src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp

Thu, 11 Dec 2008 12:05:08 -0800

author
jcoomes
date
Thu, 11 Dec 2008 12:05:08 -0800
changeset 916
7d7a7c599c17
parent 811
0166ac265d53
child 917
7c2386d67889
permissions
-rw-r--r--

6578152: fill_region_with_object has usability and safety issues
Reviewed-by: apetrusenko, ysr

     1 /*
     2  * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class ParallelScavengeHeap;
    26 class PSAdaptiveSizePolicy;
    27 class PSYoungGen;
    28 class PSOldGen;
    29 class PSPermGen;
    30 class ParCompactionManager;
    31 class ParallelTaskTerminator;
    32 class PSParallelCompact;
    33 class GCTaskManager;
    34 class GCTaskQueue;
    35 class PreGCValues;
    36 class MoveAndUpdateClosure;
    37 class RefProcTaskExecutor;
    39 class SpaceInfo
    40 {
    41  public:
    42   MutableSpace* space() const { return _space; }
    44   // Where the free space will start after the collection.  Valid only after the
    45   // summary phase completes.
    46   HeapWord* new_top() const { return _new_top; }
    48   // Allows new_top to be set.
    49   HeapWord** new_top_addr() { return &_new_top; }
    51   // Where the smallest allowable dense prefix ends (used only for perm gen).
    52   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
    54   // Where the dense prefix ends, or the compacted region begins.
    55   HeapWord* dense_prefix() const { return _dense_prefix; }
    57   // The start array for the (generation containing the) space, or NULL if there
    58   // is no start array.
    59   ObjectStartArray* start_array() const { return _start_array; }
    61   void set_space(MutableSpace* s)           { _space = s; }
    62   void set_new_top(HeapWord* addr)          { _new_top = addr; }
    63   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
    64   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
    65   void set_start_array(ObjectStartArray* s) { _start_array = s; }
    67  private:
    68   MutableSpace*     _space;
    69   HeapWord*         _new_top;
    70   HeapWord*         _min_dense_prefix;
    71   HeapWord*         _dense_prefix;
    72   ObjectStartArray* _start_array;
    73 };
    75 class ParallelCompactData
    76 {
    77 public:
    78   // Sizes are in HeapWords, unless indicated otherwise.
    79   static const size_t Log2RegionSize;
    80   static const size_t RegionSize;
    81   static const size_t RegionSizeBytes;
    83   // Mask for the bits in a size_t to get an offset within a region.
    84   static const size_t RegionSizeOffsetMask;
    85   // Mask for the bits in a pointer to get an offset within a region.
    86   static const size_t RegionAddrOffsetMask;
    87   // Mask for the bits in a pointer to get the address of the start of a region.
    88   static const size_t RegionAddrMask;
    90   class RegionData
    91   {
    92   public:
    93     // Destination address of the region.
    94     HeapWord* destination() const { return _destination; }
    96     // The first region containing data destined for this region.
    97     size_t source_region() const { return _source_region; }
    99     // The object (if any) starting in this region and ending in a different
   100     // region that could not be updated during the main (parallel) compaction
   101     // phase.  This is different from _partial_obj_addr, which is an object that
   102     // extends onto a source region.  However, the two uses do not overlap in
   103     // time, so the same field is used to save space.
   104     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
   106     // The starting address of the partial object extending onto the region.
   107     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
   109     // Size of the partial object extending onto the region (words).
   110     size_t partial_obj_size() const { return _partial_obj_size; }
   112     // Size of live data that lies within this region due to objects that start
   113     // in this region (words).  This does not include the partial object
   114     // extending onto the region (if any), or the part of an object that extends
   115     // onto the next region (if any).
   116     size_t live_obj_size() const { return _dc_and_los & los_mask; }
   118     // Total live data that lies within the region (words).
   119     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
   121     // The destination_count is the number of other regions to which data from
   122     // this region will be copied.  At the end of the summary phase, the valid
   123     // values of destination_count are
   124     //
   125     // 0 - data from the region will be compacted completely into itself, or the
   126     //     region is empty.  The region can be claimed and then filled.
   127     // 1 - data from the region will be compacted into 1 other region; some
   128     //     data from the region may also be compacted into the region itself.
   129     // 2 - data from the region will be copied to 2 other regions.
   130     //
   131     // During compaction as regions are emptied, the destination_count is
   132     // decremented (atomically) and when it reaches 0, it can be claimed and
   133     // then filled.
   134     //
   135     // A region is claimed for processing by atomically changing the
   136     // destination_count to the claimed value (dc_claimed).  After a region has
   137     // been filled, the destination_count should be set to the completed value
   138     // (dc_completed).
   139     inline uint destination_count() const;
   140     inline uint destination_count_raw() const;
   142     // The location of the java heap data that corresponds to this region.
   143     inline HeapWord* data_location() const;
   145     // The highest address referenced by objects in this region.
   146     inline HeapWord* highest_ref() const;
   148     // Whether this region is available to be claimed, has been claimed, or has
   149     // been completed.
   150     //
   151     // Minor subtlety:  claimed() returns true if the region is marked
   152     // completed(), which is desirable since a region must be claimed before it
   153     // can be completed.
   154     bool available() const { return _dc_and_los < dc_one; }
   155     bool claimed() const   { return _dc_and_los >= dc_claimed; }
   156     bool completed() const { return _dc_and_los >= dc_completed; }
   158     // These are not atomic.
   159     void set_destination(HeapWord* addr)       { _destination = addr; }
   160     void set_source_region(size_t region)      { _source_region = region; }
   161     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
   162     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
   163     void set_partial_obj_size(size_t words)    {
   164       _partial_obj_size = (region_sz_t) words;
   165     }
   167     inline void set_destination_count(uint count);
   168     inline void set_live_obj_size(size_t words);
   169     inline void set_data_location(HeapWord* addr);
   170     inline void set_completed();
   171     inline bool claim_unsafe();
   173     // These are atomic.
