3;
   405   dims[3] = len4;
   406   oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   407   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   408   thread->set_vm_result(obj);
   409 JRT_END
   411 // multianewarray for 5 dimensions
   412 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   413 #ifndef PRODUCT
   414   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   415 #endif
   416   assert(check_compiled_frame(thread), "incorrect caller");
   417   assert(oop(elem_type)->is_klass(), "not a class");
   418   jint dims[5];
   419   dims[0] = len1;
   420   dims[1] = len2;
   421   dims[2] = len3;
   422   dims[3] = len4;
   423   dims[4] = len5;
   424   oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   425   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   426   thread->set_vm_result(obj);
   427 JRT_END
   429 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(klassOopDesc* elem_type, arrayOopDesc* dims, JavaThread *thread))
   430   assert(check_compiled_frame(thread), "incorrect caller");
   431   assert(oop(elem_type)->is_klass(), "not a class");
   432   assert(oop(dims)->is_typeArray(), "not an array");
   434   ResourceMark rm;
   435   jint len = dims->length();
   436   assert(len > 0, "Dimensions array should contain data");
   437   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   438   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   439   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   441   oop obj = arrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   442   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   443   thread->set_vm_result(obj);
   444 JRT_END
   447 const TypeFunc *OptoRuntime::new_instance_Type() {
   448   // create input type (domain)
   449   const Type **fields = TypeTuple::fields(1);
   450   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   451   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   453   // create result type (range)
   454   fields = TypeTuple::fields(1);
   455   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   457   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   459   return TypeFunc::make(domain, range);
   460 }
   463 const TypeFunc *OptoRuntime::athrow_Type() {
   464   // create input type (domain)
   465   const Type **fields = TypeTuple::fields(1);
   466   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   467   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   469   // create result type (range)
   470   fields = TypeTuple::fields(0);
   472   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   474   return TypeFunc::make(domain, range);
   475 }
   478 const TypeFunc *OptoRuntime::new_array_Type() {
   479   // create input type (domain)
   480   const Type **fields = TypeTuple::fields(2);
   481   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   482   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   483   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   485   // create result type (range)
   486   fields = TypeTuple::fields(1);
   487   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   489   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   491   return TypeFunc::make(domain, range);
   492 }
   494 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   495   // create input type (domain)
   496   const int nargs = ndim + 1;
   497   const Type **fields = TypeTuple::fields(nargs);
   498   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   499   for( int i = 1; i < nargs; i++ )
   500     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   501   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   503   // create result type (range)
   504   fields = TypeTuple::fields(1);
   505   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   506   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   508   return TypeFunc::make(domain, range);
   509 }
   511 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   512   return multianewarray_Type(2);
   513 }
   515 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   516   return multianewarray_Type(3);
   517 }
   519 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   520   return multianewarray_Type(4);
   521 }
   523 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   524   return multianewarray_Type(5);
   525 }
   527 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   528   // create input type (domain)
   529   const Type **fields = TypeTuple::fields(2);
   530   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   531   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   532   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   534   // create result type (range)
   535   fields = TypeTuple::fields(1);
   536   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   537   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   539   return TypeFunc::make(domain, range);
   540 }
   542 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   543   const Type **fields = TypeTuple::fields(2);
   544   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   545   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   546   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   548   // create result type (range)
   549   fields = TypeTuple::fields(0);
   550   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   552   return TypeFunc::make(domain, range);
   553 }
   555 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   557   const Type **fields = TypeTuple::fields(2);
   558   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   559   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   560   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   562   // create result type (range)
   563   fields = TypeTuple::fields(0);
   564   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   566   return TypeFunc::make(domain, range);
   567 }
   569 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   570   // create input type (domain)
   571   const Type **fields = TypeTuple::fields(1);
   572   // Symbol* name of class to be loaded
   573   fields[TypeFunc::Parms+0] = TypeInt::INT;
   574   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   576   // create result type (range)
   577   fields = TypeTuple::fields(0);
   578   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   580   return TypeFunc::make(domain, range);
   581 }
   583 # ifdef ENABLE_ZAP_DEAD_LOCALS
   584 // Type used for stub generation for zap_dead_locals.
