src/share/vm/opto/type.hpp

Thu, 14 Feb 2019 14:31:32 +0100

author
neliasso
date
Thu, 14 Feb 2019 14:31:32 +0100
changeset 9741
7e0a4478e80f
parent 9512
992120803410
child 9572
624a0741915c
child 9840
9efdbe72ed1d
permissions
-rw-r--r--

8087128: C2: Disallow definition split on MachCopySpill nodes
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_TYPE_HPP
    26 #define SHARE_VM_OPTO_TYPE_HPP
    28 #include "libadt/port.hpp"
    29 #include "opto/adlcVMDeps.hpp"
    30 #include "runtime/handles.hpp"
    32 // Portions of code courtesy of Clifford Click
    34 // Optimization - Graph Style
    37 // This class defines a Type lattice.  The lattice is used in the constant
    38 // propagation algorithms, and for some type-checking of the iloc code.
    39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    40 // float & double precision constants, sets of data-labels and code-labels.
    41 // The complete lattice is described below.  Subtypes have no relationship to
    42 // up or down in the lattice; that is entirely determined by the behavior of
    43 // the MEET/JOIN functions.
    45 class Dict;
    46 class Type;
    47 class   TypeD;
    48 class   TypeF;
    49 class   TypeInt;
    50 class   TypeLong;
    51 class   TypeNarrowPtr;
    52 class     TypeNarrowOop;
    53 class     TypeNarrowKlass;
    54 class   TypeAry;
    55 class   TypeTuple;
    56 class   TypeVect;
    57 class     TypeVectS;
    58 class     TypeVectD;
    59 class     TypeVectX;
    60 class     TypeVectY;
    61 class   TypePtr;
    62 class     TypeRawPtr;
    63 class     TypeOopPtr;
    64 class       TypeInstPtr;
    65 class       TypeAryPtr;
    66 class     TypeKlassPtr;
    67 class     TypeMetadataPtr;
    69 //------------------------------Type-------------------------------------------
    70 // Basic Type object, represents a set of primitive Values.
    71 // Types are hash-cons'd into a private class dictionary, so only one of each
    72 // different kind of Type exists.  Types are never modified after creation, so
    73 // all their interesting fields are constant.
    74 class Type {
    75   friend class VMStructs;
    77 public:
    78   enum TYPES {
    79     Bad=0,                      // Type check
    80     Control,                    // Control of code (not in lattice)
    81     Top,                        // Top of the lattice
    82     Int,                        // Integer range (lo-hi)
    83     Long,                       // Long integer range (lo-hi)
    84     Half,                       // Placeholder half of doubleword
    85     NarrowOop,                  // Compressed oop pointer
    86     NarrowKlass,                // Compressed klass pointer
    88     Tuple,                      // Method signature or object layout
    89     Array,                      // Array types
    90     VectorS,                    //  32bit Vector types
    91     VectorD,                    //  64bit Vector types
    92     VectorX,                    // 128bit Vector types
    93     VectorY,                    // 256bit Vector types
    95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    96     RawPtr,                     // Raw (non-oop) pointers
    97     OopPtr,                     // Any and all Java heap entities
    98     InstPtr,                    // Instance pointers (non-array objects)
    99     AryPtr,                     // Array pointers
   100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
   102     MetadataPtr,                // Generic metadata
   103     KlassPtr,                   // Klass pointers
   105     Function,                   // Function signature
   106     Abio,                       // Abstract I/O
   107     Return_Address,             // Subroutine return address
   108     Memory,                     // Abstract store
   109     FloatTop,                   // No float value
   110     FloatCon,                   // Floating point constant
   111     FloatBot,                   // Any float value
   112     DoubleTop,                  // No double value
   113     DoubleCon,                  // Double precision constant
   114     DoubleBot,                  // Any double value
   115     Bottom,                     // Bottom of lattice
   116     lastype                     // Bogus ending type (not in lattice)
   117   };
   119   // Signal values for offsets from a base pointer
   120   enum OFFSET_SIGNALS {
   121     OffsetTop = -2000000000,    // undefined offset
   122     OffsetBot = -2000000001     // any possible offset
   123   };
   125   // Min and max WIDEN values.
   126   enum WIDEN {
   127     WidenMin = 0,
   128     WidenMax = 3
   129   };
   131 private:
   132   typedef struct {
   133     TYPES                dual_type;
   134     BasicType            basic_type;
   135     const char*          msg;
   136     bool                 isa_oop;
   137     uint                 ideal_reg;
   138     relocInfo::relocType reloc;
   139   } TypeInfo;
   141   // Dictionary of types shared among compilations.
   142   static Dict* _shared_type_dict;
   143   static const TypeInfo _type_info[];
   145   static int uhash( const Type *const t );
   146   // Structural equality check.  Assumes that cmp() has already compared
   147   // the _base types and thus knows it can cast 't' appropriately.
   148   virtual bool eq( const Type *t ) const;
   150   // Top-level hash-table of types
   151   static Dict *type_dict() {
   152     return Compile::current()->type_dict();
   153   }
   155   // DUAL operation: reflect around lattice centerline.  Used instead of
   156   // join to ensure my lattice is symmetric up and down.  Dual is computed
   157   // lazily, on demand, and cached in _dual.
   158   const Type *_dual;            // Cached dual value
   159   // Table for efficient dualing of base types
   160   static const TYPES dual_type[lastype];
   162 #ifdef ASSERT
   163   // One type is interface, the other is oop
   164   virtual bool interface_vs_oop_helper(const Type *t) const;
   165 #endif
   167   const Type *meet_helper(const Type *t, bool include_speculative) const;
   169 protected:
   170   // Each class of type is also identified by its base.
   171   const TYPES _base;            // Enum of Types type
   173   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   174   // ~Type();                   // Use fast deallocation
   175   const Type *hashcons();       // Hash-cons the type
   176   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
   177   const Type *join_helper(const Type *t, bool include_speculative) const {
   178     return dual()->meet_helper(t->dual(), include_speculative)->dual();
   179   }
   181 public:
   183   inline void* operator new( size_t x ) throw() {
   184     Compile* compile = Compile::current();
   185     compile->set_type_last_size(x);
   186     void *temp = compile->type_arena()->Amalloc_D(x);
   187     compile->set_type_hwm(temp);
   188     return temp;
   189   }
   190   inline void operator delete( void* ptr ) {
   191     Compile* compile = Compile::current();
   192     compile->type_arena()->Afree(ptr,compile->type_last_size());
   193   }
   195   // Initialize the type system for a particular compilation.
   196   static void Initialize(Compile* compile);
   198   // Initialize the types shared by all compilations.
   199   static void Initialize_shared(Compile* compile);
   201   TYPES base() const {
   202     assert(_base > Bad && _base < lastype, "sanity");
   203     return _base;
   204   }
   206   // Create a new hash-consd type
   207   static const Type *make(enum TYPES);
   208   // Test for equivalence of types
   209   static int cmp( const Type *const t1, const Type *const t2 );
   210   // Test for higher or equal in lattice
   211   // Variant that drops the speculative part of the types
   212   bool higher_equal(const Type *t) const {
   213     return !cmp(meet(t),t->remove_speculative());
   214   }
   215   // Variant that keeps the speculative part of the types
   216   bool higher_equal_speculative(const Type *t) const {
   217     return !cmp(meet_speculative(t),t);
   218   }
   220   // MEET operation; lower in lattice.
