src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Mon, 21 Jul 2014 09:59:46 +0200

author
tschatzl
date
Mon, 21 Jul 2014 09:59:46 +0200
changeset 7007
7df07d855c8e
parent 7005
e0954897238a
child 7009
3f2894c5052e
permissions
-rw-r--r--

8048085: Aborting marking just before remark results in useless additional clearing of the next mark bitmap
Summary: Skip clearing the next bitmap if we just recently aborted since the full GC already clears this bitmap.
Reviewed-by: brutisso

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #if !defined(__clang_major__) && defined(__GNUC__)
    26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
    27 #endif
    29 #include "precompiled.hpp"
    30 #include "code/codeCache.hpp"
    31 #include "code/icBuffer.hpp"
    32 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    33 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    34 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    35 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    36 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    37 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    38 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    39 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    40 #include "gc_implementation/g1/g1EvacFailure.hpp"
    41 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    42 #include "gc_implementation/g1/g1Log.hpp"
    43 #include "gc_implementation/g1/g1MarkSweep.hpp"
    44 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    45 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
    46 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    47 #include "gc_implementation/g1/g1StringDedup.hpp"
    48 #include "gc_implementation/g1/g1YCTypes.hpp"
    49 #include "gc_implementation/g1/heapRegion.inline.hpp"
    50 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    51 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    52 #include "gc_implementation/g1/vm_operations_g1.hpp"
    53 #include "gc_implementation/shared/gcHeapSummary.hpp"
    54 #include "gc_implementation/shared/gcTimer.hpp"
    55 #include "gc_implementation/shared/gcTrace.hpp"
    56 #include "gc_implementation/shared/gcTraceTime.hpp"
    57 #include "gc_implementation/shared/isGCActiveMark.hpp"
    58 #include "memory/allocation.hpp"
    59 #include "memory/gcLocker.inline.hpp"
    60 #include "memory/generationSpec.hpp"
    61 #include "memory/iterator.hpp"
    62 #include "memory/referenceProcessor.hpp"
    63 #include "oops/oop.inline.hpp"
    64 #include "oops/oop.pcgc.inline.hpp"
    65 #include "runtime/orderAccess.inline.hpp"
    66 #include "runtime/vmThread.hpp"
    68 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    70 // turn it on so that the contents of the young list (scan-only /
    71 // to-be-collected) are printed at "strategic" points before / during
    72 // / after the collection --- this is useful for debugging
    73 #define YOUNG_LIST_VERBOSE 0
    74 // CURRENT STATUS
    75 // This file is under construction.  Search for "FIXME".
    77 // INVARIANTS/NOTES
    78 //
    79 // All allocation activity covered by the G1CollectedHeap interface is
    80 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    81 // and allocate_new_tlab, which are the "entry" points to the
    82 // allocation code from the rest of the JVM.  (Note that this does not
    83 // apply to TLAB allocation, which is not part of this interface: it
    84 // is done by clients of this interface.)
    86 // Notes on implementation of parallelism in different tasks.
    87 //
    88 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    89 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    90 // It does use run_task() which sets _n_workers in the task.
    91 // G1ParTask executes g1_process_roots() ->
    92 // SharedHeap::process_roots() which calls eventually to
    93 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    94 // SequentialSubTasksDone.  SharedHeap::process_roots() also
    95 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    96 //
    98 // Local to this file.
   100 class RefineCardTableEntryClosure: public CardTableEntryClosure {
   101   bool _concurrent;
   102 public:
   103   RefineCardTableEntryClosure() : _concurrent(true) { }
   105   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   106     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
   107     // This path is executed by the concurrent refine or mutator threads,
   108     // concurrently, and so we do not care if card_ptr contains references
   109     // that point into the collection set.
   110     assert(!oops_into_cset, "should be");
   112     if (_concurrent && SuspendibleThreadSet::should_yield()) {
   113       // Caller will actually yield.
   114       return false;
   115     }
   116     // Otherwise, we finished successfully; return true.
   117     return true;
   118   }
   120   void set_concurrent(bool b) { _concurrent = b; }
   121 };
   124 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   125   size_t _num_processed;
   126   CardTableModRefBS* _ctbs;
   127   int _histo[256];
   129  public:
   130   ClearLoggedCardTableEntryClosure() :
   131     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
   132   {
   133     for (int i = 0; i < 256; i++) _histo[i] = 0;
   134   }
   136   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   137     unsigned char* ujb = (unsigned char*)card_ptr;
   138     int ind = (int)(*ujb);
   139     _histo[ind]++;
   141     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
   142     _num_processed++;
   144     return true;
   145   }
   147   size_t num_processed() { return _num_processed; }
   149   void print_histo() {
   150     gclog_or_tty->print_cr("Card table value histogram:");
   151     for (int i = 0; i < 256; i++) {
   152       if (_histo[i] != 0) {
   153         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   154       }
   155     }
   156   }
   157 };
   159 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
   160  private:
   161   size_t _num_processed;
   163  public:
   164   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
   166   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   167     *card_ptr = CardTableModRefBS::dirty_card_val();
   168     _num_processed++;
   169     return true;
   170   }
   172   size_t num_processed() const { return _num_processed; }
   173 };
   175 YoungList::YoungList(G1CollectedHeap* g1h) :
   176     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   177     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   178   guarantee(check_list_empty(false), "just making sure...");
   179 }
   181 void YoungList::push_region(HeapRegion *hr) {
   182   assert(!hr->is_young(), "should not already be young");
   183   assert(hr->get_next_young_region() == NULL, "cause it should!");
   185   hr->set_next_young_region(_head);
   186   _head = hr;
   188   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   189   ++_length;
   190 }
   192 void YoungList::add_survivor_region(HeapRegion* hr) {
   193   assert(hr->is_survivor(), "should be flagged as survivor region");
   194   assert(hr->get_next_young_region() == NULL, "cause it should!");
   196   hr->set_next_young_region(_survivor_head);
   197   if (_survivor_head == NULL) {
   198     _survivor_tail = hr;
   199   }
   200   _survivor_head = hr;
   201   ++_survivor_length;
   202 }
   204 void YoungList::empty_list(HeapRegion* list) {
   205   while (list != NULL) {
   206     HeapRegion* next = list->get_next_young_region();
   207     list->set_next_young_region(NULL);
   208     list->uninstall_surv_rate_group();
   209     list->set_not_young();
   210     list = next;
   211   }
   212 }
   214 void YoungList::empty_list() {
   215   assert(check_list_well_formed(), "young list should be well formed");
   217   empty_list(_head);
   218   _head = NULL;
   219   _length = 0;
   221   empty_list(_survivor_head);
   222   _survivor_head = NULL;
   223   _survivor_tail = NULL;
   224   _survivor_length = 0;
   226   _last_sampled_rs_lengths = 0;
   228   assert(check_list_empty(false), "just making sure...");
   229 }
   231 bool YoungList::check_list_well_formed() {
   232   bool ret = true;
   234   uint length = 0;
   235   HeapRegion* curr = _head;
   236   HeapRegion* last = NULL;
   237   while (curr != NULL) {
   238     if (!curr->is_young()) {
   239       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   240                              "incorrectly tagged (y: %d, surv: %d)",
   241                              curr->bottom(), curr->end(),
   242                              curr->is_young(), curr->is_survivor());
   243       ret = false;
   244     }
   245     ++length;
   246     last = curr;
   247     curr = curr->get_next_young_region();
   248   }
   249   ret = ret && (length == _length);
   251   if (!ret) {
   252     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   253     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   254                            length, _length);
   255   }
   257   return ret;
   258 }
   260 bool YoungList::check_list_empty(bool check_sample) {
   261   bool ret = true;
   263   if (_length != 0) {
   264     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   265                   _length);
   266     ret = false;
   267   }
   268   if (check_sample && _last_sampled_rs_lengths != 0) {
   269     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   270     ret = false;
   271   }
   272   if (_head != NULL) {
   273     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   274     ret = false;
   275   }
   276   if (!ret) {
   277     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   278   }
   280   return ret;
   281 }
   283 void
   284 YoungList::rs_length_sampling_init() {
   285   _sampled_rs_lengths = 0;
   286   _curr               = _head;
   287 }
   289 bool
   290 YoungList::rs_length_sampling_more() {
   291   return _curr != NULL;
   292 }
   294 void
   295 YoungList::rs_length_sampling_next() {
   296   assert( _curr != NULL, "invariant" );
   297   size_t rs_length = _curr->rem_set()->occupied();
   299   _sampled_rs_lengths += rs_length;
   301   // The current region may not yet have been added to the
   302   // incremental collection set (it gets added when it is
   303   // retired as the current allocation region).
   304   if (_curr->in_collection_set()) {
   305     // Update the collection set policy information for this region
   306     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   307   }
   309   _curr = _curr->get_next_young_region();
   310   if (_curr == NULL) {
   311     _last_sampled_rs_lengths = _sampled_rs_lengths;
   312     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   313   }
   314 }
   316 void
   317 YoungList::reset_auxilary_lists() {
   318   guarantee( is_empty(), "young list should be empty" );
   319   assert(check_list_well_formed(), "young list should be well formed");
   321   // Add survivor regions to SurvRateGroup.
   322   _g1h->g1_policy()->note_start_adding_survivor_regions();
   323   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   325   int young_index_in_cset = 0;
   326   for (HeapRegion* curr = _survivor_head;
   327        curr != NULL;
   328        curr = curr->get_next_young_region()) {
   329     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   331     // The region is a non-empty survivor so let's add it to
   332     // the incremental collection set for the next evacuation
   333     // pause.
   334     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   335     young_index_in_cset += 1;
   336   }
   337   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   338   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   340   _head   = _survivor_head;
   341   _length = _survivor_length;
   342   if (_survivor_head != NULL) {
   343     assert(_survivor_tail != NULL, "cause it shouldn't be");
   344     assert(_survivor_length > 0, "invariant");
   345     _survivor_tail->set_next_young_region(NULL);
   346   }
   348   // Don't clear the survivor list handles until the start of
   349   // the next evacuation pause - we need it in order to re-tag
   350   // the survivor regions from this evacuation pause as 'young'
   351   // at the start of the next.
   353   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   355   assert(check_list_well_formed(), "young list should be well formed");
   356 }
   358 void YoungList::print() {
   359   HeapRegion* lists[] = {_head,   _survivor_head};
   360   const char* names[] = {"YOUNG", "SURVIVOR"};
   362   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   363     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   364     HeapRegion *curr = lists[list];
   365     if (curr == NULL)
   366       gclog_or_tty->print_cr("  empty");
   367     while (curr != NULL) {
   368       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   369                              HR_FORMAT_PARAMS(curr),
   370                              curr->prev_top_at_mark_start(),
   371                              curr->next_top_at_mark_start(),
   372                              curr->age_in_surv_rate_group_cond());
   373       curr = curr->get_next_young_region();
   374     }
   375   }
   377   gclog_or_tty->cr();
   378 }
   380 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   381 {
   382   // Claim the right to put the region on the dirty cards region list
   383   // by installing a self pointer.
   384   HeapRegion* next = hr->get_next_dirty_cards_region();
   385   if (next == NULL) {
   386     HeapRegion* res = (HeapRegion*)
   387       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   388                           NULL);
   389     if (res == NULL) {
   390       HeapRegion* head;
   391       do {
   392         // Put the region to the dirty cards region list.
   393         head = _dirty_cards_region_list;
   394         next = (HeapRegion*)
   395           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   396         if (next == head) {
   397           assert(hr->get_next_dirty_cards_region() == hr,
   398                  "hr->get_next_dirty_cards_region() != hr");
   399           if (next == NULL) {
   400             // The last region in the list points to itself.
   401             hr->set_next_dirty_cards_region(hr);
   402           } else {
   403             hr->set_next_dirty_cards_region(next);
   404           }
   405         }
   406       } while (next != head);
   407     }
   408   }
   409 }
   411 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   412 {
   413   HeapRegion* head;
   414   HeapRegion* hr;
   415   do {
   416     head = _dirty_cards_region_list;
   417     if (head == NULL) {
   418       return NULL;
   419     }
   420     HeapRegion* new_head = head->get_next_dirty_cards_region();
   421     if (head == new_head) {
   422       // The last region.
   423       new_head = NULL;
   424     }
   425     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   426                                           head);
   427   } while (hr != head);
   428   assert(hr != NULL, "invariant");
   429   hr->set_next_dirty_cards_region(NULL);
   430   return hr;
   431 }
   433 #ifdef ASSERT
   434 // A region is added to the collection set as it is retired
   435 // so an address p can point to a region which will be in the
   436 // collection set but has not yet been retired.  This method
   437 // therefore is only accurate during a GC pause after all
   438 // regions have been retired.  It is used for debugging
   439 // to check if an nmethod has references to objects that can
   440 // be move during a partial collection.  Though it can be
   441 // inaccurate, it is sufficient for G1 because the conservative
   442 // implementation of is_scavengable() for G1 will indicate that
   443 // all nmethods must be scanned during a partial collection.
   444 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   445   HeapRegion* hr = heap_region_containing(p);
   446   return hr != NULL && hr->in_collection_set();
   447 }
   448 #endif
   450 // Returns true if the reference points to an object that
   451 // can move in an incremental collection.
   452 bool G1CollectedHeap::is_scavengable(const void* p) {
   453   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   454   G1CollectorPolicy* g1p = g1h->g1_policy();
   455   HeapRegion* hr = heap_region_containing(p);
   456   if (hr == NULL) {
   457      // null
   458      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
   459      return false;
   460   } else {
   461     return !hr->isHumongous();
   462   }
   463 }
   465 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   466   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   467   CardTableModRefBS* ct_bs = g1_barrier_set();
   469   // Count the dirty cards at the start.
   470   CountNonCleanMemRegionClosure count1(this);
   471   ct_bs->mod_card_iterate(&count1);
   472   int orig_count = count1.n();
   474   // First clear the logged cards.
   475   ClearLoggedCardTableEntryClosure clear;
   476   dcqs.apply_closure_to_all_completed_buffers(&clear);
   477   dcqs.iterate_closure_all_threads(&clear, false);
   478   clear.print_histo();
   480   // Now ensure that there's no dirty cards.
   481   CountNonCleanMemRegionClosure count2(this);
   482   ct_bs->mod_card_iterate(&count2);
   483   if (count2.n() != 0) {
   484     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   485                            count2.n(), orig_count);
   486   }
   487   guarantee(count2.n() == 0, "Card table should be clean.");
   489   RedirtyLoggedCardTableEntryClosure redirty;
   490   dcqs.apply_closure_to_all_completed_buffers(&redirty);
   491   dcqs.iterate_closure_all_threads(&redirty, false);
   492   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   493                          clear.num_processed(), orig_count);
   494   guarantee(redirty.num_processed() == clear.num_processed(),
   495             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
   496                     redirty.num_processed(), clear.num_processed()));
   498   CountNonCleanMemRegionClosure count3(this);
   499   ct_bs->mod_card_iterate(&count3);
   500   if (count3.n() != orig_count) {
   501     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   502                            orig_count, count3.n());
   503     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   504   }
   505 }
   507 // Private class members.
   509 G1CollectedHeap* G1CollectedHeap::_g1h;
   511 // Private methods.
   513 HeapRegion*
   514 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
   515   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   516   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   517     if (!_secondary_free_list.is_empty()) {
   518       if (G1ConcRegionFreeingVerbose) {
   519         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   520                                "secondary_free_list has %u entries",
   521                                _secondary_free_list.length());
   522       }
   523       // It looks as if there are free regions available on the
   524       // secondary_free_list. Let's move them to the free_list and try
   525       // again to allocate from it.
   526       append_secondary_free_list();
   528       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   529              "empty we should have moved at least one entry to the free_list");
   530       HeapRegion* res = _free_list.remove_region(is_old);
   531       if (G1ConcRegionFreeingVerbose) {
   532         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   533                                "allocated "HR_FORMAT" from secondary_free_list",
   534                                HR_FORMAT_PARAMS(res));
   535       }
   536       return res;
   537     }
   539     // Wait here until we get notified either when (a) there are no
   540     // more free regions coming or (b) some regions have been moved on
   541     // the secondary_free_list.
   542     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   543   }
   545   if (G1ConcRegionFreeingVerbose) {
   546     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   547                            "could not allocate from secondary_free_list");
   548   }
   549   return NULL;
   550 }
   552 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
   553   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   554          "the only time we use this to allocate a humongous region is "
   555          "when we are allocating a single humongous region");
   557   HeapRegion* res;
   558   if (G1StressConcRegionFreeing) {
   559     if (!_secondary_free_list.is_empty()) {
   560       if (G1ConcRegionFreeingVerbose) {
   561         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   562                                "forced to look at the secondary_free_list");
   563       }
   564       res = new_region_try_secondary_free_list(is_old);
   565       if (res != NULL) {
   566         return res;
   567       }
   568     }
   569   }
   571   res = _free_list.remove_region(is_old);
   573   if (res == NULL) {
   574     if (G1ConcRegionFreeingVerbose) {
   575       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   576                              "res == NULL, trying the secondary_free_list");
   577     }
   578     res = new_region_try_secondary_free_list(is_old);
   579   }
   580   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   581     // Currently, only attempts to allocate GC alloc regions set
   582     // do_expand to true. So, we should only reach here during a
   583     // safepoint. If this assumption changes we might have to
   584     // reconsider the use of _expand_heap_after_alloc_failure.
   585     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   587     ergo_verbose1(ErgoHeapSizing,
   588                   "attempt heap expansion",
   589                   ergo_format_reason("region allocation request failed")
   590                   ergo_format_byte("allocation request"),
   591                   word_size * HeapWordSize);
   592     if (expand(word_size * HeapWordSize)) {
   593       // Given that expand() succeeded in expanding the heap, and we
   594       // always expand the heap by an amount aligned to the heap
   595       // region size, the free list should in theory not be empty.
   596       // In either case remove_region() will check for NULL.
   597       res = _free_list.remove_region(is_old);
   598     } else {
   599       _expand_heap_after_alloc_failure = false;
   600     }
   601   }
   602   return res;
   603 }
   605 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   606                                                         size_t word_size) {
   607   assert(isHumongous(word_size), "word_size should be humongous");
   608   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   610   uint first = G1_NULL_HRS_INDEX;
   611   if (num_regions == 1) {
   612     // Only one region to allocate, no need to go through the slower
   613     // path. The caller will attempt the expansion if this fails, so
   614     // let's not try to expand here too.
   615     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
   616     if (hr != NULL) {
   617       first = hr->hrs_index();
   618     } else {
   619       first = G1_NULL_HRS_INDEX;
   620     }
   621   } else {
   622     // We can't allocate humongous regions while cleanupComplete() is
   623     // running, since some of the regions we find to be empty might not
   624     // yet be added to the free list and it is not straightforward to
   625     // know which list they are on so that we can remove them. Note
   626     // that we only need to do this if we need to allocate more than
   627     // one region to satisfy the current humongous allocation
   628     // request. If we are only allocating one region we use the common
   629     // region allocation code (see above).
   630     wait_while_free_regions_coming();
   631     append_secondary_free_list_if_not_empty_with_lock();
   633     if (free_regions() >= num_regions) {
   634       first = _hrs.find_contiguous(num_regions);
   635       if (first != G1_NULL_HRS_INDEX) {
   636         for (uint i = first; i < first + num_regions; ++i) {
   637           HeapRegion* hr = region_at(i);
   638           assert(hr->is_empty(), "sanity");
   639           assert(is_on_master_free_list(hr), "sanity");
   640           hr->set_pending_removal(true);
   641         }
   642         _free_list.remove_all_pending(num_regions);
   643       }
   644     }
   645   }
   646   return first;
   647 }
   649 HeapWord*
   650 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   651                                                            uint num_regions,
   652                                                            size_t word_size) {
   653   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   654   assert(isHumongous(word_size), "word_size should be humongous");
   655   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   657   // Index of last region in the series + 1.
   658   uint last = first + num_regions;
   660   // We need to initialize the region(s) we just discovered. This is
   661   // a bit tricky given that it can happen concurrently with
   662   // refinement threads refining cards on these regions and
   663   // potentially wanting to refine the BOT as they are scanning
   664   // those cards (this can happen shortly after a cleanup; see CR
   665   // 6991377). So we have to set up the region(s) carefully and in
   666   // a specific order.
   668   // The word size sum of all the regions we will allocate.
   669   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   670   assert(word_size <= word_size_sum, "sanity");
   672   // This will be the "starts humongous" region.
   673   HeapRegion* first_hr = region_at(first);
   674   // The header of the new object will be placed at the bottom of
   675   // the first region.
   676   HeapWord* new_obj = first_hr->bottom();
   677   // This will be the new end of the first region in the series that
   678   // should also match the end of the last region in the series.
   679   HeapWord* new_end = new_obj + word_size_sum;
   680   // This will be the new top of the first region that will reflect
   681   // this allocation.
   682   HeapWord* new_top = new_obj + word_size;
   684   // First, we need to zero the header of the space that we will be
   685   // allocating. When we update top further down, some refinement
   686   // threads might try to scan the region. By zeroing the header we
   687   // ensure that any thread that will try to scan the region will
   688   // come across the zero klass word and bail out.
   689   //
   690   // NOTE: It would not have been correct to have used
   691   // CollectedHeap::fill_with_object() and make the space look like
   692   // an int array. The thread that is doing the allocation will
   693   // later update the object header to a potentially different array
   694   // type and, for a very short period of time, the klass and length
   695   // fields will be inconsistent. This could cause a refinement
   696   // thread to calculate the object size incorrectly.
   697   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   699   // We will set up the first region as "starts humongous". This
   700   // will also update the BOT covering all the regions to reflect
   701   // that there is a single object that starts at the bottom of the
   702   // first region.
   703   first_hr->set_startsHumongous(new_top, new_end);
   705   // Then, if there are any, we will set up the "continues
   706   // humongous" regions.
   707   HeapRegion* hr = NULL;
   708   for (uint i = first + 1; i < last; ++i) {
   709     hr = region_at(i);
   710     hr->set_continuesHumongous(first_hr);
   711   }
   712   // If we have "continues humongous" regions (hr != NULL), then the
   713   // end of the last one should match new_end.
   714   assert(hr == NULL || hr->end() == new_end, "sanity");
   716   // Up to this point no concurrent thread would have been able to
   717   // do any scanning on any region in this series. All the top
   718   // fields still point to bottom, so the intersection between
   719   // [bottom,top] and [card_start,card_end] will be empty. Before we
   720   // update the top fields, we'll do a storestore to make sure that
   721   // no thread sees the update to top before the zeroing of the
   722   // object header and the BOT initialization.
   723   OrderAccess::storestore();
   725   // Now that the BOT and the object header have been initialized,
   726   // we can update top of the "starts humongous" region.
   727   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   728          "new_top should be in this region");
   729   first_hr->set_top(new_top);
   730   if (_hr_printer.is_active()) {
   731     HeapWord* bottom = first_hr->bottom();
   732     HeapWord* end = first_hr->orig_end();
   733     if ((first + 1) == last) {
   734       // the series has a single humongous region
   735       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   736     } else {
   737       // the series has more than one humongous regions
   738       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   739     }
   740   }
   742   // Now, we will update the top fields of the "continues humongous"
   743   // regions. The reason we need to do this is that, otherwise,
   744   // these regions would look empty and this will confuse parts of
   745   // G1. For example, the code that looks for a consecutive number
   746   // of empty regions will consider them empty and try to
   747   // re-allocate them. We can extend is_empty() to also include
   748   // !continuesHumongous(), but it is easier to just update the top
   749   // fields here. The way we set top for all regions (i.e., top ==
   750   // end for all regions but the last one, top == new_top for the
   751   // last one) is actually used when we will free up the humongous
   752   // region in free_humongous_region().
   753   hr = NULL;
   754   for (uint i = first + 1; i < last; ++i) {
   755     hr = region_at(i);
   756     if ((i + 1) == last) {
   757       // last continues humongous region
   758       assert(hr->bottom() < new_top && new_top <= hr->end(),
   759              "new_top should fall on this region");
   760       hr->set_top(new_top);
   761       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   762     } else {
   763       // not last one
   764       assert(new_top > hr->end(), "new_top should be above this region");
   765       hr->set_top(hr->end());
   766       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   767     }
   768   }
   769   // If we have continues humongous regions (hr != NULL), then the
   770   // end of the last one should match new_end and its top should
   771   // match new_top.
   772   assert(hr == NULL ||
   773          (hr->end() == new_end && hr->top() == new_top), "sanity");
   774   check_bitmaps("Humongous Region Allocation", first_hr);
   776   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   777   _summary_bytes_used += first_hr->used();
   778   _humongous_set.add(first_hr);
   780   return new_obj;
   781 }
   783 // If could fit into free regions w/o expansion, try.
   784 // Otherwise, if can expand, do so.
   785 // Otherwise, if using ex regions might help, try with ex given back.
   786 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   787   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   789   verify_region_sets_optional();
   791   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   792   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   793   uint x_num = expansion_regions();
   794   uint fs = _hrs.free_suffix();
   795   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   796   if (first == G1_NULL_HRS_INDEX) {
   797     // The only thing we can do now is attempt expansion.
   798     if (fs + x_num >= num_regions) {
   799       // If the number of regions we're trying to allocate for this
   800       // object is at most the number of regions in the free suffix,
   801       // then the call to humongous_obj_allocate_find_first() above
   802       // should have succeeded and we wouldn't be here.
   803       //
   804       // We should only be trying to expand when the free suffix is
   805       // not sufficient for the object _and_ we have some expansion
   806       // room available.
   807       assert(num_regions > fs, "earlier allocation should have succeeded");
   809       ergo_verbose1(ErgoHeapSizing,
   810                     "attempt heap expansion",
   811                     ergo_format_reason("humongous allocation request failed")
   812                     ergo_format_byte("allocation request"),
   813                     word_size * HeapWordSize);
   814       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   815         // Even though the heap was expanded, it might not have
   816         // reached the desired size. So, we cannot assume that the
   817         // allocation will succeed.
   818         first = humongous_obj_allocate_find_first(num_regions, word_size);
   819       }
   820     }
   821   }
   823   HeapWord* result = NULL;
   824   if (first != G1_NULL_HRS_INDEX) {
   825     result =
   826       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   827     assert(result != NULL, "it should always return a valid result");
   829     // A successful humongous object allocation changes the used space
   830     // information of the old generation so we need to recalculate the
   831     // sizes and update the jstat counters here.
   832     g1mm()->update_sizes();
   833   }
   835   verify_region_sets_optional();
   837   return result;
   838 }
   840 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   841   assert_heap_not_locked_and_not_at_safepoint();
   842   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   844   unsigned int dummy_gc_count_before;
   845   int dummy_gclocker_retry_count = 0;
   846   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   847 }
   849 HeapWord*
   850 G1CollectedHeap::mem_allocate(size_t word_size,
   851                               bool*  gc_overhead_limit_was_exceeded) {
   852   assert_heap_not_locked_and_not_at_safepoint();
   854   // Loop until the allocation is satisfied, or unsatisfied after GC.