   585 // No inputs or outputs
   586 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   587   // create input type (domain)
   588   const Type **fields = TypeTuple::fields(0);
   589   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   591   // create result type (range)
   592   fields = TypeTuple::fields(0);
   593   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   595   return TypeFunc::make(domain,range);
   596 }
   597 # endif
   600 //-----------------------------------------------------------------------------
   601 // Monitor Handling
   602 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   603   // create input type (domain)
   604   const Type **fields = TypeTuple::fields(2);
   605   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   606   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   607   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   609   // create result type (range)
   610   fields = TypeTuple::fields(0);
   612   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   614   return TypeFunc::make(domain,range);
   615 }
   618 //-----------------------------------------------------------------------------
   619 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   620   // create input type (domain)
   621   const Type **fields = TypeTuple::fields(2);
   622   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   623   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   624   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   626   // create result type (range)
   627   fields = TypeTuple::fields(0);
   629   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   631   return TypeFunc::make(domain,range);
   632 }
   634 const TypeFunc* OptoRuntime::flush_windows_Type() {
   635   // create input type (domain)
   636   const Type** fields = TypeTuple::fields(1);
   637   fields[TypeFunc::Parms+0] = NULL; // void
   638   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   640   // create result type
   641   fields = TypeTuple::fields(1);
   642   fields[TypeFunc::Parms+0] = NULL; // void
   643   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   645   return TypeFunc::make(domain, range);
   646 }
   648 const TypeFunc* OptoRuntime::l2f_Type() {
   649   // create input type (domain)
   650   const Type **fields = TypeTuple::fields(2);
   651   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   652   fields[TypeFunc::Parms+1] = Type::HALF;
   653   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   655   // create result type (range)
   656   fields = TypeTuple::fields(1);
   657   fields[TypeFunc::Parms+0] = Type::FLOAT;
   658   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   660   return TypeFunc::make(domain, range);
   661 }
   663 const TypeFunc* OptoRuntime::modf_Type() {
   664   const Type **fields = TypeTuple::fields(2);
   665   fields[TypeFunc::Parms+0] = Type::FLOAT;
   666   fields[TypeFunc::Parms+1] = Type::FLOAT;
   667   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   669   // create result type (range)
   670   fields = TypeTuple::fields(1);
   671   fields[TypeFunc::Parms+0] = Type::FLOAT;
   673   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   675   return TypeFunc::make(domain, range);
   676 }
   678 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   679   // create input type (domain)
   680   const Type **fields = TypeTuple::fields(2);
   681   // Symbol* name of class to be loaded
   682   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   683   fields[TypeFunc::Parms+1] = Type::HALF;
   684   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   686   // create result type (range)
   687   fields = TypeTuple::fields(2);
   688   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   689   fields[TypeFunc::Parms+1] = Type::HALF;
   690   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   692   return TypeFunc::make(domain, range);
   693 }
   695 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   696   const Type **fields = TypeTuple::fields(4);
   697   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   698   fields[TypeFunc::Parms+1] = Type::HALF;
   699   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   700   fields[TypeFunc::Parms+3] = Type::HALF;
   701   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   703   // create result type (range)
   704   fields = TypeTuple::fields(2);
   705   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   706   fields[TypeFunc::Parms+1] = Type::HALF;
   707   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   709   return TypeFunc::make(domain, range);
   710 }
   712 //-------------- currentTimeMillis
   714 const TypeFunc* OptoRuntime::current_time_millis_Type() {
   715   // create input type (domain)
   716   const Type **fields = TypeTuple::fields(0);
   717   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   719   // create result type (range)
   720   fields = TypeTuple::fields(2);
   721   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   722   fields[TypeFunc::Parms+1] = Type::HALF;
   723   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   725   return TypeFunc::make(domain, range);
   726 }
   728 // arraycopy stub variations:
   729 enum ArrayCopyType {
   730   ac_fast,                      // void(ptr, ptr, size_t)
   731   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   732   ac_slow,                      // void(ptr, int, ptr, int, int)
   733   ac_generic                    //  int(ptr, int, ptr, int, int)
   734 };
   736 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   737   // create input type (domain)
   738   int num_args      = (act == ac_fast ? 3 : 5);