   174     inline void add_live_obj(size_t words);
   175     inline void set_highest_ref(HeapWord* addr);
   176     inline void decrement_destination_count();
   177     inline bool claim();
   179   private:
   180     // The type used to represent object sizes within a region.
   181     typedef uint region_sz_t;
   183     // Constants for manipulating the _dc_and_los field, which holds both the
   184     // destination count and live obj size.  The live obj size lives at the
   185     // least significant end so no masking is necessary when adding.
   186     static const region_sz_t dc_shift;           // Shift amount.
   187     static const region_sz_t dc_mask;            // Mask for destination count.
   188     static const region_sz_t dc_one;             // 1, shifted appropriately.
   189     static const region_sz_t dc_claimed;         // Region has been claimed.
   190     static const region_sz_t dc_completed;       // Region has been completed.
   191     static const region_sz_t los_mask;           // Mask for live obj size.
   193     HeapWord*            _destination;
   194     size_t               _source_region;
   195     HeapWord*            _partial_obj_addr;
   196     region_sz_t          _partial_obj_size;
   197     region_sz_t volatile _dc_and_los;
   198 #ifdef ASSERT
   199     // These enable optimizations that are only partially implemented.  Use
   200     // debug builds to prevent the code fragments from breaking.
   201     HeapWord*            _data_location;
   202     HeapWord*            _highest_ref;
   203 #endif  // #ifdef ASSERT
   205 #ifdef ASSERT
   206    public:
   207     uint            _pushed;   // 0 until region is pushed onto a worker's stack
   208    private:
   209 #endif
   210   };
   212 public:
   213   ParallelCompactData();
   214   bool initialize(MemRegion covered_region);
   216   size_t region_count() const { return _region_count; }
   218   // Convert region indices to/from RegionData pointers.
   219   inline RegionData* region(size_t region_idx) const;
   220   inline size_t     region(const RegionData* const region_ptr) const;
   222   // Returns true if the given address is contained within the region
   223   bool region_contains(size_t region_index, HeapWord* addr);
   225   void add_obj(HeapWord* addr, size_t len);
   226   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
   228   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
   229   // destination of region n is simply the start of region n.  The argument beg
   230   // must be region-aligned; end need not be.
   231   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
   233   bool summarize(HeapWord* target_beg, HeapWord* target_end,
   234                  HeapWord* source_beg, HeapWord* source_end,
   235                  HeapWord** target_next, HeapWord** source_next = 0);
   237   void clear();
   238   void clear_range(size_t beg_region, size_t end_region);
   239   void clear_range(HeapWord* beg, HeapWord* end) {
   240     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
   241   }
   243   // Return the number of words between addr and the start of the region
   244   // containing addr.
   245   inline size_t     region_offset(const HeapWord* addr) const;
   247   // Convert addresses to/from a region index or region pointer.
   248   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
   249   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
   250   inline HeapWord*  region_to_addr(size_t region) const;
   251   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
   252   inline HeapWord*  region_to_addr(const RegionData* region) const;
   254   inline HeapWord*  region_align_down(HeapWord* addr) const;
   255   inline HeapWord*  region_align_up(HeapWord* addr) const;
   256   inline bool       is_region_aligned(HeapWord* addr) const;
   258   // Return the address one past the end of the partial object.
   259   HeapWord* partial_obj_end(size_t region_idx) const;
   261   // Return the new location of the object p after the
   262   // the compaction.
   263   HeapWord* calc_new_pointer(HeapWord* addr);
   265   HeapWord* calc_new_pointer(oop p) {
   266     return calc_new_pointer((HeapWord*) p);
   267   }
   269   // Return the updated address for the given klass
   270   klassOop calc_new_klass(klassOop);
   272 #ifdef  ASSERT
   273   void verify_clear(const PSVirtualSpace* vspace);
   274   void verify_clear();
   275 #endif  // #ifdef ASSERT
   277 private:
   278   bool initialize_region_data(size_t region_size);
   279   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
   281 private:
   282   HeapWord*       _region_start;
   283 #ifdef  ASSERT
   284   HeapWord*       _region_end;
   285 #endif  // #ifdef ASSERT
   287   PSVirtualSpace* _region_vspace;
   288   RegionData*     _region_data;
   289   size_t          _region_count;
   290 };
   292 inline uint
   293 ParallelCompactData::RegionData::destination_count_raw() const
   294 {
   295   return _dc_and_los & dc_mask;
   296 }
   298 inline uint
   299 ParallelCompactData::RegionData::destination_count() const
   300 {
   301   return destination_count_raw() >> dc_shift;
   302 }
   304 inline void
   305 ParallelCompactData::RegionData::set_destination_count(uint count)
   306 {
   307   assert(count <= (dc_completed >> dc_shift), "count too large");
   308   const region_sz_t live_sz = (region_sz_t) live_obj_size();
   309   _dc_and_los = (count << dc_shift) | live_sz;
   310 }
   312 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
   313 {
   314   assert(words <= los_mask, "would overflow");
   315   _dc_and_los = destination_count_raw() | (region_sz_t)words;
   316 }
   318 inline void ParallelCompactData::RegionData::decrement_destination_count()
   319 {
   320   assert(_dc_and_los < dc_claimed, "already claimed");
   321   assert(_dc_and_los >= dc_one, "count would go negative");
   322   Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
   323 }
   325 inline HeapWord* ParallelCompactData::RegionData::data_location() const
   326 {
   327   DEBUG_ONLY(return _data_location;)
   328   NOT_DEBUG(return NULL;)
   329 }
   331 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
   332 {
   333   DEBUG_ONLY(return _highest_ref;)
   334   NOT_DEBUG(return NULL;)
   335 }
   337 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
   338 {
   339   DEBUG_ONLY(_data_location = addr;)
   340 }
   342 inline void ParallelCompactData::RegionData::set_completed()
   343 {
   344   assert(claimed(), "must be claimed first");
   345   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
   346 }
   348 // MT-unsafe claiming of a region.  Should only be used during single threaded
   349 // execution.