   221   // Variant that drops the speculative part of the types
   222   const Type *meet(const Type *t) const {
   223     return meet_helper(t, false);
   224   }
   225   // Variant that keeps the speculative part of the types
   226   const Type *meet_speculative(const Type *t) const {
   227     return meet_helper(t, true);
   228   }
   229   // WIDEN: 'widens' for Ints and other range types
   230   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
   231   // NARROW: complement for widen, used by pessimistic phases
   232   virtual const Type *narrow( const Type *old ) const { return this; }
   234   // DUAL operation: reflect around lattice centerline.  Used instead of
   235   // join to ensure my lattice is symmetric up and down.
   236   const Type *dual() const { return _dual; }
   238   // Compute meet dependent on base type
   239   virtual const Type *xmeet( const Type *t ) const;
   240   virtual const Type *xdual() const;    // Compute dual right now.
   242   // JOIN operation; higher in lattice.  Done by finding the dual of the
   243   // meet of the dual of the 2 inputs.
   244   // Variant that drops the speculative part of the types
   245   const Type *join(const Type *t) const {
   246     return join_helper(t, false);
   247   }
   248   // Variant that keeps the speculative part of the types
   249   const Type *join_speculative(const Type *t) const {
   250     return join_helper(t, true);
   251   }
   253   // Modified version of JOIN adapted to the needs Node::Value.
   254   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   255   // Currently, it also works around limitations involving interface types.
   256   // Variant that drops the speculative part of the types
   257   const Type *filter(const Type *kills) const {
   258     return filter_helper(kills, false);
   259   }
   260   // Variant that keeps the speculative part of the types
   261   const Type *filter_speculative(const Type *kills) const {
   262     return filter_helper(kills, true);
   263   }
   265 #ifdef ASSERT
   266   // One type is interface, the other is oop
   267   virtual bool interface_vs_oop(const Type *t) const;
   268 #endif
   270   // Returns true if this pointer points at memory which contains a
   271   // compressed oop references.
   272   bool is_ptr_to_narrowoop() const;
   273   bool is_ptr_to_narrowklass() const;
   275   bool is_ptr_to_boxing_obj() const;
   278   // Convenience access
   279   float getf() const;
   280   double getd() const;
   282   const TypeInt    *is_int() const;
   283   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   284   const TypeLong   *is_long() const;
   285   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   286   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
   287   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   288   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   289   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
   290   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   291   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   292   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   293   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   294   const TypeVect   *is_vect() const;             // Vector
   295   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
   296   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   297   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   298   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   299   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   300   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
   301   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
   302   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
   303   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
   304   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   305   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   306   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   307   const TypeInstPtr  *is_instptr() const;        // Instance
   308   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   309   const TypeAryPtr   *is_aryptr() const;         // Array oop
   311   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
   312   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
   313   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
   314   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
   316   virtual bool      is_finite() const;           // Has a finite value
   317   virtual bool      is_nan()    const;           // Is not a number (NaN)
   319   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
   320   const TypePtr* make_ptr() const;
   322   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
   323   // Asserts if the underlying type is not an oopptr or narrowoop.
   324   const TypeOopPtr* make_oopptr() const;
   326   // Returns this compressed pointer or the equivalent compressed version
   327   // of this pointer type.
   328   const TypeNarrowOop* make_narrowoop() const;
   330   // Returns this compressed klass pointer or the equivalent
   331   // compressed version of this pointer type.
   332   const TypeNarrowKlass* make_narrowklass() const;
   334   // Special test for register pressure heuristic
   335   bool is_floatingpoint() const;        // True if Float or Double base type
   337   // Do you have memory, directly or through a tuple?
   338   bool has_memory( ) const;
   340   // TRUE if type is a singleton
   341   virtual bool singleton(void) const;
   343   // TRUE if type is above the lattice centerline, and is therefore vacuous
   344   virtual bool empty(void) const;
   346   // Return a hash for this type.  The hash function is public so ConNode
   347   // (constants) can hash on their constant, which is represented by a Type.
   348   virtual int hash() const;
   350   // Map ideal registers (machine types) to ideal types
   351   static const Type *mreg2type[];
   353   // Printing, statistics
   354 #ifndef PRODUCT
   355   void         dump_on(outputStream *st) const;
   356   void         dump() const {
   357     dump_on(tty);
   358   }
   359   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   360   static  void dump_stats();
   362   static const char* str(const Type* t);
   363 #endif
   364   void typerr(const Type *t) const; // Mixing types error
   366   // Create basic type
   367   static const Type* get_const_basic_type(BasicType type) {
   368     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   369     return _const_basic_type[type];
   370   }
   372   // For two instance arrays of same dimension, return the base element types.
   373   // Otherwise or if the arrays have different dimensions, return NULL.
   374   static void get_arrays_base_elements(const Type *a1, const Type *a2,
   375                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
   377   // Mapping to the array element's basic type.
   378   BasicType array_element_basic_type() const;
   380   // Create standard type for a ciType:
   381   static const Type* get_const_type(ciType* type);
   383   // Create standard zero value:
   384   static const Type* get_zero_type(BasicType type) {
   385     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   386     return _zero_type[type];
   387   }
   389   // Report if this is a zero value (not top).
   390   bool is_zero_type() const {
   391     BasicType type = basic_type();
   392     if (type == T_VOID || type >= T_CONFLICT)
   393       return false;
   394     else
   395       return (this == _zero_type[type]);
   396   }
   398   // Convenience common pre-built types.
   399   static const Type *ABIO;
   400   static const Type *BOTTOM;
   401   static const Type *CONTROL;
   402   static const Type *DOUBLE;
   403   static const Type *FLOAT;
   404   static const Type *HALF;
   405   static const Type *MEMORY;
   406   static const Type *MULTI;
   407   static const Type *RETURN_ADDRESS;
   408   static const Type *TOP;
   410   // Mapping from compiler type to VM BasicType
   411   BasicType basic_type() const       { return _type_info[_base].basic_type; }
   412   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
   413   const char* msg() const            { return _type_info[_base].msg; }
   414   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
   415   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
   417   // Mapping from CI type system to compiler type:
   418   static const Type* get_typeflow_type(ciType* type);
   420   static const Type* make_from_constant(ciConstant constant,
   421                                         bool require_constant = false,
   422                                         bool is_autobox_cache = false);
   424   // Speculative type. See TypeInstPtr
   425   virtual const TypeOopPtr* speculative() const { return NULL; }
   426   virtual ciKlass* speculative_type() const { return NULL; }
   427   const Type* maybe_remove_speculative(bool include_speculative) const;
   428   virtual const Type* remove_speculative() const { return this; }
   430   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const {
   431     return exact_kls != NULL;
   432   }
   434 private:
   435   // support arrays
   436   static const BasicType _basic_type[];
   437   static const Type*        _zero_type[T_CONFLICT+1];
   438   static const Type* _const_basic_type[T_CONFLICT+1];
   439 };
   441 //------------------------------TypeF------------------------------------------
   442 // Class of Float-Constant Types.