   739   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   740   int argcnt = num_args;
   741   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   742   const Type** fields = TypeTuple::fields(argcnt);
   743   int argp = TypeFunc::Parms;
   744   fields[argp++] = TypePtr::NOTNULL;    // src
   745   if (num_size_args == 0) {
   746     fields[argp++] = TypeInt::INT;      // src_pos
   747   }
   748   fields[argp++] = TypePtr::NOTNULL;    // dest
   749   if (num_size_args == 0) {
   750     fields[argp++] = TypeInt::INT;      // dest_pos
   751     fields[argp++] = TypeInt::INT;      // length
   752   }
   753   while (num_size_args-- > 0) {
   754     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   755     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   756   }
   757   if (act == ac_checkcast) {
   758     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   759   }
   760   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   761   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   763   // create result type if needed
   764   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   765   fields = TypeTuple::fields(1);
   766   if (retcnt == 0)
   767     fields[TypeFunc::Parms+0] = NULL; // void
   768   else
   769     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   770   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   771   return TypeFunc::make(domain, range);
   772 }
   774 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   775   // This signature is simple:  Two base pointers and a size_t.
   776   return make_arraycopy_Type(ac_fast);
   777 }
   779 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   780   // An extension of fast_arraycopy_Type which adds type checking.
   781   return make_arraycopy_Type(ac_checkcast);
   782 }
   784 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   785   // This signature is exactly the same as System.arraycopy.
   786   // There are no intptr_t (int/long) arguments.
   787   return make_arraycopy_Type(ac_slow);
   788 }
   790 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   791   // This signature is like System.arraycopy, except that it returns status.
   792   return make_arraycopy_Type(ac_generic);
   793 }
   796 const TypeFunc* OptoRuntime::array_fill_Type() {
   797   // create input type (domain): pointer, int, size_t
   798   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   799   int argp = TypeFunc::Parms;
   800   fields[argp++] = TypePtr::NOTNULL;
   801   fields[argp++] = TypeInt::INT;
   802   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   803   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   804   const TypeTuple *domain = TypeTuple::make(argp, fields);
   806   // create result type
   807   fields = TypeTuple::fields(1);
   808   fields[TypeFunc::Parms+0] = NULL; // void
   809   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   811   return TypeFunc::make(domain, range);
   812 }
   814 //------------- Interpreter state access for on stack replacement
   815 const TypeFunc* OptoRuntime::osr_end_Type() {
   816   // create input type (domain)
   817   const Type **fields = TypeTuple::fields(1);
   818   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   819   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   821   // create result type
   822   fields = TypeTuple::fields(1);
   823   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   824   fields[TypeFunc::Parms+0] = NULL; // void
   825   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   826   return TypeFunc::make(domain, range);
   827 }
   829 //-------------- methodData update helpers
   831 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   832   // create input type (domain)
   833   const Type **fields = TypeTuple::fields(2);
   834   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   835   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   836   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   838   // create result type
   839   fields = TypeTuple::fields(1);
   840   fields[TypeFunc::Parms+0] = NULL; // void
   841   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   842   return TypeFunc::make(domain,range);
   843 }
   845 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   846   if (receiver == NULL) return;
   847   klassOop receiver_klass = receiver->klass();
   849   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   850   int empty_row = -1;           // free row, if any is encountered
   852   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
   853   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
   854     // if (vc->receiver(row) == receiver_klass)
   855     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
   856     intptr_t row_recv = *(mdp + receiver_off);
   857     if (row_recv == (intptr_t) receiver_klass) {
   858       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
   859       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
   860       *(mdp + count_off) += DataLayout::counter_increment;
   861       return;
   862     } else if (row_recv == 0) {
   863       // else if (vc->receiver(row) == NULL)
   864       empty_row = (int) row;
   865     }
   866   }
   868   if (empty_row != -1) {
   869     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
   870     // vc->set_receiver(empty_row, receiver_klass);
   871     *(mdp + receiver_off) = (intptr_t) receiver_klass;
   872     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
   873     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
   874     *(mdp + count_off) = DataLayout::counter_increment;
   875   } else {
   876     // Receiver did not match any saved receiver and there is no empty row for it.