   855   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   856     unsigned int gc_count_before;
   858     HeapWord* result = NULL;
   859     if (!isHumongous(word_size)) {
   860       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   861     } else {
   862       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   863     }
   864     if (result != NULL) {
   865       return result;
   866     }
   868     // Create the garbage collection operation...
   869     VM_G1CollectForAllocation op(gc_count_before, word_size);
   870     // ...and get the VM thread to execute it.
   871     VMThread::execute(&op);
   873     if (op.prologue_succeeded() && op.pause_succeeded()) {
   874       // If the operation was successful we'll return the result even
   875       // if it is NULL. If the allocation attempt failed immediately
   876       // after a Full GC, it's unlikely we'll be able to allocate now.
   877       HeapWord* result = op.result();
   878       if (result != NULL && !isHumongous(word_size)) {
   879         // Allocations that take place on VM operations do not do any
   880         // card dirtying and we have to do it here. We only have to do
   881         // this for non-humongous allocations, though.
   882         dirty_young_block(result, word_size);
   883       }
   884       return result;
   885     } else {
   886       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   887         return NULL;
   888       }
   889       assert(op.result() == NULL,
   890              "the result should be NULL if the VM op did not succeed");
   891     }
   893     // Give a warning if we seem to be looping forever.
   894     if ((QueuedAllocationWarningCount > 0) &&
   895         (try_count % QueuedAllocationWarningCount == 0)) {
   896       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   897     }
   898   }
   900   ShouldNotReachHere();
   901   return NULL;
   902 }
   904 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   905                                            unsigned int *gc_count_before_ret,
   906                                            int* gclocker_retry_count_ret) {
   907   // Make sure you read the note in attempt_allocation_humongous().
   909   assert_heap_not_locked_and_not_at_safepoint();
   910   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   911          "be called for humongous allocation requests");
   913   // We should only get here after the first-level allocation attempt
   914   // (attempt_allocation()) failed to allocate.
   916   // We will loop until a) we manage to successfully perform the
   917   // allocation or b) we successfully schedule a collection which
   918   // fails to perform the allocation. b) is the only case when we'll
   919   // return NULL.
   920   HeapWord* result = NULL;
   921   for (int try_count = 1; /* we'll return */; try_count += 1) {
   922     bool should_try_gc;
   923     unsigned int gc_count_before;
   925     {
   926       MutexLockerEx x(Heap_lock);
   928       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   929                                                       false /* bot_updates */);
   930       if (result != NULL) {
   931         return result;
   932       }
   934       // If we reach here, attempt_allocation_locked() above failed to
   935       // allocate a new region. So the mutator alloc region should be NULL.
   936       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   938       if (GC_locker::is_active_and_needs_gc()) {
   939         if (g1_policy()->can_expand_young_list()) {
   940           // No need for an ergo verbose message here,
   941           // can_expand_young_list() does this when it returns true.
   942           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   943                                                       false /* bot_updates */);
   944           if (result != NULL) {
   945             return result;
   946           }
   947         }
   948         should_try_gc = false;
   949       } else {
   950         // The GCLocker may not be active but the GCLocker initiated
   951         // GC may not yet have been performed (GCLocker::needs_gc()
   952         // returns true). In this case we do not try this GC and
   953         // wait until the GCLocker initiated GC is performed, and
   954         // then retry the allocation.
   955         if (GC_locker::needs_gc()) {
   956           should_try_gc = false;
   957         } else {
   958           // Read the GC count while still holding the Heap_lock.
   959           gc_count_before = total_collections();
   960           should_try_gc = true;
   961         }
   962       }
   963     }
   965     if (should_try_gc) {
   966       bool succeeded;
   967       result = do_collection_pause(word_size, gc_count_before, &succeeded,
   968           GCCause::_g1_inc_collection_pause);
   969       if (result != NULL) {
   970         assert(succeeded, "only way to get back a non-NULL result");
   971         return result;
   972       }
   974       if (succeeded) {
   975         // If we get here we successfully scheduled a collection which
   976         // failed to allocate. No point in trying to allocate
   977         // further. We'll just return NULL.
   978         MutexLockerEx x(Heap_lock);
   979         *gc_count_before_ret = total_collections();
   980         return NULL;
   981       }
   982     } else {
   983       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   984         MutexLockerEx x(Heap_lock);
   985         *gc_count_before_ret = total_collections();
   986         return NULL;
   987       }
   988       // The GCLocker is either active or the GCLocker initiated
   989       // GC has not yet been performed. Stall until it is and
   990       // then retry the allocation.
   991       GC_locker::stall_until_clear();
   992       (*gclocker_retry_count_ret) += 1;
   993     }
   995     // We can reach here if we were unsuccessful in scheduling a
   996     // collection (because another thread beat us to it) or if we were
   997     // stalled due to the GC locker. In either can we should retry the
   998     // allocation attempt in case another thread successfully
   999     // performed a collection and reclaimed enough space. We do the
  1000     // first attempt (without holding the Heap_lock) here and the
  1001     // follow-on attempt will be at the start of the next loop
  1002     // iteration (after taking the Heap_lock).
  1003     result = _mutator_alloc_region.attempt_allocation(word_size,
  1004                                                       false /* bot_updates */);
  1005     if (result != NULL) {
  1006       return result;
  1009     // Give a warning if we seem to be looping forever.
  1010     if ((QueuedAllocationWarningCount > 0) &&
  1011         (try_count % QueuedAllocationWarningCount == 0)) {
  1012       warning("G1CollectedHeap::attempt_allocation_slow() "
  1013               "retries %d times", try_count);
  1017   ShouldNotReachHere();
  1018   return NULL;
  1021 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1022                                           unsigned int * gc_count_before_ret,
  1023                                           int* gclocker_retry_count_ret) {
  1024   // The structure of this method has a lot of similarities to
  1025   // attempt_allocation_slow(). The reason these two were not merged
  1026   // into a single one is that such a method would require several "if
  1027   // allocation is not humongous do this, otherwise do that"
  1028   // conditional paths which would obscure its flow. In fact, an early
  1029   // version of this code did use a unified method which was harder to
  1030   // follow and, as a result, it had subtle bugs that were hard to
  1031   // track down. So keeping these two methods separate allows each to
  1032   // be more readable. It will be good to keep these two in sync as
  1033   // much as possible.
  1035   assert_heap_not_locked_and_not_at_safepoint();
  1036   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1037          "should only be called for humongous allocations");
  1039   // Humongous objects can exhaust the heap quickly, so we should check if we
  1040   // need to start a marking cycle at each humongous object allocation. We do
  1041   // the check before we do the actual allocation. The reason for doing it
  1042   // before the allocation is that we avoid having to keep track of the newly
  1043   // allocated memory while we do a GC.
  1044   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1045                                            word_size)) {
  1046     collect(GCCause::_g1_humongous_allocation);
  1049   // We will loop until a) we manage to successfully perform the
  1050   // allocation or b) we successfully schedule a collection which
  1051   // fails to perform the allocation. b) is the only case when we'll
  1052   // return NULL.
  1053   HeapWord* result = NULL;
  1054   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1055     bool should_try_gc;
  1056     unsigned int gc_count_before;
  1059       MutexLockerEx x(Heap_lock);
  1061       // Given that humongous objects are not allocated in young
  1062       // regions, we'll first try to do the allocation without doing a
  1063       // collection hoping that there's enough space in the heap.
  1064       result = humongous_obj_allocate(word_size);
  1065       if (result != NULL) {
  1066         return result;
  1069       if (GC_locker::is_active_and_needs_gc()) {
  1070         should_try_gc = false;
  1071       } else {
  1072          // The GCLocker may not be active but the GCLocker initiated
  1073         // GC may not yet have been performed (GCLocker::needs_gc()
  1074         // returns true). In this case we do not try this GC and
  1075         // wait until the GCLocker initiated GC is performed, and
  1076         // then retry the allocation.
  1077         if (GC_locker::needs_gc()) {
  1078           should_try_gc = false;
  1079         } else {
  1080           // Read the GC count while still holding the Heap_lock.
  1081           gc_count_before = total_collections();
  1082           should_try_gc = true;
  1087     if (should_try_gc) {
  1088       // If we failed to allocate the humongous object, we should try to
  1089       // do a collection pause (if we're allowed) in case it reclaims
  1090       // enough space for the allocation to succeed after the pause.
  1092       bool succeeded;
  1093       result = do_collection_pause(word_size, gc_count_before, &succeeded,
  1094           GCCause::_g1_humongous_allocation);
  1095       if (result != NULL) {
  1096         assert(succeeded, "only way to get back a non-NULL result");
  1097         return result;
  1100       if (succeeded) {
  1101         // If we get here we successfully scheduled a collection which
  1102         // failed to allocate. No point in trying to allocate
  1103         // further. We'll just return NULL.
  1104         MutexLockerEx x(Heap_lock);
  1105         *gc_count_before_ret = total_collections();
  1106         return NULL;
  1108     } else {
  1109       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1110         MutexLockerEx x(Heap_lock);
  1111         *gc_count_before_ret = total_collections();
  1112         return NULL;
  1114       // The GCLocker is either active or the GCLocker initiated
  1115       // GC has not yet been performed. Stall until it is and
  1116       // then retry the allocation.
  1117       GC_locker::stall_until_clear();
  1118       (*gclocker_retry_count_ret) += 1;
  1121     // We can reach here if we were unsuccessful in scheduling a
  1122     // collection (because another thread beat us to it) or if we were
  1123     // stalled due to the GC locker. In either can we should retry the
  1124     // allocation attempt in case another thread successfully
  1125     // performed a collection and reclaimed enough space.  Give a
  1126     // warning if we seem to be looping forever.
  1128     if ((QueuedAllocationWarningCount > 0) &&
  1129         (try_count % QueuedAllocationWarningCount == 0)) {
  1130       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1131               "retries %d times", try_count);
  1135   ShouldNotReachHere();
  1136   return NULL;
  1139 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1140                                        bool expect_null_mutator_alloc_region) {
  1141   assert_at_safepoint(true /* should_be_vm_thread */);
  1142   assert(_mutator_alloc_region.get() == NULL ||
  1143                                              !expect_null_mutator_alloc_region,
  1144          "the current alloc region was unexpectedly found to be non-NULL");
  1146   if (!isHumongous(word_size)) {
  1147     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1148                                                       false /* bot_updates */);
  1149   } else {
  1150     HeapWord* result = humongous_obj_allocate(word_size);
  1151     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1152       g1_policy()->set_initiate_conc_mark_if_possible();
  1154     return result;
  1157   ShouldNotReachHere();
  1160 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1161   G1CollectedHeap* _g1h;
  1162   ModRefBarrierSet* _mr_bs;
  1163 public:
  1164   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1165     _g1h(g1h), _mr_bs(mr_bs) {}
  1167   bool doHeapRegion(HeapRegion* r) {
  1168     HeapRegionRemSet* hrrs = r->rem_set();
  1170     if (r->continuesHumongous()) {
  1171       // We'll assert that the strong code root list and RSet is empty
  1172       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  1173       assert(hrrs->occupied() == 0, "RSet should be empty");
  1174       return false;
  1177     _g1h->reset_gc_time_stamps(r);
  1178     hrrs->clear();
  1179     // You might think here that we could clear just the cards
  1180     // corresponding to the used region.  But no: if we leave a dirty card
  1181     // in a region we might allocate into, then it would prevent that card
  1182     // from being enqueued, and cause it to be missed.
  1183     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1184     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1186     return false;
  1188 };
  1190 void G1CollectedHeap::clear_rsets_post_compaction() {
  1191   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
  1192   heap_region_iterate(&rs_clear);
  1195 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1196   G1CollectedHeap*   _g1h;
  1197   UpdateRSOopClosure _cl;
  1198   int                _worker_i;
  1199 public:
  1200   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1201     _cl(g1->g1_rem_set(), worker_i),
  1202     _worker_i(worker_i),
  1203     _g1h(g1)
  1204   { }
  1206   bool doHeapRegion(HeapRegion* r) {
  1207     if (!r->continuesHumongous()) {
  1208       _cl.set_from(r);
  1209       r->oop_iterate(&_cl);
  1211     return false;
  1213 };
  1215 class ParRebuildRSTask: public AbstractGangTask {
  1216   G1CollectedHeap* _g1;
  1217 public:
  1218   ParRebuildRSTask(G1CollectedHeap* g1)
  1219     : AbstractGangTask("ParRebuildRSTask"),
  1220       _g1(g1)
  1221   { }
  1223   void work(uint worker_id) {
  1224     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1225     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1226                                           _g1->workers()->active_workers(),
  1227                                          HeapRegion::RebuildRSClaimValue);
  1229 };
  1231 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1232 private:
  1233   G1HRPrinter* _hr_printer;
  1234 public:
  1235   bool doHeapRegion(HeapRegion* hr) {
  1236     assert(!hr->is_young(), "not expecting to find young regions");
  1237     // We only generate output for non-empty regions.
  1238     if (!hr->is_empty()) {
  1239       if (!hr->isHumongous()) {
  1240         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1241       } else if (hr->startsHumongous()) {
  1242         if (hr->region_num() == 1) {
  1243           // single humongous region
  1244           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1245         } else {
  1246           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1248       } else {
  1249         assert(hr->continuesHumongous(), "only way to get here");
  1250         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1253     return false;
  1256   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1257     : _hr_printer(hr_printer) { }
  1258 };
  1260 void G1CollectedHeap::print_hrs_post_compaction() {
  1261   PostCompactionPrinterClosure cl(hr_printer());
  1262   heap_region_iterate(&cl);
  1265 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1266                                     bool clear_all_soft_refs,
  1267                                     size_t word_size) {
  1268   assert_at_safepoint(true /* should_be_vm_thread */);
  1270   if (GC_locker::check_active_before_gc()) {
  1271     return false;
  1274   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  1275   gc_timer->register_gc_start();
  1277   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  1278   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
  1280   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1281   ResourceMark rm;
  1283   print_heap_before_gc();
  1284   trace_heap_before_gc(gc_tracer);
  1286   size_t metadata_prev_used = MetaspaceAux::used_bytes();
  1288   verify_region_sets_optional();
  1290   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1291                            collector_policy()->should_clear_all_soft_refs();
  1293   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1296     IsGCActiveMark x;
  1298     // Timing
  1299     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1300     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1301     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1304       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
  1305       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1306       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1308       double start = os::elapsedTime();
  1309       g1_policy()->record_full_collection_start();
  1311       // Note: When we have a more flexible GC logging framework that
  1312       // allows us to add optional attributes to a GC log record we
  1313       // could consider timing and reporting how long we wait in the
  1314       // following two methods.
  1315       wait_while_free_regions_coming();
  1316       // If we start the compaction before the CM threads finish
  1317       // scanning the root regions we might trip them over as we'll
  1318       // be moving objects / updating references. So let's wait until
  1319       // they are done. By telling them to abort, they should complete
  1320       // early.
  1321       _cm->root_regions()->abort();
  1322       _cm->root_regions()->wait_until_scan_finished();
  1323       append_secondary_free_list_if_not_empty_with_lock();
  1325       gc_prologue(true);
  1326       increment_total_collections(true /* full gc */);
  1327       increment_old_marking_cycles_started();
  1329       assert(used() == recalculate_used(), "Should be equal");
  1331       verify_before_gc();
  1333       check_bitmaps("Full GC Start");
  1334       pre_full_gc_dump(gc_timer);
  1336       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1338       // Disable discovery and empty the discovered lists
  1339       // for the CM ref processor.
  1340       ref_processor_cm()->disable_discovery();
  1341       ref_processor_cm()->abandon_partial_discovery();
  1342       ref_processor_cm()->verify_no_references_recorded();
  1344       // Abandon current iterations of concurrent marking and concurrent
  1345       // refinement, if any are in progress. We have to do this before
  1346       // wait_until_scan_finished() below.
  1347       concurrent_mark()->abort();
  1349       // Make sure we'll choose a new allocation region afterwards.
  1350       release_mutator_alloc_region();
  1351       abandon_gc_alloc_regions();
  1352       g1_rem_set()->cleanupHRRS();
  1354       // We should call this after we retire any currently active alloc
  1355       // regions so that all the ALLOC / RETIRE events are generated
  1356       // before the start GC event.
  1357       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1359       // We may have added regions to the current incremental collection
  1360       // set between the last GC or pause and now. We need to clear the
  1361       // incremental collection set and then start rebuilding it afresh
  1362       // after this full GC.
  1363       abandon_collection_set(g1_policy()->inc_cset_head());
  1364       g1_policy()->clear_incremental_cset();
  1365       g1_policy()->stop_incremental_cset_building();
  1367       tear_down_region_sets(false /* free_list_only */);
  1368       g1_policy()->set_gcs_are_young(true);
  1370       // See the comments in g1CollectedHeap.hpp and
  1371       // G1CollectedHeap::ref_processing_init() about
  1372       // how reference processing currently works in G1.
  1374       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1375       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1377       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1378       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1380       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1381       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1383       // Do collection work
  1385         HandleMark hm;  // Discard invalid handles created during gc
  1386         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1389       assert(free_regions() == 0, "we should not have added any free regions");
  1390       rebuild_region_sets(false /* free_list_only */);
  1392       // Enqueue any discovered reference objects that have
  1393       // not been removed from the discovered lists.
  1394       ref_processor_stw()->enqueue_discovered_references();
  1396       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1398       MemoryService::track_memory_usage();
  1400       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1401       ref_processor_stw()->verify_no_references_recorded();
  1403       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1404       ClassLoaderDataGraph::purge();
  1405       MetaspaceAux::verify_metrics();
  1407       // Note: since we've just done a full GC, concurrent
  1408       // marking is no longer active. Therefore we need not
  1409       // re-enable reference discovery for the CM ref processor.
  1410       // That will be done at the start of the next marking cycle.
  1411       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1412       ref_processor_cm()->verify_no_references_recorded();
  1414       reset_gc_time_stamp();
  1415       // Since everything potentially moved, we will clear all remembered
  1416       // sets, and clear all cards.  Later we will rebuild remembered
  1417       // sets. We will also reset the GC time stamps of the regions.
  1418       clear_rsets_post_compaction();
  1419       check_gc_time_stamps();
  1421       // Resize the heap if necessary.
  1422       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1424       if (_hr_printer.is_active()) {
  1425         // We should do this after we potentially resize the heap so
  1426         // that all the COMMIT / UNCOMMIT events are generated before
  1427         // the end GC event.
  1429         print_hrs_post_compaction();
  1430         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1433       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  1434       if (hot_card_cache->use_cache()) {
  1435         hot_card_cache->reset_card_counts();
  1436         hot_card_cache->reset_hot_cache();
  1439       // Rebuild remembered sets of all regions.
  1440       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1441         uint n_workers =
  1442           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1443                                                   workers()->active_workers(),
  1444                                                   Threads::number_of_non_daemon_threads());
  1445         assert(UseDynamicNumberOfGCThreads ||
  1446                n_workers == workers()->total_workers(),
  1447                "If not dynamic should be using all the  workers");
  1448         workers()->set_active_workers(n_workers);
  1449         // Set parallel threads in the heap (_n_par_threads) only
  1450         // before a parallel phase and always reset it to 0 after
  1451         // the phase so that the number of parallel threads does
  1452         // no get carried forward to a serial phase where there
  1453         // may be code that is "possibly_parallel".
  1454         set_par_threads(n_workers);
  1456         ParRebuildRSTask rebuild_rs_task(this);
  1457         assert(check_heap_region_claim_values(
  1458                HeapRegion::InitialClaimValue), "sanity check");
  1459         assert(UseDynamicNumberOfGCThreads ||
  1460                workers()->active_workers() == workers()->total_workers(),
  1461                "Unless dynamic should use total workers");
  1462         // Use the most recent number of  active workers
  1463         assert(workers()->active_workers() > 0,
  1464                "Active workers not properly set");
  1465         set_par_threads(workers()->active_workers());
  1466         workers()->run_task(&rebuild_rs_task);
  1467         set_par_threads(0);
  1468         assert(check_heap_region_claim_values(
  1469                HeapRegion::RebuildRSClaimValue), "sanity check");
  1470         reset_heap_region_claim_values();
  1471       } else {
  1472         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1473         heap_region_iterate(&rebuild_rs);
  1476       // Rebuild the strong code root lists for each region
  1477       rebuild_strong_code_roots();
  1479       if (true) { // FIXME
  1480         MetaspaceGC::compute_new_size();
  1483 #ifdef TRACESPINNING
  1484       ParallelTaskTerminator::print_termination_counts();
  1485 #endif
  1487       // Discard all rset updates
  1488       JavaThread::dirty_card_queue_set().abandon_logs();
  1489       assert(!G1DeferredRSUpdate
  1490              || (G1DeferredRSUpdate &&
  1491                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1493       _young_list->reset_sampled_info();
  1494       // At this point there should be no regions in the
  1495       // entire heap tagged as young.
  1496       assert(check_young_list_empty(true /* check_heap */),
  1497              "young list should be empty at this point");
  1499       // Update the number of full collections that have been completed.
  1500       increment_old_marking_cycles_completed(false /* concurrent */);
  1502       _hrs.verify_optional();
  1503       verify_region_sets_optional();
  1505       verify_after_gc();
  1507       // Clear the previous marking bitmap, if needed for bitmap verification.
  1508       // Note we cannot do this when we clear the next marking bitmap in
  1509       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
  1510       // objects marked during a full GC against the previous bitmap.
  1511       // But we need to clear it before calling check_bitmaps below since
  1512       // the full GC has compacted objects and updated TAMS but not updated
  1513       // the prev bitmap.
  1514       if (G1VerifyBitmaps) {
  1515         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
  1517       check_bitmaps("Full GC End");
  1519       // Start a new incremental collection set for the next pause
  1520       assert(g1_policy()->collection_set() == NULL, "must be");
  1521       g1_policy()->start_incremental_cset_building();
  1523       clear_cset_fast_test();
  1525       init_mutator_alloc_region();
  1527       double end = os::elapsedTime();
  1528       g1_policy()->record_full_collection_end();
  1530       if (G1Log::fine()) {
  1531         g1_policy()->print_heap_transition();
  1534       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1535       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1536       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1537       // before any GC notifications are raised.
  1538       g1mm()->update_sizes();
  1540       gc_epilogue(true);
  1543     if (G1Log::finer()) {
  1544       g1_policy()->print_detailed_heap_transition(true /* full */);
  1547     print_heap_after_gc();
  1548     trace_heap_after_gc(gc_tracer);
  1550     post_full_gc_dump(gc_timer);
  1552     gc_timer->register_gc_end();
  1553     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  1556   return true;
  1559 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1560   // do_collection() will return whether it succeeded in performing
  1561   // the GC. Currently, there is no facility on the
  1562   // do_full_collection() API to notify the caller than the collection
  1563   // did not succeed (e.g., because it was locked out by the GC
  1564   // locker). So, right now, we'll ignore the return value.
  1565   bool dummy = do_collection(true,                /* explicit_gc */
  1566                              clear_all_soft_refs,
  1567                              0                    /* word_size */);
  1570 // This code is mostly copied from TenuredGeneration.
  1571 void
  1572 G1CollectedHeap::
  1573 resize_if_necessary_after_full_collection(size_t word_size) {
  1574   // Include the current allocation, if any, and bytes that will be
  1575   // pre-allocated to support collections, as "used".
  1576   const size_t used_after_gc = used();
  1577   const size_t capacity_after_gc = capacity();
  1578   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1580   // This is enforced in arguments.cpp.
  1581   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1582          "otherwise the code below doesn't make sense");
  1584   // We don't have floating point command-line arguments
  1585   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1586   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1587   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1588   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1590   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1591   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1593   // We have to be careful here as these two calculations can overflow
  1594   // 32-bit size_t's.
  1595   double used_after_gc_d = (double) used_after_gc;
  1596   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1597   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1599   // Let's make sure that they are both under the max heap size, which
  1600   // by default will make them fit into a size_t.
  1601   double desired_capacity_upper_bound = (double) max_heap_size;
  1602   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1603                                     desired_capacity_upper_bound);
  1604   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1605                                     desired_capacity_upper_bound);
  1607   // We can now safely turn them into size_t's.
  1608   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1609   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1611   // This assert only makes sense here, before we adjust them
  1612   // with respect to the min and max heap size.
  1613   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1614          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1615                  "maximum_desired_capacity = "SIZE_FORMAT,
  1616                  minimum_desired_capacity, maximum_desired_capacity));
  1618   // Should not be greater than the heap max size. No need to adjust
  1619   // it with respect to the heap min size as it's a lower bound (i.e.,
  1620   // we'll try to make the capacity larger than it, not smaller).
  1621   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1622   // Should not be less than the heap min size. No need to adjust it
  1623   // with respect to the heap max size as it's an upper bound (i.e.,
  1624   // we'll try to make the capacity smaller than it, not greater).
  1625   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1627   if (capacity_after_gc < minimum_desired_capacity) {
  1628     // Don't expand unless it's significant
  1629     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1630     ergo_verbose4(ErgoHeapSizing,
  1631                   "attempt heap expansion",
  1632                   ergo_format_reason("capacity lower than "
  1633                                      "min desired capacity after Full GC")
  1634                   ergo_format_byte("capacity")
  1635                   ergo_format_byte("occupancy")
  1636                   ergo_format_byte_perc("min desired capacity"),
  1637                   capacity_after_gc, used_after_gc,
  1638                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1639     expand(expand_bytes);
  1641     // No expansion, now see if we want to shrink
  1642   } else if (capacity_after_gc > maximum_desired_capacity) {
  1643     // Capacity too large, compute shrinking size
  1644     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1645     ergo_verbose4(ErgoHeapSizing,
  1646                   "attempt heap shrinking",
  1647                   ergo_format_reason("capacity higher than "
  1648                                      "max desired capacity after Full GC")
  1649                   ergo_format_byte("capacity")
  1650                   ergo_format_byte("occupancy")
  1651                   ergo_format_byte_perc("max desired capacity"),
  1652                   capacity_after_gc, used_after_gc,
  1653                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1654     shrink(shrink_bytes);
  1659 HeapWord*
  1660 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1661                                            bool* succeeded) {
  1662   assert_at_safepoint(true /* should_be_vm_thread */);
  1664   *succeeded = true;
  1665   // Let's attempt the allocation first.
  1666   HeapWord* result =
  1667     attempt_allocation_at_safepoint(word_size,
  1668                                  false /* expect_null_mutator_alloc_region */);
  1669   if (result != NULL) {
  1670     assert(*succeeded, "sanity");
  1671     return result;
  1674   // In a G1 heap, we're supposed to keep allocation from failing by
  1675   // incremental pauses.  Therefore, at least for now, we'll favor
  1676   // expansion over collection.  (This might change in the future if we can
  1677   // do something smarter than full collection to satisfy a failed alloc.)