   443 class TypeF : public Type {
   444   TypeF( float f ) : Type(FloatCon), _f(f) {};
   445 public:
   446   virtual bool eq( const Type *t ) const;
   447   virtual int  hash() const;             // Type specific hashing
   448   virtual bool singleton(void) const;    // TRUE if type is a singleton
   449   virtual bool empty(void) const;        // TRUE if type is vacuous
   450 public:
   451   const float _f;               // Float constant
   453   static const TypeF *make(float f);
   455   virtual bool        is_finite() const;  // Has a finite value
   456   virtual bool        is_nan()    const;  // Is not a number (NaN)
   458   virtual const Type *xmeet( const Type *t ) const;
   459   virtual const Type *xdual() const;    // Compute dual right now.
   460   // Convenience common pre-built types.
   461   static const TypeF *ZERO; // positive zero only
   462   static const TypeF *ONE;
   463 #ifndef PRODUCT
   464   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   465 #endif
   466 };
   468 //------------------------------TypeD------------------------------------------
   469 // Class of Double-Constant Types.
   470 class TypeD : public Type {
   471   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   472 public:
   473   virtual bool eq( const Type *t ) const;
   474   virtual int  hash() const;             // Type specific hashing
   475   virtual bool singleton(void) const;    // TRUE if type is a singleton
   476   virtual bool empty(void) const;        // TRUE if type is vacuous
   477 public:
   478   const double _d;              // Double constant
   480   static const TypeD *make(double d);
   482   virtual bool        is_finite() const;  // Has a finite value
   483   virtual bool        is_nan()    const;  // Is not a number (NaN)
   485   virtual const Type *xmeet( const Type *t ) const;
   486   virtual const Type *xdual() const;    // Compute dual right now.
   487   // Convenience common pre-built types.
   488   static const TypeD *ZERO; // positive zero only
   489   static const TypeD *ONE;
   490 #ifndef PRODUCT
   491   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   492 #endif
   493 };
   495 //------------------------------TypeInt----------------------------------------
   496 // Class of integer ranges, the set of integers between a lower bound and an
   497 // upper bound, inclusive.
   498 class TypeInt : public Type {
   499   TypeInt( jint lo, jint hi, int w );
   500 protected:
   501   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
   503 public:
   504   typedef jint NativeType;
   505   virtual bool eq( const Type *t ) const;
   506   virtual int  hash() const;             // Type specific hashing
   507   virtual bool singleton(void) const;    // TRUE if type is a singleton
   508   virtual bool empty(void) const;        // TRUE if type is vacuous
   509   const jint _lo, _hi;          // Lower bound, upper bound
   510   const short _widen;           // Limit on times we widen this sucker
   512   static const TypeInt *make(jint lo);
   513   // must always specify w
   514   static const TypeInt *make(jint lo, jint hi, int w);
   516   // Check for single integer
   517   int is_con() const { return _lo==_hi; }
   518   bool is_con(int i) const { return is_con() && _lo == i; }
   519   jint get_con() const { assert( is_con(), "" );  return _lo; }
   521   virtual bool        is_finite() const;  // Has a finite value
   523   virtual const Type *xmeet( const Type *t ) const;
   524   virtual const Type *xdual() const;    // Compute dual right now.
   525   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   526   virtual const Type *narrow( const Type *t ) const;
   527   // Do not kill _widen bits.
   528   // Convenience common pre-built types.
   529   static const TypeInt *MINUS_1;
   530   static const TypeInt *ZERO;
   531   static const TypeInt *ONE;
   532   static const TypeInt *BOOL;
   533   static const TypeInt *CC;
   534   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   535   static const TypeInt *CC_GT;  // [1]   == ONE
   536   static const TypeInt *CC_EQ;  // [0]   == ZERO
   537   static const TypeInt *CC_LE;  // [-1,0]
   538   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   539   static const TypeInt *BYTE;
   540   static const TypeInt *UBYTE;
   541   static const TypeInt *CHAR;
   542   static const TypeInt *SHORT;
   543   static const TypeInt *POS;
   544   static const TypeInt *POS1;
   545   static const TypeInt *INT;
   546   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   547   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
   549   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
   550 #ifndef PRODUCT
   551   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   552 #endif
   553 };
   556 //------------------------------TypeLong---------------------------------------
   557 // Class of long integer ranges, the set of integers between a lower bound and
   558 // an upper bound, inclusive.
   559 class TypeLong : public Type {
   560   TypeLong( jlong lo, jlong hi, int w );
   561 protected:
   562   // Do not kill _widen bits.
   563   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
   564 public:
   565   typedef jlong NativeType;
   566   virtual bool eq( const Type *t ) const;
   567   virtual int  hash() const;             // Type specific hashing
   568   virtual bool singleton(void) const;    // TRUE if type is a singleton
   569   virtual bool empty(void) const;        // TRUE if type is vacuous
   570 public:
   571   const jlong _lo, _hi;         // Lower bound, upper bound
   572   const short _widen;           // Limit on times we widen this sucker
   574   static const TypeLong *make(jlong lo);
   575   // must always specify w
   576   static const TypeLong *make(jlong lo, jlong hi, int w);
   578   // Check for single integer
   579   int is_con() const { return _lo==_hi; }
   580   bool is_con(int i) const { return is_con() && _lo == i; }
   581   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   583   // Check for positive 32-bit value.
   584   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
   586   virtual bool        is_finite() const;  // Has a finite value
   589   virtual const Type *xmeet( const Type *t ) const;
   590   virtual const Type *xdual() const;    // Compute dual right now.
   591   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   592   virtual const Type *narrow( const Type *t ) const;
   593   // Convenience common pre-built types.
   594   static const TypeLong *MINUS_1;
   595   static const TypeLong *ZERO;
   596   static const TypeLong *ONE;
   597   static const TypeLong *POS;
   598   static const TypeLong *LONG;
   599   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   600   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   601   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
   603   // static convenience methods.
   604   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
   606 #ifndef PRODUCT
   607   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   608 #endif
   609 };
   611 //------------------------------TypeTuple--------------------------------------
   612 // Class of Tuple Types, essentially type collections for function signatures
   613 // and class layouts.  It happens to also be a fast cache for the HotSpot
   614 // signature types.
   615 class TypeTuple : public Type {
   616   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   617 public:
   618   virtual bool eq( const Type *t ) const;
   619   virtual int  hash() const;             // Type specific hashing
   620   virtual bool singleton(void) const;    // TRUE if type is a singleton
   621   virtual bool empty(void) const;        // TRUE if type is vacuous
   623 public:
   624   const uint          _cnt;              // Count of fields
   625   const Type ** const _fields;           // Array of field types
   627   // Accessors:
   628   uint cnt() const { return _cnt; }
   629   const Type* field_at(uint i) const {
   630     assert(i < _cnt, "oob");
   631     return _fields[i];
   632   }
   633   void set_field_at(uint i, const Type* t) {
   634     assert(i < _cnt, "oob");
   635     _fields[i] = t;
   636   }
   638   static const TypeTuple *make( uint cnt, const Type **fields );
   639   static const TypeTuple *make_range(ciSignature *sig);
   640   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   642   // Subroutine call type with space allocated for argument types
   643   static const Type **fields( uint arg_cnt );
   645   virtual const Type *xmeet( const Type *t ) const;
   646   virtual const Type *xdual() const;    // Compute dual right now.