   877     // Increment total counter to indicate polymorphic case.
   878     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
   879     *count_p += DataLayout::counter_increment;
   880   }
   881 JRT_END
   883 //-----------------------------------------------------------------------------
   884 // implicit exception support.
   886 static void report_null_exception_in_code_cache(address exception_pc) {
   887   ResourceMark rm;
   888   CodeBlob* n = CodeCache::find_blob(exception_pc);
   889   if (n != NULL) {
   890     tty->print_cr("#");
   891     tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
   892     tty->print_cr("#");
   893     tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
   895     if (n->is_nmethod()) {
   896       methodOop method = ((nmethod*)n)->method();
   897       tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
   898       tty->print_cr("#");
   899       if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
   900         const char* title    = "HotSpot Runtime Error";
   901         const char* question = "Do you want to exclude compilation of this method in future runs?";
   902         if (os::message_box(title, question)) {
   903           CompilerOracle::append_comment_to_file("");
   904           CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
   905           CompilerOracle::append_comment_to_file("");
   906           CompilerOracle::append_exclude_to_file(method);
   907           tty->print_cr("#");
   908           tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
   909           tty->print_cr("#");
   910         }
   911       }
   912       fatal("Implicit null exception happened in compiled method");
   913     } else {
   914       n->print();
   915       fatal("Implicit null exception happened in generated stub");
   916     }
   917   }
   918   fatal("Implicit null exception at wrong place");
   919 }
   922 //-------------------------------------------------------------------------------------
   923 // register policy
   925 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
   926   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
   927   switch (register_save_policy[reg]) {
   928     case 'C': return false; //SOC
   929     case 'E': return true ; //SOE
   930     case 'N': return false; //NS
   931     case 'A': return false; //AS
   932   }
   933   ShouldNotReachHere();
   934   return false;
   935 }
   937 //-----------------------------------------------------------------------
   938 // Exceptions
   939 //
   941 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
   943 // The method is an entry that is always called by a C++ method not
   944 // directly from compiled code. Compiled code will call the C++ method following.
   945 // We can't allow async exception to be installed during  exception processing.
   946 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
   948   // Do not confuse exception_oop with pending_exception. The exception_oop
   949   // is only used to pass arguments into the method. Not for general
   950   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
   951   // the runtime stubs checks this on exit.
   952   assert(thread->exception_oop() != NULL, "exception oop is found");
   953   address handler_address = NULL;
   955   Handle exception(thread, thread->exception_oop());
   957   if (TraceExceptions) {
   958     trace_exception(exception(), thread->exception_pc(), "");
   959   }
   960   // for AbortVMOnException flag
   961   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   963   #ifdef ASSERT
   964     if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   965       // should throw an exception here
   966       ShouldNotReachHere();
   967     }
   968   #endif
   971   // new exception handling: this method is entered only from adapters
   972   // exceptions from compiled java methods are handled in compiled code
   973   // using rethrow node
   975   address pc = thread->exception_pc();
   976   nm = CodeCache::find_nmethod(pc);
   977   assert(nm != NULL, "No NMethod found");
   978   if (nm->is_native_method()) {
   979     fatal("Native mathod should not have path to exception handling");
   980   } else {
   981     // we are switching to old paradigm: search for exception handler in caller_frame
   982     // instead in exception handler of caller_frame.sender()
   984     if (JvmtiExport::can_post_on_exceptions()) {
   985       // "Full-speed catching" is not necessary here,
   986       // since we're notifying the VM on every catch.