  1678   result = expand_and_allocate(word_size);
  1679   if (result != NULL) {
  1680     assert(*succeeded, "sanity");
  1681     return result;
  1684   // Expansion didn't work, we'll try to do a Full GC.
  1685   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1686                                     false, /* clear_all_soft_refs */
  1687                                     word_size);
  1688   if (!gc_succeeded) {
  1689     *succeeded = false;
  1690     return NULL;
  1693   // Retry the allocation
  1694   result = attempt_allocation_at_safepoint(word_size,
  1695                                   true /* expect_null_mutator_alloc_region */);
  1696   if (result != NULL) {
  1697     assert(*succeeded, "sanity");
  1698     return result;
  1701   // Then, try a Full GC that will collect all soft references.
  1702   gc_succeeded = do_collection(false, /* explicit_gc */
  1703                                true,  /* clear_all_soft_refs */
  1704                                word_size);
  1705   if (!gc_succeeded) {
  1706     *succeeded = false;
  1707     return NULL;
  1710   // Retry the allocation once more
  1711   result = attempt_allocation_at_safepoint(word_size,
  1712                                   true /* expect_null_mutator_alloc_region */);
  1713   if (result != NULL) {
  1714     assert(*succeeded, "sanity");
  1715     return result;
  1718   assert(!collector_policy()->should_clear_all_soft_refs(),
  1719          "Flag should have been handled and cleared prior to this point");
  1721   // What else?  We might try synchronous finalization later.  If the total
  1722   // space available is large enough for the allocation, then a more
  1723   // complete compaction phase than we've tried so far might be
  1724   // appropriate.
  1725   assert(*succeeded, "sanity");
  1726   return NULL;
  1729 // Attempting to expand the heap sufficiently
  1730 // to support an allocation of the given "word_size".  If
  1731 // successful, perform the allocation and return the address of the
  1732 // allocated block, or else "NULL".
  1734 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1735   assert_at_safepoint(true /* should_be_vm_thread */);
  1737   verify_region_sets_optional();
  1739   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1740   ergo_verbose1(ErgoHeapSizing,
  1741                 "attempt heap expansion",
  1742                 ergo_format_reason("allocation request failed")
  1743                 ergo_format_byte("allocation request"),
  1744                 word_size * HeapWordSize);
  1745   if (expand(expand_bytes)) {
  1746     _hrs.verify_optional();
  1747     verify_region_sets_optional();
  1748     return attempt_allocation_at_safepoint(word_size,
  1749                                  false /* expect_null_mutator_alloc_region */);
  1751   return NULL;
  1754 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1755                                              HeapWord* new_end) {
  1756   assert(old_end != new_end, "don't call this otherwise");
  1757   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1759   // Update the committed mem region.
  1760   _g1_committed.set_end(new_end);
  1761   // Tell the card table about the update.
  1762   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1763   // Tell the BOT about the update.
  1764   _bot_shared->resize(_g1_committed.word_size());
  1765   // Tell the hot card cache about the update
  1766   _cg1r->hot_card_cache()->resize_card_counts(capacity());
  1769 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1770   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1771   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1772                                        HeapRegion::GrainBytes);
  1773   ergo_verbose2(ErgoHeapSizing,
  1774                 "expand the heap",
  1775                 ergo_format_byte("requested expansion amount")
  1776                 ergo_format_byte("attempted expansion amount"),
  1777                 expand_bytes, aligned_expand_bytes);
  1779   if (_g1_storage.uncommitted_size() == 0) {
  1780     ergo_verbose0(ErgoHeapSizing,
  1781                       "did not expand the heap",
  1782                       ergo_format_reason("heap already fully expanded"));
  1783     return false;
  1786   // First commit the memory.
  1787   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1788   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1789   if (successful) {
  1790     // Then propagate this update to the necessary data structures.
  1791     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1792     update_committed_space(old_end, new_end);
  1794     FreeRegionList expansion_list("Local Expansion List");
  1795     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1796     assert(mr.start() == old_end, "post-condition");
  1797     // mr might be a smaller region than what was requested if
  1798     // expand_by() was unable to allocate the HeapRegion instances
  1799     assert(mr.end() <= new_end, "post-condition");
  1801     size_t actual_expand_bytes = mr.byte_size();
  1802     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1803     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1804            "post-condition");
  1805     if (actual_expand_bytes < aligned_expand_bytes) {
  1806       // We could not expand _hrs to the desired size. In this case we
  1807       // need to shrink the committed space accordingly.
  1808       assert(mr.end() < new_end, "invariant");
  1810       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1811       // First uncommit the memory.
  1812       _g1_storage.shrink_by(diff_bytes);
  1813       // Then propagate this update to the necessary data structures.
  1814       update_committed_space(new_end, mr.end());
  1816     _free_list.add_as_tail(&expansion_list);
  1818     if (_hr_printer.is_active()) {
  1819       HeapWord* curr = mr.start();
  1820       while (curr < mr.end()) {
  1821         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1822         _hr_printer.commit(curr, curr_end);
  1823         curr = curr_end;
  1825       assert(curr == mr.end(), "post-condition");
  1827     g1_policy()->record_new_heap_size(n_regions());
  1828   } else {
  1829     ergo_verbose0(ErgoHeapSizing,
  1830                   "did not expand the heap",
  1831                   ergo_format_reason("heap expansion operation failed"));
  1832     // The expansion of the virtual storage space was unsuccessful.
  1833     // Let's see if it was because we ran out of swap.
  1834     if (G1ExitOnExpansionFailure &&
  1835         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1836       // We had head room...
  1837       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
  1840   return successful;
  1843 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1844   size_t aligned_shrink_bytes =
  1845     ReservedSpace::page_align_size_down(shrink_bytes);
  1846   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1847                                          HeapRegion::GrainBytes);
  1848   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
  1850   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
  1851   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1852   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
  1854   ergo_verbose3(ErgoHeapSizing,
  1855                 "shrink the heap",
  1856                 ergo_format_byte("requested shrinking amount")
  1857                 ergo_format_byte("aligned shrinking amount")
  1858                 ergo_format_byte("attempted shrinking amount"),
  1859                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  1860   if (num_regions_removed > 0) {
  1861     _g1_storage.shrink_by(shrunk_bytes);
  1862     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1864     if (_hr_printer.is_active()) {
  1865       HeapWord* curr = old_end;
  1866       while (curr > new_end) {
  1867         HeapWord* curr_end = curr;
  1868         curr -= HeapRegion::GrainWords;
  1869         _hr_printer.uncommit(curr, curr_end);
  1873     _expansion_regions += num_regions_removed;
  1874     update_committed_space(old_end, new_end);
  1875     HeapRegionRemSet::shrink_heap(n_regions());
  1876     g1_policy()->record_new_heap_size(n_regions());
  1877   } else {
  1878     ergo_verbose0(ErgoHeapSizing,
  1879                   "did not shrink the heap",
  1880                   ergo_format_reason("heap shrinking operation failed"));
  1884 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1885   verify_region_sets_optional();
  1887   // We should only reach here at the end of a Full GC which means we
  1888   // should not not be holding to any GC alloc regions. The method
  1889   // below will make sure of that and do any remaining clean up.
  1890   abandon_gc_alloc_regions();
  1892   // Instead of tearing down / rebuilding the free lists here, we
  1893   // could instead use the remove_all_pending() method on free_list to
  1894   // remove only the ones that we need to remove.
  1895   tear_down_region_sets(true /* free_list_only */);
  1896   shrink_helper(shrink_bytes);
  1897   rebuild_region_sets(true /* free_list_only */);
  1899   _hrs.verify_optional();
  1900   verify_region_sets_optional();
  1903 // Public methods.
  1905 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1906 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1907 #endif // _MSC_VER
  1910 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1911   SharedHeap(policy_),
  1912   _g1_policy(policy_),
  1913   _dirty_card_queue_set(false),
  1914   _into_cset_dirty_card_queue_set(false),
  1915   _is_alive_closure_cm(this),
  1916   _is_alive_closure_stw(this),
  1917   _ref_processor_cm(NULL),
  1918   _ref_processor_stw(NULL),
  1919   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1920   _bot_shared(NULL),
  1921   _evac_failure_scan_stack(NULL),
  1922   _mark_in_progress(false),
  1923   _cg1r(NULL), _summary_bytes_used(0),
  1924   _g1mm(NULL),
  1925   _refine_cte_cl(NULL),
  1926   _full_collection(false),
  1927   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
  1928   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  1929   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  1930   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
  1931   _free_regions_coming(false),
  1932   _young_list(new YoungList(this)),
  1933   _gc_time_stamp(0),
  1934   _retained_old_gc_alloc_region(NULL),
  1935   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1936   _old_plab_stats(OldPLABSize, PLABWeight),
  1937   _expand_heap_after_alloc_failure(true),
  1938   _surviving_young_words(NULL),
  1939   _old_marking_cycles_started(0),
  1940   _old_marking_cycles_completed(0),
  1941   _concurrent_cycle_started(false),
  1942   _in_cset_fast_test(),
  1943   _dirty_cards_region_list(NULL),
  1944   _worker_cset_start_region(NULL),
  1945   _worker_cset_start_region_time_stamp(NULL),
  1946   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  1947   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  1948   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  1949   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
  1951   _g1h = this;
  1952   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1953     vm_exit_during_initialization("Failed necessary allocation.");
  1956   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1958   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1959   _task_queues = new RefToScanQueueSet(n_queues);
  1961   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1962   assert(n_rem_sets > 0, "Invariant.");
  1964   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1965   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1966   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
  1968   for (int i = 0; i < n_queues; i++) {
  1969     RefToScanQueue* q = new RefToScanQueue();
  1970     q->initialize();
  1971     _task_queues->register_queue(i, q);
  1972     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  1974   clear_cset_start_regions();
  1976   // Initialize the G1EvacuationFailureALot counters and flags.
  1977   NOT_PRODUCT(reset_evacuation_should_fail();)
  1979   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1982 jint G1CollectedHeap::initialize() {
  1983   CollectedHeap::pre_initialize();
  1984   os::enable_vtime();
  1986   G1Log::init();
  1988   // Necessary to satisfy locking discipline assertions.
  1990   MutexLocker x(Heap_lock);
  1992   // We have to initialize the printer before committing the heap, as
  1993   // it will be used then.
  1994   _hr_printer.set_active(G1PrintHeapRegions);
  1996   // While there are no constraints in the GC code that HeapWordSize
  1997   // be any particular value, there are multiple other areas in the
  1998   // system which believe this to be true (e.g. oop->object_size in some
  1999   // cases incorrectly returns the size in wordSize units rather than
  2000   // HeapWordSize).
  2001   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  2003   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  2004   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  2005   size_t heap_alignment = collector_policy()->heap_alignment();
  2007   // Ensure that the sizes are properly aligned.
  2008   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2009   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2010   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
  2012   _refine_cte_cl = new RefineCardTableEntryClosure();
  2014   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
  2016   // Reserve the maximum.
  2018   // When compressed oops are enabled, the preferred heap base
  2019   // is calculated by subtracting the requested size from the
  2020   // 32Gb boundary and using the result as the base address for
  2021   // heap reservation. If the requested size is not aligned to
  2022   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  2023   // into the ReservedHeapSpace constructor) then the actual
  2024   // base of the reserved heap may end up differing from the
  2025   // address that was requested (i.e. the preferred heap base).
  2026   // If this happens then we could end up using a non-optimal
  2027   // compressed oops mode.
  2029   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  2030                                                  heap_alignment);
  2032   // It is important to do this in a way such that concurrent readers can't
  2033   // temporarily think something is in the heap.  (I've actually seen this
  2034   // happen in asserts: DLD.)
  2035   _reserved.set_word_size(0);
  2036   _reserved.set_start((HeapWord*)heap_rs.base());
  2037   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2039   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2041   // Create the gen rem set (and barrier set) for the entire reserved region.
  2042   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2043   set_barrier_set(rem_set()->bs());
  2044   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
  2045     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
  2046     return JNI_ENOMEM;
  2049   // Also create a G1 rem set.
  2050   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
  2052   // Carve out the G1 part of the heap.
  2054   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2055   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2056                            g1_rs.size()/HeapWordSize);
  2058   _g1_storage.initialize(g1_rs, 0);
  2059   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2060   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2061                   (HeapWord*) _g1_reserved.end());
  2062   assert(_hrs.max_length() == _expansion_regions,
  2063          err_msg("max length: %u expansion regions: %u",
  2064                  _hrs.max_length(), _expansion_regions));
  2066   // Do later initialization work for concurrent refinement.
  2067   _cg1r->init();
  2069   // 6843694 - ensure that the maximum region index can fit
  2070   // in the remembered set structures.
  2071   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2072   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2074   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2075   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2076   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2077             "too many cards per region");
  2079   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
  2081   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2082                                              heap_word_size(init_byte_size));
  2084   _g1h = this;
  2086   _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
  2088   // Create the ConcurrentMark data structure and thread.
  2089   // (Must do this late, so that "max_regions" is defined.)
  2090   _cm = new ConcurrentMark(this, heap_rs);
  2091   if (_cm == NULL || !_cm->completed_initialization()) {
  2092     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2093     return JNI_ENOMEM;
  2095   _cmThread = _cm->cmThread();
  2097   // Initialize the from_card cache structure of HeapRegionRemSet.
  2098   HeapRegionRemSet::init_heap(max_regions());
  2100   // Now expand into the initial heap size.
  2101   if (!expand(init_byte_size)) {
  2102     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2103     return JNI_ENOMEM;
  2106   // Perform any initialization actions delegated to the policy.
  2107   g1_policy()->init();
  2109   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2110                                                SATB_Q_FL_lock,
  2111                                                G1SATBProcessCompletedThreshold,
  2112                                                Shared_SATB_Q_lock);
  2114   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
  2115                                                 DirtyCardQ_CBL_mon,
  2116                                                 DirtyCardQ_FL_lock,
  2117                                                 concurrent_g1_refine()->yellow_zone(),
  2118                                                 concurrent_g1_refine()->red_zone(),
  2119                                                 Shared_DirtyCardQ_lock);
  2121   if (G1DeferredRSUpdate) {
  2122     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
  2123                                       DirtyCardQ_CBL_mon,
  2124                                       DirtyCardQ_FL_lock,
  2125                                       -1, // never trigger processing
  2126                                       -1, // no limit on length
  2127                                       Shared_DirtyCardQ_lock,
  2128                                       &JavaThread::dirty_card_queue_set());
  2131   // Initialize the card queue set used to hold cards containing
  2132   // references into the collection set.
  2133   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
  2134                                              DirtyCardQ_CBL_mon,
  2135                                              DirtyCardQ_FL_lock,
  2136                                              -1, // never trigger processing
  2137                                              -1, // no limit on length
  2138                                              Shared_DirtyCardQ_lock,
  2139                                              &JavaThread::dirty_card_queue_set());
  2141   // In case we're keeping closure specialization stats, initialize those
  2142   // counts and that mechanism.
  2143   SpecializationStats::clear();
  2145   // Here we allocate the dummy full region that is required by the
  2146   // G1AllocRegion class. If we don't pass an address in the reserved
  2147   // space here, lots of asserts fire.
  2149   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2150                                              _g1_reserved.start());
  2151   // We'll re-use the same region whether the alloc region will
  2152   // require BOT updates or not and, if it doesn't, then a non-young
  2153   // region will complain that it cannot support allocations without
  2154   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2155   dummy_region->set_young();
  2156   // Make sure it's full.
  2157   dummy_region->set_top(dummy_region->end());
  2158   G1AllocRegion::setup(this, dummy_region);
  2160   init_mutator_alloc_region();
  2162   // Do create of the monitoring and management support so that
  2163   // values in the heap have been properly initialized.
  2164   _g1mm = new G1MonitoringSupport(this);
  2166   G1StringDedup::initialize();
  2168   return JNI_OK;
  2171 void G1CollectedHeap::stop() {
  2172   // Stop all concurrent threads. We do this to make sure these threads
  2173   // do not continue to execute and access resources (e.g. gclog_or_tty)
  2174   // that are destroyed during shutdown.
  2175   _cg1r->stop();
  2176   _cmThread->stop();
  2177   if (G1StringDedup::is_enabled()) {
  2178     G1StringDedup::stop();
  2182 size_t G1CollectedHeap::conservative_max_heap_alignment() {
  2183   return HeapRegion::max_region_size();
  2186 void G1CollectedHeap::ref_processing_init() {
  2187   // Reference processing in G1 currently works as follows:
  2188   //
  2189   // * There are two reference processor instances. One is
  2190   //   used to record and process discovered references
  2191   //   during concurrent marking; the other is used to
  2192   //   record and process references during STW pauses
  2193   //   (both full and incremental).
  2194   // * Both ref processors need to 'span' the entire heap as
  2195   //   the regions in the collection set may be dotted around.
  2196   //
  2197   // * For the concurrent marking ref processor:
  2198   //   * Reference discovery is enabled at initial marking.
  2199   //   * Reference discovery is disabled and the discovered
  2200   //     references processed etc during remarking.
  2201   //   * Reference discovery is MT (see below).
  2202   //   * Reference discovery requires a barrier (see below).
  2203   //   * Reference processing may or may not be MT
  2204   //     (depending on the value of ParallelRefProcEnabled
  2205   //     and ParallelGCThreads).
  2206   //   * A full GC disables reference discovery by the CM
  2207   //     ref processor and abandons any entries on it's
  2208   //     discovered lists.
  2209   //
  2210   // * For the STW processor:
  2211   //   * Non MT discovery is enabled at the start of a full GC.
  2212   //   * Processing and enqueueing during a full GC is non-MT.
  2213   //   * During a full GC, references are processed after marking.
  2214   //
  2215   //   * Discovery (may or may not be MT) is enabled at the start
  2216   //     of an incremental evacuation pause.
  2217   //   * References are processed near the end of a STW evacuation pause.
  2218   //   * For both types of GC:
  2219   //     * Discovery is atomic - i.e. not concurrent.
  2220   //     * Reference discovery will not need a barrier.
  2222   SharedHeap::ref_processing_init();
  2223   MemRegion mr = reserved_region();
  2225   // Concurrent Mark ref processor
  2226   _ref_processor_cm =
  2227     new ReferenceProcessor(mr,    // span
  2228                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2229                                 // mt processing
  2230                            (int) ParallelGCThreads,
  2231                                 // degree of mt processing
  2232                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2233                                 // mt discovery
  2234                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2235                                 // degree of mt discovery
  2236                            false,
  2237                                 // Reference discovery is not atomic
  2238                            &_is_alive_closure_cm);
  2239                                 // is alive closure
  2240                                 // (for efficiency/performance)
  2242   // STW ref processor
  2243   _ref_processor_stw =
  2244     new ReferenceProcessor(mr,    // span
  2245                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2246                                 // mt processing
  2247                            MAX2((int)ParallelGCThreads, 1),
  2248                                 // degree of mt processing
  2249                            (ParallelGCThreads > 1),
  2250                                 // mt discovery
  2251                            MAX2((int)ParallelGCThreads, 1),
  2252                                 // degree of mt discovery
  2253                            true,
  2254                                 // Reference discovery is atomic
  2255                            &_is_alive_closure_stw);
  2256                                 // is alive closure
  2257                                 // (for efficiency/performance)
  2260 size_t G1CollectedHeap::capacity() const {
  2261   return _g1_committed.byte_size();
  2264 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2265   assert(!hr->continuesHumongous(), "pre-condition");
  2266   hr->reset_gc_time_stamp();
  2267   if (hr->startsHumongous()) {
  2268     uint first_index = hr->hrs_index() + 1;
  2269     uint last_index = hr->last_hc_index();
  2270     for (uint i = first_index; i < last_index; i += 1) {
  2271       HeapRegion* chr = region_at(i);
  2272       assert(chr->continuesHumongous(), "sanity");
  2273       chr->reset_gc_time_stamp();
  2278 #ifndef PRODUCT
  2279 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2280 private:
  2281   unsigned _gc_time_stamp;
  2282   bool _failures;
  2284 public:
  2285   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2286     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2288   virtual bool doHeapRegion(HeapRegion* hr) {
  2289     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2290     if (_gc_time_stamp != region_gc_time_stamp) {
  2291       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2292                              "expected %d", HR_FORMAT_PARAMS(hr),
  2293                              region_gc_time_stamp, _gc_time_stamp);
  2294       _failures = true;
  2296     return false;
  2299   bool failures() { return _failures; }
  2300 };
  2302 void G1CollectedHeap::check_gc_time_stamps() {
  2303   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2304   heap_region_iterate(&cl);
  2305   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2307 #endif // PRODUCT
  2309 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2310                                                  DirtyCardQueue* into_cset_dcq,
  2311                                                  bool concurrent,
  2312                                                  uint worker_i) {
  2313   // Clean cards in the hot card cache
  2314   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  2315   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
  2317   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2318   int n_completed_buffers = 0;
  2319   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2320     n_completed_buffers++;
  2322   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2323   dcqs.clear_n_completed_buffers();
  2324   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2328 // Computes the sum of the storage used by the various regions.
  2330 size_t G1CollectedHeap::used() const {
  2331   assert(Heap_lock->owner() != NULL,
  2332          "Should be owned on this thread's behalf.");
  2333   size_t result = _summary_bytes_used;
  2334   // Read only once in case it is set to NULL concurrently
  2335   HeapRegion* hr = _mutator_alloc_region.get();
  2336   if (hr != NULL)
  2337     result += hr->used();
  2338   return result;
  2341 size_t G1CollectedHeap::used_unlocked() const {
  2342   size_t result = _summary_bytes_used;
  2343   return result;
  2346 class SumUsedClosure: public HeapRegionClosure {
  2347   size_t _used;
  2348 public:
  2349   SumUsedClosure() : _used(0) {}
  2350   bool doHeapRegion(HeapRegion* r) {
  2351     if (!r->continuesHumongous()) {
  2352       _used += r->used();
  2354     return false;
  2356   size_t result() { return _used; }
  2357 };
  2359 size_t G1CollectedHeap::recalculate_used() const {
  2360   double recalculate_used_start = os::elapsedTime();
  2362   SumUsedClosure blk;
  2363   heap_region_iterate(&blk);
  2365   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
  2366   return blk.result();
  2369 size_t G1CollectedHeap::unsafe_max_alloc() {
  2370   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2371   // otherwise, is there space in the current allocation region?
  2373   // We need to store the current allocation region in a local variable
  2374   // here. The problem is that this method doesn't take any locks and
  2375   // there may be other threads which overwrite the current allocation
  2376   // region field. attempt_allocation(), for example, sets it to NULL
  2377   // and this can happen *after* the NULL check here but before the call
  2378   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2379   // to be a problem in the optimized build, since the two loads of the
  2380   // current allocation region field are optimized away.
  2381   HeapRegion* hr = _mutator_alloc_region.get();
  2382   if (hr == NULL) {
  2383     return 0;
  2385   return hr->free();
  2388 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2389   switch (cause) {
  2390     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2391     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2392     case GCCause::_g1_humongous_allocation: return true;
  2393     default:                                return false;
  2397 #ifndef PRODUCT
  2398 void G1CollectedHeap::allocate_dummy_regions() {
  2399   // Let's fill up most of the region
  2400   size_t word_size = HeapRegion::GrainWords - 1024;
  2401   // And as a result the region we'll allocate will be humongous.
  2402   guarantee(isHumongous(word_size), "sanity");
  2404   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2405     // Let's use the existing mechanism for the allocation
  2406     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2407     if (dummy_obj != NULL) {
  2408       MemRegion mr(dummy_obj, word_size);
  2409       CollectedHeap::fill_with_object(mr);
  2410     } else {
  2411       // If we can't allocate once, we probably cannot allocate
  2412       // again. Let's get out of the loop.
  2413       break;
  2417 #endif // !PRODUCT
  2419 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2420   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2421     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2422     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2423     _old_marking_cycles_started, _old_marking_cycles_completed));
  2425   _old_marking_cycles_started++;
  2428 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2429   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2431   // We assume that if concurrent == true, then the caller is a
  2432   // concurrent thread that was joined the Suspendible Thread
  2433   // Set. If there's ever a cheap way to check this, we should add an
  2434   // assert here.
  2436   // Given that this method is called at the end of a Full GC or of a
  2437   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2438   // interrupt a concurrent cycle), the number of full collections
  2439   // completed should be either one (in the case where there was no
  2440   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2441   // behind the number of full collections started.
  2443   // This is the case for the inner caller, i.e. a Full GC.
  2444   assert(concurrent ||
  2445          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2446          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2447          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2448                  "is inconsistent with _old_marking_cycles_completed = %u",
  2449                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2451   // This is the case for the outer caller, i.e. the concurrent cycle.
  2452   assert(!concurrent ||
  2453          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2454          err_msg("for outer caller (concurrent cycle): "
  2455                  "_old_marking_cycles_started = %u "
  2456                  "is inconsistent with _old_marking_cycles_completed = %u",
  2457                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2459   _old_marking_cycles_completed += 1;
  2461   // We need to clear the "in_progress" flag in the CM thread before
  2462   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2463   // is set) so that if a waiter requests another System.gc() it doesn't
  2464   // incorrectly see that a marking cycle is still in progress.
  2465   if (concurrent) {
  2466     _cmThread->clear_in_progress();
  2469   // This notify_all() will ensure that a thread that called
  2470   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2471   // and it's waiting for a full GC to finish will be woken up. It is
  2472   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2473   FullGCCount_lock->notify_all();
  2476 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
  2477   _concurrent_cycle_started = true;
  2478   _gc_timer_cm->register_gc_start(start_time);
  2480   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  2481   trace_heap_before_gc(_gc_tracer_cm);
  2484 void G1CollectedHeap::register_concurrent_cycle_end() {
  2485   if (_concurrent_cycle_started) {
  2486     if (_cm->has_aborted()) {
  2487       _gc_tracer_cm->report_concurrent_mode_failure();
  2490     _gc_timer_cm->register_gc_end();
  2491     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2493     _concurrent_cycle_started = false;
  2497 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  2498   if (_concurrent_cycle_started) {
  2499     trace_heap_after_gc(_gc_tracer_cm);
  2503 G1YCType G1CollectedHeap::yc_type() {
  2504   bool is_young = g1_policy()->gcs_are_young();
  2505   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  2506   bool is_during_mark = mark_in_progress();
  2508   if (is_initial_mark) {
  2509     return InitialMark;
  2510   } else if (is_during_mark) {
  2511     return DuringMark;
  2512   } else if (is_young) {
  2513     return Normal;
  2514   } else {
  2515     return Mixed;
  2519 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2520   assert_heap_not_locked();
  2522   unsigned int gc_count_before;
  2523   unsigned int old_marking_count_before;
  2524   bool retry_gc;
  2526   do {
  2527     retry_gc = false;
  2530       MutexLocker ml(Heap_lock);
  2532       // Read the GC count while holding the Heap_lock
  2533       gc_count_before = total_collections();
  2534       old_marking_count_before = _old_marking_cycles_started;
  2537     if (should_do_concurrent_full_gc(cause)) {
  2538       // Schedule an initial-mark evacuation pause that will start a
  2539       // concurrent cycle. We're setting word_size to 0 which means that
  2540       // we are not requesting a post-GC allocation.