   647   // Convenience common pre-built types.
   648   static const TypeTuple *IFBOTH;
   649   static const TypeTuple *IFFALSE;
   650   static const TypeTuple *IFTRUE;
   651   static const TypeTuple *IFNEITHER;
   652   static const TypeTuple *LOOPBODY;
   653   static const TypeTuple *MEMBAR;
   654   static const TypeTuple *STORECONDITIONAL;
   655   static const TypeTuple *START_I2C;
   656   static const TypeTuple *INT_PAIR;
   657   static const TypeTuple *LONG_PAIR;
   658   static const TypeTuple *INT_CC_PAIR;
   659   static const TypeTuple *LONG_CC_PAIR;
   660 #ifndef PRODUCT
   661   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   662 #endif
   663 };
   665 //------------------------------TypeAry----------------------------------------
   666 // Class of Array Types
   667 class TypeAry : public Type {
   668   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
   669       _elem(elem), _size(size), _stable(stable) {}
   670 public:
   671   virtual bool eq( const Type *t ) const;
   672   virtual int  hash() const;             // Type specific hashing
   673   virtual bool singleton(void) const;    // TRUE if type is a singleton
   674   virtual bool empty(void) const;        // TRUE if type is vacuous
   676 private:
   677   const Type *_elem;            // Element type of array
   678   const TypeInt *_size;         // Elements in array
   679   const bool _stable;           // Are elements @Stable?
   680   friend class TypeAryPtr;
   682 public:
   683   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
   685   virtual const Type *xmeet( const Type *t ) const;
   686   virtual const Type *xdual() const;    // Compute dual right now.
   687   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   688   virtual const Type* remove_speculative() const;
   689 #ifdef ASSERT
   690   // One type is interface, the other is oop
   691   virtual bool interface_vs_oop(const Type *t) const;
   692 #endif
   693 #ifndef PRODUCT
   694   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   695 #endif
   696 };
   698 //------------------------------TypeVect---------------------------------------
   699 // Class of Vector Types
   700 class TypeVect : public Type {
   701   const Type*   _elem;  // Vector's element type
   702   const uint  _length;  // Elements in vector (power of 2)
   704 protected:
   705   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
   706     _elem(elem), _length(length) {}
   708 public:
   709   const Type* element_type() const { return _elem; }
   710   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
   711   uint length() const { return _length; }
   712   uint length_in_bytes() const {
   713    return _length * type2aelembytes(element_basic_type());
   714   }
   716   virtual bool eq(const Type *t) const;
   717   virtual int  hash() const;             // Type specific hashing
   718   virtual bool singleton(void) const;    // TRUE if type is a singleton
   719   virtual bool empty(void) const;        // TRUE if type is vacuous
   721   static const TypeVect *make(const BasicType elem_bt, uint length) {
   722     // Use bottom primitive type.
   723     return make(get_const_basic_type(elem_bt), length);
   724   }
   725   // Used directly by Replicate nodes to construct singleton vector.
   726   static const TypeVect *make(const Type* elem, uint length);
   728   virtual const Type *xmeet( const Type *t) const;
   729   virtual const Type *xdual() const;     // Compute dual right now.
   731   static const TypeVect *VECTS;
   732   static const TypeVect *VECTD;
   733   static const TypeVect *VECTX;
   734   static const TypeVect *VECTY;
   736 #ifndef PRODUCT
   737   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
   738 #endif
   739 };
   741 class TypeVectS : public TypeVect {
   742   friend class TypeVect;
   743   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
   744 };
   746 class TypeVectD : public TypeVect {
   747   friend class TypeVect;
   748   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
   749 };
   751 class TypeVectX : public TypeVect {
   752   friend class TypeVect;
   753   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
   754 };
   756 class TypeVectY : public TypeVect {
   757   friend class TypeVect;
   758   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
   759 };
   761 //------------------------------TypePtr----------------------------------------
   762 // Class of machine Pointer Types: raw data, instances or arrays.
   763 // If the _base enum is AnyPtr, then this refers to all of the above.
   764 // Otherwise the _base will indicate which subset of pointers is affected,
   765 // and the class will be inherited from.
   766 class TypePtr : public Type {
   767   friend class TypeNarrowPtr;
   768 public:
   769   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   770 protected:
   771   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   772   virtual bool eq( const Type *t ) const;
   773   virtual int  hash() const;             // Type specific hashing
   774   static const PTR ptr_meet[lastPTR][lastPTR];
   775   static const PTR ptr_dual[lastPTR];
   776   static const char * const ptr_msg[lastPTR];
   778 public:
   779   const int _offset;            // Offset into oop, with TOP & BOT
   780   const PTR _ptr;               // Pointer equivalence class
   782   const int offset() const { return _offset; }
   783   const PTR ptr()    const { return _ptr; }
   785   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   787   // Return a 'ptr' version of this type
   788   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   790   virtual intptr_t get_con() const;
   792   int xadd_offset( intptr_t offset ) const;
   793   virtual const TypePtr *add_offset( intptr_t offset ) const;
   795   virtual bool singleton(void) const;    // TRUE if type is a singleton
   796   virtual bool empty(void) const;        // TRUE if type is vacuous
   797   virtual const Type *xmeet( const Type *t ) const;
   798   int meet_offset( int offset ) const;
   799   int dual_offset( ) const;
   800   virtual const Type *xdual() const;    // Compute dual right now.
   802   // meet, dual and join over pointer equivalence sets
   803   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   804   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   806   // This is textually confusing unless one recalls that
   807   // join(t) == dual()->meet(t->dual())->dual().
   808   PTR join_ptr( const PTR in_ptr ) const {
   809     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   810   }
   812   // Tests for relation to centerline of type lattice:
   813   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   814   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   815   // Convenience common pre-built types.
   816   static const TypePtr *NULL_PTR;
   817   static const TypePtr *NOTNULL;
   818   static const TypePtr *BOTTOM;
   819 #ifndef PRODUCT
   820   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   821 #endif
   822 };
   824 //------------------------------TypeRawPtr-------------------------------------
   825 // Class of raw pointers, pointers to things other than Oops.  Examples
   826 // include the stack pointer, top of heap, card-marking area, handles, etc.
   827 class TypeRawPtr : public TypePtr {
   828 protected:
   829   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   830 public:
   831   virtual bool eq( const Type *t ) const;
   832   virtual int  hash() const;     // Type specific hashing
   834   const address _bits;          // Constant value, if applicable
   836   static const TypeRawPtr *make( PTR ptr );
   837   static const TypeRawPtr *make( address bits );
   839   // Return a 'ptr' version of this type
   840   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   842   virtual intptr_t get_con() const;
   844   virtual const TypePtr *add_offset( intptr_t offset ) const;
   846   virtual const Type *xmeet( const Type *t ) const;
   847   virtual const Type *xdual() const;    // Compute dual right now.
   848   // Convenience common pre-built types.
   849   static const TypeRawPtr *BOTTOM;
   850   static const TypeRawPtr *NOTNULL;
   851 #ifndef PRODUCT
   852   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   853 #endif
   854 };
   856 //------------------------------TypeOopPtr-------------------------------------
   857 // Some kind of oop (Java pointer), either klass or instance or array.