   987       // Force deoptimization and the rest of the lookup
   988       // will be fine.
   989       deoptimize_caller_frame(thread, true);
   990     }
   992     // Check the stack guard pages.  If enabled, look for handler in this frame;
   993     // otherwise, forcibly unwind the frame.
   994     //
   995     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
   996     bool force_unwind = !thread->reguard_stack();
   997     bool deopting = false;
   998     if (nm->is_deopt_pc(pc)) {
   999       deopting = true;
  1000       RegisterMap map(thread, false);
  1001       frame deoptee = thread->last_frame().sender(&map);
  1002       assert(deoptee.is_deoptimized_frame(), "must be deopted");
  1003       // Adjust the pc back to the original throwing pc
  1004       pc = deoptee.pc();
  1007     // If we are forcing an unwind because of stack overflow then deopt is
  1008     // irrelevant sice we are throwing the frame away anyway.
  1010     if (deopting && !force_unwind) {
  1011       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1012     } else {
  1014       handler_address =
  1015         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
  1017       if (handler_address == NULL) {
  1018         Handle original_exception(thread, exception());
  1019         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
  1020         assert (handler_address != NULL, "must have compiled handler");
  1021         // Update the exception cache only when the unwind was not forced
  1022         // and there didn't happen another exception during the computation of the
  1023         // compiled exception handler.
  1024         if (!force_unwind && original_exception() == exception()) {
  1025           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
  1027       } else {
  1028         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
  1032     thread->set_exception_pc(pc);
  1033     thread->set_exception_handler_pc(handler_address);
  1035     // Check if the exception PC is a MethodHandle call site.
  1036     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
  1039   // Restore correct return pc.  Was saved above.
  1040   thread->set_exception_oop(exception());
  1041   return handler_address;
  1043 JRT_END
  1045 // We are entering here from exception_blob
  1046 // If there is a compiled exception handler in this method, we will continue there;
  1047 // otherwise we will unwind the stack and continue at the caller of top frame method
  1048 // Note we enter without the usual JRT wrapper. We will call a helper routine that
  1049 // will do the normal VM entry. We do it this way so that we can see if the nmethod
  1050 // we looked up the handler for has been deoptimized in the meantime. If it has been
  1051 // we must not use the handler and instread return the deopt blob.
  1052 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1053 //
  1054 // We are in Java not VM and in debug mode we have a NoHandleMark
  1055 //
  1056 #ifndef PRODUCT
  1057   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1058 #endif
  1059   debug_only(NoHandleMark __hm;)
  1060   nmethod* nm = NULL;
  1061   address handler_address = NULL;
  1063     // Enter the VM
  1065     ResetNoHandleMark rnhm;
  1066     handler_address = handle_exception_C_helper(thread, nm);
  1069   // Back in java: Use no oops, DON'T safepoint
  1071   // Now check to see if the handler we are returning is in a now
  1072   // deoptimized frame
  1074   if (nm != NULL) {
  1075     RegisterMap map(thread, false);
  1076     frame caller = thread->last_frame().sender(&map);
  1077 #ifdef ASSERT
  1078     assert(caller.is_compiled_frame(), "must be");
  1079 #endif // ASSERT
  1080     if (caller.is_deoptimized_frame()) {
  1081       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1084   return handler_address;
  1087 //------------------------------rethrow----------------------------------------
  1088 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1089 // is either throwing or rethrowing an exception.  The callee-save registers
  1090 // have been restored, synchronized objects have been unlocked and the callee
  1091 // stack frame has been removed.  The return address was passed in.