   350 inline bool ParallelCompactData::RegionData::claim_unsafe()
   351 {
   352   if (available()) {
   353     _dc_and_los |= dc_claimed;
   354     return true;
   355   }
   356   return false;
   357 }
   359 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
   360 {
   361   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
   362   Atomic::add((int) words, (volatile int*) &_dc_and_los);
   363 }
   365 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
   366 {
   367 #ifdef ASSERT
   368   HeapWord* tmp = _highest_ref;
   369   while (addr > tmp) {
   370     tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
   371   }
   372 #endif  // #ifdef ASSERT
   373 }
   375 inline bool ParallelCompactData::RegionData::claim()
   376 {
   377   const int los = (int) live_obj_size();
   378   const int old = Atomic::cmpxchg(dc_claimed | los,
   379                                   (volatile int*) &_dc_and_los, los);
   380   return old == los;
   381 }
   383 inline ParallelCompactData::RegionData*
   384 ParallelCompactData::region(size_t region_idx) const
   385 {
   386   assert(region_idx <= region_count(), "bad arg");
   387   return _region_data + region_idx;
   388 }
   390 inline size_t
   391 ParallelCompactData::region(const RegionData* const region_ptr) const
   392 {
   393   assert(region_ptr >= _region_data, "bad arg");
   394   assert(region_ptr <= _region_data + region_count(), "bad arg");
   395   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
   396 }
   398 inline size_t
   399 ParallelCompactData::region_offset(const HeapWord* addr) const
   400 {
   401   assert(addr >= _region_start, "bad addr");
   402   assert(addr <= _region_end, "bad addr");
   403   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
   404 }
   406 inline size_t
   407 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
   408 {
   409   assert(addr >= _region_start, "bad addr");
   410   assert(addr <= _region_end, "bad addr");
   411   return pointer_delta(addr, _region_start) >> Log2RegionSize;
   412 }
   414 inline ParallelCompactData::RegionData*
   415 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
   416 {
   417   return region(addr_to_region_idx(addr));
   418 }
   420 inline HeapWord*
   421 ParallelCompactData::region_to_addr(size_t region) const
   422 {
   423   assert(region <= _region_count, "region out of range");
   424   return _region_start + (region << Log2RegionSize);
   425 }
   427 inline HeapWord*
   428 ParallelCompactData::region_to_addr(const RegionData* region) const
   429 {
   430   return region_to_addr(pointer_delta(region, _region_data,
   431                                       sizeof(RegionData)));
   432 }
   434 inline HeapWord*
   435 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
   436 {
   437   assert(region <= _region_count, "region out of range");
   438   assert(offset < RegionSize, "offset too big");  // This may be too strict.
   439   return region_to_addr(region) + offset;
   440 }
   442 inline HeapWord*
   443 ParallelCompactData::region_align_down(HeapWord* addr) const
   444 {
   445   assert(addr >= _region_start, "bad addr");
   446   assert(addr < _region_end + RegionSize, "bad addr");
   447   return (HeapWord*)(size_t(addr) & RegionAddrMask);
   448 }
   450 inline HeapWord*
   451 ParallelCompactData::region_align_up(HeapWord* addr) const
   452 {
   453   assert(addr >= _region_start, "bad addr");
   454   assert(addr <= _region_end, "bad addr");
   455   return region_align_down(addr + RegionSizeOffsetMask);
   456 }
   458 inline bool
   459 ParallelCompactData::is_region_aligned(HeapWord* addr) const
   460 {
   461   return region_offset(addr) == 0;
   462 }
   464 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
   465 // do_addr() method.
   466 //
   467 // The closure is initialized with the number of heap words to process
   468 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
   469 // methods in subclasses should update the total as words are processed.  Since
   470 // only one subclass actually uses this mechanism to terminate iteration, the
   471 // default initial value is > 0.  The implementation is here and not in the
   472 // single subclass that uses it to avoid making is_full() virtual, and thus
   473 // adding a virtual call per live object.
   475 class ParMarkBitMapClosure: public StackObj {
   476  public:
   477   typedef ParMarkBitMap::idx_t idx_t;
   478   typedef ParMarkBitMap::IterationStatus IterationStatus;
   480  public:
   481   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
   482                               size_t words = max_uintx);
   484   inline ParCompactionManager* compaction_manager() const;
   485   inline ParMarkBitMap*        bitmap() const;
   486   inline size_t                words_remaining() const;
   487   inline bool                  is_full() const;
   488   inline HeapWord*             source() const;
   490   inline void                  set_source(HeapWord* addr);
   492   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
   494  protected:
   495   inline void decrement_words_remaining(size_t words);
   497  private:
   498   ParMarkBitMap* const        _bitmap;
   499   ParCompactionManager* const _compaction_manager;
   500   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
   501   size_t                      _words_remaining; // Words left to copy.
   503  protected:
   504   HeapWord*                   _source;          // Next addr that would be read.
   505 };
   507 inline
   508 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
   509                                            ParCompactionManager* cm,
   510                                            size_t words):
   511   _bitmap(bitmap), _compaction_manager(cm)
   512 #ifdef  ASSERT
   513   , _initial_words_remaining(words)
   514 #endif
   515 {
   516   _words_remaining = words;
   517   _source = NULL;
   518 }
   520 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
   521   return _compaction_manager;
   522 }
   524 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
   525   return _bitmap;
   526 }
   528 inline size_t ParMarkBitMapClosure::words_remaining() const {
   529   return _words_remaining;
   530 }
   532 inline bool ParMarkBitMapClosure::is_full() const {
   533   return words_remaining() == 0;
   534 }
   536 inline HeapWord* ParMarkBitMapClosure::source() const {
   537   return _source;
   538 }
   540 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
   541   _source = addr;
   542 }
   544 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
   545   assert(_words_remaining >= words, "processed too many words");
   546   _words_remaining -= words;
   547 }
   549 // The UseParallelOldGC collector is a stop-the-world garbage collector that
   550 // does parts of the collection using parallel threads.  The collection includes
   551 // the tenured generation and the young generation.  The permanent generation is
   552 // collected at the same time as the other two generations but the permanent
   553 // generation is collect by a single GC thread.  The permanent generation is
   554 // collected serially because of the requirement that during the processing of a
   555 // klass AAA, any objects reference by AAA must already have been processed.
   556 // This requirement is enforced by a left (lower address) to right (higher
   557 // address) sliding compaction.
   558 //
   559 // There are four phases of the collection.
   560 //
   561 //      - marking phase
   562 //      - summary phase
   563 //      - compacting phase
   564 //      - clean up phase
   565 //
   566 // Roughly speaking these phases correspond, respectively, to
   567 //      - mark all the live objects
   568 //      - calculate the destination of each object at the end of the collection
   569 //      - move the objects to their destination
   570 //      - update some references and reinitialize some variables
   571 //
   572 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
   573 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
   574 // complete marking of the heap.  The summary phase is implemented in
   575 // PSParallelCompact::summary_phase().  The move and update phase is implemented
   576 // in PSParallelCompact::compact().
   577 //
   578 // A space that is being collected is divided into regions and with each region
   579 // is associated an object of type ParallelCompactData.  Each region is of a
   580 // fixed size and typically will contain more than 1 object and may have parts
   581 // of objects at the front and back of the region.
   582 //
   583 // region            -----+---------------------+----------
   584 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
   585 //
   586 // The marking phase does a complete marking of all live objects in the heap.
   587 // The marking also compiles the size of the data for all live objects covered
   588 // by the region.  This size includes the part of any live object spanning onto
   589 // the region (part of AAA if it is live) from the front, all live objects
   590 // contained in the region (BBB and/or CCC if they are live), and the part of
   591 // any live objects covered by the region that extends off the region (part of
   592 // DDD if it is live).  The marking phase uses multiple GC threads and marking
   593 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
   594 // done atomically as is the accumulation of the size of the live objects
   595 // covered by a region.
   596 //
   597 // The summary phase calculates the total live data to the left of each region
   598 // XXX.  Based on that total and the bottom of the space, it can calculate the
   599 // starting location of the live data in XXX.  The summary phase calculates for
   600 // each region XXX quantites such as
   601 //
   602 //      - the amount of live data at the beginning of a region from an object
   603 //        entering the region.
   604 //      - the location of the first live data on the region
   605 //      - a count of the number of regions receiving live data from XXX.
   606 //
   607 // See ParallelCompactData for precise details.  The summary phase also
   608 // calculates the dense prefix for the compaction.  The dense prefix is a
   609 // portion at the beginning of the space that is not moved.  The objects in the
   610 // dense prefix do need to have their object references updated.  See method
   611 // summarize_dense_prefix().
   612 //
   613 // The summary phase is done using 1 GC thread.
   614 //
   615 // The compaction phase moves objects to their new location and updates all
   616 // references in the object.
   617 //
   618 // A current exception is that objects that cross a region boundary are moved
   619 // but do not have their references updated.  References are not updated because
   620 // it cannot easily be determined if the klass pointer KKK for the object AAA
   621 // has been updated.  KKK likely resides in a region to the left of the region
   622 // containing AAA.  These AAA's have there references updated at the end in a
   623 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
   624 // An alternate strategy is being investigated for this deferral of updating.
   625 //
   626 // Compaction is done on a region basis.  A region that is ready to be filled is
   627 // put on a ready list and GC threads take region off the list and fill them.  A
   628 // region is ready to be filled if it empty of live objects.  Such a region may
   629 // have been initially empty (only contained dead objects) or may have had all
   630 // its live objects copied out already.  A region that compacts into itself is
   631 // also ready for filling.  The ready list is initially filled with empty
   632 // regions and regions compacting into themselves.  There is always at least 1
   633 // region that can be put on the ready list.  The regions are atomically added
   634 // and removed from the ready list.
   636 class PSParallelCompact : AllStatic {
   637  public:
   638   // Convenient access to type names.
   639   typedef ParMarkBitMap::idx_t idx_t;
   640   typedef ParallelCompactData::RegionData RegionData;
   642   typedef enum {
   643     perm_space_id, old_space_id, eden_space_id,
   644     from_space_id, to_space_id, last_space_id
   645   } SpaceId;
   647  public:
   648   // Inline closure decls
   649   //
   650   class IsAliveClosure: public BoolObjectClosure {
   651    public:
   652     virtual void do_object(oop p);
   653     virtual bool do_object_b(oop p);
   654   };
   656   class KeepAliveClosure: public OopClosure {
   657    private:
   658     ParCompactionManager* _compaction_manager;
   659    protected:
   660     template <class T> inline void do_oop_work(T* p);
   661    public:
   662     KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   663     virtual void do_oop(oop* p);
   664     virtual void do_oop(narrowOop* p);
   665   };
   667   // Current unused
   668   class FollowRootClosure: public OopsInGenClosure {
   669    private:
   670     ParCompactionManager* _compaction_manager;
   671    public:
   672     FollowRootClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   673     virtual void do_oop(oop* p);
   674     virtual void do_oop(narrowOop* p);
   675     virtual const bool do_nmethods() const { return true; }
   676   };
   678   class FollowStackClosure: public VoidClosure {
   679    private:
   680     ParCompactionManager* _compaction_manager;
   681    public:
   682     FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   683     virtual void do_void();
   684   };
   686   class AdjustPointerClosure: public OopsInGenClosure {
   687    private:
   688     bool _is_root;
   689    public:
   690     AdjustPointerClosure(bool is_root) : _is_root(is_root) { }
   691     virtual void do_oop(oop* p);
   692     virtual void do_oop(narrowOop* p);
   693   };
   695   // Closure for verifying update of pointers.  Does not
   696   // have any side effects.
   697   class VerifyUpdateClosure: public ParMarkBitMapClosure {
   698     const MutableSpace* _space; // Is this ever used?
   700    public:
   701     VerifyUpdateClosure(ParCompactionManager* cm, const MutableSpace* sp) :
   702       ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm), _space(sp)
   703     { }
   705     virtual IterationStatus do_addr(HeapWord* addr, size_t words);
   707     const MutableSpace* space() { return _space; }
   708   };
   710   // Closure for updating objects altered for debug checking
   711   class ResetObjectsClosure: public ParMarkBitMapClosure {
   712    public:
   713     ResetObjectsClosure(ParCompactionManager* cm):
   714       ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm)
   715     { }
   717     virtual IterationStatus do_addr(HeapWord* addr, size_t words);
   718   };
   720   friend class KeepAliveClosure;
   721   friend class FollowStackClosure;
   722   friend class AdjustPointerClosure;
   723   friend class FollowRootClosure;
   724   friend class instanceKlassKlass;
   725   friend class RefProcTaskProxy;
   727  private:
   728   static elapsedTimer         _accumulated_time;
   729   static unsigned int         _total_invocations;
   730   static unsigned int         _maximum_compaction_gc_num;
   731   static jlong                _time_of_last_gc;   // ms
   732   static CollectorCounters*   _counters;
   733   static ParMarkBitMap        _mark_bitmap;
   734   static ParallelCompactData  _summary_data;
   735   static IsAliveClosure       _is_alive_closure;
   736   static SpaceInfo            _space_info[last_space_id];
   737   static bool                 _print_phases;
   738   static AdjustPointerClosure _adjust_root_pointer_closure;
   739   static AdjustPointerClosure _adjust_pointer_closure;
   741   // Reference processing (used in ...follow_contents)
   742   static ReferenceProcessor*  _ref_processor;
   744   // Updated location of intArrayKlassObj.
   745   static klassOop _updated_int_array_klass_obj;
   747   // Values computed at initialization and used by dead_wood_limiter().
   748   static double _dwl_mean;
   749   static double _dwl_std_dev;
   750   static double _dwl_first_term;
   751   static double _dwl_adjustment;
   752 #ifdef  ASSERT
   753   static bool   _dwl_initialized;
   754 #endif  // #ifdef ASSERT
   756  private:
   757   // Closure accessors
   758   static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
   759   static OopClosure* adjust_root_pointer_closure() { return (OopClosure*)&_adjust_root_pointer_closure; }
   760   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
   762   static void initialize_space_info();
   764   // Return true if details about individual phases should be printed.
   765   static inline bool print_phases();
   767   // Clear the marking bitmap and summary data that cover the specified space.
   768   static void clear_data_covering_space(SpaceId id);
   770   static void pre_compact(PreGCValues* pre_gc_values);
   771   static void post_compact();
   773   // Mark live objects
   774   static void marking_phase(ParCompactionManager* cm,
   775                             bool maximum_heap_compaction);
   776   static void follow_stack(ParCompactionManager* cm);
   777   static void follow_weak_klass_links(ParCompactionManager* cm);
   779   template <class T> static inline void adjust_pointer(T* p, bool is_root);
   780   static void adjust_root_pointer(oop* p) { adjust_pointer(p, true); }
   782   template <class T>
   783   static inline void follow_root(ParCompactionManager* cm, T* p);
   785   // Compute the dense prefix for the designated space.  This is an experimental
   786   // implementation currently not used in production.
   787   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
   788                                                     bool maximum_compaction);
   790   // Methods used to compute the dense prefix.
   792   // Compute the value of the normal distribution at x = density.  The mean and
   793   // standard deviation are values saved by initialize_dead_wood_limiter().
   794   static inline double normal_distribution(double density);
   796   // Initialize the static vars used by dead_wood_limiter().
   797   static void initialize_dead_wood_limiter();
   799   // Return the percentage of space that can be treated as "dead wood" (i.e.,
   800   // not reclaimed).
   801   static double dead_wood_limiter(double density, size_t min_percent);
   803   // Find the first (left-most) region in the range [beg, end) that has at least
   804   // dead_words of dead space to the left.  The argument beg must be the first
   805   // region in the space that is not completely live.
   806   static RegionData* dead_wood_limit_region(const RegionData* beg,
   807                                             const RegionData* end,
   808                                             size_t dead_words);
   810   // Return a pointer to the first region in the range [beg, end) that is not
   811   // completely full.
   812   static RegionData* first_dead_space_region(const RegionData* beg,
   813                                              const RegionData* end);
   815   // Return a value indicating the benefit or 'yield' if the compacted region
   816   // were to start (or equivalently if the dense prefix were to end) at the
   817   // candidate region.  Higher values are better.
   818   //
   819   // The value is based on the amount of space reclaimed vs. the costs of (a)
   820   // updating references in the dense prefix plus (b) copying objects and
   821   // updating references in the compacted region.
   822   static inline double reclaimed_ratio(const RegionData* const candidate,
   823                                        HeapWord* const bottom,
   824                                        HeapWord* const top,
   825                                        HeapWord* const new_top);
   827   // Compute the dense prefix for the designated space.
   828   static HeapWord* compute_dense_prefix(const SpaceId id,
   829                                         bool maximum_compaction);
   831   // Return true if dead space crosses onto the specified Region; bit must be
   832   // the bit index corresponding to the first word of the Region.
   833   static inline bool dead_space_crosses_boundary(const RegionData* region,
   834                                                  idx_t bit);
   836   // Summary phase utility routine to fill dead space (if any) at the dense
   837   // prefix boundary.  Should only be called if the the dense prefix is
   838   // non-empty.
   839   static void fill_dense_prefix_end(SpaceId id);
   841   static void summarize_spaces_quick();
   842   static void summarize_space(SpaceId id, bool maximum_compaction);
   843   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
   845   // The space that is compacted after space_id.
   846   static SpaceId next_compaction_space_id(SpaceId space_id);
   848   // Adjust addresses in roots.  Does not adjust addresses in heap.
   849   static void adjust_roots();
   851   // Serial code executed in preparation for the compaction phase.
   852   static void compact_prologue();
   854   // Move objects to new locations.
   855   static void compact_perm(ParCompactionManager* cm);
   856   static void compact();
   858   // Add available regions to the stack and draining tasks to the task queue.
   859   static void enqueue_region_draining_tasks(GCTaskQueue* q,
   860                                             uint parallel_gc_threads);
   862   // Add dense prefix update tasks to the task queue.
   863   static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
   864                                          uint parallel_gc_threads);
   866   // Add region stealing tasks to the task queue.
   867   static void enqueue_region_stealing_tasks(
   868                                        GCTaskQueue* q,
   869                                        ParallelTaskTerminator* terminator_ptr,
   870                                        uint parallel_gc_threads);
   872   // For debugging only - compacts the old gen serially
   873   static void compact_serial(ParCompactionManager* cm);
   875   // If objects are left in eden after a collection, try to move the boundary
   876   // and absorb them into the old gen.  Returns true if eden was emptied.
   877   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
   878                                          PSYoungGen* young_gen,
   879                                          PSOldGen* old_gen);
   881   // Reset time since last full gc
   882   static void reset_millis_since_last_gc();
   884  protected:
   885 #ifdef VALIDATE_MARK_SWEEP
   886   static GrowableArray<void*>*           _root_refs_stack;
   887   static GrowableArray<oop> *            _live_oops;
   888   static GrowableArray<oop> *            _live_oops_moved_to;
   889   static GrowableArray<size_t>*          _live_oops_size;
   890   static size_t                          _live_oops_index;
   891   static size_t                          _live_oops_index_at_perm;
   892   static GrowableArray<void*>*           _other_refs_stack;
   893   static GrowableArray<void*>*           _adjusted_pointers;
   894   static bool                            _pointer_tracking;
   895   static bool                            _root_tracking;
   897   // The following arrays are saved since the time of the last GC and
   898   // assist in tracking down problems where someone has done an errant
   899   // store into the heap, usually to an oop that wasn't properly
   900   // handleized across a GC. If we crash or otherwise fail before the
   901   // next GC, we can query these arrays to find out the object we had
   902   // intended to do the store to (assuming it is still alive) and the
   903   // offset within that object. Covered under RecordMarkSweepCompaction.
   904   static GrowableArray<HeapWord*> *      _cur_gc_live_oops;
   905   static GrowableArray<HeapWord*> *      _cur_gc_live_oops_moved_to;
   906   static GrowableArray<size_t>*          _cur_gc_live_oops_size;
   907   static GrowableArray<HeapWord*> *      _last_gc_live_oops;
   908   static GrowableArray<HeapWord*> *      _last_gc_live_oops_moved_to;
   909   static GrowableArray<size_t>*          _last_gc_live_oops_size;
   910 #endif
   912  public:
   913   class MarkAndPushClosure: public OopClosure {
   914    private:
   915     ParCompactionManager* _compaction_manager;
   916    public:
   917     MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   918     virtual void do_oop(oop* p);
   919     virtual void do_oop(narrowOop* p);
   920     virtual const bool do_nmethods() const { return true; }
   921   };
   923   PSParallelCompact();
   925   // Convenient accessor for Universe::heap().
   926   static ParallelScavengeHeap* gc_heap() {
   927     return (ParallelScavengeHeap*)Universe::heap();
   928   }
   930   static void invoke(bool maximum_heap_compaction);
   931   static void invoke_no_policy(bool maximum_heap_compaction);
   933   static void post_initialize();
   934   // Perform initialization for PSParallelCompact that requires
   935   // allocations.  This should be called during the VM initialization
   936   // at a pointer where it would be appropriate to return a JNI_ENOMEM
   937   // in the event of a failure.
   938   static bool initialize();
   940   // Public accessors
   941   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
   942   static unsigned int total_invocations() { return _total_invocations; }
   943   static CollectorCounters* counters()    { return _counters; }
   945   // Used to add tasks
   946   static GCTaskManager* const gc_task_manager();
   947   static klassOop updated_int_array_klass_obj() {
   948     return _updated_int_array_klass_obj;
   949   }
   951   // Marking support
   952   static inline bool mark_obj(oop obj);
   953   // Check mark and maybe push on marking stack
   954   template <class T> static inline void mark_and_push(ParCompactionManager* cm,
   955                                                       T* p);
   957   // Compaction support.
   958   // Return true if p is in the range [beg_addr, end_addr).
   959   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
   960   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
   962   // Convenience wrappers for per-space data kept in _space_info.
   963   static inline MutableSpace*     space(SpaceId space_id);
   964   static inline HeapWord*         new_top(SpaceId space_id);
   965   static inline HeapWord*         dense_prefix(SpaceId space_id);
   966   static inline ObjectStartArray* start_array(SpaceId space_id);
   968   // Return true if the klass should be updated.
   969   static inline bool should_update_klass(klassOop k);
   971   // Move and update the live objects in the specified space.
   972   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
   974   // Process the end of the given region range in the dense prefix.
   975   // This includes saving any object not updated.
   976   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
   977                                             size_t region_start_index,
   978                                             size_t region_end_index,
   979                                             idx_t exiting_object_offset,
   980                                             idx_t region_offset_start,
   981                                             idx_t region_offset_end);
   983   // Update a region in the dense prefix.  For each live object
   984   // in the region, update it's interior references.  For each
   985   // dead object, fill it with deadwood. Dead space at the end
   986   // of a region range will be filled to the start of the next
   987   // live object regardless of the region_index_end.  None of the
   988   // objects in the dense prefix move and dead space is dead
   989   // (holds only dead objects that don't need any processing), so
   990   // dead space can be filled in any order.
   991   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
   992                                                   SpaceId space_id,
   993                                                   size_t region_index_start,
   994                                                   size_t region_index_end);
   996   // Return the address of the count + 1st live word in the range [beg, end).
   997   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
   999   // Return the address of the word to be copied to dest_addr, which must be
  1000   // aligned to a region boundary.
  1001   static HeapWord* first_src_addr(HeapWord* const dest_addr,
  1002                                   size_t src_region_idx);
  1004   // Determine the next source region, set closure.source() to the start of the
  1005   // new region return the region index.  Parameter end_addr is the address one
  1006   // beyond the end of source range just processed.  If necessary, switch to a
  1007   // new source space and set src_space_id (in-out parameter) and src_space_top
  1008   // (out parameter) accordingly.
  1009   static size_t next_src_region(MoveAndUpdateClosure& closure,
  1010                                 SpaceId& src_space_id,
  1011                                 HeapWord*& src_space_top,
  1012                                 HeapWord* end_addr);
  1014   // Decrement the destination count for each non-empty source region in the
  1015   // range [beg_region, region(region_align_up(end_addr))).
  1016   static void decrement_destination_counts(ParCompactionManager* cm,
  1017                                            size_t beg_region,
  1018                                            HeapWord* end_addr);
  1020   // Fill a region, copying objects from one or more source regions.
  1021   static void fill_region(ParCompactionManager* cm, size_t region_idx);
  1022   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
  1023     fill_region(cm, region);
  1026   // Update the deferred objects in the space.
  1027   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
  1029   // Mark pointer and follow contents.
  1030   template <class T>
  1031   static inline void mark_and_follow(ParCompactionManager* cm, T* p);
  1033   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
  1034   static ParallelCompactData& summary_data() { return _summary_data; }
  1036   static inline void adjust_pointer(oop* p)       { adjust_pointer(p, false); }
  1037   static inline void adjust_pointer(narrowOop* p) { adjust_pointer(p, false); }
  1039   template <class T>
  1040   static inline void adjust_pointer(T* p,
  1041                                     HeapWord* beg_addr,
  1042                                     HeapWord* end_addr);
  1044   // Reference Processing
  1045   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
  1047   // Return the SpaceId for the given address.
  1048   static SpaceId space_id(HeapWord* addr);
  1050   // Time since last full gc (in milliseconds).
  1051   static jlong millis_since_last_gc();
  1053 #ifdef VALIDATE_MARK_SWEEP
  1054   static void track_adjusted_pointer(void* p, bool isroot);
  1055   static void check_adjust_pointer(void* p);
  1056   static void track_interior_pointers(oop obj);
  1057   static void check_interior_pointers();
  1059   static void reset_live_oop_tracking(bool at_perm);
  1060   static void register_live_oop(oop p, size_t size);
  1061   static void validate_live_oop(oop p, size_t size);
  1062   static void live_oop_moved_to(HeapWord* q, size_t size, HeapWord* compaction_top);
  1063   static void compaction_complete();
  1065   // Querying operation of RecordMarkSweepCompaction results.
  1066   // Finds and prints the current base oop and offset for a word
  1067   // within an oop that was live during the last GC. Helpful for
  1068   // tracking down heap stomps.
  1069   static void print_new_location_of_heap_address(HeapWord* q);
  1070 #endif  // #ifdef VALIDATE_MARK_SWEEP
  1072   // Call backs for class unloading
  1073   // Update subklass/sibling/implementor links at end of marking.
  1074   static void revisit_weak_klass_link(ParCompactionManager* cm, Klass* k);
  1076 #ifndef PRODUCT
  1077   // Debugging support.
  1078   static const char* space_names[last_space_id];
  1079   static void print_region_ranges();
  1080   static void print_dense_prefix_stats(const char* const algorithm,
  1081                                        const SpaceId id,
  1082                                        const bool maximum_compaction,
  1083                                        HeapWord* const addr);
  1084 #endif  // #ifndef PRODUCT
  1086 #ifdef  ASSERT
  1087   // Verify that all the regions have been emptied.
  1088   static void verify_complete(SpaceId space_id);
  1089 #endif  // #ifdef ASSERT
  1090 };
  1092 inline bool PSParallelCompact::mark_obj(oop obj) {
  1093   const int obj_size = obj->size();
  1094   if (mark_bitmap()->mark_obj(obj, obj_size)) {
  1095     _summary_data.add_obj(obj, obj_size);
  1096     return true;
  1097   } else {
  1098     return false;
  1102 template <class T>
  1103 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
  1104   assert(!Universe::heap()->is_in_reserved(p),
  1105          "roots shouldn't be things within the heap");
  1106 #ifdef VALIDATE_MARK_SWEEP
  1107   if (ValidateMarkSweep) {
  1108     guarantee(!_root_refs_stack->contains(p), "should only be in here once");
  1109     _root_refs_stack->push(p);
  1111 #endif
  1112   T heap_oop = oopDesc::load_heap_oop(p);
  1113   if (!oopDesc::is_null(heap_oop)) {
  1114     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1115     if (mark_bitmap()->is_unmarked(obj)) {
  1116       if (mark_obj(obj)) {
  1117         obj->follow_contents(cm);
  1121   follow_stack(cm);
  1124 template <class T>
  1125 inline void PSParallelCompact::mark_and_follow(ParCompactionManager* cm,
  1126                                                T* p) {
  1127   T heap_oop = oopDesc::load_heap_oop(p);
  1128   if (!oopDesc::is_null(heap_oop)) {
  1129     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1130     if (mark_bitmap()->is_unmarked(obj)) {
  1131       if (mark_obj(obj)) {
  1132         obj->follow_contents(cm);
  1138 template <class T>
  1139 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
  1140   T heap_oop = oopDesc::load_heap_oop(p);
  1141   if (!oopDesc::is_null(heap_oop)) {
  1142     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1143     if (mark_bitmap()->is_unmarked(obj)) {
  1144       if (mark_obj(obj)) {
  1145         // This thread marked the object and owns the subsequent processing of it.
  1146         cm->save_for_scanning(obj);
  1152 template <class T>
  1153 inline void PSParallelCompact::adjust_pointer(T* p, bool isroot) {
  1154   T heap_oop = oopDesc::load_heap_oop(p);
  1155   if (!oopDesc::is_null(heap_oop)) {
  1156     oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
  1157     oop new_obj = (oop)summary_data().calc_new_pointer(obj);
  1158     assert(new_obj != NULL ||                     // is forwarding ptr?
  1159            obj->is_shared(),                      // never forwarded?
  1160            "should be forwarded");
  1161     // Just always do the update unconditionally?
  1162     if (new_obj != NULL) {
  1163       assert(Universe::heap()->is_in_reserved(new_obj),
  1164              "should be in object space");
  1165       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
  1168   VALIDATE_MARK_SWEEP_ONLY(track_adjusted_pointer(p, isroot));
  1171 template <class T>
  1172 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
  1173 #ifdef VALIDATE_MARK_SWEEP
  1174   if (ValidateMarkSweep) {
  1175     if (!Universe::heap()->is_in_reserved(p)) {
  1176       _root_refs_stack->push(p);
  1177     } else {
  1178       _other_refs_stack->push(p);
  1181 #endif
  1182   mark_and_push(_compaction_manager, p);
  1185 inline bool PSParallelCompact::print_phases() {
  1186   return _print_phases;
  1189 inline double PSParallelCompact::normal_distribution(double density) {
  1190   assert(_dwl_initialized, "uninitialized");
  1191   const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
  1192   return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
  1195 inline bool
  1196 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
  1197                                                idx_t bit)
  1199   assert(bit > 0, "cannot call this for the first bit/region");
  1200   assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
  1201          "sanity check");
  1203   // Dead space crosses the boundary if (1) a partial object does not extend
  1204   // onto the region, (2) an object does not start at the beginning of the
  1205   // region, and (3) an object does not end at the end of the prior region.
  1206   return region->partial_obj_size() == 0 &&
  1207     !_mark_bitmap.is_obj_beg(bit) &&
  1208     !_mark_bitmap.is_obj_end(bit - 1);
  1211 inline bool
  1212 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1213   return p >= beg_addr && p < end_addr;
  1216 inline bool
  1217 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1218   return is_in((HeapWord*)p, beg_addr, end_addr);
  1221 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
  1222   assert(id < last_space_id, "id out of range");
  1223   return _space_info[id].space();
  1226 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
  1227   assert(id < last_space_id, "id out of range");
  1228   return _space_info[id].new_top();
  1231 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
  1232   assert(id < last_space_id, "id out of range");
  1233   return _space_info[id].dense_prefix();
  1236 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
  1237   assert(id < last_space_id, "id out of range");
  1238   return _space_info[id].start_array();
  1241 inline bool PSParallelCompact::should_update_klass(klassOop k) {
  1242   return ((HeapWord*) k) >= dense_prefix(perm_space_id);
  1245 template <class T>
  1246 inline void PSParallelCompact::adjust_pointer(T* p,
  1247                                               HeapWord* beg_addr,
  1248                                               HeapWord* end_addr) {
  1249   if (is_in((HeapWord*)p, beg_addr, end_addr)) {
  1250     adjust_pointer(p);
  1254 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
  1255  public:
  1256   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
  1257                               ObjectStartArray* start_array,
  1258                               HeapWord* destination, size_t words);
  1260   // Accessors.
  1261   HeapWord* destination() const         { return _destination; }
  1263   // If the object will fit (size <= words_remaining()), copy it to the current
  1264   // destination, update the interior oops and the start array and return either
  1265   // full (if the closure is full) or incomplete.  If the object will not fit,
  1266   // return would_overflow.
  1267   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
  1269   // Copy enough words to fill this closure, starting at source().  Interior
  1270   // oops and the start array are not updated.  Return full.
  1271   IterationStatus copy_until_full();
  1273   // Copy enough words to fill this closure or to the end of an object,
  1274   // whichever is smaller, starting at source().  Interior oops and the start
  1275   // array are not updated.
  1276   void copy_partial_obj();
  1278  protected:
  1279   // Update variables to indicate that word_count words were processed.
  1280   inline void update_state(size_t word_count);
  1282  protected:
  1283   ObjectStartArray* const _start_array;
  1284   HeapWord*               _destination;         // Next addr to be written.
  1285 };
  1287 inline
  1288 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
  1289                                            ParCompactionManager* cm,
  1290                                            ObjectStartArray* start_array,
  1291                                            HeapWord* destination,
  1292                                            size_t words) :
  1293   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
  1295   _destination = destination;
  1298 inline void MoveAndUpdateClosure::update_state(size_t words)
  1300   decrement_words_remaining(words);
  1301   _source += words;
  1302   _destination += words;
  1305 class UpdateOnlyClosure: public ParMarkBitMapClosure {
  1306  private:
  1307   const PSParallelCompact::SpaceId _space_id;
  1308   ObjectStartArray* const          _start_array;
  1310  public:
  1311   UpdateOnlyClosure(ParMarkBitMap* mbm,
  1312                     ParCompactionManager* cm,
  1313                     PSParallelCompact::SpaceId space_id);
  1315   // Update the object.
  1316   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
  1318   inline void do_addr(HeapWord* addr);
  1319 };
  1321 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
  1323   _start_array->allocate_block(addr);
  1324   oop(addr)->update_contents(compaction_manager());
  1327 class FillClosure: public ParMarkBitMapClosure
  1329 public:
  1330   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
  1331     ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
  1332     _start_array(PSParallelCompact::start_array(space_id))
  1334     assert(space_id == PSParallelCompact::perm_space_id ||
  1335            space_id == PSParallelCompact::old_space_id,
  1336            "cannot use FillClosure in the young gen");
  1339   virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
  1340     CollectedHeap::fill_with_objects(addr, size);
  1341     HeapWord* const end = addr + size;
  1342     do {
  1343       _start_array->allocate_block(addr);
  1344       addr += oop(addr)->size();
  1345     } while (addr < end);
  1346     return ParMarkBitMap::incomplete;
  1349 private:
  1350   ObjectStartArray* const _start_array;
  1351 };

mercurial