   858 class TypeOopPtr : public TypePtr {
   859 protected:
   860   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth);
   861 public:
   862   virtual bool eq( const Type *t ) const;
   863   virtual int  hash() const;             // Type specific hashing
   864   virtual bool singleton(void) const;    // TRUE if type is a singleton
   865   enum {
   866    InstanceTop = -1,   // undefined instance
   867    InstanceBot = 0     // any possible instance
   868   };
   869 protected:
   871   enum {
   872     InlineDepthBottom = INT_MAX,
   873     InlineDepthTop = -InlineDepthBottom
   874   };
   875   // Oop is NULL, unless this is a constant oop.
   876   ciObject*     _const_oop;   // Constant oop
   877   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   878   ciKlass*      _klass;       // Klass object
   879   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   880   bool          _klass_is_exact;
   881   bool          _is_ptr_to_narrowoop;
   882   bool          _is_ptr_to_narrowklass;
   883   bool          _is_ptr_to_boxed_value;
   885   // If not InstanceTop or InstanceBot, indicates that this is
   886   // a particular instance of this type which is distinct.
   887   // This is the node index of the allocation node creating this instance.
   888   int           _instance_id;
   890   // Extra type information profiling gave us. We propagate it the
   891   // same way the rest of the type info is propagated. If we want to
   892   // use it, then we have to emit a guard: this part of the type is
   893   // not something we know but something we speculate about the type.
   894   const TypeOopPtr*   _speculative;
   895   // For speculative types, we record at what inlining depth the
   896   // profiling point that provided the data is. We want to favor
   897   // profile data coming from outer scopes which are likely better for
   898   // the current compilation.
   899   int _inline_depth;
   901   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   903   int dual_instance_id() const;
   904   int meet_instance_id(int uid) const;
   906   // utility methods to work on the speculative part of the type
   907   const TypeOopPtr* dual_speculative() const;
   908   const TypeOopPtr* xmeet_speculative(const TypeOopPtr* other) const;
   909   bool eq_speculative(const TypeOopPtr* other) const;
   910   int hash_speculative() const;
   911   const TypeOopPtr* add_offset_speculative(intptr_t offset) const;
   912 #ifndef PRODUCT
   913   void dump_speculative(outputStream *st) const;
   914 #endif
   915   // utility methods to work on the inline depth of the type
   916   int dual_inline_depth() const;
   917   int meet_inline_depth(int depth) const;
   918 #ifndef PRODUCT
   919   void dump_inline_depth(outputStream *st) const;
   920 #endif
   922   // Do not allow interface-vs.-noninterface joins to collapse to top.
   923   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
   925 public:
   926   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   927   // Respects UseUniqueSubclasses.
   928   // If the klass is final, the resulting type will be exact.
   929   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   930     return make_from_klass_common(klass, true, false);
   931   }
   932   // Same as before, but will produce an exact type, even if
   933   // the klass is not final, as long as it has exactly one implementation.
   934   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   935     return make_from_klass_common(klass, true, true);
   936   }
   937   // Same as before, but does not respects UseUniqueSubclasses.
   938   // Use this only for creating array element types.
   939   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   940     return make_from_klass_common(klass, false, false);
   941   }
   942   // Creates a singleton type given an object.
   943   // If the object cannot be rendered as a constant,
   944   // may return a non-singleton type.
   945   // If require_constant, produce a NULL if a singleton is not possible.
   946   static const TypeOopPtr* make_from_constant(ciObject* o,
   947                                               bool require_constant = false,
   948                                               bool not_null_elements = false);
   950   // Make a generic (unclassed) pointer to an oop.
   951   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
   953   ciObject* const_oop()    const { return _const_oop; }
   954   virtual ciKlass* klass() const { return _klass;     }
   955   bool klass_is_exact()    const { return _klass_is_exact; }
   957   // Returns true if this pointer points at memory which contains a
   958   // compressed oop references.
   959   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
   960   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
   961   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
   962   bool is_known_instance()       const { return _instance_id > 0; }
   963   int  instance_id()             const { return _instance_id; }
   964   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
   965   virtual const TypeOopPtr* speculative() const { return _speculative; }
   967   virtual intptr_t get_con() const;
   969   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   971   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   973   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   975   // corresponding pointer to klass, for a given instance
   976   const TypeKlassPtr* as_klass_type() const;
   978   virtual const TypePtr *add_offset( intptr_t offset ) const;
   979   // Return same type without a speculative part
   980   virtual const Type* remove_speculative() const;
   982   virtual const Type *xmeet(const Type *t) const;
   983   virtual const Type *xdual() const;    // Compute dual right now.
   984   // the core of the computation of the meet for TypeOopPtr and for its subclasses
   985   virtual const Type *xmeet_helper(const Type *t) const;
   987   // Convenience common pre-built type.
   988   static const TypeOopPtr *BOTTOM;
   989 #ifndef PRODUCT
   990   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   991 #endif
   993   // Return the speculative type if any
   994   ciKlass* speculative_type() const {
   995     if (_speculative != NULL) {
   996       const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
   997       if (speculative->klass_is_exact()) {
   998         return speculative->klass();
   999       }
  1001     return NULL;
  1003   int inline_depth() const {
  1004     return _inline_depth;
  1006   virtual const TypeOopPtr* with_inline_depth(int depth) const;
  1007   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
  1008 };
  1010 //------------------------------TypeInstPtr------------------------------------
  1011 // Class of Java object pointers, pointing either to non-array Java instances
  1012 // or to a Klass* (including array klasses).
  1013 class TypeInstPtr : public TypeOopPtr {
  1014   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth);
  1015   virtual bool eq( const Type *t ) const;
  1016   virtual int  hash() const;             // Type specific hashing
  1018   ciSymbol*  _name;        // class name
  1020  public:
  1021   ciSymbol* name()         const { return _name; }
  1023   bool  is_loaded() const { return _klass->is_loaded(); }
  1025   // Make a pointer to a constant oop.
  1026   static const TypeInstPtr *make(ciObject* o) {
  1027     return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
  1029   // Make a pointer to a constant oop with offset.
  1030   static const TypeInstPtr *make(ciObject* o, int offset) {
  1031     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
  1034   // Make a pointer to some value of type klass.
  1035   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
  1036     return make(ptr, klass, false, NULL, 0, InstanceBot);
  1039   // Make a pointer to some non-polymorphic value of exactly type klass.
  1040   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
  1041     return make(ptr, klass, true, NULL, 0, InstanceBot);
  1044   // Make a pointer to some value of type klass with offset.
  1045   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
  1046     return make(ptr, klass, false, NULL, offset, InstanceBot);
  1049   // Make a pointer to an oop.
  1050   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
  1052   /** Create constant type for a constant boxed value */
  1053   const Type* get_const_boxed_value() const;
  1055   // If this is a java.lang.Class constant, return the type for it or NULL.
  1056   // Pass to Type::get_const_type to turn it to a type, which will usually
  1057   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
  1058   ciType* java_mirror_type() const;
  1060   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1062   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
  1064   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
  1066   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1067   // Return same type without a speculative part
  1068   virtual const Type* remove_speculative() const;
  1069   virtual const TypeOopPtr* with_inline_depth(int depth) const;
  1071   // the core of the computation of the meet of 2 types
  1072   virtual const Type *xmeet_helper(const Type *t) const;
  1073   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
  1074   virtual const Type *xdual() const;    // Compute dual right now.