  1092 // Exception oop is passed as the 1st argument.  This routine is then called
  1093 // from the stub.  On exit, we know where to jump in the caller's code.
  1094 // After this C code exits, the stub will pop his frame and end in a jump
  1095 // (instead of a return).  We enter the caller's default handler.
  1096 //
  1097 // This must be JRT_LEAF:
  1098 //     - caller will not change its state as we cannot block on exit,
  1099 //       therefore raw_exception_handler_for_return_address is all it takes
  1100 //       to handle deoptimized blobs
  1101 //
  1102 // However, there needs to be a safepoint check in the middle!  So compiled
  1103 // safepoints are completely watertight.
  1104 //
  1105 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1106 //
  1107 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1108 //
  1109 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1110 #ifndef PRODUCT
  1111   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1112 #endif
  1113   assert (exception != NULL, "should have thrown a NULLPointerException");
  1114 #ifdef ASSERT
  1115   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1116     // should throw an exception here
  1117     ShouldNotReachHere();
  1119 #endif
  1121   thread->set_vm_result(exception);
  1122   // Frame not compiled (handles deoptimization blob)
  1123   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1127 const TypeFunc *OptoRuntime::rethrow_Type() {
  1128   // create input type (domain)
  1129   const Type **fields = TypeTuple::fields(1);
  1130   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1131   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1133   // create result type (range)
  1134   fields = TypeTuple::fields(1);
  1135   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1136   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1138   return TypeFunc::make(domain, range);
  1142 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1143   // Deoptimize frame
  1144   if (doit) {
  1145     // Called from within the owner thread, so no need for safepoint
  1146     RegisterMap reg_map(thread);
  1147     frame stub_frame = thread->last_frame();
  1148     assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1149     frame caller_frame = stub_frame.sender(&reg_map);
  1151     // Deoptimize the caller frame.
  1152     Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1157 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
  1158   // Called from within the owner thread, so no need for safepoint
  1159   RegisterMap reg_map(thread);
  1160   frame stub_frame = thread->last_frame();
  1161   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1162   frame caller_frame = stub_frame.sender(&reg_map);
  1163   return caller_frame.is_deoptimized_frame();
  1167 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1168   // create input type (domain)
  1169   const Type **fields = TypeTuple::fields(1);
  1170   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1171   // // The JavaThread* is passed to each routine as the last argument
  1172   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1173   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1175   // create result type (range)
  1176   fields = TypeTuple::fields(0);
  1178   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1180   return TypeFunc::make(domain,range);
  1184 //-----------------------------------------------------------------------------
  1185 // Dtrace support.  entry and exit probes have the same signature
  1186 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1187   // create input type (domain)
  1188   const Type **fields = TypeTuple::fields(2);
  1189   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1190   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
  1191   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1193   // create result type (range)
  1194   fields = TypeTuple::fields(0);
  1196   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1198   return TypeFunc::make(domain,range);
  1201 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1202   // create input type (domain)
  1203   const Type **fields = TypeTuple::fields(2);
  1204   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1205   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1207   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1209   // create result type (range)
  1210   fields = TypeTuple::fields(0);
  1212   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1214   return TypeFunc::make(domain,range);
  1218 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1219   assert(obj->is_oop(), "must be a valid oop");
  1220   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
  1221   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1222 JRT_END
  1224 //-----------------------------------------------------------------------------
  1226 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1228 //
  1229 // dump the collected NamedCounters.