  2541       VM_G1IncCollectionPause op(gc_count_before,
  2542                                  0,     /* word_size */
  2543                                  true,  /* should_initiate_conc_mark */
  2544                                  g1_policy()->max_pause_time_ms(),
  2545                                  cause);
  2547       VMThread::execute(&op);
  2548       if (!op.pause_succeeded()) {
  2549         if (old_marking_count_before == _old_marking_cycles_started) {
  2550           retry_gc = op.should_retry_gc();
  2551         } else {
  2552           // A Full GC happened while we were trying to schedule the
  2553           // initial-mark GC. No point in starting a new cycle given
  2554           // that the whole heap was collected anyway.
  2557         if (retry_gc) {
  2558           if (GC_locker::is_active_and_needs_gc()) {
  2559             GC_locker::stall_until_clear();
  2563     } else {
  2564       if (cause == GCCause::_gc_locker
  2565           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2567         // Schedule a standard evacuation pause. We're setting word_size
  2568         // to 0 which means that we are not requesting a post-GC allocation.
  2569         VM_G1IncCollectionPause op(gc_count_before,
  2570                                    0,     /* word_size */
  2571                                    false, /* should_initiate_conc_mark */
  2572                                    g1_policy()->max_pause_time_ms(),
  2573                                    cause);
  2574         VMThread::execute(&op);
  2575       } else {
  2576         // Schedule a Full GC.
  2577         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2578         VMThread::execute(&op);
  2581   } while (retry_gc);
  2584 bool G1CollectedHeap::is_in(const void* p) const {
  2585   if (_g1_committed.contains(p)) {
  2586     // Given that we know that p is in the committed space,
  2587     // heap_region_containing_raw() should successfully
  2588     // return the containing region.
  2589     HeapRegion* hr = heap_region_containing_raw(p);
  2590     return hr->is_in(p);
  2591   } else {
  2592     return false;
  2596 // Iteration functions.
  2598 // Iterates an OopClosure over all ref-containing fields of objects
  2599 // within a HeapRegion.
  2601 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2602   MemRegion _mr;
  2603   ExtendedOopClosure* _cl;
  2604 public:
  2605   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
  2606     : _mr(mr), _cl(cl) {}
  2607   bool doHeapRegion(HeapRegion* r) {
  2608     if (!r->continuesHumongous()) {
  2609       r->oop_iterate(_cl);
  2611     return false;
  2613 };
  2615 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2616   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2617   heap_region_iterate(&blk);
  2620 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
  2621   IterateOopClosureRegionClosure blk(mr, cl);
  2622   heap_region_iterate(&blk);
  2625 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2627 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2628   ObjectClosure* _cl;
  2629 public:
  2630   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2631   bool doHeapRegion(HeapRegion* r) {
  2632     if (! r->continuesHumongous()) {
  2633       r->object_iterate(_cl);
  2635     return false;
  2637 };
  2639 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2640   IterateObjectClosureRegionClosure blk(cl);
  2641   heap_region_iterate(&blk);
  2644 // Calls a SpaceClosure on a HeapRegion.
  2646 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2647   SpaceClosure* _cl;
  2648 public:
  2649   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2650   bool doHeapRegion(HeapRegion* r) {
  2651     _cl->do_space(r);
  2652     return false;
  2654 };
  2656 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2657   SpaceClosureRegionClosure blk(cl);
  2658   heap_region_iterate(&blk);
  2661 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2662   _hrs.iterate(cl);
  2665 void
  2666 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2667                                                  uint worker_id,
  2668                                                  uint no_of_par_workers,
  2669                                                  jint claim_value) {
  2670   const uint regions = n_regions();
  2671   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2672                              no_of_par_workers :
  2673                              1);
  2674   assert(UseDynamicNumberOfGCThreads ||
  2675          no_of_par_workers == workers()->total_workers(),
  2676          "Non dynamic should use fixed number of workers");
  2677   // try to spread out the starting points of the workers
  2678   const HeapRegion* start_hr =
  2679                         start_region_for_worker(worker_id, no_of_par_workers);
  2680   const uint start_index = start_hr->hrs_index();
  2682   // each worker will actually look at all regions
  2683   for (uint count = 0; count < regions; ++count) {
  2684     const uint index = (start_index + count) % regions;
  2685     assert(0 <= index && index < regions, "sanity");
  2686     HeapRegion* r = region_at(index);
  2687     // we'll ignore "continues humongous" regions (we'll process them
  2688     // when we come across their corresponding "start humongous"
  2689     // region) and regions already claimed
  2690     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2691       continue;
  2693     // OK, try to claim it
  2694     if (r->claimHeapRegion(claim_value)) {
  2695       // success!
  2696       assert(!r->continuesHumongous(), "sanity");
  2697       if (r->startsHumongous()) {
  2698         // If the region is "starts humongous" we'll iterate over its
  2699         // "continues humongous" first; in fact we'll do them
  2700         // first. The order is important. In on case, calling the
  2701         // closure on the "starts humongous" region might de-allocate
  2702         // and clear all its "continues humongous" regions and, as a
  2703         // result, we might end up processing them twice. So, we'll do
  2704         // them first (notice: most closures will ignore them anyway) and
  2705         // then we'll do the "starts humongous" region.
  2706         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2707           HeapRegion* chr = region_at(ch_index);
  2709           // if the region has already been claimed or it's not
  2710           // "continues humongous" we're done
  2711           if (chr->claim_value() == claim_value ||
  2712               !chr->continuesHumongous()) {
  2713             break;
  2716           // No one should have claimed it directly. We can given
  2717           // that we claimed its "starts humongous" region.
  2718           assert(chr->claim_value() != claim_value, "sanity");
  2719           assert(chr->humongous_start_region() == r, "sanity");
  2721           if (chr->claimHeapRegion(claim_value)) {
  2722             // we should always be able to claim it; no one else should
  2723             // be trying to claim this region
  2725             bool res2 = cl->doHeapRegion(chr);
  2726             assert(!res2, "Should not abort");
  2728             // Right now, this holds (i.e., no closure that actually
  2729             // does something with "continues humongous" regions
  2730             // clears them). We might have to weaken it in the future,
  2731             // but let's leave these two asserts here for extra safety.
  2732             assert(chr->continuesHumongous(), "should still be the case");
  2733             assert(chr->humongous_start_region() == r, "sanity");
  2734           } else {
  2735             guarantee(false, "we should not reach here");
  2740       assert(!r->continuesHumongous(), "sanity");
  2741       bool res = cl->doHeapRegion(r);
  2742       assert(!res, "Should not abort");
  2747 class ResetClaimValuesClosure: public HeapRegionClosure {
  2748 public:
  2749   bool doHeapRegion(HeapRegion* r) {
  2750     r->set_claim_value(HeapRegion::InitialClaimValue);
  2751     return false;
  2753 };
  2755 void G1CollectedHeap::reset_heap_region_claim_values() {
  2756   ResetClaimValuesClosure blk;
  2757   heap_region_iterate(&blk);
  2760 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2761   ResetClaimValuesClosure blk;
  2762   collection_set_iterate(&blk);
  2765 #ifdef ASSERT
  2766 // This checks whether all regions in the heap have the correct claim
  2767 // value. I also piggy-backed on this a check to ensure that the
  2768 // humongous_start_region() information on "continues humongous"
  2769 // regions is correct.
  2771 class CheckClaimValuesClosure : public HeapRegionClosure {
  2772 private:
  2773   jint _claim_value;
  2774   uint _failures;
  2775   HeapRegion* _sh_region;
  2777 public:
  2778   CheckClaimValuesClosure(jint claim_value) :
  2779     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2780   bool doHeapRegion(HeapRegion* r) {
  2781     if (r->claim_value() != _claim_value) {
  2782       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2783                              "claim value = %d, should be %d",
  2784                              HR_FORMAT_PARAMS(r),
  2785                              r->claim_value(), _claim_value);
  2786       ++_failures;
  2788     if (!r->isHumongous()) {
  2789       _sh_region = NULL;
  2790     } else if (r->startsHumongous()) {
  2791       _sh_region = r;
  2792     } else if (r->continuesHumongous()) {
  2793       if (r->humongous_start_region() != _sh_region) {
  2794         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2795                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2796                                HR_FORMAT_PARAMS(r),
  2797                                r->humongous_start_region(),
  2798                                _sh_region);
  2799         ++_failures;
  2802     return false;
  2804   uint failures() { return _failures; }
  2805 };
  2807 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2808   CheckClaimValuesClosure cl(claim_value);
  2809   heap_region_iterate(&cl);
  2810   return cl.failures() == 0;
  2813 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2814 private:
  2815   jint _claim_value;
  2816   uint _failures;
  2818 public:
  2819   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2820     _claim_value(claim_value), _failures(0) { }
  2822   uint failures() { return _failures; }
  2824   bool doHeapRegion(HeapRegion* hr) {
  2825     assert(hr->in_collection_set(), "how?");
  2826     assert(!hr->isHumongous(), "H-region in CSet");
  2827     if (hr->claim_value() != _claim_value) {
  2828       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2829                              "claim value = %d, should be %d",
  2830                              HR_FORMAT_PARAMS(hr),
  2831                              hr->claim_value(), _claim_value);
  2832       _failures += 1;
  2834     return false;
  2836 };
  2838 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2839   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2840   collection_set_iterate(&cl);
  2841   return cl.failures() == 0;
  2843 #endif // ASSERT
  2845 // Clear the cached CSet starting regions and (more importantly)
  2846 // the time stamps. Called when we reset the GC time stamp.
  2847 void G1CollectedHeap::clear_cset_start_regions() {
  2848   assert(_worker_cset_start_region != NULL, "sanity");
  2849   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2851   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2852   for (int i = 0; i < n_queues; i++) {
  2853     _worker_cset_start_region[i] = NULL;
  2854     _worker_cset_start_region_time_stamp[i] = 0;
  2858 // Given the id of a worker, obtain or calculate a suitable
  2859 // starting region for iterating over the current collection set.
  2860 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
  2861   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2863   HeapRegion* result = NULL;
  2864   unsigned gc_time_stamp = get_gc_time_stamp();
  2866   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2867     // Cached starting region for current worker was set
  2868     // during the current pause - so it's valid.
  2869     // Note: the cached starting heap region may be NULL
  2870     // (when the collection set is empty).
  2871     result = _worker_cset_start_region[worker_i];
  2872     assert(result == NULL || result->in_collection_set(), "sanity");
  2873     return result;
  2876   // The cached entry was not valid so let's calculate
  2877   // a suitable starting heap region for this worker.
  2879   // We want the parallel threads to start their collection
  2880   // set iteration at different collection set regions to
  2881   // avoid contention.
  2882   // If we have:
  2883   //          n collection set regions
  2884   //          p threads
  2885   // Then thread t will start at region floor ((t * n) / p)
  2887   result = g1_policy()->collection_set();
  2888   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2889     uint cs_size = g1_policy()->cset_region_length();
  2890     uint active_workers = workers()->active_workers();
  2891     assert(UseDynamicNumberOfGCThreads ||
  2892              active_workers == workers()->total_workers(),
  2893              "Unless dynamic should use total workers");
  2895     uint end_ind   = (cs_size * worker_i) / active_workers;
  2896     uint start_ind = 0;
  2898     if (worker_i > 0 &&
  2899         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2900       // Previous workers starting region is valid
  2901       // so let's iterate from there
  2902       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2903       result = _worker_cset_start_region[worker_i - 1];
  2906     for (uint i = start_ind; i < end_ind; i++) {
  2907       result = result->next_in_collection_set();
  2911   // Note: the calculated starting heap region may be NULL
  2912   // (when the collection set is empty).
  2913   assert(result == NULL || result->in_collection_set(), "sanity");
  2914   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2915          "should be updated only once per pause");
  2916   _worker_cset_start_region[worker_i] = result;
  2917   OrderAccess::storestore();
  2918   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2919   return result;
  2922 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
  2923                                                      uint no_of_par_workers) {
  2924   uint worker_num =
  2925            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  2926   assert(UseDynamicNumberOfGCThreads ||
  2927          no_of_par_workers == workers()->total_workers(),
  2928          "Non dynamic should use fixed number of workers");
  2929   const uint start_index = n_regions() * worker_i / worker_num;
  2930   return region_at(start_index);
  2933 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2934   HeapRegion* r = g1_policy()->collection_set();
  2935   while (r != NULL) {
  2936     HeapRegion* next = r->next_in_collection_set();
  2937     if (cl->doHeapRegion(r)) {
  2938       cl->incomplete();
  2939       return;
  2941     r = next;
  2945 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2946                                                   HeapRegionClosure *cl) {
  2947   if (r == NULL) {
  2948     // The CSet is empty so there's nothing to do.
  2949     return;
  2952   assert(r->in_collection_set(),
  2953          "Start region must be a member of the collection set.");
  2954   HeapRegion* cur = r;
  2955   while (cur != NULL) {
  2956     HeapRegion* next = cur->next_in_collection_set();
  2957     if (cl->doHeapRegion(cur) && false) {
  2958       cl->incomplete();
  2959       return;
  2961     cur = next;
  2963   cur = g1_policy()->collection_set();
  2964   while (cur != r) {
  2965     HeapRegion* next = cur->next_in_collection_set();
  2966     if (cl->doHeapRegion(cur) && false) {
  2967       cl->incomplete();
  2968       return;
  2970     cur = next;
  2974 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2975   return n_regions() > 0 ? region_at(0) : NULL;
  2979 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2980   Space* res = heap_region_containing(addr);
  2981   return res;
  2984 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2985   Space* sp = space_containing(addr);
  2986   if (sp != NULL) {
  2987     return sp->block_start(addr);
  2989   return NULL;
  2992 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2993   Space* sp = space_containing(addr);
  2994   assert(sp != NULL, "block_size of address outside of heap");
  2995   return sp->block_size(addr);
  2998 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2999   Space* sp = space_containing(addr);
  3000   return sp->block_is_obj(addr);
  3003 bool G1CollectedHeap::supports_tlab_allocation() const {
  3004   return true;
  3007 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  3008   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
  3011 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  3012   return young_list()->eden_used_bytes();
  3015 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
  3016 // must be smaller than the humongous object limit.
  3017 size_t G1CollectedHeap::max_tlab_size() const {
  3018   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
  3021 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  3022   // Return the remaining space in the cur alloc region, but not less than
  3023   // the min TLAB size.
  3025   // Also, this value can be at most the humongous object threshold,
  3026   // since we can't allow tlabs to grow big enough to accommodate
  3027   // humongous objects.
  3029   HeapRegion* hr = _mutator_alloc_region.get();
  3030   size_t max_tlab = max_tlab_size() * wordSize;
  3031   if (hr == NULL) {
  3032     return max_tlab;
  3033   } else {
  3034     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
  3038 size_t G1CollectedHeap::max_capacity() const {
  3039   return _g1_reserved.byte_size();
  3042 jlong G1CollectedHeap::millis_since_last_gc() {
  3043   // assert(false, "NYI");
  3044   return 0;
  3047 void G1CollectedHeap::prepare_for_verify() {
  3048   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3049     ensure_parsability(false);
  3051   g1_rem_set()->prepare_for_verify();
  3054 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  3055                                               VerifyOption vo) {
  3056   switch (vo) {
  3057   case VerifyOption_G1UsePrevMarking:
  3058     return hr->obj_allocated_since_prev_marking(obj);
  3059   case VerifyOption_G1UseNextMarking:
  3060     return hr->obj_allocated_since_next_marking(obj);
  3061   case VerifyOption_G1UseMarkWord:
  3062     return false;
  3063   default:
  3064     ShouldNotReachHere();
  3066   return false; // keep some compilers happy
  3069 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  3070   switch (vo) {
  3071   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  3072   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  3073   case VerifyOption_G1UseMarkWord:    return NULL;
  3074   default:                            ShouldNotReachHere();
  3076   return NULL; // keep some compilers happy
  3079 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  3080   switch (vo) {
  3081   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  3082   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  3083   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  3084   default:                            ShouldNotReachHere();
  3086   return false; // keep some compilers happy
  3089 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  3090   switch (vo) {
  3091   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  3092   case VerifyOption_G1UseNextMarking: return "NTAMS";
  3093   case VerifyOption_G1UseMarkWord:    return "NONE";
  3094   default:                            ShouldNotReachHere();
  3096   return NULL; // keep some compilers happy
  3099 class VerifyRootsClosure: public OopClosure {
  3100 private:
  3101   G1CollectedHeap* _g1h;
  3102   VerifyOption     _vo;
  3103   bool             _failures;
  3104 public:
  3105   // _vo == UsePrevMarking -> use "prev" marking information,
  3106   // _vo == UseNextMarking -> use "next" marking information,
  3107   // _vo == UseMarkWord    -> use mark word from object header.
  3108   VerifyRootsClosure(VerifyOption vo) :
  3109     _g1h(G1CollectedHeap::heap()),
  3110     _vo(vo),
  3111     _failures(false) { }
  3113   bool failures() { return _failures; }
  3115   template <class T> void do_oop_nv(T* p) {
  3116     T heap_oop = oopDesc::load_heap_oop(p);
  3117     if (!oopDesc::is_null(heap_oop)) {
  3118       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3119       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3120         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3121                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3122         if (_vo == VerifyOption_G1UseMarkWord) {
  3123           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3125         obj->print_on(gclog_or_tty);
  3126         _failures = true;
  3131   void do_oop(oop* p)       { do_oop_nv(p); }
  3132   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3133 };
  3135 class G1VerifyCodeRootOopClosure: public OopClosure {
  3136   G1CollectedHeap* _g1h;
  3137   OopClosure* _root_cl;
  3138   nmethod* _nm;
  3139   VerifyOption _vo;
  3140   bool _failures;
  3142   template <class T> void do_oop_work(T* p) {
  3143     // First verify that this root is live
  3144     _root_cl->do_oop(p);
  3146     if (!G1VerifyHeapRegionCodeRoots) {
  3147       // We're not verifying the code roots attached to heap region.
  3148       return;
  3151     // Don't check the code roots during marking verification in a full GC
  3152     if (_vo == VerifyOption_G1UseMarkWord) {
  3153       return;
  3156     // Now verify that the current nmethod (which contains p) is
  3157     // in the code root list of the heap region containing the
  3158     // object referenced by p.
  3160     T heap_oop = oopDesc::load_heap_oop(p);
  3161     if (!oopDesc::is_null(heap_oop)) {
  3162       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3164       // Now fetch the region containing the object
  3165       HeapRegion* hr = _g1h->heap_region_containing(obj);
  3166       HeapRegionRemSet* hrrs = hr->rem_set();
  3167       // Verify that the strong code root list for this region
  3168       // contains the nmethod
  3169       if (!hrrs->strong_code_roots_list_contains(_nm)) {
  3170         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
  3171                               "from nmethod "PTR_FORMAT" not in strong "
  3172                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
  3173                               p, _nm, hr->bottom(), hr->end());
  3174         _failures = true;
  3179 public:
  3180   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
  3181     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
  3183   void do_oop(oop* p) { do_oop_work(p); }
  3184   void do_oop(narrowOop* p) { do_oop_work(p); }
  3186   void set_nmethod(nmethod* nm) { _nm = nm; }
  3187   bool failures() { return _failures; }
  3188 };
  3190 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  3191   G1VerifyCodeRootOopClosure* _oop_cl;
  3193 public:
  3194   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
  3195     _oop_cl(oop_cl) {}
  3197   void do_code_blob(CodeBlob* cb) {
  3198     nmethod* nm = cb->as_nmethod_or_null();
  3199     if (nm != NULL) {
  3200       _oop_cl->set_nmethod(nm);
  3201       nm->oops_do(_oop_cl);
  3204 };
  3206 class YoungRefCounterClosure : public OopClosure {
  3207   G1CollectedHeap* _g1h;
  3208   int              _count;
  3209  public:
  3210   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3211   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3212   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3214   int count() { return _count; }
  3215   void reset_count() { _count = 0; };
  3216 };
  3218 class VerifyKlassClosure: public KlassClosure {
  3219   YoungRefCounterClosure _young_ref_counter_closure;
  3220   OopClosure *_oop_closure;
  3221  public:
  3222   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3223   void do_klass(Klass* k) {
  3224     k->oops_do(_oop_closure);
  3226     _young_ref_counter_closure.reset_count();
  3227     k->oops_do(&_young_ref_counter_closure);
  3228     if (_young_ref_counter_closure.count() > 0) {
  3229       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3232 };
  3234 class VerifyLivenessOopClosure: public OopClosure {
  3235   G1CollectedHeap* _g1h;
  3236   VerifyOption _vo;
  3237 public:
  3238   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3239     _g1h(g1h), _vo(vo)
  3240   { }
  3241   void do_oop(narrowOop *p) { do_oop_work(p); }
  3242   void do_oop(      oop *p) { do_oop_work(p); }
  3244   template <class T> void do_oop_work(T *p) {
  3245     oop obj = oopDesc::load_decode_heap_oop(p);
  3246     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3247               "Dead object referenced by a not dead object");
  3249 };
  3251 class VerifyObjsInRegionClosure: public ObjectClosure {
  3252 private:
  3253   G1CollectedHeap* _g1h;
  3254   size_t _live_bytes;
  3255   HeapRegion *_hr;
  3256   VerifyOption _vo;
  3257 public:
  3258   // _vo == UsePrevMarking -> use "prev" marking information,
  3259   // _vo == UseNextMarking -> use "next" marking information,
  3260   // _vo == UseMarkWord    -> use mark word from object header.
  3261   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3262     : _live_bytes(0), _hr(hr), _vo(vo) {
  3263     _g1h = G1CollectedHeap::heap();
  3265   void do_object(oop o) {
  3266     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3267     assert(o != NULL, "Huh?");
  3268     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3269       // If the object is alive according to the mark word,
  3270       // then verify that the marking information agrees.
  3271       // Note we can't verify the contra-positive of the
  3272       // above: if the object is dead (according to the mark
  3273       // word), it may not be marked, or may have been marked
  3274       // but has since became dead, or may have been allocated
  3275       // since the last marking.
  3276       if (_vo == VerifyOption_G1UseMarkWord) {
  3277         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3280       o->oop_iterate_no_header(&isLive);
  3281       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3282         size_t obj_size = o->size();    // Make sure we don't overflow
  3283         _live_bytes += (obj_size * HeapWordSize);
  3287   size_t live_bytes() { return _live_bytes; }
  3288 };
  3290 class PrintObjsInRegionClosure : public ObjectClosure {
  3291   HeapRegion *_hr;
  3292   G1CollectedHeap *_g1;
  3293 public:
  3294   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3295     _g1 = G1CollectedHeap::heap();
  3296   };
  3298   void do_object(oop o) {
  3299     if (o != NULL) {
  3300       HeapWord *start = (HeapWord *) o;
  3301       size_t word_sz = o->size();
  3302       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3303                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3304                           (void*) o, word_sz,
  3305                           _g1->isMarkedPrev(o),
  3306                           _g1->isMarkedNext(o),
  3307                           _hr->obj_allocated_since_prev_marking(o));
  3308       HeapWord *end = start + word_sz;
  3309       HeapWord *cur;
  3310       int *val;
  3311       for (cur = start; cur < end; cur++) {
  3312         val = (int *) cur;
  3313         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3317 };
  3319 class VerifyRegionClosure: public HeapRegionClosure {
  3320 private:
  3321   bool             _par;
  3322   VerifyOption     _vo;
  3323   bool             _failures;
  3324 public:
  3325   // _vo == UsePrevMarking -> use "prev" marking information,
  3326   // _vo == UseNextMarking -> use "next" marking information,
  3327   // _vo == UseMarkWord    -> use mark word from object header.
  3328   VerifyRegionClosure(bool par, VerifyOption vo)
  3329     : _par(par),
  3330       _vo(vo),
  3331       _failures(false) {}
  3333   bool failures() {
  3334     return _failures;
  3337   bool doHeapRegion(HeapRegion* r) {
  3338     if (!r->continuesHumongous()) {
  3339       bool failures = false;
  3340       r->verify(_vo, &failures);
  3341       if (failures) {
  3342         _failures = true;
  3343       } else {
  3344         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3345         r->object_iterate(&not_dead_yet_cl);
  3346         if (_vo != VerifyOption_G1UseNextMarking) {
  3347           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3348             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3349                                    "max_live_bytes "SIZE_FORMAT" "
  3350                                    "< calculated "SIZE_FORMAT,
  3351                                    r->bottom(), r->end(),
  3352                                    r->max_live_bytes(),
  3353                                  not_dead_yet_cl.live_bytes());
  3354             _failures = true;
  3356         } else {
  3357           // When vo == UseNextMarking we cannot currently do a sanity
  3358           // check on the live bytes as the calculation has not been
  3359           // finalized yet.
  3363     return false; // stop the region iteration if we hit a failure
  3365 };
  3367 // This is the task used for parallel verification of the heap regions
  3369 class G1ParVerifyTask: public AbstractGangTask {
  3370 private:
  3371   G1CollectedHeap* _g1h;
  3372   VerifyOption     _vo;
  3373   bool             _failures;
  3375 public:
  3376   // _vo == UsePrevMarking -> use "prev" marking information,
  3377   // _vo == UseNextMarking -> use "next" marking information,
  3378   // _vo == UseMarkWord    -> use mark word from object header.
  3379   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3380     AbstractGangTask("Parallel verify task"),
  3381     _g1h(g1h),
  3382     _vo(vo),
  3383     _failures(false) { }
  3385   bool failures() {
  3386     return _failures;
  3389   void work(uint worker_id) {
  3390     HandleMark hm;
  3391     VerifyRegionClosure blk(true, _vo);
  3392     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3393                                           _g1h->workers()->active_workers(),
  3394                                           HeapRegion::ParVerifyClaimValue);
  3395     if (blk.failures()) {
  3396       _failures = true;
  3399 };
  3401 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  3402   if (SafepointSynchronize::is_at_safepoint()) {
  3403     assert(Thread::current()->is_VM_thread(),
  3404            "Expected to be executed serially by the VM thread at this point");
  3406     if (!silent) { gclog_or_tty->print("Roots "); }
  3407     VerifyRootsClosure rootsCl(vo);
  3408     VerifyKlassClosure klassCl(this, &rootsCl);
  3409     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
  3411     // We apply the relevant closures to all the oops in the
  3412     // system dictionary, class loader data graph, the string table
  3413     // and the nmethods in the code cache.