  1076   // Convenience common pre-built types.
  1077   static const TypeInstPtr *NOTNULL;
  1078   static const TypeInstPtr *BOTTOM;
  1079   static const TypeInstPtr *MIRROR;
  1080   static const TypeInstPtr *MARK;
  1081   static const TypeInstPtr *KLASS;
  1082 #ifndef PRODUCT
  1083   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1084 #endif
  1085 };
  1087 //------------------------------TypeAryPtr-------------------------------------
  1088 // Class of Java array pointers
  1089 class TypeAryPtr : public TypeOopPtr {
  1090   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
  1091               int offset, int instance_id, bool is_autobox_cache, const TypeOopPtr* speculative, int inline_depth)
  1092     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth),
  1093     _ary(ary),
  1094     _is_autobox_cache(is_autobox_cache)
  1096 #ifdef ASSERT
  1097     if (k != NULL) {
  1098       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
  1099       ciKlass* ck = compute_klass(true);
  1100       if (k != ck) {
  1101         this->dump(); tty->cr();
  1102         tty->print(" k: ");
  1103         k->print(); tty->cr();
  1104         tty->print("ck: ");
  1105         if (ck != NULL) ck->print();
  1106         else tty->print("<NULL>");
  1107         tty->cr();
  1108         assert(false, "unexpected TypeAryPtr::_klass");
  1111 #endif
  1113   virtual bool eq( const Type *t ) const;
  1114   virtual int hash() const;     // Type specific hashing
  1115   const TypeAry *_ary;          // Array we point into
  1116   const bool     _is_autobox_cache;
  1118   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
  1120 public:
  1121   // Accessors
  1122   ciKlass* klass() const;
  1123   const TypeAry* ary() const  { return _ary; }
  1124   const Type*    elem() const { return _ary->_elem; }
  1125   const TypeInt* size() const { return _ary->_size; }
  1126   bool      is_stable() const { return _ary->_stable; }
  1128   bool is_autobox_cache() const { return _is_autobox_cache; }
  1130   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
  1131   // Constant pointer to array
  1132   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom, bool is_autobox_cache= false);
  1134   // Return a 'ptr' version of this type
  1135   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1137   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
  1139   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
  1141   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
  1142   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
  1144   virtual bool empty(void) const;        // TRUE if type is vacuous
  1145   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1146   // Return same type without a speculative part
  1147   virtual const Type* remove_speculative() const;
  1148   virtual const TypeOopPtr* with_inline_depth(int depth) const;
  1150   // the core of the computation of the meet of 2 types
  1151   virtual const Type *xmeet_helper(const Type *t) const;
  1152   virtual const Type *xdual() const;    // Compute dual right now.
  1154   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
  1155   int stable_dimension() const;
  1157   // Convenience common pre-built types.
  1158   static const TypeAryPtr *RANGE;
  1159   static const TypeAryPtr *OOPS;
  1160   static const TypeAryPtr *NARROWOOPS;
  1161   static const TypeAryPtr *BYTES;
  1162   static const TypeAryPtr *SHORTS;
  1163   static const TypeAryPtr *CHARS;
  1164   static const TypeAryPtr *INTS;
  1165   static const TypeAryPtr *LONGS;
  1166   static const TypeAryPtr *FLOATS;
  1167   static const TypeAryPtr *DOUBLES;
  1168   // selects one of the above:
  1169   static const TypeAryPtr *get_array_body_type(BasicType elem) {
  1170     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
  1171     return _array_body_type[elem];
  1173   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
  1174   // sharpen the type of an int which is used as an array size
  1175 #ifdef ASSERT
  1176   // One type is interface, the other is oop
  1177   virtual bool interface_vs_oop(const Type *t) const;
  1178 #endif
  1179 #ifndef PRODUCT
  1180   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1181 #endif
  1182 };
  1184 //------------------------------TypeMetadataPtr-------------------------------------
  1185 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
  1186 class TypeMetadataPtr : public TypePtr {
  1187 protected:
  1188   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
  1189   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1190   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
  1191 public:
  1192   virtual bool eq( const Type *t ) const;
  1193   virtual int  hash() const;             // Type specific hashing
  1194   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1196 private:
  1197   ciMetadata*   _metadata;
  1199 public:
  1200   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
  1202   static const TypeMetadataPtr* make(ciMethod* m);
  1203   static const TypeMetadataPtr* make(ciMethodData* m);
  1205   ciMetadata* metadata() const { return _metadata; }
  1207   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1209   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1211   virtual const Type *xmeet( const Type *t ) const;
  1212   virtual const Type *xdual() const;    // Compute dual right now.
  1214   virtual intptr_t get_con() const;
  1216   // Convenience common pre-built types.
  1217   static const TypeMetadataPtr *BOTTOM;
  1219 #ifndef PRODUCT
  1220   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1221 #endif
  1222 };
  1224 //------------------------------TypeKlassPtr-----------------------------------
  1225 // Class of Java Klass pointers
  1226 class TypeKlassPtr : public TypePtr {
  1227   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
  1229 protected:
  1230   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
  1231  public:
  1232   virtual bool eq( const Type *t ) const;
  1233   virtual int hash() const;             // Type specific hashing
  1234   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1235  private:
  1237   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
  1239   ciKlass* _klass;
  1241   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
  1242   bool          _klass_is_exact;
  1244 public:
  1245   ciSymbol* name()  const { return klass()->name(); }
  1247   ciKlass* klass() const { return  _klass; }
  1248   bool klass_is_exact()    const { return _klass_is_exact; }
  1250   bool  is_loaded() const { return klass()->is_loaded(); }
  1252   // Creates a type given a klass. Correctly handles multi-dimensional arrays
  1253   // Respects UseUniqueSubclasses.
  1254   // If the klass is final, the resulting type will be exact.
  1255   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
  1256     return make_from_klass_common(klass, true, false);
  1258   // Same as before, but will produce an exact type, even if
  1259   // the klass is not final, as long as it has exactly one implementation.
  1260   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
  1261     return make_from_klass_common(klass, true, true);
  1263   // Same as before, but does not respects UseUniqueSubclasses.
  1264   // Use this only for creating array element types.
  1265   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
  1266     return make_from_klass_common(klass, false, false);
  1269   // Make a generic (unclassed) pointer to metadata.
  1270   static const TypeKlassPtr* make(PTR ptr, int offset);
  1272   // ptr to klass 'k'
  1273   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
  1274   // ptr to klass 'k' with offset
  1275   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
  1276   // ptr to klass 'k' or sub-klass
  1277   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
  1279   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1281   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
  1283   // corresponding pointer to instance, for a given class
  1284   const TypeOopPtr* as_instance_type() const;
  1286   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1287   virtual const Type    *xmeet( const Type *t ) const;
  1288   virtual const Type    *xdual() const;      // Compute dual right now.
  1290   virtual intptr_t get_con() const;
  1292   // Convenience common pre-built types.