  1230 //
  1231 void OptoRuntime::print_named_counters() {
  1232   int total_lock_count = 0;
  1233   int eliminated_lock_count = 0;
  1235   NamedCounter* c = _named_counters;
  1236   while (c) {
  1237     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1238       int count = c->count();
  1239       if (count > 0) {
  1240         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1241         if (Verbose) {
  1242           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1244         total_lock_count += count;
  1245         if (eliminated) {
  1246           eliminated_lock_count += count;
  1249     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1250       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1251       if (blc->nonzero()) {
  1252         tty->print_cr("%s", c->name());
  1253         blc->print_on(tty);
  1256     c = c->next();
  1258   if (total_lock_count > 0) {
  1259     tty->print_cr("dynamic locks: %d", total_lock_count);
  1260     if (eliminated_lock_count) {
  1261       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1262                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1267 //
  1268 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1269 //  name which consists of method@line for the inlining tree.
  1270 //
  1272 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1273   int max_depth = youngest_jvms->depth();
  1275   // Visit scopes from youngest to oldest.
  1276   bool first = true;
  1277   stringStream st;
  1278   for (int depth = max_depth; depth >= 1; depth--) {
  1279     JVMState* jvms = youngest_jvms->of_depth(depth);
  1280     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1281     if (!first) {
  1282       st.print(" ");
  1283     } else {
  1284       first = false;
  1286     int bci = jvms->bci();
  1287     if (bci < 0) bci = 0;
  1288     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1289     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1291   NamedCounter* c;
  1292   if (tag == NamedCounter::BiasedLockingCounter) {
  1293     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1294   } else {
  1295     c = new NamedCounter(strdup(st.as_string()), tag);
  1298   // atomically add the new counter to the head of the list.  We only
  1299   // add counters so this is safe.
  1300   NamedCounter* head;
  1301   do {
  1302     head = _named_counters;
  1303     c->set_next(head);
  1304   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1305   return c;
  1308 //-----------------------------------------------------------------------------
  1309 // Non-product code
  1310 #ifndef PRODUCT
  1312 int trace_exception_counter = 0;
  1313 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1314   ttyLocker ttyl;
  1315   trace_exception_counter++;
  1316   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1317   exception_oop->print_value();
  1318   tty->print(" in ");
  1319   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1320   if (blob->is_nmethod()) {
  1321     ((nmethod*)blob)->method()->print_value();
  1322   } else if (blob->is_runtime_stub()) {
  1323     tty->print("<runtime-stub>");
  1324   } else {
  1325     tty->print("<unknown>");
  1327   tty->print(" at " INTPTR_FORMAT,  exception_pc);
  1328   tty->print_cr("]");
  1331 #endif  // PRODUCT
  1334 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1335 // Called from call sites in compiled code with oop maps (actually safepoints)
  1336 // Zaps dead locals in first java frame.
  1337 // Is entry because may need to lock to generate oop maps
  1338 // Currently, only used for compiler frames, but someday may be used
  1339 // for interpreter frames, too.
  1341 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1343 // avoid pointers to member funcs with these helpers
  1344 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1345 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1348 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1349                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1350   assert(JavaThread::current() == thread, "is this needed?");
  1352   if ( !ZapDeadCompiledLocals )  return;
  1354   bool skip = false;
  1356        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1357   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1358   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1359     warning("starting zapping after skipping");
  1361        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1362   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1363   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1364     warning("about to zap last zap");
  1366   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1368   if ( skip )  return;
  1370   // find java frame and zap it
  1372   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1373     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1374       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1375       return;
  1378   warning("no frame found to zap in zap_dead_Java_locals_C");
  1381 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1382   zap_dead_java_or_native_locals(thread, is_java_frame);
  1383 JRT_END
  1385 // The following does not work because for one thing, the
  1386 // thread state is wrong; it expects java, but it is native.
  1387 // Also, the invariants in a native stub are different and
  1388 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1389 // in there.
  1390 // So for now, we do not zap in native stubs.
  1392 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1393   zap_dead_java_or_native_locals(thread, is_native_frame);
  1394 JRT_END
  1396 # endif

mercurial