  3414     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
  3415     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
  3417     process_all_roots(true,            // activate StrongRootsScope
  3418                       SO_AllCodeCache, // roots scanning options
  3419                       &rootsCl,
  3420                       &cldCl,
  3421                       &blobsCl);
  3423     bool failures = rootsCl.failures() || codeRootsCl.failures();
  3425     if (vo != VerifyOption_G1UseMarkWord) {
  3426       // If we're verifying during a full GC then the region sets
  3427       // will have been torn down at the start of the GC. Therefore
  3428       // verifying the region sets will fail. So we only verify
  3429       // the region sets when not in a full GC.
  3430       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3431       verify_region_sets();
  3434     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3435     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3436       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3437              "sanity check");
  3439       G1ParVerifyTask task(this, vo);
  3440       assert(UseDynamicNumberOfGCThreads ||
  3441         workers()->active_workers() == workers()->total_workers(),
  3442         "If not dynamic should be using all the workers");
  3443       int n_workers = workers()->active_workers();
  3444       set_par_threads(n_workers);
  3445       workers()->run_task(&task);
  3446       set_par_threads(0);
  3447       if (task.failures()) {
  3448         failures = true;
  3451       // Checks that the expected amount of parallel work was done.
  3452       // The implication is that n_workers is > 0.
  3453       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3454              "sanity check");
  3456       reset_heap_region_claim_values();
  3458       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3459              "sanity check");
  3460     } else {
  3461       VerifyRegionClosure blk(false, vo);
  3462       heap_region_iterate(&blk);
  3463       if (blk.failures()) {
  3464         failures = true;
  3467     if (!silent) gclog_or_tty->print("RemSet ");
  3468     rem_set()->verify();
  3470     if (G1StringDedup::is_enabled()) {
  3471       if (!silent) gclog_or_tty->print("StrDedup ");
  3472       G1StringDedup::verify();
  3475     if (failures) {
  3476       gclog_or_tty->print_cr("Heap:");
  3477       // It helps to have the per-region information in the output to
  3478       // help us track down what went wrong. This is why we call
  3479       // print_extended_on() instead of print_on().
  3480       print_extended_on(gclog_or_tty);
  3481       gclog_or_tty->cr();
  3482 #ifndef PRODUCT
  3483       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3484         concurrent_mark()->print_reachable("at-verification-failure",
  3485                                            vo, false /* all */);
  3487 #endif
  3488       gclog_or_tty->flush();
  3490     guarantee(!failures, "there should not have been any failures");
  3491   } else {
  3492     if (!silent) {
  3493       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
  3494       if (G1StringDedup::is_enabled()) {
  3495         gclog_or_tty->print(", StrDedup");
  3497       gclog_or_tty->print(") ");
  3502 void G1CollectedHeap::verify(bool silent) {
  3503   verify(silent, VerifyOption_G1UsePrevMarking);
  3506 double G1CollectedHeap::verify(bool guard, const char* msg) {
  3507   double verify_time_ms = 0.0;
  3509   if (guard && total_collections() >= VerifyGCStartAt) {
  3510     double verify_start = os::elapsedTime();
  3511     HandleMark hm;  // Discard invalid handles created during verification
  3512     prepare_for_verify();
  3513     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  3514     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  3517   return verify_time_ms;
  3520 void G1CollectedHeap::verify_before_gc() {
  3521   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  3522   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  3525 void G1CollectedHeap::verify_after_gc() {
  3526   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  3527   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  3530 class PrintRegionClosure: public HeapRegionClosure {
  3531   outputStream* _st;
  3532 public:
  3533   PrintRegionClosure(outputStream* st) : _st(st) {}
  3534   bool doHeapRegion(HeapRegion* r) {
  3535     r->print_on(_st);
  3536     return false;
  3538 };
  3540 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3541                                        const HeapRegion* hr,
  3542                                        const VerifyOption vo) const {
  3543   switch (vo) {
  3544   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  3545   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  3546   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3547   default:                            ShouldNotReachHere();
  3549   return false; // keep some compilers happy
  3552 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3553                                        const VerifyOption vo) const {
  3554   switch (vo) {
  3555   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  3556   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  3557   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3558   default:                            ShouldNotReachHere();
  3560   return false; // keep some compilers happy
  3563 void G1CollectedHeap::print_on(outputStream* st) const {
  3564   st->print(" %-20s", "garbage-first heap");
  3565   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3566             capacity()/K, used_unlocked()/K);
  3567   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3568             _g1_storage.low_boundary(),
  3569             _g1_storage.high(),
  3570             _g1_storage.high_boundary());
  3571   st->cr();
  3572   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3573   uint young_regions = _young_list->length();
  3574   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3575             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3576   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3577   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3578             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3579   st->cr();
  3580   MetaspaceAux::print_on(st);
  3583 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3584   print_on(st);
  3586   // Print the per-region information.
  3587   st->cr();
  3588   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3589                "HS=humongous(starts), HC=humongous(continues), "
  3590                "CS=collection set, F=free, TS=gc time stamp, "
  3591                "PTAMS=previous top-at-mark-start, "
  3592                "NTAMS=next top-at-mark-start)");
  3593   PrintRegionClosure blk(st);
  3594   heap_region_iterate(&blk);
  3597 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3598   this->CollectedHeap::print_on_error(st);
  3600   if (_cm != NULL) {
  3601     st->cr();
  3602     _cm->print_on_error(st);
  3606 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3607   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3608     workers()->print_worker_threads_on(st);
  3610   _cmThread->print_on(st);
  3611   st->cr();
  3612   _cm->print_worker_threads_on(st);
  3613   _cg1r->print_worker_threads_on(st);
  3614   if (G1StringDedup::is_enabled()) {
  3615     G1StringDedup::print_worker_threads_on(st);
  3619 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3620   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3621     workers()->threads_do(tc);
  3623   tc->do_thread(_cmThread);
  3624   _cg1r->threads_do(tc);
  3625   if (G1StringDedup::is_enabled()) {
  3626     G1StringDedup::threads_do(tc);
  3630 void G1CollectedHeap::print_tracing_info() const {
  3631   // We'll overload this to mean "trace GC pause statistics."
  3632   if (TraceGen0Time || TraceGen1Time) {
  3633     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3634     // to that.
  3635     g1_policy()->print_tracing_info();
  3637   if (G1SummarizeRSetStats) {
  3638     g1_rem_set()->print_summary_info();
  3640   if (G1SummarizeConcMark) {
  3641     concurrent_mark()->print_summary_info();
  3643   g1_policy()->print_yg_surv_rate_info();
  3644   SpecializationStats::print();
  3647 #ifndef PRODUCT
  3648 // Helpful for debugging RSet issues.
  3650 class PrintRSetsClosure : public HeapRegionClosure {
  3651 private:
  3652   const char* _msg;
  3653   size_t _occupied_sum;
  3655 public:
  3656   bool doHeapRegion(HeapRegion* r) {
  3657     HeapRegionRemSet* hrrs = r->rem_set();
  3658     size_t occupied = hrrs->occupied();
  3659     _occupied_sum += occupied;
  3661     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3662                            HR_FORMAT_PARAMS(r));
  3663     if (occupied == 0) {
  3664       gclog_or_tty->print_cr("  RSet is empty");
  3665     } else {
  3666       hrrs->print();
  3668     gclog_or_tty->print_cr("----------");
  3669     return false;
  3672   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3673     gclog_or_tty->cr();
  3674     gclog_or_tty->print_cr("========================================");
  3675     gclog_or_tty->print_cr("%s", msg);
  3676     gclog_or_tty->cr();
  3679   ~PrintRSetsClosure() {
  3680     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3681     gclog_or_tty->print_cr("========================================");
  3682     gclog_or_tty->cr();
  3684 };
  3686 void G1CollectedHeap::print_cset_rsets() {
  3687   PrintRSetsClosure cl("Printing CSet RSets");
  3688   collection_set_iterate(&cl);
  3691 void G1CollectedHeap::print_all_rsets() {
  3692   PrintRSetsClosure cl("Printing All RSets");;
  3693   heap_region_iterate(&cl);
  3695 #endif // PRODUCT
  3697 G1CollectedHeap* G1CollectedHeap::heap() {
  3698   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3699          "not a garbage-first heap");
  3700   return _g1h;
  3703 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3704   // always_do_update_barrier = false;
  3705   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3706   // Fill TLAB's and such
  3707   accumulate_statistics_all_tlabs();
  3708   ensure_parsability(true);
  3710   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
  3711       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3712     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  3716 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3718   if (G1SummarizeRSetStats &&
  3719       (G1SummarizeRSetStatsPeriod > 0) &&
  3720       // we are at the end of the GC. Total collections has already been increased.
  3721       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
  3722     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
  3725   // FIXME: what is this about?
  3726   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3727   // is set.
  3728   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3729                         "derived pointer present"));
  3730   // always_do_update_barrier = true;
  3732   resize_all_tlabs();
  3734   // We have just completed a GC. Update the soft reference
  3735   // policy with the new heap occupancy
  3736   Universe::update_heap_info_at_gc();
  3739 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3740                                                unsigned int gc_count_before,
  3741                                                bool* succeeded,
  3742                                                GCCause::Cause gc_cause) {
  3743   assert_heap_not_locked_and_not_at_safepoint();
  3744   g1_policy()->record_stop_world_start();
  3745   VM_G1IncCollectionPause op(gc_count_before,
  3746                              word_size,
  3747                              false, /* should_initiate_conc_mark */
  3748                              g1_policy()->max_pause_time_ms(),
  3749                              gc_cause);
  3750   VMThread::execute(&op);
  3752   HeapWord* result = op.result();
  3753   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3754   assert(result == NULL || ret_succeeded,
  3755          "the result should be NULL if the VM did not succeed");
  3756   *succeeded = ret_succeeded;
  3758   assert_heap_not_locked();
  3759   return result;
  3762 void
  3763 G1CollectedHeap::doConcurrentMark() {
  3764   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3765   if (!_cmThread->in_progress()) {
  3766     _cmThread->set_started();
  3767     CGC_lock->notify();
  3771 size_t G1CollectedHeap::pending_card_num() {
  3772   size_t extra_cards = 0;
  3773   JavaThread *curr = Threads::first();
  3774   while (curr != NULL) {
  3775     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3776     extra_cards += dcq.size();
  3777     curr = curr->next();
  3779   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3780   size_t buffer_size = dcqs.buffer_size();
  3781   size_t buffer_num = dcqs.completed_buffers_num();
  3783   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3784   // in bytes - not the number of 'entries'. We need to convert
  3785   // into a number of cards.
  3786   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3789 size_t G1CollectedHeap::cards_scanned() {
  3790   return g1_rem_set()->cardsScanned();
  3793 void
  3794 G1CollectedHeap::setup_surviving_young_words() {
  3795   assert(_surviving_young_words == NULL, "pre-condition");
  3796   uint array_length = g1_policy()->young_cset_region_length();
  3797   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3798   if (_surviving_young_words == NULL) {
  3799     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
  3800                           "Not enough space for young surv words summary.");
  3802   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3803 #ifdef ASSERT
  3804   for (uint i = 0;  i < array_length; ++i) {
  3805     assert( _surviving_young_words[i] == 0, "memset above" );
  3807 #endif // !ASSERT
  3810 void
  3811 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3812   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3813   uint array_length = g1_policy()->young_cset_region_length();
  3814   for (uint i = 0; i < array_length; ++i) {
  3815     _surviving_young_words[i] += surv_young_words[i];
  3819 void
  3820 G1CollectedHeap::cleanup_surviving_young_words() {
  3821   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3822   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3823   _surviving_young_words = NULL;
  3826 #ifdef ASSERT
  3827 class VerifyCSetClosure: public HeapRegionClosure {
  3828 public:
  3829   bool doHeapRegion(HeapRegion* hr) {
  3830     // Here we check that the CSet region's RSet is ready for parallel
  3831     // iteration. The fields that we'll verify are only manipulated
  3832     // when the region is part of a CSet and is collected. Afterwards,
  3833     // we reset these fields when we clear the region's RSet (when the
  3834     // region is freed) so they are ready when the region is
  3835     // re-allocated. The only exception to this is if there's an
  3836     // evacuation failure and instead of freeing the region we leave
  3837     // it in the heap. In that case, we reset these fields during
  3838     // evacuation failure handling.
  3839     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3841     // Here's a good place to add any other checks we'd like to
  3842     // perform on CSet regions.
  3843     return false;
  3845 };
  3846 #endif // ASSERT
  3848 #if TASKQUEUE_STATS
  3849 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3850   st->print_raw_cr("GC Task Stats");
  3851   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3852   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3855 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3856   print_taskqueue_stats_hdr(st);
  3858   TaskQueueStats totals;
  3859   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3860   for (int i = 0; i < n; ++i) {
  3861     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3862     totals += task_queue(i)->stats;
  3864   st->print_raw("tot "); totals.print(st); st->cr();
  3866   DEBUG_ONLY(totals.verify());
  3869 void G1CollectedHeap::reset_taskqueue_stats() {
  3870   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3871   for (int i = 0; i < n; ++i) {
  3872     task_queue(i)->stats.reset();
  3875 #endif // TASKQUEUE_STATS
  3877 void G1CollectedHeap::log_gc_header() {
  3878   if (!G1Log::fine()) {
  3879     return;
  3882   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
  3884   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3885     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3886     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3888   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3891 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3892   if (!G1Log::fine()) {
  3893     return;
  3896   if (G1Log::finer()) {
  3897     if (evacuation_failed()) {
  3898       gclog_or_tty->print(" (to-space exhausted)");
  3900     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3901     g1_policy()->phase_times()->note_gc_end();
  3902     g1_policy()->phase_times()->print(pause_time_sec);
  3903     g1_policy()->print_detailed_heap_transition();
  3904   } else {
  3905     if (evacuation_failed()) {
  3906       gclog_or_tty->print("--");
  3908     g1_policy()->print_heap_transition();
  3909     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3911   gclog_or_tty->flush();
  3914 bool
  3915 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3916   assert_at_safepoint(true /* should_be_vm_thread */);
  3917   guarantee(!is_gc_active(), "collection is not reentrant");
  3919   if (GC_locker::check_active_before_gc()) {
  3920     return false;
  3923   _gc_timer_stw->register_gc_start();
  3925   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
  3927   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3928   ResourceMark rm;
  3930   print_heap_before_gc();
  3931   trace_heap_before_gc(_gc_tracer_stw);
  3933   verify_region_sets_optional();
  3934   verify_dirty_young_regions();
  3936   // This call will decide whether this pause is an initial-mark
  3937   // pause. If it is, during_initial_mark_pause() will return true
  3938   // for the duration of this pause.
  3939   g1_policy()->decide_on_conc_mark_initiation();
  3941   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3942   assert(!g1_policy()->during_initial_mark_pause() ||
  3943           g1_policy()->gcs_are_young(), "sanity");
  3945   // We also do not allow mixed GCs during marking.
  3946   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3948   // Record whether this pause is an initial mark. When the current
  3949   // thread has completed its logging output and it's safe to signal
  3950   // the CM thread, the flag's value in the policy has been reset.
  3951   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3953   // Inner scope for scope based logging, timers, and stats collection
  3955     EvacuationInfo evacuation_info;
  3957     if (g1_policy()->during_initial_mark_pause()) {
  3958       // We are about to start a marking cycle, so we increment the
  3959       // full collection counter.
  3960       increment_old_marking_cycles_started();
  3961       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
  3964     _gc_tracer_stw->report_yc_type(yc_type());
  3966     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3968     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3969                                 workers()->active_workers() : 1);
  3970     double pause_start_sec = os::elapsedTime();
  3971     g1_policy()->phase_times()->note_gc_start(active_workers);
  3972     log_gc_header();
  3974     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3975     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3977     // If the secondary_free_list is not empty, append it to the
  3978     // free_list. No need to wait for the cleanup operation to finish;
  3979     // the region allocation code will check the secondary_free_list
  3980     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3981     // set, skip this step so that the region allocation code has to
  3982     // get entries from the secondary_free_list.
  3983     if (!G1StressConcRegionFreeing) {
  3984       append_secondary_free_list_if_not_empty_with_lock();
  3987     assert(check_young_list_well_formed(), "young list should be well formed");
  3988     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3989            "sanity check");
  3991     // Don't dynamically change the number of GC threads this early.  A value of
  3992     // 0 is used to indicate serial work.  When parallel work is done,
  3993     // it will be set.
  3995     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3996       IsGCActiveMark x;
  3998       gc_prologue(false);
  3999       increment_total_collections(false /* full gc */);
  4000       increment_gc_time_stamp();
  4002       verify_before_gc();
  4003       check_bitmaps("GC Start");
  4005       COMPILER2_PRESENT(DerivedPointerTable::clear());
  4007       // Please see comment in g1CollectedHeap.hpp and
  4008       // G1CollectedHeap::ref_processing_init() to see how
  4009       // reference processing currently works in G1.
  4011       // Enable discovery in the STW reference processor
  4012       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  4013                                             true /*verify_no_refs*/);
  4016         // We want to temporarily turn off discovery by the
  4017         // CM ref processor, if necessary, and turn it back on
  4018         // on again later if we do. Using a scoped
  4019         // NoRefDiscovery object will do this.
  4020         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  4022         // Forget the current alloc region (we might even choose it to be part
  4023         // of the collection set!).
  4024         release_mutator_alloc_region();
  4026         // We should call this after we retire the mutator alloc
  4027         // region(s) so that all the ALLOC / RETIRE events are generated
  4028         // before the start GC event.
  4029         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  4031         // This timing is only used by the ergonomics to handle our pause target.
  4032         // It is unclear why this should not include the full pause. We will
  4033         // investigate this in CR 7178365.
  4034         //
  4035         // Preserving the old comment here if that helps the investigation:
  4036         //
  4037         // The elapsed time induced by the start time below deliberately elides
  4038         // the possible verification above.
  4039         double sample_start_time_sec = os::elapsedTime();
  4041 #if YOUNG_LIST_VERBOSE
  4042         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  4043         _young_list->print();
  4044         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4045 #endif // YOUNG_LIST_VERBOSE
  4047         g1_policy()->record_collection_pause_start(sample_start_time_sec);
  4049         double scan_wait_start = os::elapsedTime();
  4050         // We have to wait until the CM threads finish scanning the
  4051         // root regions as it's the only way to ensure that all the
  4052         // objects on them have been correctly scanned before we start
  4053         // moving them during the GC.
  4054         bool waited = _cm->root_regions()->wait_until_scan_finished();
  4055         double wait_time_ms = 0.0;
  4056         if (waited) {
  4057           double scan_wait_end = os::elapsedTime();
  4058           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  4060         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  4062 #if YOUNG_LIST_VERBOSE
  4063         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  4064         _young_list->print();
  4065 #endif // YOUNG_LIST_VERBOSE
  4067         if (g1_policy()->during_initial_mark_pause()) {
  4068           concurrent_mark()->checkpointRootsInitialPre();
  4071 #if YOUNG_LIST_VERBOSE
  4072         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  4073         _young_list->print();
  4074         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4075 #endif // YOUNG_LIST_VERBOSE
  4077         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
  4079         _cm->note_start_of_gc();
  4080         // We should not verify the per-thread SATB buffers given that
  4081         // we have not filtered them yet (we'll do so during the
  4082         // GC). We also call this after finalize_cset() to
  4083         // ensure that the CSet has been finalized.
  4084         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4085                                  true  /* verify_enqueued_buffers */,
  4086                                  false /* verify_thread_buffers */,
  4087                                  true  /* verify_fingers */);
  4089         if (_hr_printer.is_active()) {
  4090           HeapRegion* hr = g1_policy()->collection_set();
  4091           while (hr != NULL) {
  4092             G1HRPrinter::RegionType type;
  4093             if (!hr->is_young()) {
  4094               type = G1HRPrinter::Old;
  4095             } else if (hr->is_survivor()) {
  4096               type = G1HRPrinter::Survivor;
  4097             } else {
  4098               type = G1HRPrinter::Eden;
  4100             _hr_printer.cset(hr);
  4101             hr = hr->next_in_collection_set();
  4105 #ifdef ASSERT
  4106         VerifyCSetClosure cl;
  4107         collection_set_iterate(&cl);
  4108 #endif // ASSERT
  4110         setup_surviving_young_words();
  4112         // Initialize the GC alloc regions.
  4113         init_gc_alloc_regions(evacuation_info);
  4115         // Actually do the work...
  4116         evacuate_collection_set(evacuation_info);
  4118         // We do this to mainly verify the per-thread SATB buffers
  4119         // (which have been filtered by now) since we didn't verify
  4120         // them earlier. No point in re-checking the stacks / enqueued
  4121         // buffers given that the CSet has not changed since last time
  4122         // we checked.
  4123         _cm->verify_no_cset_oops(false /* verify_stacks */,
  4124                                  false /* verify_enqueued_buffers */,
  4125                                  true  /* verify_thread_buffers */,
  4126                                  true  /* verify_fingers */);
  4128         free_collection_set(g1_policy()->collection_set(), evacuation_info);
  4129         g1_policy()->clear_collection_set();
  4131         cleanup_surviving_young_words();
  4133         // Start a new incremental collection set for the next pause.
  4134         g1_policy()->start_incremental_cset_building();
  4136         clear_cset_fast_test();
  4138         _young_list->reset_sampled_info();
  4140         // Don't check the whole heap at this point as the
  4141         // GC alloc regions from this pause have been tagged
  4142         // as survivors and moved on to the survivor list.
  4143         // Survivor regions will fail the !is_young() check.
  4144         assert(check_young_list_empty(false /* check_heap */),
  4145           "young list should be empty");
  4147 #if YOUNG_LIST_VERBOSE
  4148         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  4149         _young_list->print();
  4150 #endif // YOUNG_LIST_VERBOSE
  4152         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  4153                                              _young_list->first_survivor_region(),
  4154                                              _young_list->last_survivor_region());
  4156         _young_list->reset_auxilary_lists();
  4158         if (evacuation_failed()) {
  4159           _summary_bytes_used = recalculate_used();
  4160           uint n_queues = MAX2((int)ParallelGCThreads, 1);
  4161           for (uint i = 0; i < n_queues; i++) {
  4162             if (_evacuation_failed_info_array[i].has_failed()) {
  4163               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
  4166         } else {
  4167           // The "used" of the the collection set have already been subtracted
  4168           // when they were freed.  Add in the bytes evacuated.
  4169           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  4172         if (g1_policy()->during_initial_mark_pause()) {
  4173           // We have to do this before we notify the CM threads that
  4174           // they can start working to make sure that all the
  4175           // appropriate initialization is done on the CM object.
  4176           concurrent_mark()->checkpointRootsInitialPost();
  4177           set_marking_started();
  4178           // Note that we don't actually trigger the CM thread at
  4179           // this point. We do that later when we're sure that
  4180           // the current thread has completed its logging output.
  4183         allocate_dummy_regions();
  4185 #if YOUNG_LIST_VERBOSE
  4186         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  4187         _young_list->print();
  4188         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4189 #endif // YOUNG_LIST_VERBOSE
  4191         init_mutator_alloc_region();
  4194           size_t expand_bytes = g1_policy()->expansion_amount();
  4195           if (expand_bytes > 0) {
  4196             size_t bytes_before = capacity();
  4197             // No need for an ergo verbose message here,
  4198             // expansion_amount() does this when it returns a value > 0.
  4199             if (!expand(expand_bytes)) {
  4200               // We failed to expand the heap so let's verify that
  4201               // committed/uncommitted amount match the backing store
  4202               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  4203               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  4208         // We redo the verification but now wrt to the new CSet which
  4209         // has just got initialized after the previous CSet was freed.
  4210         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4211                                  true  /* verify_enqueued_buffers */,
  4212                                  true  /* verify_thread_buffers */,
  4213                                  true  /* verify_fingers */);
  4214         _cm->note_end_of_gc();
  4216         // This timing is only used by the ergonomics to handle our pause target.
  4217         // It is unclear why this should not include the full pause. We will
  4218         // investigate this in CR 7178365.
  4219         double sample_end_time_sec = os::elapsedTime();
  4220         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4221         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
  4223         MemoryService::track_memory_usage();
  4225         // In prepare_for_verify() below we'll need to scan the deferred
  4226         // update buffers to bring the RSets up-to-date if
  4227         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4228         // the update buffers we'll probably need to scan cards on the
  4229         // regions we just allocated to (i.e., the GC alloc
  4230         // regions). However, during the last GC we called
  4231         // set_saved_mark() on all the GC alloc regions, so card
  4232         // scanning might skip the [saved_mark_word()...top()] area of
  4233         // those regions (i.e., the area we allocated objects into
  4234         // during the last GC). But it shouldn't. Given that
  4235         // saved_mark_word() is conditional on whether the GC time stamp
  4236         // on the region is current or not, by incrementing the GC time
  4237         // stamp here we invalidate all the GC time stamps on all the
  4238         // regions and saved_mark_word() will simply return top() for
  4239         // all the regions. This is a nicer way of ensuring this rather
  4240         // than iterating over the regions and fixing them. In fact, the
  4241         // GC time stamp increment here also ensures that
  4242         // saved_mark_word() will return top() between pauses, i.e.,
  4243         // during concurrent refinement. So we don't need the
  4244         // is_gc_active() check to decided which top to use when
  4245         // scanning cards (see CR 7039627).
  4246         increment_gc_time_stamp();
  4248         verify_after_gc();
  4249         check_bitmaps("GC End");
  4251         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4252         ref_processor_stw()->verify_no_references_recorded();
  4254         // CM reference discovery will be re-enabled if necessary.
  4257       // We should do this after we potentially expand the heap so
  4258       // that all the COMMIT events are generated before the end GC
  4259       // event, and after we retire the GC alloc regions so that all
  4260       // RETIRE events are generated before the end GC event.
  4261       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4263       if (mark_in_progress()) {
  4264         concurrent_mark()->update_g1_committed();
  4267 #ifdef TRACESPINNING
  4268       ParallelTaskTerminator::print_termination_counts();
  4269 #endif
  4271       gc_epilogue(false);
  4274     // Print the remainder of the GC log output.
  4275     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4277     // It is not yet to safe to tell the concurrent mark to
  4278     // start as we have some optional output below. We don't want the
  4279     // output from the concurrent mark thread interfering with this
  4280     // logging output either.
  4282     _hrs.verify_optional();
  4283     verify_region_sets_optional();
  4285     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4286     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4288     print_heap_after_gc();
  4289     trace_heap_after_gc(_gc_tracer_stw);
  4291     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4292     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4293     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4294     // before any GC notifications are raised.
  4295     g1mm()->update_sizes();
  4297     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
  4298     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
  4299     _gc_timer_stw->register_gc_end();
  4300     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  4302   // It should now be safe to tell the concurrent mark thread to start
  4303   // without its logging output interfering with the logging output
  4304   // that came from the pause.
  4306   if (should_start_conc_mark) {
  4307     // CAUTION: after the doConcurrentMark() call below,
  4308     // the concurrent marking thread(s) could be running
  4309     // concurrently with us. Make sure that anything after
  4310     // this point does not assume that we are the only GC thread
  4311     // running. Note: of course, the actual marking work will
  4312     // not start until the safepoint itself is released in
  4313     // SuspendibleThreadSet::desynchronize().
  4314     doConcurrentMark();
  4317   return true;
  4320 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4322   size_t gclab_word_size;
  4323   switch (purpose) {
  4324     case GCAllocForSurvived:
  4325       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4326       break;
  4327     case GCAllocForTenured:
  4328       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4329       break;
  4330     default:
  4331       assert(false, "unknown GCAllocPurpose");
  4332       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4333       break;
  4336   // Prevent humongous PLAB sizes for two reasons:
  4337   // * PLABs are allocated using a similar paths as oops, but should
  4338   //   never be in a humongous region
  4339   // * Allowing humongous PLABs needlessly churns the region free lists
  4340   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4343 void G1CollectedHeap::init_mutator_alloc_region() {
  4344   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4345   _mutator_alloc_region.init();
  4348 void G1CollectedHeap::release_mutator_alloc_region() {
  4349   _mutator_alloc_region.release();
  4350   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4353 void G1CollectedHeap::use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info) {
  4354   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4355   _retained_old_gc_alloc_region = NULL;
  4357   // We will discard the current GC alloc region if:
  4358   // a) it's in the collection set (it can happen!),
  4359   // b) it's already full (no point in using it),
  4360   // c) it's empty (this means that it was emptied during
  4361   // a cleanup and it should be on the free list now), or
  4362   // d) it's humongous (this means that it was emptied
  4363   // during a cleanup and was added to the free list, but
  4364   // has been subsequently used to allocate a humongous
  4365   // object that may be less than the region size).
  4366   if (retained_region != NULL &&
  4367       !retained_region->in_collection_set() &&
  4368       !(retained_region->top() == retained_region->end()) &&
  4369       !retained_region->is_empty() &&
  4370       !retained_region->isHumongous()) {
  4371     retained_region->record_top_and_timestamp();
  4372     // The retained region was added to the old region set when it was
  4373     // retired. We have to remove it now, since we don't allow regions
  4374     // we allocate to in the region sets. We'll re-add it later, when
  4375     // it's retired again.
  4376     _old_set.remove(retained_region);
  4377     bool during_im = g1_policy()->during_initial_mark_pause();
  4378     retained_region->note_start_of_copying(during_im);
  4379     _old_gc_alloc_region.set(retained_region);
  4380     _hr_printer.reuse(retained_region);
  4381     evacuation_info.set_alloc_regions_used_before(retained_region->used());
  4385 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
  4386   assert_at_safepoint(true /* should_be_vm_thread */);
  4388   _survivor_gc_alloc_region.init();
  4389   _old_gc_alloc_region.init();
  4391   use_retained_old_gc_alloc_region(evacuation_info);
  4394 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
  4395   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
  4396                                          _old_gc_alloc_region.count());
  4397   _survivor_gc_alloc_region.release();
  4398   // If we have an old GC alloc region to release, we'll save it in
  4399   // _retained_old_gc_alloc_region. If we don't
  4400   // _retained_old_gc_alloc_region will become NULL. This is what we
  4401   // want either way so no reason to check explicitly for either
  4402   // condition.
  4403   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4405   if (ResizePLAB) {
  4406     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4407     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4411 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4412   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4413   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4414   _retained_old_gc_alloc_region = NULL;
  4417 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4418   _drain_in_progress = false;
  4419   set_evac_failure_closure(cl);
  4420   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4423 void G1CollectedHeap::finalize_for_evac_failure() {
  4424   assert(_evac_failure_scan_stack != NULL &&
  4425          _evac_failure_scan_stack->length() == 0,
  4426          "Postcondition");
  4427   assert(!_drain_in_progress, "Postcondition");
  4428   delete _evac_failure_scan_stack;
  4429   _evac_failure_scan_stack = NULL;
  4432 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4433   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4435   double remove_self_forwards_start = os::elapsedTime();
  4437   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4439   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4440     set_par_threads();
  4441     workers()->run_task(&rsfp_task);
  4442     set_par_threads(0);
  4443   } else {
  4444     rsfp_task.work(0);
  4447   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4449   // Reset the claim values in the regions in the collection set.
  4450   reset_cset_heap_region_claim_values();
  4452   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4454   // Now restore saved marks, if any.
  4455   assert(_objs_with_preserved_marks.size() ==
  4456             _preserved_marks_of_objs.size(), "Both or none.");
  4457   while (!_objs_with_preserved_marks.is_empty()) {
  4458     oop obj = _objs_with_preserved_marks.pop();
  4459     markOop m = _preserved_marks_of_objs.pop();
  4460     obj->set_mark(m);
  4462   _objs_with_preserved_marks.clear(true);
  4463   _preserved_marks_of_objs.clear(true);
  4465   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
  4468 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4469   _evac_failure_scan_stack->push(obj);
  4472 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4473   assert(_evac_failure_scan_stack != NULL, "precondition");
  4475   while (_evac_failure_scan_stack->length() > 0) {
  4476      oop obj = _evac_failure_scan_stack->pop();
  4477      _evac_failure_closure->set_region(heap_region_containing(obj));
  4478      obj->oop_iterate_backwards(_evac_failure_closure);
  4482 oop
  4483 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
  4484                                                oop old) {
  4485   assert(obj_in_cs(old),
  4486          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4487                  (HeapWord*) old));
  4488   markOop m = old->mark();
  4489   oop forward_ptr = old->forward_to_atomic(old);
  4490   if (forward_ptr == NULL) {
  4491     // Forward-to-self succeeded.
  4492     assert(_par_scan_state != NULL, "par scan state");
  4493     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4494     uint queue_num = _par_scan_state->queue_num();
  4496     _evacuation_failed = true;
  4497     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
  4498     if (_evac_failure_closure != cl) {
  4499       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4500       assert(!_drain_in_progress,
  4501              "Should only be true while someone holds the lock.");
  4502       // Set the global evac-failure closure to the current thread's.
  4503       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4504       set_evac_failure_closure(cl);
  4505       // Now do the common part.
  4506       handle_evacuation_failure_common(old, m);
  4507       // Reset to NULL.
  4508       set_evac_failure_closure(NULL);
  4509     } else {
  4510       // The lock is already held, and this is recursive.
  4511       assert(_drain_in_progress, "This should only be the recursive case.");
  4512       handle_evacuation_failure_common(old, m);
  4514     return old;
  4515   } else {
  4516     // Forward-to-self failed. Either someone else managed to allocate
  4517     // space for this object (old != forward_ptr) or they beat us in
  4518     // self-forwarding it (old == forward_ptr).
  4519     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4520            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4521                    "should not be in the CSet",
  4522                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4523     return forward_ptr;
  4527 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4528   preserve_mark_if_necessary(old, m);
  4530   HeapRegion* r = heap_region_containing(old);
  4531   if (!r->evacuation_failed()) {
  4532     r->set_evacuation_failed(true);
  4533     _hr_printer.evac_failure(r);
  4536   push_on_evac_failure_scan_stack(old);
  4538   if (!_drain_in_progress) {
  4539     // prevent recursion in copy_to_survivor_space()
  4540     _drain_in_progress = true;
  4541     drain_evac_failure_scan_stack();
  4542     _drain_in_progress = false;
  4546 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4547   assert(evacuation_failed(), "Oversaving!");
  4548   // We want to call the "for_promotion_failure" version only in the
  4549   // case of a promotion failure.
  4550   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4551     _objs_with_preserved_marks.push(obj);
  4552     _preserved_marks_of_objs.push(m);
  4556 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4557                                                   size_t word_size) {
  4558   if (purpose == GCAllocForSurvived) {
  4559     HeapWord* result = survivor_attempt_allocation(word_size);
  4560     if (result != NULL) {
  4561       return result;
  4562     } else {
  4563       // Let's try to allocate in the old gen in case we can fit the
  4564       // object there.
  4565       return old_attempt_allocation(word_size);
  4567   } else {
  4568     assert(purpose ==  GCAllocForTenured, "sanity");
  4569     HeapWord* result = old_attempt_allocation(word_size);
  4570     if (result != NULL) {
  4571       return result;
  4572     } else {
  4573       // Let's try to allocate in the survivors in case we can fit the
  4574       // object there.
  4575       return survivor_attempt_allocation(word_size);
  4579   ShouldNotReachHere();
  4580   // Trying to keep some compilers happy.
  4581   return NULL;
  4584 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4585   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
  4587 void G1ParCopyHelper::mark_object(oop obj) {
  4588 #ifdef ASSERT
  4589   HeapRegion* hr = _g1->heap_region_containing(obj);
  4590   assert(hr != NULL, "sanity");
  4591   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4592 #endif // ASSERT
  4594   // We know that the object is not moving so it's safe to read its size.
  4595   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4598 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
  4599 #ifdef ASSERT
  4600   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4601   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4602   assert(from_obj != to_obj, "should not be self-forwarded");
  4604   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4605   assert(from_hr != NULL, "sanity");
  4606   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4608   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4609   assert(to_hr != NULL, "sanity");
  4610   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4611 #endif // ASSERT
  4613   // The object might be in the process of being copied by another
  4614   // worker so we cannot trust that its to-space image is
  4615   // well-formed. So we have to read its size from its from-space
  4616   // image which we know should not be changing.
  4617   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4620 template <class T>
  4621 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4622   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4623     _scanned_klass->record_modified_oops();
  4627 template <G1Barrier barrier, G1Mark do_mark_object>
  4628 template <class T>
  4629 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
  4630   T heap_oop = oopDesc::load_heap_oop(p);
  4632   if (oopDesc::is_null(heap_oop)) {
  4633     return;
  4636   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  4638   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4640   if (_g1->in_cset_fast_test(obj)) {
  4641     oop forwardee;
  4642     if (obj->is_forwarded()) {
  4643       forwardee = obj->forwardee();
  4644     } else {
  4645       forwardee = _par_scan_state->copy_to_survivor_space(obj);
  4647     assert(forwardee != NULL, "forwardee should not be NULL");
  4648     oopDesc::encode_store_heap_oop(p, forwardee);
  4649     if (do_mark_object != G1MarkNone && forwardee != obj) {
  4650       // If the object is self-forwarded we don't need to explicitly
  4651       // mark it, the evacuation failure protocol will do so.
  4652       mark_forwarded_object(obj, forwardee);
  4655     if (barrier == G1BarrierKlass) {
  4656       do_klass_barrier(p, forwardee);
  4658   } else {
  4659     // The object is not in collection set. If we're a root scanning
  4660     // closure during an initial mark pause then attempt to mark the object.
  4661     if (do_mark_object == G1MarkFromRoot) {
  4662       mark_object(obj);
  4666   if (barrier == G1BarrierEvac) {
  4667     _par_scan_state->update_rs(_from, p, _worker_id);
  4671 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
  4672 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
  4674 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4675 protected:
  4676   G1CollectedHeap*              _g1h;
  4677   G1ParScanThreadState*         _par_scan_state;
  4678   RefToScanQueueSet*            _queues;
  4679   ParallelTaskTerminator*       _terminator;
  4681   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4682   RefToScanQueueSet*      queues()         { return _queues; }
  4683   ParallelTaskTerminator* terminator()     { return _terminator; }
  4685 public:
  4686   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4687                                 G1ParScanThreadState* par_scan_state,
  4688                                 RefToScanQueueSet* queues,
  4689                                 ParallelTaskTerminator* terminator)
  4690     : _g1h(g1h), _par_scan_state(par_scan_state),
  4691       _queues(queues), _terminator(terminator) {}
  4693   void do_void();
  4695 private:
  4696   inline bool offer_termination();
  4697 };
  4699 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4700   G1ParScanThreadState* const pss = par_scan_state();
  4701   pss->start_term_time();
  4702   const bool res = terminator()->offer_termination();
  4703   pss->end_term_time();
  4704   return res;
  4707 void G1ParEvacuateFollowersClosure::do_void() {
  4708   G1ParScanThreadState* const pss = par_scan_state();
  4709   pss->trim_queue();
  4710   do {
  4711     pss->steal_and_trim_queue(queues());
  4712   } while (!offer_termination());
  4715 class G1KlassScanClosure : public KlassClosure {
  4716  G1ParCopyHelper* _closure;
  4717  bool             _process_only_dirty;
  4718  int              _count;
  4719  public:
  4720   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4721       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4722   void do_klass(Klass* klass) {
  4723     // If the klass has not been dirtied we know that there's
  4724     // no references into  the young gen and we can skip it.
  4725    if (!_process_only_dirty || klass->has_modified_oops()) {
  4726       // Clean the klass since we're going to scavenge all the metadata.
  4727       klass->clear_modified_oops();
  4729       // Tell the closure that this klass is the Klass to scavenge
  4730       // and is the one to dirty if oops are left pointing into the young gen.
  4731       _closure->set_scanned_klass(klass);
  4733       klass->oops_do(_closure);
  4735       _closure->set_scanned_klass(NULL);
  4737     _count++;
  4739 };
  4741 class G1ParTask : public AbstractGangTask {
  4742 protected:
  4743   G1CollectedHeap*       _g1h;
  4744   RefToScanQueueSet      *_queues;
  4745   ParallelTaskTerminator _terminator;
  4746   uint _n_workers;
  4748   Mutex _stats_lock;
  4749   Mutex* stats_lock() { return &_stats_lock; }
  4751   size_t getNCards() {
  4752     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4753       / G1BlockOffsetSharedArray::N_bytes;
  4756 public:
  4757   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
  4758     : AbstractGangTask("G1 collection"),
  4759       _g1h(g1h),
  4760       _queues(task_queues),
  4761       _terminator(0, _queues),
  4762       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4763   {}
  4765   RefToScanQueueSet* queues() { return _queues; }
  4767   RefToScanQueue *work_queue(int i) {
  4768     return queues()->queue(i);
  4771   ParallelTaskTerminator* terminator() { return &_terminator; }
  4773   virtual void set_for_termination(int active_workers) {
  4774     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4775     // in the young space (_par_seq_tasks) in the G1 heap
  4776     // for SequentialSubTasksDone.
  4777     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4778     // both of which need setting by set_n_termination().
  4779     _g1h->SharedHeap::set_n_termination(active_workers);
  4780     _g1h->set_n_termination(active_workers);
  4781     terminator()->reset_for_reuse(active_workers);
  4782     _n_workers = active_workers;
  4785   // Helps out with CLD processing.
  4786   //
  4787   // During InitialMark we need to:
  4788   // 1) Scavenge all CLDs for the young GC.
  4789   // 2) Mark all objects directly reachable from strong CLDs.
  4790   template <G1Mark do_mark_object>
  4791   class G1CLDClosure : public CLDClosure {
  4792     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
  4793     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
  4794     G1KlassScanClosure                                _klass_in_cld_closure;
  4795     bool                                              _claim;
  4797    public:
  4798     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
  4799                  bool only_young, bool claim)
  4800         : _oop_closure(oop_closure),
  4801           _oop_in_klass_closure(oop_closure->g1(),
  4802                                 oop_closure->pss(),
  4803                                 oop_closure->rp()),
  4804           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
  4805           _claim(claim) {
  4809     void do_cld(ClassLoaderData* cld) {
  4810       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
  4812   };
  4814   class G1CodeBlobClosure: public CodeBlobClosure {
  4815     OopClosure* _f;
  4817    public:
  4818     G1CodeBlobClosure(OopClosure* f) : _f(f) {}
  4819     void do_code_blob(CodeBlob* blob) {
  4820       nmethod* that = blob->as_nmethod_or_null();
  4821       if (that != NULL) {
  4822         if (!that->test_set_oops_do_mark()) {
  4823           that->oops_do(_f);
  4824           that->fix_oop_relocations();
  4828   };
  4830   void work(uint worker_id) {
  4831     if (worker_id >= _n_workers) return;  // no work needed this round
  4833     double start_time_ms = os::elapsedTime() * 1000.0;
  4834     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4837       ResourceMark rm;
  4838       HandleMark   hm;
  4840       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4842       G1ParScanThreadState            pss(_g1h, worker_id, rp);
  4843       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4845       pss.set_evac_failure_closure(&evac_failure_cl);
  4847       bool only_young = _g1h->g1_policy()->gcs_are_young();
  4849       // Non-IM young GC.
  4850       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
  4851       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
  4852                                                                                only_young, // Only process dirty klasses.
  4853                                                                                false);     // No need to claim CLDs.
  4854       // IM young GC.
  4855       //    Strong roots closures.
  4856       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
  4857       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
  4858                                                                                false, // Process all klasses.
  4859                                                                                true); // Need to claim CLDs.
  4860       //    Weak roots closures.
  4861       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
  4862       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
  4863                                                                                     false, // Process all klasses.
  4864                                                                                     true); // Need to claim CLDs.
  4866       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
  4867       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
  4868       // IM Weak code roots are handled later.
  4870       OopClosure* strong_root_cl;
  4871       OopClosure* weak_root_cl;
  4872       CLDClosure* strong_cld_cl;
  4873       CLDClosure* weak_cld_cl;
  4874       CodeBlobClosure* strong_code_cl;
  4876       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4877         // We also need to mark copied objects.
  4878         strong_root_cl = &scan_mark_root_cl;
  4879         strong_cld_cl  = &scan_mark_cld_cl;
  4880         strong_code_cl = &scan_mark_code_cl;
  4881         if (ClassUnloadingWithConcurrentMark) {
  4882           weak_root_cl = &scan_mark_weak_root_cl;
  4883           weak_cld_cl  = &scan_mark_weak_cld_cl;
  4884         } else {
  4885           weak_root_cl = &scan_mark_root_cl;
  4886           weak_cld_cl  = &scan_mark_cld_cl;
  4888       } else {
  4889         strong_root_cl = &scan_only_root_cl;
  4890         weak_root_cl   = &scan_only_root_cl;
  4891         strong_cld_cl  = &scan_only_cld_cl;
  4892         weak_cld_cl    = &scan_only_cld_cl;
  4893         strong_code_cl = &scan_only_code_cl;
  4897       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
  4899       pss.start_strong_roots();
  4900       _g1h->g1_process_roots(strong_root_cl,
  4901                              weak_root_cl,
  4902                              &push_heap_rs_cl,
  4903                              strong_cld_cl,
  4904                              weak_cld_cl,
  4905                              strong_code_cl,
  4906                              worker_id);
  4908       pss.end_strong_roots();
  4911         double start = os::elapsedTime();
  4912         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4913         evac.do_void();
  4914         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4915         double term_ms = pss.term_time()*1000.0;
  4916         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4917         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4919       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4920       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4922       if (ParallelGCVerbose) {
  4923         MutexLocker x(stats_lock());
  4924         pss.print_termination_stats(worker_id);
  4927       assert(pss.queue_is_empty(), "should be empty");
  4929       // Close the inner scope so that the ResourceMark and HandleMark
  4930       // destructors are executed here and are included as part of the
  4931       // "GC Worker Time".
  4934     double end_time_ms = os::elapsedTime() * 1000.0;
  4935     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4937 };
  4939 // *** Common G1 Evacuation Stuff
  4941 // This method is run in a GC worker.
  4943 void
  4944 G1CollectedHeap::
  4945 g1_process_roots(OopClosure* scan_non_heap_roots,
  4946                  OopClosure* scan_non_heap_weak_roots,
  4947                  OopsInHeapRegionClosure* scan_rs,
  4948                  CLDClosure* scan_strong_clds,
  4949                  CLDClosure* scan_weak_clds,
  4950                  CodeBlobClosure* scan_strong_code,
  4951                  uint worker_i) {
  4953   // First scan the shared roots.
  4954   double ext_roots_start = os::elapsedTime();
  4955   double closure_app_time_sec = 0.0;
  4957   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
  4958   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
  4960   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4961   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
  4963   process_roots(false, // no scoping; this is parallel code
  4964                 SharedHeap::SO_None,
  4965                 &buf_scan_non_heap_roots,
  4966                 &buf_scan_non_heap_weak_roots,
  4967                 scan_strong_clds,
  4968                 // Unloading Initial Marks handle the weak CLDs separately.
  4969                 (trace_metadata ? NULL : scan_weak_clds),
  4970                 scan_strong_code);
  4972   // Now the CM ref_processor roots.
  4973   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4974     // We need to treat the discovered reference lists of the
  4975     // concurrent mark ref processor as roots and keep entries
  4976     // (which are added by the marking threads) on them live
  4977     // until they can be processed at the end of marking.
  4978     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4981   if (trace_metadata) {
  4982     // Barrier to make sure all workers passed
  4983     // the strong CLD and strong nmethods phases.
  4984     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
  4986     // Now take the complement of the strong CLDs.
  4987     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
  4990   // Finish up any enqueued closure apps (attributed as object copy time).
  4991   buf_scan_non_heap_roots.done();
  4992   buf_scan_non_heap_weak_roots.done();
  4994   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
  4995       + buf_scan_non_heap_weak_roots.closure_app_seconds();
  4997   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4999   double ext_root_time_ms =
  5000     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  5002   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  5004   // During conc marking we have to filter the per-thread SATB buffers
  5005   // to make sure we remove any oops into the CSet (which will show up
  5006   // as implicitly live).
  5007   double satb_filtering_ms = 0.0;
  5008   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  5009     if (mark_in_progress()) {
  5010       double satb_filter_start = os::elapsedTime();
  5012       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  5014       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  5017   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  5019   // Now scan the complement of the collection set.
  5020   MarkingCodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots, CodeBlobToOopClosure::FixRelocations);
  5022   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
  5024   _process_strong_tasks->all_tasks_completed();
  5027 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
  5028 private:
  5029   BoolObjectClosure* _is_alive;
  5030   int _initial_string_table_size;
  5031   int _initial_symbol_table_size;
  5033   bool  _process_strings;
  5034   int _strings_processed;
  5035   int _strings_removed;
  5037   bool  _process_symbols;
  5038   int _symbols_processed;
  5039   int _symbols_removed;
  5041   bool _do_in_parallel;
  5042 public:
  5043   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
  5044     AbstractGangTask("String/Symbol Unlinking"),
  5045     _is_alive(is_alive),
  5046     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
  5047     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
  5048     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
  5050     _initial_string_table_size = StringTable::the_table()->table_size();
  5051     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
  5052     if (process_strings) {
  5053       StringTable::clear_parallel_claimed_index();
  5055     if (process_symbols) {
  5056       SymbolTable::clear_parallel_claimed_index();
  5060   ~G1StringSymbolTableUnlinkTask() {
  5061     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
  5062               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
  5063                       StringTable::parallel_claimed_index(), _initial_string_table_size));
  5064     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
  5065               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
  5066                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  5068     if (G1TraceStringSymbolTableScrubbing) {
  5069       gclog_or_tty->print_cr("Cleaned string and symbol table, "
  5070                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
  5071                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
  5072                              strings_processed(), strings_removed(),
  5073                              symbols_processed(), symbols_removed());
  5077   void work(uint worker_id) {
  5078     if (_do_in_parallel) {
  5079       int strings_processed = 0;
  5080       int strings_removed = 0;
  5081       int symbols_processed = 0;
  5082       int symbols_removed = 0;
  5083       if (_process_strings) {
  5084         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
  5085         Atomic::add(strings_processed, &_strings_processed);
  5086         Atomic::add(strings_removed, &_strings_removed);
  5088       if (_process_symbols) {
  5089         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
  5090         Atomic::add(symbols_processed, &_symbols_processed);
  5091         Atomic::add(symbols_removed, &_symbols_removed);
  5093     } else {
  5094       if (_process_strings) {
  5095         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
  5097       if (_process_symbols) {
  5098         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
  5103   size_t strings_processed() const { return (size_t)_strings_processed; }
  5104   size_t strings_removed()   const { return (size_t)_strings_removed; }
  5106   size_t symbols_processed() const { return (size_t)_symbols_processed; }
  5107   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
  5108 };
  5110 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
  5111 private:
  5112   static Monitor* _lock;
  5114   BoolObjectClosure* const _is_alive;
  5115   const bool               _unloading_occurred;
  5116   const uint               _num_workers;
  5118   // Variables used to claim nmethods.
  5119   nmethod* _first_nmethod;
  5120   volatile nmethod* _claimed_nmethod;
  5122   // The list of nmethods that need to be processed by the second pass.
  5123   volatile nmethod* _postponed_list;
  5124   volatile uint     _num_entered_barrier;
  5126  public:
  5127   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
  5128       _is_alive(is_alive),
  5129       _unloading_occurred(unloading_occurred),
  5130       _num_workers(num_workers),
  5131       _first_nmethod(NULL),
  5132       _claimed_nmethod(NULL),
  5133       _postponed_list(NULL),
  5134       _num_entered_barrier(0)
  5136     nmethod::increase_unloading_clock();
  5137     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
  5138     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  5141   ~G1CodeCacheUnloadingTask() {
  5142     CodeCache::verify_clean_inline_caches();
  5144     CodeCache::set_needs_cache_clean(false);
  5145     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
  5147     CodeCache::verify_icholder_relocations();
  5150  private:
  5151   void add_to_postponed_list(nmethod* nm) {
  5152       nmethod* old;
  5153       do {
  5154         old = (nmethod*)_postponed_list;
  5155         nm->set_unloading_next(old);
  5156       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  5159   void clean_nmethod(nmethod* nm) {
  5160     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
  5162     if (postponed) {
  5163       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
  5164       add_to_postponed_list(nm);
  5167     // Mark that this thread has been cleaned/unloaded.
  5168     // After this call, it will be safe to ask if this nmethod was unloaded or not.
  5169     nm->set_unloading_clock(nmethod::global_unloading_clock());
  5172   void clean_nmethod_postponed(nmethod* nm) {
  5173     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  5176   static const int MaxClaimNmethods = 16;
  5178   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
  5179     nmethod* first;
  5180     nmethod* last;
  5182     do {
  5183       *num_claimed_nmethods = 0;
  5185       first = last = (nmethod*)_claimed_nmethod;
  5187       if (first != NULL) {
  5188         for (int i = 0; i < MaxClaimNmethods; i++) {
  5189           last = CodeCache::alive_nmethod(CodeCache::next(last));
  5191           if (last == NULL) {
  5192             break;
  5195           claimed_nmethods[i] = last;
  5196           (*num_claimed_nmethods)++;
  5200     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  5203   nmethod* claim_postponed_nmethod() {
  5204     nmethod* claim;
  5205     nmethod* next;
  5207     do {
  5208       claim = (nmethod*)_postponed_list;
  5209       if (claim == NULL) {
  5210         return NULL;
  5213       next = claim->unloading_next();
  5215     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
  5217     return claim;
  5220  public:
  5221   // Mark that we're done with the first pass of nmethod cleaning.
  5222   void barrier_mark(uint worker_id) {
  5223     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5224     _num_entered_barrier++;
  5225     if (_num_entered_barrier == _num_workers) {
  5226       ml.notify_all();
  5230   // See if we have to wait for the other workers to
  5231   // finish their first-pass nmethod cleaning work.
  5232   void barrier_wait(uint worker_id) {
  5233     if (_num_entered_barrier < _num_workers) {
  5234       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5235       while (_num_entered_barrier < _num_workers) {
  5236           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
  5241   // Cleaning and unloading of nmethods. Some work has to be postponed
  5242   // to the second pass, when we know which nmethods survive.
  5243   void work_first_pass(uint worker_id) {
  5244     // The first nmethods is claimed by the first worker.
  5245     if (worker_id == 0 && _first_nmethod != NULL) {
  5246       clean_nmethod(_first_nmethod);
  5247       _first_nmethod = NULL;
  5250     int num_claimed_nmethods;
  5251     nmethod* claimed_nmethods[MaxClaimNmethods];
  5253     while (true) {
  5254       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
  5256       if (num_claimed_nmethods == 0) {
  5257         break;
  5260       for (int i = 0; i < num_claimed_nmethods; i++) {
  5261         clean_nmethod(claimed_nmethods[i]);
  5266   void work_second_pass(uint worker_id) {
  5267     nmethod* nm;
  5268     // Take care of postponed nmethods.
  5269     while ((nm = claim_postponed_nmethod()) != NULL) {
  5270       clean_nmethod_postponed(nm);
  5273 };
  5275 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
  5277 class G1KlassCleaningTask : public StackObj {
  5278   BoolObjectClosure*                      _is_alive;
  5279   volatile jint                           _clean_klass_tree_claimed;
  5280   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
  5282  public:
  5283   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
  5284       _is_alive(is_alive),
  5285       _clean_klass_tree_claimed(0),
  5286       _klass_iterator() {
  5289  private:
  5290   bool claim_clean_klass_tree_task() {
  5291     if (_clean_klass_tree_claimed) {
  5292       return false;
  5295     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  5298   InstanceKlass* claim_next_klass() {
  5299     Klass* klass;
  5300     do {
  5301       klass =_klass_iterator.next_klass();
  5302     } while (klass != NULL && !klass->oop_is_instance());
  5304     return (InstanceKlass*)klass;
  5307 public:
  5309   void clean_klass(InstanceKlass* ik) {
  5310     ik->clean_implementors_list(_is_alive);
  5311     ik->clean_method_data(_is_alive);
  5313     // G1 specific cleanup work that has
  5314     // been moved here to be done in parallel.
  5315     ik->clean_dependent_nmethods();
  5318   void work() {
  5319     ResourceMark rm;
  5321     // One worker will clean the subklass/sibling klass tree.
  5322     if (claim_clean_klass_tree_task()) {
  5323       Klass::clean_subklass_tree(_is_alive);
  5326     // All workers will help cleaning the classes,
  5327     InstanceKlass* klass;
  5328     while ((klass = claim_next_klass()) != NULL) {
  5329       clean_klass(klass);
  5332 };
  5334 // To minimize the remark pause times, the tasks below are done in parallel.
  5335 class G1ParallelCleaningTask : public AbstractGangTask {
  5336 private:
  5337   G1StringSymbolTableUnlinkTask _string_symbol_task;
  5338   G1CodeCacheUnloadingTask      _code_cache_task;
  5339   G1KlassCleaningTask           _klass_cleaning_task;
  5341 public:
  5342   // The constructor is run in the VMThread.
  5343   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
  5344       AbstractGangTask("Parallel Cleaning"),
  5345       _string_symbol_task(is_alive, process_strings, process_symbols),
  5346       _code_cache_task(num_workers, is_alive, unloading_occurred),
  5347       _klass_cleaning_task(is_alive) {
  5350   // The parallel work done by all worker threads.
  5351   void work(uint worker_id) {
  5352     // Do first pass of code cache cleaning.
  5353     _code_cache_task.work_first_pass(worker_id);
  5355     // Let the threads mark that the first pass is done.
  5356     _code_cache_task.barrier_mark(worker_id);
  5358     // Clean the Strings and Symbols.
  5359     _string_symbol_task.work(worker_id);
  5361     // Wait for all workers to finish the first code cache cleaning pass.
  5362     _code_cache_task.barrier_wait(worker_id);
  5364     // Do the second code cache cleaning work, which realize on
  5365     // the liveness information gathered during the first pass.
  5366     _code_cache_task.work_second_pass(worker_id);
  5368     // Clean all klasses that were not unloaded.
  5369     _klass_cleaning_task.work();
  5371 };
  5374 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
  5375                                         bool process_strings,
  5376                                         bool process_symbols,
  5377                                         bool class_unloading_occurred) {
  5378   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5379                     workers()->active_workers() : 1);
  5381   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
  5382                                         n_workers, class_unloading_occurred);
  5383   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5384     set_par_threads(n_workers);
  5385     workers()->run_task(&g1_unlink_task);
  5386     set_par_threads(0);
  5387   } else {
  5388     g1_unlink_task.work(0);
  5392 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
  5393                                                      bool process_strings, bool process_symbols) {
  5395     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5396                      _g1h->workers()->active_workers() : 1);
  5397     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  5398     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5399       set_par_threads(n_workers);
  5400       workers()->run_task(&g1_unlink_task);
  5401       set_par_threads(0);
  5402     } else {
  5403       g1_unlink_task.work(0);
  5407   if (G1StringDedup::is_enabled()) {
  5408     G1StringDedup::unlink(is_alive);
  5412 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
  5413  private:
  5414   DirtyCardQueueSet* _queue;
  5415  public:
  5416   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
  5418   virtual void work(uint worker_id) {
  5419     double start_time = os::elapsedTime();
  5421     RedirtyLoggedCardTableEntryClosure cl;
  5422     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
  5423       _queue->par_apply_closure_to_all_completed_buffers(&cl);
  5424     } else {
  5425       _queue->apply_closure_to_all_completed_buffers(&cl);
  5428     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
  5429     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
  5430     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
  5432 };
  5434 void G1CollectedHeap::redirty_logged_cards() {
  5435   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
  5436   double redirty_logged_cards_start = os::elapsedTime();
  5438   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5439                    _g1h->workers()->active_workers() : 1);
  5441   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  5442   dirty_card_queue_set().reset_for_par_iteration();
  5443   if (use_parallel_gc_threads()) {
  5444     set_par_threads(n_workers);
  5445     workers()->run_task(&redirty_task);
  5446     set_par_threads(0);
  5447   } else {
  5448     redirty_task.work(0);
  5451   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5452   dcq.merge_bufferlists(&dirty_card_queue_set());
  5453   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5455   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
  5458 // Weak Reference Processing support
  5460 // An always "is_alive" closure that is used to preserve referents.
  5461 // If the object is non-null then it's alive.  Used in the preservation
  5462 // of referent objects that are pointed to by reference objects
  5463 // discovered by the CM ref processor.
  5464 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5465   G1CollectedHeap* _g1;
  5466 public:
  5467   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5468   bool do_object_b(oop p) {
  5469     if (p != NULL) {
  5470       return true;
  5472     return false;
  5474 };
  5476 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5477   // An object is reachable if it is outside the collection set,
  5478   // or is inside and copied.
  5479   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5482 // Non Copying Keep Alive closure
  5483 class G1KeepAliveClosure: public OopClosure {
  5484   G1CollectedHeap* _g1;
  5485 public:
  5486   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5487   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5488   void do_oop(      oop* p) {
  5489     oop obj = *p;
  5491     if (_g1->obj_in_cs(obj)) {
  5492       assert( obj->is_forwarded(), "invariant" );
  5493       *p = obj->forwardee();
  5496 };
  5498 // Copying Keep Alive closure - can be called from both
  5499 // serial and parallel code as long as different worker
  5500 // threads utilize different G1ParScanThreadState instances
  5501 // and different queues.
  5503 class G1CopyingKeepAliveClosure: public OopClosure {
  5504   G1CollectedHeap*         _g1h;
  5505   OopClosure*              _copy_non_heap_obj_cl;
  5506   G1ParScanThreadState*    _par_scan_state;
  5508 public:
  5509   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5510                             OopClosure* non_heap_obj_cl,
  5511                             G1ParScanThreadState* pss):
  5512     _g1h(g1h),
  5513     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5514     _par_scan_state(pss)
  5515   {}
  5517   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5518   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5520   template <class T> void do_oop_work(T* p) {
  5521     oop obj = oopDesc::load_decode_heap_oop(p);
  5523     if (_g1h->obj_in_cs(obj)) {
  5524       // If the referent object has been forwarded (either copied
  5525       // to a new location or to itself in the event of an
  5526       // evacuation failure) then we need to update the reference
  5527       // field and, if both reference and referent are in the G1
  5528       // heap, update the RSet for the referent.
  5529       //
  5530       // If the referent has not been forwarded then we have to keep
  5531       // it alive by policy. Therefore we have copy the referent.
  5532       //
  5533       // If the reference field is in the G1 heap then we can push
  5534       // on the PSS queue. When the queue is drained (after each
  5535       // phase of reference processing) the object and it's followers
  5536       // will be copied, the reference field set to point to the
  5537       // new location, and the RSet updated. Otherwise we need to
  5538       // use the the non-heap or metadata closures directly to copy
  5539       // the referent object and update the pointer, while avoiding
  5540       // updating the RSet.
  5542       if (_g1h->is_in_g1_reserved(p)) {
  5543         _par_scan_state->push_on_queue(p);
  5544       } else {
  5545         assert(!Metaspace::contains((const void*)p),
  5546                err_msg("Unexpectedly found a pointer from metadata: "
  5547                               PTR_FORMAT, p));
  5548           _copy_non_heap_obj_cl->do_oop(p);
  5552 };
  5554 // Serial drain queue closure. Called as the 'complete_gc'
  5555 // closure for each discovered list in some of the
  5556 // reference processing phases.
  5558 class G1STWDrainQueueClosure: public VoidClosure {
  5559 protected:
  5560   G1CollectedHeap* _g1h;
  5561   G1ParScanThreadState* _par_scan_state;
  5563   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5565 public:
  5566   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5567     _g1h(g1h),
  5568     _par_scan_state(pss)
  5569   { }
  5571   void do_void() {
  5572     G1ParScanThreadState* const pss = par_scan_state();
  5573     pss->trim_queue();
  5575 };
  5577 // Parallel Reference Processing closures
  5579 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5580 // processing during G1 evacuation pauses.
  5582 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5583 private:
  5584   G1CollectedHeap*   _g1h;
  5585   RefToScanQueueSet* _queues;
  5586   FlexibleWorkGang*  _workers;
  5587   int                _active_workers;
  5589 public:
  5590   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5591                         FlexibleWorkGang* workers,
  5592                         RefToScanQueueSet *task_queues,
  5593                         int n_workers) :
  5594     _g1h(g1h),
  5595     _queues(task_queues),
  5596     _workers(workers),
  5597     _active_workers(n_workers)
  5599     assert(n_workers > 0, "shouldn't call this otherwise");
  5602   // Executes the given task using concurrent marking worker threads.
  5603   virtual void execute(ProcessTask& task);
  5604   virtual void execute(EnqueueTask& task);
  5605 };
  5607 // Gang task for possibly parallel reference processing
  5609 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5610   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5611   ProcessTask&     _proc_task;
  5612   G1CollectedHeap* _g1h;
  5613   RefToScanQueueSet *_task_queues;
  5614   ParallelTaskTerminator* _terminator;
  5616 public:
  5617   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5618                      G1CollectedHeap* g1h,
  5619                      RefToScanQueueSet *task_queues,
  5620                      ParallelTaskTerminator* terminator) :
  5621     AbstractGangTask("Process reference objects in parallel"),
  5622     _proc_task(proc_task),
  5623     _g1h(g1h),
  5624     _task_queues(task_queues),
  5625     _terminator(terminator)
  5626   {}
  5628   virtual void work(uint worker_id) {
  5629     // The reference processing task executed by a single worker.
  5630     ResourceMark rm;
  5631     HandleMark   hm;
  5633     G1STWIsAliveClosure is_alive(_g1h);
  5635     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5636     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5638     pss.set_evac_failure_closure(&evac_failure_cl);
  5640     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5642     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5644     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5646     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5647       // We also need to mark copied objects.
  5648       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5651     // Keep alive closure.
  5652     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5654     // Complete GC closure
  5655     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5657     // Call the reference processing task's work routine.
  5658     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5660     // Note we cannot assert that the refs array is empty here as not all
  5661     // of the processing tasks (specifically phase2 - pp2_work) execute
  5662     // the complete_gc closure (which ordinarily would drain the queue) so
  5663     // the queue may not be empty.
  5665 };
  5667 // Driver routine for parallel reference processing.
  5668 // Creates an instance of the ref processing gang
  5669 // task and has the worker threads execute it.
  5670 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5671   assert(_workers != NULL, "Need parallel worker threads.");
  5673   ParallelTaskTerminator terminator(_active_workers, _queues);
  5674   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5676   _g1h->set_par_threads(_active_workers);
  5677   _workers->run_task(&proc_task_proxy);
  5678   _g1h->set_par_threads(0);
  5681 // Gang task for parallel reference enqueueing.
  5683 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5684   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5685   EnqueueTask& _enq_task;
  5687 public:
  5688   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5689     AbstractGangTask("Enqueue reference objects in parallel"),
  5690     _enq_task(enq_task)
  5691   { }
  5693   virtual void work(uint worker_id) {
  5694     _enq_task.work(worker_id);
  5696 };
  5698 // Driver routine for parallel reference enqueueing.
  5699 // Creates an instance of the ref enqueueing gang
  5700 // task and has the worker threads execute it.
  5702 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5703   assert(_workers != NULL, "Need parallel worker threads.");
  5705   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5707   _g1h->set_par_threads(_active_workers);
  5708   _workers->run_task(&enq_task_proxy);
  5709   _g1h->set_par_threads(0);
  5712 // End of weak reference support closures
  5714 // Abstract task used to preserve (i.e. copy) any referent objects
  5715 // that are in the collection set and are pointed to by reference
  5716 // objects discovered by the CM ref processor.
  5718 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5719 protected:
  5720   G1CollectedHeap* _g1h;
  5721   RefToScanQueueSet      *_queues;
  5722   ParallelTaskTerminator _terminator;
  5723   uint _n_workers;
  5725 public:
  5726   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5727     AbstractGangTask("ParPreserveCMReferents"),
  5728     _g1h(g1h),
  5729     _queues(task_queues),
  5730     _terminator(workers, _queues),
  5731     _n_workers(workers)
  5732   { }
  5734   void work(uint worker_id) {
  5735     ResourceMark rm;
  5736     HandleMark   hm;
  5738     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5739     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5741     pss.set_evac_failure_closure(&evac_failure_cl);
  5743     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5745     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5747     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5749     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5751     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5752       // We also need to mark copied objects.
  5753       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5756     // Is alive closure
  5757     G1AlwaysAliveClosure always_alive(_g1h);
  5759     // Copying keep alive closure. Applied to referent objects that need
  5760     // to be copied.
  5761     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5763     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5765     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5766     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5768     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5769     // So this must be true - but assert just in case someone decides to
  5770     // change the worker ids.
  5771     assert(0 <= worker_id && worker_id < limit, "sanity");
  5772     assert(!rp->discovery_is_atomic(), "check this code");
  5774     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5775     for (uint idx = worker_id; idx < limit; idx += stride) {
  5776       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5778       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5779       while (iter.has_next()) {
  5780         // Since discovery is not atomic for the CM ref processor, we
  5781         // can see some null referent objects.
  5782         iter.load_ptrs(DEBUG_ONLY(true));
  5783         oop ref = iter.obj();
  5785         // This will filter nulls.
  5786         if (iter.is_referent_alive()) {
  5787           iter.make_referent_alive();
  5789         iter.move_to_next();
  5793     // Drain the queue - which may cause stealing
  5794     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5795     drain_queue.do_void();
  5796     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5797     assert(pss.queue_is_empty(), "should be");
  5799 };
  5801 // Weak Reference processing during an evacuation pause (part 1).
  5802 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5803   double ref_proc_start = os::elapsedTime();
  5805   ReferenceProcessor* rp = _ref_processor_stw;
  5806   assert(rp->discovery_enabled(), "should have been enabled");
  5808   // Any reference objects, in the collection set, that were 'discovered'
  5809   // by the CM ref processor should have already been copied (either by
  5810   // applying the external root copy closure to the discovered lists, or
  5811   // by following an RSet entry).
  5812   //
  5813   // But some of the referents, that are in the collection set, that these
  5814   // reference objects point to may not have been copied: the STW ref
  5815   // processor would have seen that the reference object had already
  5816   // been 'discovered' and would have skipped discovering the reference,
  5817   // but would not have treated the reference object as a regular oop.
  5818   // As a result the copy closure would not have been applied to the
  5819   // referent object.
  5820   //
  5821   // We need to explicitly copy these referent objects - the references
  5822   // will be processed at the end of remarking.
  5823   //
  5824   // We also need to do this copying before we process the reference
  5825   // objects discovered by the STW ref processor in case one of these
  5826   // referents points to another object which is also referenced by an
  5827   // object discovered by the STW ref processor.
  5829   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5830            no_of_gc_workers == workers()->active_workers(),
  5831            "Need to reset active GC workers");
  5833   set_par_threads(no_of_gc_workers);
  5834   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5835                                                  no_of_gc_workers,
  5836                                                  _task_queues);
  5838   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5839     workers()->run_task(&keep_cm_referents);
  5840   } else {
  5841     keep_cm_referents.work(0);
  5844   set_par_threads(0);
  5846   // Closure to test whether a referent is alive.
  5847   G1STWIsAliveClosure is_alive(this);
  5849   // Even when parallel reference processing is enabled, the processing
  5850   // of JNI refs is serial and performed serially by the current thread
  5851   // rather than by a worker. The following PSS will be used for processing
  5852   // JNI refs.
  5854   // Use only a single queue for this PSS.
  5855   G1ParScanThreadState            pss(this, 0, NULL);
  5857   // We do not embed a reference processor in the copying/scanning
  5858   // closures while we're actually processing the discovered
  5859   // reference objects.
  5860   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5862   pss.set_evac_failure_closure(&evac_failure_cl);
  5864   assert(pss.queue_is_empty(), "pre-condition");
  5866   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5868   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5870   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5872   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5873     // We also need to mark copied objects.
  5874     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5877   // Keep alive closure.
  5878   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
  5880   // Serial Complete GC closure
  5881   G1STWDrainQueueClosure drain_queue(this, &pss);
  5883   // Setup the soft refs policy...
  5884   rp->setup_policy(false);
  5886   ReferenceProcessorStats stats;
  5887   if (!rp->processing_is_mt()) {
  5888     // Serial reference processing...
  5889     stats = rp->process_discovered_references(&is_alive,
  5890                                               &keep_alive,
  5891                                               &drain_queue,
  5892                                               NULL,
  5893                                               _gc_timer_stw,
  5894                                               _gc_tracer_stw->gc_id());
  5895   } else {
  5896     // Parallel reference processing
  5897     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5898     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5900     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5901     stats = rp->process_discovered_references(&is_alive,
  5902                                               &keep_alive,
  5903                                               &drain_queue,
  5904                                               &par_task_executor,
  5905                                               _gc_timer_stw,
  5906                                               _gc_tracer_stw->gc_id());
  5909   _gc_tracer_stw->report_gc_reference_stats(stats);
  5911   // We have completed copying any necessary live referent objects.
  5912   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5914   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5915   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5918 // Weak Reference processing during an evacuation pause (part 2).
  5919 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5920   double ref_enq_start = os::elapsedTime();
  5922   ReferenceProcessor* rp = _ref_processor_stw;
  5923   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5925   // Now enqueue any remaining on the discovered lists on to
  5926   // the pending list.
  5927   if (!rp->processing_is_mt()) {
  5928     // Serial reference processing...
  5929     rp->enqueue_discovered_references();
  5930   } else {
  5931     // Parallel reference enqueueing
  5933     assert(no_of_gc_workers == workers()->active_workers(),
  5934            "Need to reset active workers");
  5935     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5936     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5938     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5939     rp->enqueue_discovered_references(&par_task_executor);
  5942   rp->verify_no_references_recorded();
  5943   assert(!rp->discovery_enabled(), "should have been disabled");
  5945   // FIXME
  5946   // CM's reference processing also cleans up the string and symbol tables.
  5947   // Should we do that here also? We could, but it is a serial operation
  5948   // and could significantly increase the pause time.
  5950   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5951   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5954 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
  5955   _expand_heap_after_alloc_failure = true;
  5956   _evacuation_failed = false;
  5958   // Should G1EvacuationFailureALot be in effect for this GC?
  5959   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5961   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5963   // Disable the hot card cache.
  5964   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  5965   hot_card_cache->reset_hot_cache_claimed_index();
  5966   hot_card_cache->set_use_cache(false);
  5968   uint n_workers;
  5969   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5970     n_workers =
  5971       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5972                                      workers()->active_workers(),
  5973                                      Threads::number_of_non_daemon_threads());
  5974     assert(UseDynamicNumberOfGCThreads ||
  5975            n_workers == workers()->total_workers(),
  5976            "If not dynamic should be using all the  workers");
  5977     workers()->set_active_workers(n_workers);
  5978     set_par_threads(n_workers);
  5979   } else {
  5980     assert(n_par_threads() == 0,
  5981            "Should be the original non-parallel value");
  5982     n_workers = 1;
  5985   G1ParTask g1_par_task(this, _task_queues);
  5987   init_for_evac_failure(NULL);
  5989   rem_set()->prepare_for_younger_refs_iterate(true);
  5991   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5992   double start_par_time_sec = os::elapsedTime();
  5993   double end_par_time_sec;
  5996     StrongRootsScope srs(this);
  5997     // InitialMark needs claim bits to keep track of the marked-through CLDs.
  5998     if (g1_policy()->during_initial_mark_pause()) {
  5999       ClassLoaderDataGraph::clear_claimed_marks();
  6002     if (G1CollectedHeap::use_parallel_gc_threads()) {
  6003       // The individual threads will set their evac-failure closures.
  6004       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  6005       // These tasks use ShareHeap::_process_strong_tasks
  6006       assert(UseDynamicNumberOfGCThreads ||
  6007              workers()->active_workers() == workers()->total_workers(),
  6008              "If not dynamic should be using all the  workers");
  6009       workers()->run_task(&g1_par_task);
  6010     } else {
  6011       g1_par_task.set_for_termination(n_workers);
  6012       g1_par_task.work(0);
  6014     end_par_time_sec = os::elapsedTime();
  6016     // Closing the inner scope will execute the destructor
  6017     // for the StrongRootsScope object. We record the current
  6018     // elapsed time before closing the scope so that time
  6019     // taken for the SRS destructor is NOT included in the
  6020     // reported parallel time.
  6023   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  6024   g1_policy()->phase_times()->record_par_time(par_time_ms);
  6026   double code_root_fixup_time_ms =
  6027         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  6028   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  6030   set_par_threads(0);
  6032   // Process any discovered reference objects - we have
  6033   // to do this _before_ we retire the GC alloc regions
  6034   // as we may have to copy some 'reachable' referent
  6035   // objects (and their reachable sub-graphs) that were
  6036   // not copied during the pause.
  6037   process_discovered_references(n_workers);
  6039   // Weak root processing.
  6041     G1STWIsAliveClosure is_alive(this);
  6042     G1KeepAliveClosure keep_alive(this);
  6043     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  6044     if (G1StringDedup::is_enabled()) {
  6045       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
  6049   release_gc_alloc_regions(n_workers, evacuation_info);
  6050   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  6052   // Reset and re-enable the hot card cache.
  6053   // Note the counts for the cards in the regions in the
  6054   // collection set are reset when the collection set is freed.
  6055   hot_card_cache->reset_hot_cache();
  6056   hot_card_cache->set_use_cache(true);
  6058   // Migrate the strong code roots attached to each region in
  6059   // the collection set. Ideally we would like to do this
  6060   // after we have finished the scanning/evacuation of the
  6061   // strong code roots for a particular heap region.
  6062   migrate_strong_code_roots();
  6064   purge_code_root_memory();
  6066   if (g1_policy()->during_initial_mark_pause()) {
  6067     // Reset the claim values set during marking the strong code roots
  6068     reset_heap_region_claim_values();
  6071   finalize_for_evac_failure();
  6073   if (evacuation_failed()) {
  6074     remove_self_forwarding_pointers();
  6076     // Reset the G1EvacuationFailureALot counters and flags
  6077     // Note: the values are reset only when an actual
  6078     // evacuation failure occurs.
  6079     NOT_PRODUCT(reset_evacuation_should_fail();)
  6082   // Enqueue any remaining references remaining on the STW
  6083   // reference processor's discovered lists. We need to do
  6084   // this after the card table is cleaned (and verified) as
  6085   // the act of enqueueing entries on to the pending list
  6086   // will log these updates (and dirty their associated
  6087   // cards). We need these updates logged to update any
  6088   // RSets.
  6089   enqueue_discovered_references(n_workers);
  6091   if (G1DeferredRSUpdate) {
  6092     redirty_logged_cards();
  6094   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  6097 void G1CollectedHeap::free_region(HeapRegion* hr,
  6098                                   FreeRegionList* free_list,
  6099                                   bool par,
  6100                                   bool locked) {
  6101   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  6102   assert(!hr->is_empty(), "the region should not be empty");
  6103   assert(free_list != NULL, "pre-condition");
  6105   if (G1VerifyBitmaps) {
  6106     MemRegion mr(hr->bottom(), hr->end());
  6107     concurrent_mark()->clearRangePrevBitmap(mr);
  6110   // Clear the card counts for this region.
  6111   // Note: we only need to do this if the region is not young
  6112   // (since we don't refine cards in young regions).
  6113   if (!hr->is_young()) {
  6114     _cg1r->hot_card_cache()->reset_card_counts(hr);
  6116   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
  6117   free_list->add_ordered(hr);
  6120 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  6121                                      FreeRegionList* free_list,
  6122                                      bool par) {
  6123   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  6124   assert(free_list != NULL, "pre-condition");
  6126   size_t hr_capacity = hr->capacity();
  6127   // We need to read this before we make the region non-humongous,
  6128   // otherwise the information will be gone.
  6129   uint last_index = hr->last_hc_index();
  6130   hr->set_notHumongous();
  6131   free_region(hr, free_list, par);
  6133   uint i = hr->hrs_index() + 1;
  6134   while (i < last_index) {
  6135     HeapRegion* curr_hr = region_at(i);
  6136     assert(curr_hr->continuesHumongous(), "invariant");
  6137     curr_hr->set_notHumongous();
  6138     free_region(curr_hr, free_list, par);
  6139     i += 1;
  6143 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
  6144                                        const HeapRegionSetCount& humongous_regions_removed) {
  6145   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
  6146     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  6147     _old_set.bulk_remove(old_regions_removed);
  6148     _humongous_set.bulk_remove(humongous_regions_removed);
  6153 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  6154   assert(list != NULL, "list can't be null");
  6155   if (!list->is_empty()) {
  6156     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  6157     _free_list.add_ordered(list);
  6161 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  6162   assert(_summary_bytes_used >= bytes,
  6163          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
  6164                   _summary_bytes_used, bytes));
  6165   _summary_bytes_used -= bytes;
  6168 class G1ParCleanupCTTask : public AbstractGangTask {
  6169   G1SATBCardTableModRefBS* _ct_bs;
  6170   G1CollectedHeap* _g1h;
  6171   HeapRegion* volatile _su_head;
  6172 public:
  6173   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
  6174                      G1CollectedHeap* g1h) :
  6175     AbstractGangTask("G1 Par Cleanup CT Task"),
  6176     _ct_bs(ct_bs), _g1h(g1h) { }
  6178   void work(uint worker_id) {
  6179     HeapRegion* r;
  6180     while (r = _g1h->pop_dirty_cards_region()) {
  6181       clear_cards(r);
  6185   void clear_cards(HeapRegion* r) {
  6186     // Cards of the survivors should have already been dirtied.
  6187     if (!r->is_survivor()) {
  6188       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  6191 };
  6193 #ifndef PRODUCT
  6194 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  6195   G1CollectedHeap* _g1h;
  6196   G1SATBCardTableModRefBS* _ct_bs;
  6197 public:
  6198   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
  6199     : _g1h(g1h), _ct_bs(ct_bs) { }
  6200   virtual bool doHeapRegion(HeapRegion* r) {
  6201     if (r->is_survivor()) {
  6202       _g1h->verify_dirty_region(r);
  6203     } else {
  6204       _g1h->verify_not_dirty_region(r);
  6206     return false;
  6208 };
  6210 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  6211   // All of the region should be clean.
  6212   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6213   MemRegion mr(hr->bottom(), hr->end());
  6214   ct_bs->verify_not_dirty_region(mr);
  6217 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  6218   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  6219   // dirty allocated blocks as they allocate them. The thread that
  6220   // retires each region and replaces it with a new one will do a
  6221   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  6222   // not dirty that area (one less thing to have to do while holding
  6223   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  6224   // is dirty.
  6225   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6226   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  6227   if (hr->is_young()) {
  6228     ct_bs->verify_g1_young_region(mr);
  6229   } else {
  6230     ct_bs->verify_dirty_region(mr);
  6234 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  6235   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6236   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  6237     verify_dirty_region(hr);
  6241 void G1CollectedHeap::verify_dirty_young_regions() {
  6242   verify_dirty_young_list(_young_list->first_region());
  6245 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
  6246                                                HeapWord* tams, HeapWord* end) {
  6247   guarantee(tams <= end,
  6248             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
  6249   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  6250   if (result < end) {
  6251     gclog_or_tty->cr();
  6252     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
  6253                            bitmap_name, result);
  6254     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
  6255                            bitmap_name, tams, end);
  6256     return false;
  6258   return true;
  6261 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  6262   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  6263   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
  6265   HeapWord* bottom = hr->bottom();
  6266   HeapWord* ptams  = hr->prev_top_at_mark_start();
  6267   HeapWord* ntams  = hr->next_top_at_mark_start();
  6268   HeapWord* end    = hr->end();
  6270   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
  6272   bool res_n = true;
  6273   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  6274   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  6275   // if we happen to be in that state.
  6276   if (mark_in_progress() || !_cmThread->in_progress()) {
  6277     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  6279   if (!res_p || !res_n) {
  6280     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
  6281                            HR_FORMAT_PARAMS(hr));
  6282     gclog_or_tty->print_cr("#### Caller: %s", caller);
  6283     return false;
  6285   return true;
  6288 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  6289   if (!G1VerifyBitmaps) return;
  6291   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
  6294 class G1VerifyBitmapClosure : public HeapRegionClosure {
  6295 private:
  6296   const char* _caller;
  6297   G1CollectedHeap* _g1h;
  6298   bool _failures;
  6300 public:
  6301   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
  6302     _caller(caller), _g1h(g1h), _failures(false) { }
  6304   bool failures() { return _failures; }
  6306   virtual bool doHeapRegion(HeapRegion* hr) {
  6307     if (hr->continuesHumongous()) return false;
  6309     bool result = _g1h->verify_bitmaps(_caller, hr);
  6310     if (!result) {
  6311       _failures = true;
  6313     return false;
  6315 };
  6317 void G1CollectedHeap::check_bitmaps(const char* caller) {
  6318   if (!G1VerifyBitmaps) return;
  6320   G1VerifyBitmapClosure cl(caller, this);
  6321   heap_region_iterate(&cl);
  6322   guarantee(!cl.failures(), "bitmap verification");
  6324 #endif // PRODUCT
  6326 void G1CollectedHeap::cleanUpCardTable() {
  6327   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6328   double start = os::elapsedTime();
  6331     // Iterate over the dirty cards region list.
  6332     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  6334     if (G1CollectedHeap::use_parallel_gc_threads()) {
  6335       set_par_threads();
  6336       workers()->run_task(&cleanup_task);
  6337       set_par_threads(0);
  6338     } else {
  6339       while (_dirty_cards_region_list) {
  6340         HeapRegion* r = _dirty_cards_region_list;
  6341         cleanup_task.clear_cards(r);
  6342         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  6343         if (_dirty_cards_region_list == r) {
  6344           // The last region.
  6345           _dirty_cards_region_list = NULL;
  6347         r->set_next_dirty_cards_region(NULL);
  6350 #ifndef PRODUCT
  6351     if (G1VerifyCTCleanup || VerifyAfterGC) {
  6352       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  6353       heap_region_iterate(&cleanup_verifier);
  6355 #endif
  6358   double elapsed = os::elapsedTime() - start;
  6359   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  6362 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
  6363   size_t pre_used = 0;
  6364   FreeRegionList local_free_list("Local List for CSet Freeing");
  6366   double young_time_ms     = 0.0;
  6367   double non_young_time_ms = 0.0;
  6369   // Since the collection set is a superset of the the young list,
  6370   // all we need to do to clear the young list is clear its
  6371   // head and length, and unlink any young regions in the code below
  6372   _young_list->clear();
  6374   G1CollectorPolicy* policy = g1_policy();
  6376   double start_sec = os::elapsedTime();
  6377   bool non_young = true;
  6379   HeapRegion* cur = cs_head;
  6380   int age_bound = -1;
  6381   size_t rs_lengths = 0;
  6383   while (cur != NULL) {
  6384     assert(!is_on_master_free_list(cur), "sanity");
  6385     if (non_young) {
  6386       if (cur->is_young()) {
  6387         double end_sec = os::elapsedTime();
  6388         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6389         non_young_time_ms += elapsed_ms;
  6391         start_sec = os::elapsedTime();
  6392         non_young = false;
  6394     } else {
  6395       if (!cur->is_young()) {
  6396         double end_sec = os::elapsedTime();
  6397         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6398         young_time_ms += elapsed_ms;
  6400         start_sec = os::elapsedTime();
  6401         non_young = true;
  6405     rs_lengths += cur->rem_set()->occupied_locked();
  6407     HeapRegion* next = cur->next_in_collection_set();
  6408     assert(cur->in_collection_set(), "bad CS");
  6409     cur->set_next_in_collection_set(NULL);
  6410     cur->set_in_collection_set(false);
  6412     if (cur->is_young()) {
  6413       int index = cur->young_index_in_cset();
  6414       assert(index != -1, "invariant");
  6415       assert((uint) index < policy->young_cset_region_length(), "invariant");
  6416       size_t words_survived = _surviving_young_words[index];
  6417       cur->record_surv_words_in_group(words_survived);
  6419       // At this point the we have 'popped' cur from the collection set
  6420       // (linked via next_in_collection_set()) but it is still in the
  6421       // young list (linked via next_young_region()). Clear the
  6422       // _next_young_region field.
  6423       cur->set_next_young_region(NULL);
  6424     } else {
  6425       int index = cur->young_index_in_cset();
  6426       assert(index == -1, "invariant");
  6429     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  6430             (!cur->is_young() && cur->young_index_in_cset() == -1),
  6431             "invariant" );
  6433     if (!cur->evacuation_failed()) {
  6434       MemRegion used_mr = cur->used_region();
  6436       // And the region is empty.
  6437       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  6438       pre_used += cur->used();
  6439       free_region(cur, &local_free_list, false /* par */, true /* locked */);
  6440     } else {
  6441       cur->uninstall_surv_rate_group();
  6442       if (cur->is_young()) {
  6443         cur->set_young_index_in_cset(-1);
  6445       cur->set_not_young();
  6446       cur->set_evacuation_failed(false);
  6447       // The region is now considered to be old.
  6448       _old_set.add(cur);
  6449       evacuation_info.increment_collectionset_used_after(cur->used());
  6451     cur = next;
  6454   evacuation_info.set_regions_freed(local_free_list.length());
  6455   policy->record_max_rs_lengths(rs_lengths);
  6456   policy->cset_regions_freed();
  6458   double end_sec = os::elapsedTime();
  6459   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6461   if (non_young) {
  6462     non_young_time_ms += elapsed_ms;
  6463   } else {
  6464     young_time_ms += elapsed_ms;
  6467   prepend_to_freelist(&local_free_list);
  6468   decrement_summary_bytes(pre_used);
  6469   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6470   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6473 // This routine is similar to the above but does not record
  6474 // any policy statistics or update free lists; we are abandoning
  6475 // the current incremental collection set in preparation of a
  6476 // full collection. After the full GC we will start to build up
  6477 // the incremental collection set again.
  6478 // This is only called when we're doing a full collection
  6479 // and is immediately followed by the tearing down of the young list.
  6481 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6482   HeapRegion* cur = cs_head;
  6484   while (cur != NULL) {
  6485     HeapRegion* next = cur->next_in_collection_set();
  6486     assert(cur->in_collection_set(), "bad CS");
  6487     cur->set_next_in_collection_set(NULL);
  6488     cur->set_in_collection_set(false);
  6489     cur->set_young_index_in_cset(-1);
  6490     cur = next;
  6494 void G1CollectedHeap::set_free_regions_coming() {
  6495   if (G1ConcRegionFreeingVerbose) {
  6496     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6497                            "setting free regions coming");
  6500   assert(!free_regions_coming(), "pre-condition");
  6501   _free_regions_coming = true;
  6504 void G1CollectedHeap::reset_free_regions_coming() {
  6505   assert(free_regions_coming(), "pre-condition");
  6508     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6509     _free_regions_coming = false;
  6510     SecondaryFreeList_lock->notify_all();
  6513   if (G1ConcRegionFreeingVerbose) {
  6514     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6515                            "reset free regions coming");
  6519 void G1CollectedHeap::wait_while_free_regions_coming() {
  6520   // Most of the time we won't have to wait, so let's do a quick test
  6521   // first before we take the lock.
  6522   if (!free_regions_coming()) {
  6523     return;
  6526   if (G1ConcRegionFreeingVerbose) {
  6527     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6528                            "waiting for free regions");
  6532     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6533     while (free_regions_coming()) {
  6534       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6538   if (G1ConcRegionFreeingVerbose) {
  6539     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6540                            "done waiting for free regions");
  6544 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6545   assert(heap_lock_held_for_gc(),
  6546               "the heap lock should already be held by or for this thread");
  6547   _young_list->push_region(hr);
  6550 class NoYoungRegionsClosure: public HeapRegionClosure {
  6551 private:
  6552   bool _success;
  6553 public:
  6554   NoYoungRegionsClosure() : _success(true) { }
  6555   bool doHeapRegion(HeapRegion* r) {
  6556     if (r->is_young()) {
  6557       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6558                              r->bottom(), r->end());
  6559       _success = false;
  6561     return false;
  6563   bool success() { return _success; }
  6564 };
  6566 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6567   bool ret = _young_list->check_list_empty(check_sample);
  6569   if (check_heap) {
  6570     NoYoungRegionsClosure closure;
  6571     heap_region_iterate(&closure);
  6572     ret = ret && closure.success();
  6575   return ret;
  6578 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6579 private:
  6580   HeapRegionSet *_old_set;
  6582 public:
  6583   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
  6585   bool doHeapRegion(HeapRegion* r) {
  6586     if (r->is_empty()) {
  6587       // We ignore empty regions, we'll empty the free list afterwards
  6588     } else if (r->is_young()) {
  6589       // We ignore young regions, we'll empty the young list afterwards
  6590     } else if (r->isHumongous()) {
  6591       // We ignore humongous regions, we're not tearing down the
  6592       // humongous region set
  6593     } else {
  6594       // The rest should be old
  6595       _old_set->remove(r);
  6597     return false;
  6600   ~TearDownRegionSetsClosure() {
  6601     assert(_old_set->is_empty(), "post-condition");
  6603 };
  6605 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6606   assert_at_safepoint(true /* should_be_vm_thread */);
  6608   if (!free_list_only) {
  6609     TearDownRegionSetsClosure cl(&_old_set);
  6610     heap_region_iterate(&cl);
  6612     // Note that emptying the _young_list is postponed and instead done as
  6613     // the first step when rebuilding the regions sets again. The reason for
  6614     // this is that during a full GC string deduplication needs to know if
  6615     // a collected region was young or old when the full GC was initiated.
  6617   _free_list.remove_all();
  6620 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6621 private:
  6622   bool            _free_list_only;
  6623   HeapRegionSet*   _old_set;
  6624   FreeRegionList* _free_list;
  6625   size_t          _total_used;
  6627 public:
  6628   RebuildRegionSetsClosure(bool free_list_only,
  6629                            HeapRegionSet* old_set, FreeRegionList* free_list) :
  6630     _free_list_only(free_list_only),
  6631     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6632     assert(_free_list->is_empty(), "pre-condition");
  6633     if (!free_list_only) {
  6634       assert(_old_set->is_empty(), "pre-condition");
  6638   bool doHeapRegion(HeapRegion* r) {
  6639     if (r->continuesHumongous()) {
  6640       return false;
  6643     if (r->is_empty()) {
  6644       // Add free regions to the free list
  6645       _free_list->add_as_tail(r);
  6646     } else if (!_free_list_only) {
  6647       assert(!r->is_young(), "we should not come across young regions");
  6649       if (r->isHumongous()) {
  6650         // We ignore humongous regions, we left the humongous set unchanged
  6651       } else {
  6652         // The rest should be old, add them to the old set
  6653         _old_set->add(r);
  6655       _total_used += r->used();
  6658     return false;
  6661   size_t total_used() {
  6662     return _total_used;
  6664 };
  6666 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6667   assert_at_safepoint(true /* should_be_vm_thread */);
  6669   if (!free_list_only) {
  6670     _young_list->empty_list();
  6673   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6674   heap_region_iterate(&cl);
  6676   if (!free_list_only) {
  6677     _summary_bytes_used = cl.total_used();
  6679   assert(_summary_bytes_used == recalculate_used(),
  6680          err_msg("inconsistent _summary_bytes_used, "
  6681                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6682                  _summary_bytes_used, recalculate_used()));
  6685 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6686   _refine_cte_cl->set_concurrent(concurrent);
  6689 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6690   HeapRegion* hr = heap_region_containing(p);
  6691   if (hr == NULL) {
  6692     return false;
  6693   } else {
  6694     return hr->is_in(p);
  6698 // Methods for the mutator alloc region
  6700 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6701                                                       bool force) {
  6702   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6703   assert(!force || g1_policy()->can_expand_young_list(),
  6704          "if force is true we should be able to expand the young list");
  6705   bool young_list_full = g1_policy()->is_young_list_full();
  6706   if (force || !young_list_full) {
  6707     HeapRegion* new_alloc_region = new_region(word_size,
  6708                                               false /* is_old */,
  6709                                               false /* do_expand */);
  6710     if (new_alloc_region != NULL) {
  6711       set_region_short_lived_locked(new_alloc_region);
  6712       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6713       check_bitmaps("Mutator Region Allocation", new_alloc_region);
  6714       return new_alloc_region;
  6717   return NULL;
  6720 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6721                                                   size_t allocated_bytes) {
  6722   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6723   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6725   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6726   _summary_bytes_used += allocated_bytes;
  6727   _hr_printer.retire(alloc_region);
  6728   // We update the eden sizes here, when the region is retired,
  6729   // instead of when it's allocated, since this is the point that its
  6730   // used space has been recored in _summary_bytes_used.
  6731   g1mm()->update_eden_size();
  6734 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6735                                                     bool force) {
  6736   return _g1h->new_mutator_alloc_region(word_size, force);
  6739 void G1CollectedHeap::set_par_threads() {
  6740   // Don't change the number of workers.  Use the value previously set
  6741   // in the workgroup.
  6742   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6743   uint n_workers = workers()->active_workers();
  6744   assert(UseDynamicNumberOfGCThreads ||
  6745            n_workers == workers()->total_workers(),
  6746       "Otherwise should be using the total number of workers");
  6747   if (n_workers == 0) {
  6748     assert(false, "Should have been set in prior evacuation pause.");
  6749     n_workers = ParallelGCThreads;
  6750     workers()->set_active_workers(n_workers);
  6752   set_par_threads(n_workers);
  6755 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6756                                        size_t allocated_bytes) {
  6757   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6760 // Methods for the GC alloc regions
  6762 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6763                                                  uint count,
  6764                                                  GCAllocPurpose ap) {
  6765   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6767   if (count < g1_policy()->max_regions(ap)) {
  6768     bool survivor = (ap == GCAllocForSurvived);
  6769     HeapRegion* new_alloc_region = new_region(word_size,
  6770                                               !survivor,
  6771                                               true /* do_expand */);
  6772     if (new_alloc_region != NULL) {
  6773       // We really only need to do this for old regions given that we
  6774       // should never scan survivors. But it doesn't hurt to do it
  6775       // for survivors too.
  6776       new_alloc_region->record_top_and_timestamp();
  6777       if (survivor) {
  6778         new_alloc_region->set_survivor();
  6779         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6780         check_bitmaps("Survivor Region Allocation", new_alloc_region);
  6781       } else {
  6782         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6783         check_bitmaps("Old Region Allocation", new_alloc_region);
  6785       bool during_im = g1_policy()->during_initial_mark_pause();
  6786       new_alloc_region->note_start_of_copying(during_im);
  6787       return new_alloc_region;
  6788     } else {
  6789       g1_policy()->note_alloc_region_limit_reached(ap);
  6792   return NULL;
  6795 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6796                                              size_t allocated_bytes,
  6797                                              GCAllocPurpose ap) {
  6798   bool during_im = g1_policy()->during_initial_mark_pause();
  6799   alloc_region->note_end_of_copying(during_im);
  6800   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6801   if (ap == GCAllocForSurvived) {
  6802     young_list()->add_survivor_region(alloc_region);
  6803   } else {
  6804     _old_set.add(alloc_region);
  6806   _hr_printer.retire(alloc_region);
  6809 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6810                                                        bool force) {
  6811   assert(!force, "not supported for GC alloc regions");
  6812   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6815 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6816                                           size_t allocated_bytes) {
  6817   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6818                                GCAllocForSurvived);
  6821 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6822                                                   bool force) {
  6823   assert(!force, "not supported for GC alloc regions");
  6824   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6827 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6828                                      size_t allocated_bytes) {
  6829   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6830                                GCAllocForTenured);
  6832 // Heap region set verification
  6834 class VerifyRegionListsClosure : public HeapRegionClosure {
  6835 private:
  6836   HeapRegionSet*   _old_set;
  6837   HeapRegionSet*   _humongous_set;
  6838   FreeRegionList*  _free_list;
  6840 public:
  6841   HeapRegionSetCount _old_count;
  6842   HeapRegionSetCount _humongous_count;
  6843   HeapRegionSetCount _free_count;
  6845   VerifyRegionListsClosure(HeapRegionSet* old_set,
  6846                            HeapRegionSet* humongous_set,
  6847                            FreeRegionList* free_list) :
  6848     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
  6849     _old_count(), _humongous_count(), _free_count(){ }
  6851   bool doHeapRegion(HeapRegion* hr) {
  6852     if (hr->continuesHumongous()) {
  6853       return false;
  6856     if (hr->is_young()) {
  6857       // TODO
  6858     } else if (hr->startsHumongous()) {
  6859       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
  6860       _humongous_count.increment(1u, hr->capacity());
  6861     } else if (hr->is_empty()) {
  6862       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
  6863       _free_count.increment(1u, hr->capacity());
  6864     } else {
  6865       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
  6866       _old_count.increment(1u, hr->capacity());
  6868     return false;
  6871   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
  6872     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
  6873     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6874         old_set->total_capacity_bytes(), _old_count.capacity()));
  6876     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
  6877     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6878         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
  6880     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
  6881     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6882         free_list->total_capacity_bytes(), _free_count.capacity()));
  6884 };
  6886 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6887                                              HeapWord* bottom) {
  6888   HeapWord* end = bottom + HeapRegion::GrainWords;
  6889   MemRegion mr(bottom, end);
  6890   assert(_g1_reserved.contains(mr), "invariant");
  6891   // This might return NULL if the allocation fails
  6892   return new HeapRegion(hrs_index, _bot_shared, mr);
  6895 void G1CollectedHeap::verify_region_sets() {
  6896   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6898   // First, check the explicit lists.
  6899   _free_list.verify_list();
  6901     // Given that a concurrent operation might be adding regions to
  6902     // the secondary free list we have to take the lock before
  6903     // verifying it.
  6904     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6905     _secondary_free_list.verify_list();
  6908   // If a concurrent region freeing operation is in progress it will
  6909   // be difficult to correctly attributed any free regions we come
  6910   // across to the correct free list given that they might belong to
  6911   // one of several (free_list, secondary_free_list, any local lists,
  6912   // etc.). So, if that's the case we will skip the rest of the
  6913   // verification operation. Alternatively, waiting for the concurrent
  6914   // operation to complete will have a non-trivial effect on the GC's
  6915   // operation (no concurrent operation will last longer than the
  6916   // interval between two calls to verification) and it might hide
  6917   // any issues that we would like to catch during testing.
  6918   if (free_regions_coming()) {
  6919     return;
  6922   // Make sure we append the secondary_free_list on the free_list so
  6923   // that all free regions we will come across can be safely
  6924   // attributed to the free_list.
  6925   append_secondary_free_list_if_not_empty_with_lock();
  6927   // Finally, make sure that the region accounting in the lists is
  6928   // consistent with what we see in the heap.
  6930   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6931   heap_region_iterate(&cl);
  6932   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
  6935 // Optimized nmethod scanning
  6937 class RegisterNMethodOopClosure: public OopClosure {
  6938   G1CollectedHeap* _g1h;
  6939   nmethod* _nm;
  6941   template <class T> void do_oop_work(T* p) {
  6942     T heap_oop = oopDesc::load_heap_oop(p);
  6943     if (!oopDesc::is_null(heap_oop)) {
  6944       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6945       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6946       assert(!hr->continuesHumongous(),
  6947              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6948                      " starting at "HR_FORMAT,
  6949                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6951       // HeapRegion::add_strong_code_root() avoids adding duplicate
  6952       // entries but having duplicates is  OK since we "mark" nmethods
  6953       // as visited when we scan the strong code root lists during the GC.
  6954       hr->add_strong_code_root(_nm);
  6955       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
  6956              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
  6957                      _nm, HR_FORMAT_PARAMS(hr)));
  6961 public:
  6962   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6963     _g1h(g1h), _nm(nm) {}
  6965   void do_oop(oop* p)       { do_oop_work(p); }
  6966   void do_oop(narrowOop* p) { do_oop_work(p); }
  6967 };
  6969 class UnregisterNMethodOopClosure: public OopClosure {
  6970   G1CollectedHeap* _g1h;
  6971   nmethod* _nm;
  6973   template <class T> void do_oop_work(T* p) {
  6974     T heap_oop = oopDesc::load_heap_oop(p);
  6975     if (!oopDesc::is_null(heap_oop)) {
  6976       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6977       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6978       assert(!hr->continuesHumongous(),
  6979              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6980                      " starting at "HR_FORMAT,
  6981                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6983       hr->remove_strong_code_root(_nm);
  6984       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
  6985              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
  6986                      _nm, HR_FORMAT_PARAMS(hr)));
  6990 public:
  6991   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6992     _g1h(g1h), _nm(nm) {}
  6994   void do_oop(oop* p)       { do_oop_work(p); }
  6995   void do_oop(narrowOop* p) { do_oop_work(p); }
  6996 };
  6998 void G1CollectedHeap::register_nmethod(nmethod* nm) {
  6999   CollectedHeap::register_nmethod(nm);
  7001   guarantee(nm != NULL, "sanity");
  7002   RegisterNMethodOopClosure reg_cl(this, nm);
  7003   nm->oops_do(&reg_cl);
  7006 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  7007   CollectedHeap::unregister_nmethod(nm);
  7009   guarantee(nm != NULL, "sanity");
  7010   UnregisterNMethodOopClosure reg_cl(this, nm);
  7011   nm->oops_do(&reg_cl, true);
  7014 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
  7015 public:
  7016   bool doHeapRegion(HeapRegion *hr) {
  7017     assert(!hr->isHumongous(),
  7018            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
  7019                    HR_FORMAT_PARAMS(hr)));
  7020     hr->migrate_strong_code_roots();
  7021     return false;
  7023 };
  7025 void G1CollectedHeap::migrate_strong_code_roots() {
  7026   MigrateCodeRootsHeapRegionClosure cl;
  7027   double migrate_start = os::elapsedTime();
  7028   collection_set_iterate(&cl);
  7029   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  7030   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
  7033 void G1CollectedHeap::purge_code_root_memory() {
  7034   double purge_start = os::elapsedTime();
  7035   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
  7036   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  7037   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
  7040 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  7041   G1CollectedHeap* _g1h;
  7043 public:
  7044   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
  7045     _g1h(g1h) {}
  7047   void do_code_blob(CodeBlob* cb) {
  7048     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
  7049     if (nm == NULL) {
  7050       return;
  7053     if (ScavengeRootsInCode) {
  7054       _g1h->register_nmethod(nm);
  7057 };
  7059 void G1CollectedHeap::rebuild_strong_code_roots() {
  7060   RebuildStrongCodeRootClosure blob_cl(this);
  7061   CodeCache::blobs_do(&blob_cl);

mercurial