  1293   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
  1294   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
  1295 #ifndef PRODUCT
  1296   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1297 #endif
  1298 };
  1300 class TypeNarrowPtr : public Type {
  1301 protected:
  1302   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
  1304   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
  1305                                                   Type(t) {
  1306     assert(ptrtype->offset() == 0 ||
  1307            ptrtype->offset() == OffsetBot ||
  1308            ptrtype->offset() == OffsetTop, "no real offsets");
  1311   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
  1312   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
  1313   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
  1314   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
  1315   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1316   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
  1317 public:
  1318   virtual bool eq( const Type *t ) const;
  1319   virtual int  hash() const;             // Type specific hashing
  1320   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1322   virtual const Type *xmeet( const Type *t ) const;
  1323   virtual const Type *xdual() const;    // Compute dual right now.
  1325   virtual intptr_t get_con() const;
  1327   virtual bool empty(void) const;        // TRUE if type is vacuous
  1329   // returns the equivalent ptr type for this compressed pointer
  1330   const TypePtr *get_ptrtype() const {
  1331     return _ptrtype;
  1334 #ifndef PRODUCT
  1335   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1336 #endif
  1337 };
  1339 //------------------------------TypeNarrowOop----------------------------------
  1340 // A compressed reference to some kind of Oop.  This type wraps around
  1341 // a preexisting TypeOopPtr and forwards most of it's operations to
  1342 // the underlying type.  It's only real purpose is to track the
  1343 // oopness of the compressed oop value when we expose the conversion
  1344 // between the normal and the compressed form.
  1345 class TypeNarrowOop : public TypeNarrowPtr {
  1346 protected:
  1347   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
  1350   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
  1351     return t->isa_narrowoop();
  1354   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
  1355     return t->is_narrowoop();
  1358   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
  1359     return new TypeNarrowOop(t);
  1362   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
  1363     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
  1366 public:
  1368   static const TypeNarrowOop *make( const TypePtr* type);
  1370   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
  1371     return make(TypeOopPtr::make_from_constant(con, require_constant));
  1374   static const TypeNarrowOop *BOTTOM;
  1375   static const TypeNarrowOop *NULL_PTR;
  1377   virtual const Type* remove_speculative() const {
  1378     return make(_ptrtype->remove_speculative()->is_ptr());
  1381 #ifndef PRODUCT
  1382   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1383 #endif
  1384 };
  1386 //------------------------------TypeNarrowKlass----------------------------------
  1387 // A compressed reference to klass pointer.  This type wraps around a
  1388 // preexisting TypeKlassPtr and forwards most of it's operations to
  1389 // the underlying type.
  1390 class TypeNarrowKlass : public TypeNarrowPtr {
  1391 protected:
  1392   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
  1395   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
  1396     return t->isa_narrowklass();
  1399   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
  1400     return t->is_narrowklass();
  1403   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
  1404     return new TypeNarrowKlass(t);
  1407   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
  1408     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
  1411 public:
  1412   static const TypeNarrowKlass *make( const TypePtr* type);
  1414   // static const TypeNarrowKlass *BOTTOM;
  1415   static const TypeNarrowKlass *NULL_PTR;
  1417 #ifndef PRODUCT
  1418   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1419 #endif
  1420 };
  1422 //------------------------------TypeFunc---------------------------------------
  1423 // Class of Array Types
  1424 class TypeFunc : public Type {
  1425   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
  1426   virtual bool eq( const Type *t ) const;
  1427   virtual int  hash() const;             // Type specific hashing
  1428   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1429   virtual bool empty(void) const;        // TRUE if type is vacuous
  1430 public:
  1431   // Constants are shared among ADLC and VM
  1432   enum { Control    = AdlcVMDeps::Control,
  1433          I_O        = AdlcVMDeps::I_O,
  1434          Memory     = AdlcVMDeps::Memory,
  1435          FramePtr   = AdlcVMDeps::FramePtr,
  1436          ReturnAdr  = AdlcVMDeps::ReturnAdr,
  1437          Parms      = AdlcVMDeps::Parms
  1438   };
  1440   const TypeTuple* const _domain;     // Domain of inputs
  1441   const TypeTuple* const _range;      // Range of results
  1443   // Accessors:
  1444   const TypeTuple* domain() const { return _domain; }
  1445   const TypeTuple* range()  const { return _range; }
  1447   static const TypeFunc *make(ciMethod* method);
  1448   static const TypeFunc *make(ciSignature signature, const Type* extra);
  1449   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
  1451   virtual const Type *xmeet( const Type *t ) const;
  1452   virtual const Type *xdual() const;    // Compute dual right now.
  1454   BasicType return_type() const;
  1456 #ifndef PRODUCT
  1457   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1458 #endif
  1459   // Convenience common pre-built types.
  1460 };
  1462 //------------------------------accessors--------------------------------------
  1463 inline bool Type::is_ptr_to_narrowoop() const {
  1464 #ifdef _LP64
  1465   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
  1466 #else
  1467   return false;
  1468 #endif
  1471 inline bool Type::is_ptr_to_narrowklass() const {
  1472 #ifdef _LP64
  1473   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
  1474 #else
  1475   return false;
  1476 #endif
  1479 inline float Type::getf() const {
  1480   assert( _base == FloatCon, "Not a FloatCon" );
  1481   return ((TypeF*)this)->_f;
  1484 inline double Type::getd() const {
  1485   assert( _base == DoubleCon, "Not a DoubleCon" );
  1486   return ((TypeD*)this)->_d;
  1489 inline const TypeInt *Type::is_int() const {
  1490   assert( _base == Int, "Not an Int" );
  1491   return (TypeInt*)this;
  1494 inline const TypeInt *Type::isa_int() const {
  1495   return ( _base == Int ? (TypeInt*)this : NULL);
  1498 inline const TypeLong *Type::is_long() const {
  1499   assert( _base == Long, "Not a Long" );
  1500   return (TypeLong*)this;
  1503 inline const TypeLong *Type::isa_long() const {
  1504   return ( _base == Long ? (TypeLong*)this : NULL);
  1507 inline const TypeF *Type::isa_float() const {
  1508   return ((_base == FloatTop ||
  1509            _base == FloatCon ||
  1510            _base == FloatBot) ? (TypeF*)this : NULL);
  1513 inline const TypeF *Type::is_float_constant() const {
  1514   assert( _base == FloatCon, "Not a Float" );
  1515   return (TypeF*)this;
  1518 inline const TypeF *Type::isa_float_constant() const {
  1519   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1522 inline const TypeD *Type::isa_double() const {
  1523   return ((_base == DoubleTop ||
  1524            _base == DoubleCon ||
  1525            _base == DoubleBot) ? (TypeD*)this : NULL);
  1528 inline const TypeD *Type::is_double_constant() const {
  1529   assert( _base == DoubleCon, "Not a Double" );
  1530   return (TypeD*)this;
  1533 inline const TypeD *Type::isa_double_constant() const {
  1534   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1537 inline const TypeTuple *Type::is_tuple() const {
  1538   assert( _base == Tuple, "Not a Tuple" );
  1539   return (TypeTuple*)this;
  1542 inline const TypeAry *Type::is_ary() const {
  1543   assert( _base == Array , "Not an Array" );
  1544   return (TypeAry*)this;
  1547 inline const TypeVect *Type::is_vect() const {
  1548   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
  1549   return (TypeVect*)this;
  1552 inline const TypeVect *Type::isa_vect() const {
  1553   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
  1556 inline const TypePtr *Type::is_ptr() const {
  1557   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1558   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1559   return (TypePtr*)this;
  1562 inline const TypePtr *Type::isa_ptr() const {
  1563   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1564   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1567 inline const TypeOopPtr *Type::is_oopptr() const {
  1568   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1569   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
  1570   return (TypeOopPtr*)this;
  1573 inline const TypeOopPtr *Type::isa_oopptr() const {
  1574   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1575   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
  1578 inline const TypeRawPtr *Type::isa_rawptr() const {
  1579   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1582 inline const TypeRawPtr *Type::is_rawptr() const {
  1583   assert( _base == RawPtr, "Not a raw pointer" );
  1584   return (TypeRawPtr*)this;
  1587 inline const TypeInstPtr *Type::isa_instptr() const {
  1588   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1591 inline const TypeInstPtr *Type::is_instptr() const {
  1592   assert( _base == InstPtr, "Not an object pointer" );
  1593   return (TypeInstPtr*)this;
  1596 inline const TypeAryPtr *Type::isa_aryptr() const {
  1597   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1600 inline const TypeAryPtr *Type::is_aryptr() const {
  1601   assert( _base == AryPtr, "Not an array pointer" );
  1602   return (TypeAryPtr*)this;
  1605 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1606   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1607   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1608   return (TypeNarrowOop*)this;
  1611 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1612   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1613   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1616 inline const TypeNarrowKlass *Type::is_narrowklass() const {
  1617   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
  1618   return (TypeNarrowKlass*)this;
  1621 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
  1622   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
  1625 inline const TypeMetadataPtr *Type::is_metadataptr() const {
  1626   // MetadataPtr is the first and CPCachePtr the last
  1627   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
  1628   return (TypeMetadataPtr*)this;
  1631 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
  1632   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
  1635 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1636   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1639 inline const TypeKlassPtr *Type::is_klassptr() const {
  1640   assert( _base == KlassPtr, "Not a klass pointer" );
  1641   return (TypeKlassPtr*)this;
  1644 inline const TypePtr* Type::make_ptr() const {
  1645   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
  1646     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
  1647      (isa_ptr() ? is_ptr() : NULL));
  1650 inline const TypeOopPtr* Type::make_oopptr() const {
  1651   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
  1654 inline const TypeNarrowOop* Type::make_narrowoop() const {
  1655   return (_base == NarrowOop) ? is_narrowoop() :
  1656                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
  1659 inline const TypeNarrowKlass* Type::make_narrowklass() const {
  1660   return (_base == NarrowKlass) ? is_narrowklass() :
  1661                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
  1664 inline bool Type::is_floatingpoint() const {
  1665   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1666       (_base == DoubleCon) || (_base == DoubleBot) )
  1667     return true;
  1668   return false;
  1671 inline bool Type::is_ptr_to_boxing_obj() const {
  1672   const TypeInstPtr* tp = isa_instptr();
  1673   return (tp != NULL) && (tp->offset() == 0) &&
  1674          tp->klass()->is_instance_klass()  &&
  1675          tp->klass()->as_instance_klass()->is_box_klass();
  1679 // ===============================================================
  1680 // Things that need to be 64-bits in the 64-bit build but
  1681 // 32-bits in the 32-bit build.  Done this way to get full
  1682 // optimization AND strong typing.
  1683 #ifdef _LP64
  1685 // For type queries and asserts
  1686 #define is_intptr_t  is_long
  1687 #define isa_intptr_t isa_long
  1688 #define find_intptr_t_type find_long_type
  1689 #define find_intptr_t_con  find_long_con
  1690 #define TypeX        TypeLong
  1691 #define Type_X       Type::Long
  1692 #define TypeX_X      TypeLong::LONG
  1693 #define TypeX_ZERO   TypeLong::ZERO
  1694 // For 'ideal_reg' machine registers
  1695 #define Op_RegX      Op_RegL
  1696 // For phase->intcon variants
  1697 #define MakeConX     longcon
  1698 #define ConXNode     ConLNode
  1699 // For array index arithmetic
  1700 #define MulXNode     MulLNode
  1701 #define AndXNode     AndLNode
  1702 #define OrXNode      OrLNode
  1703 #define CmpXNode     CmpLNode
  1704 #define SubXNode     SubLNode
  1705 #define LShiftXNode  LShiftLNode
  1706 // For object size computation:
  1707 #define AddXNode     AddLNode
  1708 #define RShiftXNode  RShiftLNode
  1709 // For card marks and hashcodes
  1710 #define URShiftXNode URShiftLNode
  1711 // UseOptoBiasInlining
  1712 #define XorXNode     XorLNode
  1713 #define StoreXConditionalNode StoreLConditionalNode
  1714 // Opcodes
  1715 #define Op_LShiftX   Op_LShiftL
  1716 #define Op_AndX      Op_AndL
  1717 #define Op_AddX      Op_AddL
  1718 #define Op_SubX      Op_SubL
  1719 #define Op_XorX      Op_XorL
  1720 #define Op_URShiftX  Op_URShiftL
  1721 // conversions
  1722 #define ConvI2X(x)   ConvI2L(x)
  1723 #define ConvL2X(x)   (x)
  1724 #define ConvX2I(x)   ConvL2I(x)
  1725 #define ConvX2L(x)   (x)
  1726 #define ConvX2UL(x)  (x)
  1728 #else
  1730 // For type queries and asserts
  1731 #define is_intptr_t  is_int
  1732 #define isa_intptr_t isa_int
  1733 #define find_intptr_t_type find_int_type
  1734 #define find_intptr_t_con  find_int_con
  1735 #define TypeX        TypeInt
  1736 #define Type_X       Type::Int
  1737 #define TypeX_X      TypeInt::INT
  1738 #define TypeX_ZERO   TypeInt::ZERO
  1739 // For 'ideal_reg' machine registers
  1740 #define Op_RegX      Op_RegI
  1741 // For phase->intcon variants
  1742 #define MakeConX     intcon
  1743 #define ConXNode     ConINode
  1744 // For array index arithmetic
  1745 #define MulXNode     MulINode
  1746 #define AndXNode     AndINode
  1747 #define OrXNode      OrINode
  1748 #define CmpXNode     CmpINode
  1749 #define SubXNode     SubINode
  1750 #define LShiftXNode  LShiftINode
  1751 // For object size computation:
  1752 #define AddXNode     AddINode
  1753 #define RShiftXNode  RShiftINode
  1754 // For card marks and hashcodes
  1755 #define URShiftXNode URShiftINode
  1756 // UseOptoBiasInlining
  1757 #define XorXNode     XorINode
  1758 #define StoreXConditionalNode StoreIConditionalNode
  1759 // Opcodes
  1760 #define Op_LShiftX   Op_LShiftI
  1761 #define Op_AndX      Op_AndI
  1762 #define Op_AddX      Op_AddI
  1763 #define Op_SubX      Op_SubI
  1764 #define Op_XorX      Op_XorI
  1765 #define Op_URShiftX  Op_URShiftI
  1766 // conversions
  1767 #define ConvI2X(x)   (x)
  1768 #define ConvL2X(x)   ConvL2I(x)
  1769 #define ConvX2I(x)   (x)
  1770 #define ConvX2L(x)   ConvI2L(x)
  1771 #define ConvX2UL(x)  ConvI2UL(x)
  1773 #endif
  1775 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial