src/os/solaris/vm/os_solaris.cpp

Wed, 19 Dec 2012 10:35:08 -0800

author
dcubed
date
Wed, 19 Dec 2012 10:35:08 -0800
changeset 4392
7d42f3b08300
parent 4325
d2f8c38e543d
child 4471
22ba8c8ce6a6
permissions
-rw-r--r--

8005044: remove crufty '_g' support from HS runtime code
Summary: Phase 2 is removing '_g' support from the Runtime code.
Reviewed-by: dcubed, coleenp, hseigel
Contributed-by: ron.durbin@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_solaris.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_solaris.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_solaris.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/java.hpp"
    48 #include "runtime/javaCalls.hpp"
    49 #include "runtime/mutexLocker.hpp"
    50 #include "runtime/objectMonitor.hpp"
    51 #include "runtime/osThread.hpp"
    52 #include "runtime/perfMemory.hpp"
    53 #include "runtime/sharedRuntime.hpp"
    54 #include "runtime/statSampler.hpp"
    55 #include "runtime/stubRoutines.hpp"
    56 #include "runtime/thread.inline.hpp"
    57 #include "runtime/threadCritical.hpp"
    58 #include "runtime/timer.hpp"
    59 #include "services/attachListener.hpp"
    60 #include "services/memTracker.hpp"
    61 #include "services/runtimeService.hpp"
    62 #include "utilities/decoder.hpp"
    63 #include "utilities/defaultStream.hpp"
    64 #include "utilities/events.hpp"
    65 #include "utilities/growableArray.hpp"
    66 #include "utilities/vmError.hpp"
    68 // put OS-includes here
    69 # include <dlfcn.h>
    70 # include <errno.h>
    71 # include <exception>
    72 # include <link.h>
    73 # include <poll.h>
    74 # include <pthread.h>
    75 # include <pwd.h>
    76 # include <schedctl.h>
    77 # include <setjmp.h>
    78 # include <signal.h>
    79 # include <stdio.h>
    80 # include <alloca.h>
    81 # include <sys/filio.h>
    82 # include <sys/ipc.h>
    83 # include <sys/lwp.h>
    84 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
    85 # include <sys/mman.h>
    86 # include <sys/processor.h>
    87 # include <sys/procset.h>
    88 # include <sys/pset.h>
    89 # include <sys/resource.h>
    90 # include <sys/shm.h>
    91 # include <sys/socket.h>
    92 # include <sys/stat.h>
    93 # include <sys/systeminfo.h>
    94 # include <sys/time.h>
    95 # include <sys/times.h>
    96 # include <sys/types.h>
    97 # include <sys/wait.h>
    98 # include <sys/utsname.h>
    99 # include <thread.h>
   100 # include <unistd.h>
   101 # include <sys/priocntl.h>
   102 # include <sys/rtpriocntl.h>
   103 # include <sys/tspriocntl.h>
   104 # include <sys/iapriocntl.h>
   105 # include <sys/fxpriocntl.h>
   106 # include <sys/loadavg.h>
   107 # include <string.h>
   108 # include <stdio.h>
   110 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
   111 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
   113 #define MAX_PATH (2 * K)
   115 // for timer info max values which include all bits
   116 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   118 #ifdef _GNU_SOURCE
   119 // See bug #6514594
   120 extern "C" int madvise(caddr_t, size_t, int);
   121 extern "C" int memcntl(caddr_t addr, size_t len, int cmd, caddr_t arg,
   122                        int attr, int mask);
   123 #endif //_GNU_SOURCE
   125 /*
   126   MPSS Changes Start.
   127   The JVM binary needs to be built and run on pre-Solaris 9
   128   systems, but the constants needed by MPSS are only in Solaris 9
   129   header files.  They are textually replicated here to allow
   130   building on earlier systems.  Once building on Solaris 8 is
   131   no longer a requirement, these #defines can be replaced by ordinary
   132   system .h inclusion.
   134   In earlier versions of the  JDK and Solaris, we used ISM for large pages.
   135   But ISM requires shared memory to achieve this and thus has many caveats.
   136   MPSS is a fully transparent and is a cleaner way to get large pages.
   137   Although we still require keeping ISM for backward compatiblitiy as well as
   138   giving the opportunity to use large pages on older systems it is
   139   recommended that MPSS be used for Solaris 9 and above.
   141 */
   143 #ifndef MC_HAT_ADVISE
   145 struct memcntl_mha {
   146   uint_t          mha_cmd;        /* command(s) */
   147   uint_t          mha_flags;
   148   size_t          mha_pagesize;
   149 };
   150 #define MC_HAT_ADVISE   7       /* advise hat map size */
   151 #define MHA_MAPSIZE_VA  0x1     /* set preferred page size */
   152 #define MAP_ALIGN       0x200   /* addr specifies alignment */
   154 #endif
   155 // MPSS Changes End.
   158 // Here are some liblgrp types from sys/lgrp_user.h to be able to
   159 // compile on older systems without this header file.
   161 #ifndef MADV_ACCESS_LWP
   162 # define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
   163 #endif
   164 #ifndef MADV_ACCESS_MANY
   165 # define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
   166 #endif
   168 #ifndef LGRP_RSRC_CPU
   169 # define LGRP_RSRC_CPU           0       /* CPU resources */
   170 #endif
   171 #ifndef LGRP_RSRC_MEM
   172 # define LGRP_RSRC_MEM           1       /* memory resources */
   173 #endif
   175 // Some more macros from sys/mman.h that are not present in Solaris 8.
   177 #ifndef MAX_MEMINFO_CNT
   178 /*
   179  * info_req request type definitions for meminfo
   180  * request types starting with MEMINFO_V are used for Virtual addresses
   181  * and should not be mixed with MEMINFO_PLGRP which is targeted for Physical
   182  * addresses
   183  */
   184 # define MEMINFO_SHIFT           16
   185 # define MEMINFO_MASK            (0xFF << MEMINFO_SHIFT)
   186 # define MEMINFO_VPHYSICAL       (0x01 << MEMINFO_SHIFT) /* get physical addr */
   187 # define MEMINFO_VLGRP           (0x02 << MEMINFO_SHIFT) /* get lgroup */
   188 # define MEMINFO_VPAGESIZE       (0x03 << MEMINFO_SHIFT) /* size of phys page */
   189 # define MEMINFO_VREPLCNT        (0x04 << MEMINFO_SHIFT) /* no. of replica */
   190 # define MEMINFO_VREPL           (0x05 << MEMINFO_SHIFT) /* physical replica */
   191 # define MEMINFO_VREPL_LGRP      (0x06 << MEMINFO_SHIFT) /* lgrp of replica */
   192 # define MEMINFO_PLGRP           (0x07 << MEMINFO_SHIFT) /* lgroup for paddr */
   194 /* maximum number of addresses meminfo() can process at a time */
   195 # define MAX_MEMINFO_CNT 256
   197 /* maximum number of request types */
   198 # define MAX_MEMINFO_REQ 31
   199 #endif
   201 // see thr_setprio(3T) for the basis of these numbers
   202 #define MinimumPriority 0
   203 #define NormalPriority  64
   204 #define MaximumPriority 127
   206 // Values for ThreadPriorityPolicy == 1
   207 int prio_policy1[CriticalPriority+1] = {
   208   -99999,  0, 16,  32,  48,  64,
   209           80, 96, 112, 124, 127, 127 };
   211 // System parameters used internally
   212 static clock_t clock_tics_per_sec = 100;
   214 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
   215 static bool enabled_extended_FILE_stdio = false;
   217 // For diagnostics to print a message once. see run_periodic_checks
   218 static bool check_addr0_done = false;
   219 static sigset_t check_signal_done;
   220 static bool check_signals = true;
   222 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
   223 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
   225 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
   228 // "default" initializers for missing libc APIs
   229 extern "C" {
   230   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   231   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
   233   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   234   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
   235 }
   237 // "default" initializers for pthread-based synchronization
   238 extern "C" {
   239   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   240   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   241 }
   243 // Thread Local Storage
   244 // This is common to all Solaris platforms so it is defined here,
   245 // in this common file.
   246 // The declarations are in the os_cpu threadLS*.hpp files.
   247 //
   248 // Static member initialization for TLS
   249 Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
   251 #ifndef PRODUCT
   252 #define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
   254 int ThreadLocalStorage::_tcacheHit = 0;
   255 int ThreadLocalStorage::_tcacheMiss = 0;
   257 void ThreadLocalStorage::print_statistics() {
   258   int total = _tcacheMiss+_tcacheHit;
   259   tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
   260                 _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
   261 }
   262 #undef _PCT
   263 #endif // PRODUCT
   265 Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
   266                                                         int index) {
   267   Thread *thread = get_thread_slow();
   268   if (thread != NULL) {
   269     address sp = os::current_stack_pointer();
   270     guarantee(thread->_stack_base == NULL ||
   271               (sp <= thread->_stack_base &&
   272                  sp >= thread->_stack_base - thread->_stack_size) ||
   273                is_error_reported(),
   274               "sp must be inside of selected thread stack");
   276     thread->set_self_raw_id(raw_id);  // mark for quick retrieval
   277     _get_thread_cache[ index ] = thread;
   278   }
   279   return thread;
   280 }
   283 static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
   284 #define NO_CACHED_THREAD ((Thread*)all_zero)
   286 void ThreadLocalStorage::pd_set_thread(Thread* thread) {
   288   // Store the new value before updating the cache to prevent a race
   289   // between get_thread_via_cache_slowly() and this store operation.
   290   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
   292   // Update thread cache with new thread if setting on thread create,
   293   // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
   294   uintptr_t raw = pd_raw_thread_id();
   295   int ix = pd_cache_index(raw);
   296   _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
   297 }
   299 void ThreadLocalStorage::pd_init() {
   300   for (int i = 0; i < _pd_cache_size; i++) {
   301     _get_thread_cache[i] = NO_CACHED_THREAD;
   302   }
   303 }
   305 // Invalidate all the caches (happens to be the same as pd_init).
   306 void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
   308 #undef NO_CACHED_THREAD
   310 // END Thread Local Storage
   312 static inline size_t adjust_stack_size(address base, size_t size) {
   313   if ((ssize_t)size < 0) {
   314     // 4759953: Compensate for ridiculous stack size.
   315     size = max_intx;
   316   }
   317   if (size > (size_t)base) {
   318     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
   319     size = (size_t)base;
   320   }
   321   return size;
   322 }
   324 static inline stack_t get_stack_info() {
   325   stack_t st;
   326   int retval = thr_stksegment(&st);
   327   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
   328   assert(retval == 0, "incorrect return value from thr_stksegment");
   329   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
   330   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
   331   return st;
   332 }
   334 address os::current_stack_base() {
   335   int r = thr_main() ;
   336   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   337   bool is_primordial_thread = r;
   339   // Workaround 4352906, avoid calls to thr_stksegment by
   340   // thr_main after the first one (it looks like we trash
   341   // some data, causing the value for ss_sp to be incorrect).
   342   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
   343     stack_t st = get_stack_info();
   344     if (is_primordial_thread) {
   345       // cache initial value of stack base
   346       os::Solaris::_main_stack_base = (address)st.ss_sp;
   347     }
   348     return (address)st.ss_sp;
   349   } else {
   350     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
   351     return os::Solaris::_main_stack_base;
   352   }
   353 }
   355 size_t os::current_stack_size() {
   356   size_t size;
   358   int r = thr_main() ;
   359   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   360   if(!r) {
   361     size = get_stack_info().ss_size;
   362   } else {
   363     struct rlimit limits;
   364     getrlimit(RLIMIT_STACK, &limits);
   365     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
   366   }
   367   // base may not be page aligned
   368   address base = current_stack_base();
   369   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
   370   return (size_t)(base - bottom);
   371 }
   373 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
   374   return localtime_r(clock, res);
   375 }
   377 // interruptible infrastructure
   379 // setup_interruptible saves the thread state before going into an
   380 // interruptible system call.
   381 // The saved state is used to restore the thread to
   382 // its former state whether or not an interrupt is received.
   383 // Used by classloader os::read
   384 // os::restartable_read calls skip this layer and stay in _thread_in_native
   386 void os::Solaris::setup_interruptible(JavaThread* thread) {
   388   JavaThreadState thread_state = thread->thread_state();
   390   assert(thread_state != _thread_blocked, "Coming from the wrong thread");
   391   assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
   392   OSThread* osthread = thread->osthread();
   393   osthread->set_saved_interrupt_thread_state(thread_state);
   394   thread->frame_anchor()->make_walkable(thread);
   395   ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
   396 }
   398 // Version of setup_interruptible() for threads that are already in
   399 // _thread_blocked. Used by os_sleep().
   400 void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
   401   thread->frame_anchor()->make_walkable(thread);
   402 }
   404 JavaThread* os::Solaris::setup_interruptible() {
   405   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   406   setup_interruptible(thread);
   407   return thread;
   408 }
   410 void os::Solaris::try_enable_extended_io() {
   411   typedef int (*enable_extended_FILE_stdio_t)(int, int);
   413   if (!UseExtendedFileIO) {
   414     return;
   415   }
   417   enable_extended_FILE_stdio_t enabler =
   418     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
   419                                          "enable_extended_FILE_stdio");
   420   if (enabler) {
   421     enabler(-1, -1);
   422   }
   423 }
   426 #ifdef ASSERT
   428 JavaThread* os::Solaris::setup_interruptible_native() {
   429   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   430   JavaThreadState thread_state = thread->thread_state();
   431   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   432   return thread;
   433 }
   435 void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
   436   JavaThreadState thread_state = thread->thread_state();
   437   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   438 }
   439 #endif
   441 // cleanup_interruptible reverses the effects of setup_interruptible
   442 // setup_interruptible_already_blocked() does not need any cleanup.
   444 void os::Solaris::cleanup_interruptible(JavaThread* thread) {
   445   OSThread* osthread = thread->osthread();
   447   ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
   448 }
   450 // I/O interruption related counters called in _INTERRUPTIBLE
   452 void os::Solaris::bump_interrupted_before_count() {
   453   RuntimeService::record_interrupted_before_count();
   454 }
   456 void os::Solaris::bump_interrupted_during_count() {
   457   RuntimeService::record_interrupted_during_count();
   458 }
   460 static int _processors_online = 0;
   462          jint os::Solaris::_os_thread_limit = 0;
   463 volatile jint os::Solaris::_os_thread_count = 0;
   465 julong os::available_memory() {
   466   return Solaris::available_memory();
   467 }
   469 julong os::Solaris::available_memory() {
   470   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
   471 }
   473 julong os::Solaris::_physical_memory = 0;
   475 julong os::physical_memory() {
   476    return Solaris::physical_memory();
   477 }
   479 julong os::allocatable_physical_memory(julong size) {
   480 #ifdef _LP64
   481    return size;
   482 #else
   483    julong result = MIN2(size, (julong)3835*M);
   484    if (!is_allocatable(result)) {
   485      // Memory allocations will be aligned but the alignment
   486      // is not known at this point.  Alignments will
   487      // be at most to LargePageSizeInBytes.  Protect
   488      // allocations from alignments up to illegal
   489      // values. If at this point 2G is illegal.
   490      julong reasonable_size = (julong)2*G - 2 * LargePageSizeInBytes;
   491      result =  MIN2(size, reasonable_size);
   492    }
   493    return result;
   494 #endif
   495 }
   497 static hrtime_t first_hrtime = 0;
   498 static const hrtime_t hrtime_hz = 1000*1000*1000;
   499 const int LOCK_BUSY = 1;
   500 const int LOCK_FREE = 0;
   501 const int LOCK_INVALID = -1;
   502 static volatile hrtime_t max_hrtime = 0;
   503 static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
   506 void os::Solaris::initialize_system_info() {
   507   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   508   _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
   509   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   510 }
   512 int os::active_processor_count() {
   513   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
   514   pid_t pid = getpid();
   515   psetid_t pset = PS_NONE;
   516   // Are we running in a processor set or is there any processor set around?
   517   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
   518     uint_t pset_cpus;
   519     // Query the number of cpus available to us.
   520     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
   521       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
   522       _processors_online = pset_cpus;
   523       return pset_cpus;
   524     }
   525   }
   526   // Otherwise return number of online cpus
   527   return online_cpus;
   528 }
   530 static bool find_processors_in_pset(psetid_t        pset,
   531                                     processorid_t** id_array,
   532                                     uint_t*         id_length) {
   533   bool result = false;
   534   // Find the number of processors in the processor set.
   535   if (pset_info(pset, NULL, id_length, NULL) == 0) {
   536     // Make up an array to hold their ids.
   537     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
   538     // Fill in the array with their processor ids.
   539     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
   540       result = true;
   541     }
   542   }
   543   return result;
   544 }
   546 // Callers of find_processors_online() must tolerate imprecise results --
   547 // the system configuration can change asynchronously because of DR
   548 // or explicit psradm operations.
   549 //
   550 // We also need to take care that the loop (below) terminates as the
   551 // number of processors online can change between the _SC_NPROCESSORS_ONLN
   552 // request and the loop that builds the list of processor ids.   Unfortunately
   553 // there's no reliable way to determine the maximum valid processor id,
   554 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
   555 // man pages, which claim the processor id set is "sparse, but
   556 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
   557 // exit the loop.
   558 //
   559 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
   560 // not available on S8.0.
   562 static bool find_processors_online(processorid_t** id_array,
   563                                    uint*           id_length) {
   564   const processorid_t MAX_PROCESSOR_ID = 100000 ;
   565   // Find the number of processors online.
   566   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
   567   // Make up an array to hold their ids.
   568   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
   569   // Processors need not be numbered consecutively.
   570   long found = 0;
   571   processorid_t next = 0;
   572   while (found < *id_length && next < MAX_PROCESSOR_ID) {
   573     processor_info_t info;
   574     if (processor_info(next, &info) == 0) {
   575       // NB, PI_NOINTR processors are effectively online ...
   576       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
   577         (*id_array)[found] = next;
   578         found += 1;
   579       }
   580     }
   581     next += 1;
   582   }
   583   if (found < *id_length) {
   584       // The loop above didn't identify the expected number of processors.
   585       // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
   586       // and re-running the loop, above, but there's no guarantee of progress
   587       // if the system configuration is in flux.  Instead, we just return what
   588       // we've got.  Note that in the worst case find_processors_online() could
   589       // return an empty set.  (As a fall-back in the case of the empty set we
   590       // could just return the ID of the current processor).
   591       *id_length = found ;
   592   }
   594   return true;
   595 }
   597 static bool assign_distribution(processorid_t* id_array,
   598                                 uint           id_length,
   599                                 uint*          distribution,
   600                                 uint           distribution_length) {
   601   // We assume we can assign processorid_t's to uint's.
   602   assert(sizeof(processorid_t) == sizeof(uint),
   603          "can't convert processorid_t to uint");
   604   // Quick check to see if we won't succeed.
   605   if (id_length < distribution_length) {
   606     return false;
   607   }
   608   // Assign processor ids to the distribution.
   609   // Try to shuffle processors to distribute work across boards,
   610   // assuming 4 processors per board.
   611   const uint processors_per_board = ProcessDistributionStride;
   612   // Find the maximum processor id.
   613   processorid_t max_id = 0;
   614   for (uint m = 0; m < id_length; m += 1) {
   615     max_id = MAX2(max_id, id_array[m]);
   616   }
   617   // The next id, to limit loops.
   618   const processorid_t limit_id = max_id + 1;
   619   // Make up markers for available processors.
   620   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
   621   for (uint c = 0; c < limit_id; c += 1) {
   622     available_id[c] = false;
   623   }
   624   for (uint a = 0; a < id_length; a += 1) {
   625     available_id[id_array[a]] = true;
   626   }
   627   // Step by "boards", then by "slot", copying to "assigned".
   628   // NEEDS_CLEANUP: The assignment of processors should be stateful,
   629   //                remembering which processors have been assigned by
   630   //                previous calls, etc., so as to distribute several
   631   //                independent calls of this method.  What we'd like is
   632   //                It would be nice to have an API that let us ask
   633   //                how many processes are bound to a processor,
   634   //                but we don't have that, either.
   635   //                In the short term, "board" is static so that
   636   //                subsequent distributions don't all start at board 0.
   637   static uint board = 0;
   638   uint assigned = 0;
   639   // Until we've found enough processors ....
   640   while (assigned < distribution_length) {
   641     // ... find the next available processor in the board.
   642     for (uint slot = 0; slot < processors_per_board; slot += 1) {
   643       uint try_id = board * processors_per_board + slot;
   644       if ((try_id < limit_id) && (available_id[try_id] == true)) {
   645         distribution[assigned] = try_id;
   646         available_id[try_id] = false;
   647         assigned += 1;
   648         break;
   649       }
   650     }
   651     board += 1;
   652     if (board * processors_per_board + 0 >= limit_id) {
   653       board = 0;
   654     }
   655   }
   656   if (available_id != NULL) {
   657     FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
   658   }
   659   return true;
   660 }
   662 void os::set_native_thread_name(const char *name) {
   663   // Not yet implemented.
   664   return;
   665 }
   667 bool os::distribute_processes(uint length, uint* distribution) {
   668   bool result = false;
   669   // Find the processor id's of all the available CPUs.
   670   processorid_t* id_array  = NULL;
   671   uint           id_length = 0;
   672   // There are some races between querying information and using it,
   673   // since processor sets can change dynamically.
   674   psetid_t pset = PS_NONE;
   675   // Are we running in a processor set?
   676   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
   677     result = find_processors_in_pset(pset, &id_array, &id_length);
   678   } else {
   679     result = find_processors_online(&id_array, &id_length);
   680   }
   681   if (result == true) {
   682     if (id_length >= length) {
   683       result = assign_distribution(id_array, id_length, distribution, length);
   684     } else {
   685       result = false;
   686     }
   687   }
   688   if (id_array != NULL) {
   689     FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
   690   }
   691   return result;
   692 }
   694 bool os::bind_to_processor(uint processor_id) {
   695   // We assume that a processorid_t can be stored in a uint.
   696   assert(sizeof(uint) == sizeof(processorid_t),
   697          "can't convert uint to processorid_t");
   698   int bind_result =
   699     processor_bind(P_LWPID,                       // bind LWP.
   700                    P_MYID,                        // bind current LWP.
   701                    (processorid_t) processor_id,  // id.
   702                    NULL);                         // don't return old binding.
   703   return (bind_result == 0);
   704 }
   706 bool os::getenv(const char* name, char* buffer, int len) {
   707   char* val = ::getenv( name );
   708   if ( val == NULL
   709   ||   strlen(val) + 1  >  len ) {
   710     if (len > 0)  buffer[0] = 0; // return a null string
   711     return false;
   712   }
   713   strcpy( buffer, val );
   714   return true;
   715 }
   718 // Return true if user is running as root.
   720 bool os::have_special_privileges() {
   721   static bool init = false;
   722   static bool privileges = false;
   723   if (!init) {
   724     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   725     init = true;
   726   }
   727   return privileges;
   728 }
   731 void os::init_system_properties_values() {
   732   char arch[12];
   733   sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   735   // The next steps are taken in the product version:
   736   //
   737   // Obtain the JAVA_HOME value from the location of libjvm.so.
   738   // This library should be located at:
   739   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   740   //
   741   // If "/jre/lib/" appears at the right place in the path, then we
   742   // assume libjvm.so is installed in a JDK and we use this path.
   743   //
   744   // Otherwise exit with message: "Could not create the Java virtual machine."
   745   //
   746   // The following extra steps are taken in the debugging version:
   747   //
   748   // If "/jre/lib/" does NOT appear at the right place in the path
   749   // instead of exit check for $JAVA_HOME environment variable.
   750   //
   751   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   752   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   753   // it looks like libjvm.so is installed there
   754   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   755   //
   756   // Otherwise exit.
   757   //
   758   // Important note: if the location of libjvm.so changes this
   759   // code needs to be changed accordingly.
   761   // The next few definitions allow the code to be verbatim:
   762 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   763 #define free(p) FREE_C_HEAP_ARRAY(char, p, mtInternal)
   764 #define getenv(n) ::getenv(n)
   766 #define EXTENSIONS_DIR  "/lib/ext"
   767 #define ENDORSED_DIR    "/lib/endorsed"
   768 #define COMMON_DIR      "/usr/jdk/packages"
   770   {
   771     /* sysclasspath, java_home, dll_dir */
   772     {
   773         char *home_path;
   774         char *dll_path;
   775         char *pslash;
   776         char buf[MAXPATHLEN];
   777         os::jvm_path(buf, sizeof(buf));
   779         // Found the full path to libjvm.so.
   780         // Now cut the path to <java_home>/jre if we can.
   781         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   782         pslash = strrchr(buf, '/');
   783         if (pslash != NULL)
   784             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   785         dll_path = malloc(strlen(buf) + 1);
   786         if (dll_path == NULL)
   787             return;
   788         strcpy(dll_path, buf);
   789         Arguments::set_dll_dir(dll_path);
   791         if (pslash != NULL) {
   792             pslash = strrchr(buf, '/');
   793             if (pslash != NULL) {
   794                 *pslash = '\0';       /* get rid of /<arch> */
   795                 pslash = strrchr(buf, '/');
   796                 if (pslash != NULL)
   797                     *pslash = '\0';   /* get rid of /lib */
   798             }
   799         }
   801         home_path = malloc(strlen(buf) + 1);
   802         if (home_path == NULL)
   803             return;
   804         strcpy(home_path, buf);
   805         Arguments::set_java_home(home_path);
   807         if (!set_boot_path('/', ':'))
   808             return;
   809     }
   811     /*
   812      * Where to look for native libraries
   813      */
   814     {
   815       // Use dlinfo() to determine the correct java.library.path.
   816       //
   817       // If we're launched by the Java launcher, and the user
   818       // does not set java.library.path explicitly on the commandline,
   819       // the Java launcher sets LD_LIBRARY_PATH for us and unsets
   820       // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
   821       // dlinfo returns LD_LIBRARY_PATH + crle settings (including
   822       // /usr/lib), which is exactly what we want.
   823       //
   824       // If the user does set java.library.path, it completely
   825       // overwrites this setting, and always has.
   826       //
   827       // If we're not launched by the Java launcher, we may
   828       // get here with any/all of the LD_LIBRARY_PATH[_32|64]
   829       // settings.  Again, dlinfo does exactly what we want.
   831       Dl_serinfo     _info, *info = &_info;
   832       Dl_serpath     *path;
   833       char*          library_path;
   834       char           *common_path;
   835       int            i;
   837       // determine search path count and required buffer size
   838       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
   839         vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
   840       }
   842       // allocate new buffer and initialize
   843       info = (Dl_serinfo*)malloc(_info.dls_size);
   844       if (info == NULL) {
   845         vm_exit_out_of_memory(_info.dls_size,
   846                               "init_system_properties_values info");
   847       }
   848       info->dls_size = _info.dls_size;
   849       info->dls_cnt = _info.dls_cnt;
   851       // obtain search path information
   852       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
   853         free(info);
   854         vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
   855       }
   857       path = &info->dls_serpath[0];
   859       // Note: Due to a legacy implementation, most of the library path
   860       // is set in the launcher.  This was to accomodate linking restrictions
   861       // on legacy Solaris implementations (which are no longer supported).
   862       // Eventually, all the library path setting will be done here.
   863       //
   864       // However, to prevent the proliferation of improperly built native
   865       // libraries, the new path component /usr/jdk/packages is added here.
   867       // Determine the actual CPU architecture.
   868       char cpu_arch[12];
   869       sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
   870 #ifdef _LP64
   871       // If we are a 64-bit vm, perform the following translations:
   872       //   sparc   -> sparcv9
   873       //   i386    -> amd64
   874       if (strcmp(cpu_arch, "sparc") == 0)
   875         strcat(cpu_arch, "v9");
   876       else if (strcmp(cpu_arch, "i386") == 0)
   877         strcpy(cpu_arch, "amd64");
   878 #endif
   880       // Construct the invariant part of ld_library_path. Note that the
   881       // space for the colon and the trailing null are provided by the
   882       // nulls included by the sizeof operator.
   883       size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
   884       common_path = malloc(bufsize);
   885       if (common_path == NULL) {
   886         free(info);
   887         vm_exit_out_of_memory(bufsize,
   888                               "init_system_properties_values common_path");
   889       }
   890       sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
   892       // struct size is more than sufficient for the path components obtained
   893       // through the dlinfo() call, so only add additional space for the path
   894       // components explicitly added here.
   895       bufsize = info->dls_size + strlen(common_path);
   896       library_path = malloc(bufsize);
   897       if (library_path == NULL) {
   898         free(info);
   899         free(common_path);
   900         vm_exit_out_of_memory(bufsize,
   901                               "init_system_properties_values library_path");
   902       }
   903       library_path[0] = '\0';
   905       // Construct the desired Java library path from the linker's library
   906       // search path.
   907       //
   908       // For compatibility, it is optimal that we insert the additional path
   909       // components specific to the Java VM after those components specified
   910       // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
   911       // infrastructure.
   912       if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
   913         strcpy(library_path, common_path);
   914       } else {
   915         int inserted = 0;
   916         for (i = 0; i < info->dls_cnt; i++, path++) {
   917           uint_t flags = path->dls_flags & LA_SER_MASK;
   918           if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
   919             strcat(library_path, common_path);
   920             strcat(library_path, os::path_separator());
   921             inserted = 1;
   922           }
   923           strcat(library_path, path->dls_name);
   924           strcat(library_path, os::path_separator());
   925         }
   926         // eliminate trailing path separator
   927         library_path[strlen(library_path)-1] = '\0';
   928       }
   930       // happens before argument parsing - can't use a trace flag
   931       // tty->print_raw("init_system_properties_values: native lib path: ");
   932       // tty->print_raw_cr(library_path);
   934       // callee copies into its own buffer
   935       Arguments::set_library_path(library_path);
   937       free(common_path);
   938       free(library_path);
   939       free(info);
   940     }
   942     /*
   943      * Extensions directories.
   944      *
   945      * Note that the space for the colon and the trailing null are provided
   946      * by the nulls included by the sizeof operator (so actually one byte more
   947      * than necessary is allocated).
   948      */
   949     {
   950         char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
   951             sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
   952             sizeof(EXTENSIONS_DIR));
   953         sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
   954             Arguments::get_java_home());
   955         Arguments::set_ext_dirs(buf);
   956     }
   958     /* Endorsed standards default directory. */
   959     {
   960         char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   961         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   962         Arguments::set_endorsed_dirs(buf);
   963     }
   964   }
   966 #undef malloc
   967 #undef free
   968 #undef getenv
   969 #undef EXTENSIONS_DIR
   970 #undef ENDORSED_DIR
   971 #undef COMMON_DIR
   973 }
   975 void os::breakpoint() {
   976   BREAKPOINT;
   977 }
   979 bool os::obsolete_option(const JavaVMOption *option)
   980 {
   981   if (!strncmp(option->optionString, "-Xt", 3)) {
   982     return true;
   983   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
   984     return true;
   985   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
   986     return true;
   987   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
   988     return true;
   989   }
   990   return false;
   991 }
   993 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
   994   address  stackStart  = (address)thread->stack_base();
   995   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
   996   if (sp < stackStart && sp >= stackEnd ) return true;
   997   return false;
   998 }
  1000 extern "C" void breakpoint() {
  1001   // use debugger to set breakpoint here
  1004 static thread_t main_thread;
  1006 // Thread start routine for all new Java threads
  1007 extern "C" void* java_start(void* thread_addr) {
  1008   // Try to randomize the cache line index of hot stack frames.
  1009   // This helps when threads of the same stack traces evict each other's
  1010   // cache lines. The threads can be either from the same JVM instance, or
  1011   // from different JVM instances. The benefit is especially true for
  1012   // processors with hyperthreading technology.
  1013   static int counter = 0;
  1014   int pid = os::current_process_id();
  1015   alloca(((pid ^ counter++) & 7) * 128);
  1017   int prio;
  1018   Thread* thread = (Thread*)thread_addr;
  1019   OSThread* osthr = thread->osthread();
  1021   osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
  1022   thread->_schedctl = (void *) schedctl_init () ;
  1024   if (UseNUMA) {
  1025     int lgrp_id = os::numa_get_group_id();
  1026     if (lgrp_id != -1) {
  1027       thread->set_lgrp_id(lgrp_id);
  1031   // If the creator called set priority before we started,
  1032   // we need to call set_native_priority now that we have an lwp.
  1033   // We used to get the priority from thr_getprio (we called
  1034   // thr_setprio way back in create_thread) and pass it to
  1035   // set_native_priority, but Solaris scales the priority
  1036   // in java_to_os_priority, so when we read it back here,
  1037   // we pass trash to set_native_priority instead of what's
  1038   // in java_to_os_priority. So we save the native priority
  1039   // in the osThread and recall it here.
  1041   if ( osthr->thread_id() != -1 ) {
  1042     if ( UseThreadPriorities ) {
  1043       int prio = osthr->native_priority();
  1044       if (ThreadPriorityVerbose) {
  1045         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
  1046                       INTPTR_FORMAT ", setting priority: %d\n",
  1047                       osthr->thread_id(), osthr->lwp_id(), prio);
  1049       os::set_native_priority(thread, prio);
  1051   } else if (ThreadPriorityVerbose) {
  1052     warning("Can't set priority in _start routine, thread id hasn't been set\n");
  1055   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
  1057   // initialize signal mask for this thread
  1058   os::Solaris::hotspot_sigmask(thread);
  1060   thread->run();
  1062   // One less thread is executing
  1063   // When the VMThread gets here, the main thread may have already exited
  1064   // which frees the CodeHeap containing the Atomic::dec code
  1065   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
  1066     Atomic::dec(&os::Solaris::_os_thread_count);
  1069   if (UseDetachedThreads) {
  1070     thr_exit(NULL);
  1071     ShouldNotReachHere();
  1073   return NULL;
  1076 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
  1077   // Allocate the OSThread object
  1078   OSThread* osthread = new OSThread(NULL, NULL);
  1079   if (osthread == NULL) return NULL;
  1081   // Store info on the Solaris thread into the OSThread
  1082   osthread->set_thread_id(thread_id);
  1083   osthread->set_lwp_id(_lwp_self());
  1084   thread->_schedctl = (void *) schedctl_init () ;
  1086   if (UseNUMA) {
  1087     int lgrp_id = os::numa_get_group_id();
  1088     if (lgrp_id != -1) {
  1089       thread->set_lgrp_id(lgrp_id);
  1093   if ( ThreadPriorityVerbose ) {
  1094     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
  1095                   osthread->thread_id(), osthread->lwp_id() );
  1098   // Initial thread state is INITIALIZED, not SUSPENDED
  1099   osthread->set_state(INITIALIZED);
  1101   return osthread;
  1104 void os::Solaris::hotspot_sigmask(Thread* thread) {
  1106   //Save caller's signal mask
  1107   sigset_t sigmask;
  1108   thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
  1109   OSThread *osthread = thread->osthread();
  1110   osthread->set_caller_sigmask(sigmask);
  1112   thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
  1113   if (!ReduceSignalUsage) {
  1114     if (thread->is_VM_thread()) {
  1115       // Only the VM thread handles BREAK_SIGNAL ...
  1116       thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
  1117     } else {
  1118       // ... all other threads block BREAK_SIGNAL
  1119       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
  1120       thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
  1125 bool os::create_attached_thread(JavaThread* thread) {
  1126 #ifdef ASSERT
  1127   thread->verify_not_published();
  1128 #endif
  1129   OSThread* osthread = create_os_thread(thread, thr_self());
  1130   if (osthread == NULL) {
  1131      return false;
  1134   // Initial thread state is RUNNABLE
  1135   osthread->set_state(RUNNABLE);
  1136   thread->set_osthread(osthread);
  1138   // initialize signal mask for this thread
  1139   // and save the caller's signal mask
  1140   os::Solaris::hotspot_sigmask(thread);
  1142   return true;
  1145 bool os::create_main_thread(JavaThread* thread) {
  1146 #ifdef ASSERT
  1147   thread->verify_not_published();
  1148 #endif
  1149   if (_starting_thread == NULL) {
  1150     _starting_thread = create_os_thread(thread, main_thread);
  1151      if (_starting_thread == NULL) {
  1152         return false;
  1156   // The primodial thread is runnable from the start
  1157   _starting_thread->set_state(RUNNABLE);
  1159   thread->set_osthread(_starting_thread);
  1161   // initialize signal mask for this thread
  1162   // and save the caller's signal mask
  1163   os::Solaris::hotspot_sigmask(thread);
  1165   return true;
  1168 // _T2_libthread is true if we believe we are running with the newer
  1169 // SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
  1170 bool os::Solaris::_T2_libthread = false;
  1172 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
  1173   // Allocate the OSThread object
  1174   OSThread* osthread = new OSThread(NULL, NULL);
  1175   if (osthread == NULL) {
  1176     return false;
  1179   if ( ThreadPriorityVerbose ) {
  1180     char *thrtyp;
  1181     switch ( thr_type ) {
  1182       case vm_thread:
  1183         thrtyp = (char *)"vm";
  1184         break;
  1185       case cgc_thread:
  1186         thrtyp = (char *)"cgc";
  1187         break;
  1188       case pgc_thread:
  1189         thrtyp = (char *)"pgc";
  1190         break;
  1191       case java_thread:
  1192         thrtyp = (char *)"java";
  1193         break;
  1194       case compiler_thread:
  1195         thrtyp = (char *)"compiler";
  1196         break;
  1197       case watcher_thread:
  1198         thrtyp = (char *)"watcher";
  1199         break;
  1200       default:
  1201         thrtyp = (char *)"unknown";
  1202         break;
  1204     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
  1207   // Calculate stack size if it's not specified by caller.
  1208   if (stack_size == 0) {
  1209     // The default stack size 1M (2M for LP64).
  1210     stack_size = (BytesPerWord >> 2) * K * K;
  1212     switch (thr_type) {
  1213     case os::java_thread:
  1214       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
  1215       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
  1216       break;
  1217     case os::compiler_thread:
  1218       if (CompilerThreadStackSize > 0) {
  1219         stack_size = (size_t)(CompilerThreadStackSize * K);
  1220         break;
  1221       } // else fall through:
  1222         // use VMThreadStackSize if CompilerThreadStackSize is not defined
  1223     case os::vm_thread:
  1224     case os::pgc_thread:
  1225     case os::cgc_thread:
  1226     case os::watcher_thread:
  1227       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
  1228       break;
  1231   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
  1233   // Initial state is ALLOCATED but not INITIALIZED
  1234   osthread->set_state(ALLOCATED);
  1236   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
  1237     // We got lots of threads. Check if we still have some address space left.
  1238     // Need to be at least 5Mb of unreserved address space. We do check by
  1239     // trying to reserve some.
  1240     const size_t VirtualMemoryBangSize = 20*K*K;
  1241     char* mem = os::reserve_memory(VirtualMemoryBangSize);
  1242     if (mem == NULL) {
  1243       delete osthread;
  1244       return false;
  1245     } else {
  1246       // Release the memory again
  1247       os::release_memory(mem, VirtualMemoryBangSize);
  1251   // Setup osthread because the child thread may need it.
  1252   thread->set_osthread(osthread);
  1254   // Create the Solaris thread
  1255   // explicit THR_BOUND for T2_libthread case in case
  1256   // that assumption is not accurate, but our alternate signal stack
  1257   // handling is based on it which must have bound threads
  1258   thread_t tid = 0;
  1259   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
  1260                    | ((UseBoundThreads || os::Solaris::T2_libthread() ||
  1261                        (thr_type == vm_thread) ||
  1262                        (thr_type == cgc_thread) ||
  1263                        (thr_type == pgc_thread) ||
  1264                        (thr_type == compiler_thread && BackgroundCompilation)) ?
  1265                       THR_BOUND : 0);
  1266   int      status;
  1268   // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
  1269   //
  1270   // On multiprocessors systems, libthread sometimes under-provisions our
  1271   // process with LWPs.  On a 30-way systems, for instance, we could have
  1272   // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
  1273   // to our process.  This can result in under utilization of PEs.
  1274   // I suspect the problem is related to libthread's LWP
  1275   // pool management and to the kernel's SIGBLOCKING "last LWP parked"
  1276   // upcall policy.
  1277   //
  1278   // The following code is palliative -- it attempts to ensure that our
  1279   // process has sufficient LWPs to take advantage of multiple PEs.
  1280   // Proper long-term cures include using user-level threads bound to LWPs
  1281   // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
  1282   // slight timing window with respect to sampling _os_thread_count, but
  1283   // the race is benign.  Also, we should periodically recompute
  1284   // _processors_online as the min of SC_NPROCESSORS_ONLN and the
  1285   // the number of PEs in our partition.  You might be tempted to use
  1286   // THR_NEW_LWP here, but I'd recommend against it as that could
  1287   // result in undesirable growth of the libthread's LWP pool.
  1288   // The fix below isn't sufficient; for instance, it doesn't take into count
  1289   // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
  1290   //
  1291   // Some pathologies this scheme doesn't handle:
  1292   // *  Threads can block, releasing the LWPs.  The LWPs can age out.
  1293   //    When a large number of threads become ready again there aren't
  1294   //    enough LWPs available to service them.  This can occur when the
  1295   //    number of ready threads oscillates.
  1296   // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
  1297   //
  1298   // Finally, we should call thr_setconcurrency() periodically to refresh
  1299   // the LWP pool and thwart the LWP age-out mechanism.
  1300   // The "+3" term provides a little slop -- we want to slightly overprovision.
  1302   if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
  1303     if (!(flags & THR_BOUND)) {
  1304       thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
  1307   // Although this doesn't hurt, we should warn of undefined behavior
  1308   // when using unbound T1 threads with schedctl().  This should never
  1309   // happen, as the compiler and VM threads are always created bound
  1310   DEBUG_ONLY(
  1311       if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
  1312           (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
  1313           ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
  1314            (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
  1315          warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
  1317   );
  1320   // Mark that we don't have an lwp or thread id yet.
  1321   // In case we attempt to set the priority before the thread starts.
  1322   osthread->set_lwp_id(-1);
  1323   osthread->set_thread_id(-1);
  1325   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
  1326   if (status != 0) {
  1327     if (PrintMiscellaneous && (Verbose || WizardMode)) {
  1328       perror("os::create_thread");
  1330     thread->set_osthread(NULL);
  1331     // Need to clean up stuff we've allocated so far
  1332     delete osthread;
  1333     return false;
  1336   Atomic::inc(&os::Solaris::_os_thread_count);
  1338   // Store info on the Solaris thread into the OSThread
  1339   osthread->set_thread_id(tid);
  1341   // Remember that we created this thread so we can set priority on it
  1342   osthread->set_vm_created();
  1344   // Set the default thread priority.  If using bound threads, setting
  1345   // lwp priority will be delayed until thread start.
  1346   set_native_priority(thread,
  1347                       DefaultThreadPriority == -1 ?
  1348                         java_to_os_priority[NormPriority] :
  1349                         DefaultThreadPriority);
  1351   // Initial thread state is INITIALIZED, not SUSPENDED
  1352   osthread->set_state(INITIALIZED);
  1354   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
  1355   return true;
  1358 /* defined for >= Solaris 10. This allows builds on earlier versions
  1359  *  of Solaris to take advantage of the newly reserved Solaris JVM signals
  1360  *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
  1361  *  and -XX:+UseAltSigs does nothing since these should have no conflict
  1362  */
  1363 #if !defined(SIGJVM1)
  1364 #define SIGJVM1 39
  1365 #define SIGJVM2 40
  1366 #endif
  1368 debug_only(static bool signal_sets_initialized = false);
  1369 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
  1370 int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
  1371 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
  1373 bool os::Solaris::is_sig_ignored(int sig) {
  1374       struct sigaction oact;
  1375       sigaction(sig, (struct sigaction*)NULL, &oact);
  1376       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
  1377                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
  1378       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
  1379            return true;
  1380       else
  1381            return false;
  1384 // Note: SIGRTMIN is a macro that calls sysconf() so it will
  1385 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
  1386 static bool isJVM1available() {
  1387   return SIGJVM1 < SIGRTMIN;
  1390 void os::Solaris::signal_sets_init() {
  1391   // Should also have an assertion stating we are still single-threaded.
  1392   assert(!signal_sets_initialized, "Already initialized");
  1393   // Fill in signals that are necessarily unblocked for all threads in
  1394   // the VM. Currently, we unblock the following signals:
  1395   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
  1396   //                         by -Xrs (=ReduceSignalUsage));
  1397   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
  1398   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
  1399   // the dispositions or masks wrt these signals.
  1400   // Programs embedding the VM that want to use the above signals for their
  1401   // own purposes must, at this time, use the "-Xrs" option to prevent
  1402   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
  1403   // (See bug 4345157, and other related bugs).
  1404   // In reality, though, unblocking these signals is really a nop, since
  1405   // these signals are not blocked by default.
  1406   sigemptyset(&unblocked_sigs);
  1407   sigemptyset(&allowdebug_blocked_sigs);
  1408   sigaddset(&unblocked_sigs, SIGILL);
  1409   sigaddset(&unblocked_sigs, SIGSEGV);
  1410   sigaddset(&unblocked_sigs, SIGBUS);
  1411   sigaddset(&unblocked_sigs, SIGFPE);
  1413   if (isJVM1available) {
  1414     os::Solaris::set_SIGinterrupt(SIGJVM1);
  1415     os::Solaris::set_SIGasync(SIGJVM2);
  1416   } else if (UseAltSigs) {
  1417     os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
  1418     os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
  1419   } else {
  1420     os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
  1421     os::Solaris::set_SIGasync(ASYNC_SIGNAL);
  1424   sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
  1425   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
  1427   if (!ReduceSignalUsage) {
  1428    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
  1429       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
  1430       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
  1432    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
  1433       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
  1434       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
  1436    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
  1437       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
  1438       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
  1441   // Fill in signals that are blocked by all but the VM thread.
  1442   sigemptyset(&vm_sigs);
  1443   if (!ReduceSignalUsage)
  1444     sigaddset(&vm_sigs, BREAK_SIGNAL);
  1445   debug_only(signal_sets_initialized = true);
  1447   // For diagnostics only used in run_periodic_checks
  1448   sigemptyset(&check_signal_done);
  1451 // These are signals that are unblocked while a thread is running Java.
  1452 // (For some reason, they get blocked by default.)
  1453 sigset_t* os::Solaris::unblocked_signals() {
  1454   assert(signal_sets_initialized, "Not initialized");
  1455   return &unblocked_sigs;
  1458 // These are the signals that are blocked while a (non-VM) thread is
  1459 // running Java. Only the VM thread handles these signals.
  1460 sigset_t* os::Solaris::vm_signals() {
  1461   assert(signal_sets_initialized, "Not initialized");
  1462   return &vm_sigs;
  1465 // These are signals that are blocked during cond_wait to allow debugger in
  1466 sigset_t* os::Solaris::allowdebug_blocked_signals() {
  1467   assert(signal_sets_initialized, "Not initialized");
  1468   return &allowdebug_blocked_sigs;
  1472 void _handle_uncaught_cxx_exception() {
  1473   VMError err("An uncaught C++ exception");
  1474   err.report_and_die();
  1478 // First crack at OS-specific initialization, from inside the new thread.
  1479 void os::initialize_thread(Thread* thr) {
  1480   int r = thr_main() ;
  1481   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
  1482   if (r) {
  1483     JavaThread* jt = (JavaThread *)thr;
  1484     assert(jt != NULL,"Sanity check");
  1485     size_t stack_size;
  1486     address base = jt->stack_base();
  1487     if (Arguments::created_by_java_launcher()) {
  1488       // Use 2MB to allow for Solaris 7 64 bit mode.
  1489       stack_size = JavaThread::stack_size_at_create() == 0
  1490         ? 2048*K : JavaThread::stack_size_at_create();
  1492       // There are rare cases when we may have already used more than
  1493       // the basic stack size allotment before this method is invoked.
  1494       // Attempt to allow for a normally sized java_stack.
  1495       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
  1496       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
  1497     } else {
  1498       // 6269555: If we were not created by a Java launcher, i.e. if we are
  1499       // running embedded in a native application, treat the primordial thread
  1500       // as much like a native attached thread as possible.  This means using
  1501       // the current stack size from thr_stksegment(), unless it is too large
  1502       // to reliably setup guard pages.  A reasonable max size is 8MB.
  1503       size_t current_size = current_stack_size();
  1504       // This should never happen, but just in case....
  1505       if (current_size == 0) current_size = 2 * K * K;
  1506       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
  1508     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
  1509     stack_size = (size_t)(base - bottom);
  1511     assert(stack_size > 0, "Stack size calculation problem");
  1513     if (stack_size > jt->stack_size()) {
  1514       NOT_PRODUCT(
  1515         struct rlimit limits;
  1516         getrlimit(RLIMIT_STACK, &limits);
  1517         size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
  1518         assert(size >= jt->stack_size(), "Stack size problem in main thread");
  1520       tty->print_cr(
  1521         "Stack size of %d Kb exceeds current limit of %d Kb.\n"
  1522         "(Stack sizes are rounded up to a multiple of the system page size.)\n"
  1523         "See limit(1) to increase the stack size limit.",
  1524         stack_size / K, jt->stack_size() / K);
  1525       vm_exit(1);
  1527     assert(jt->stack_size() >= stack_size,
  1528           "Attempt to map more stack than was allocated");
  1529     jt->set_stack_size(stack_size);
  1532    // 5/22/01: Right now alternate signal stacks do not handle
  1533    // throwing stack overflow exceptions, see bug 4463178
  1534    // Until a fix is found for this, T2 will NOT imply alternate signal
  1535    // stacks.
  1536    // If using T2 libthread threads, install an alternate signal stack.
  1537    // Because alternate stacks associate with LWPs on Solaris,
  1538    // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
  1539    // we prefer to explicitly stack bang.
  1540    // If not using T2 libthread, but using UseBoundThreads any threads
  1541    // (primordial thread, jni_attachCurrentThread) we do not create,
  1542    // probably are not bound, therefore they can not have an alternate
  1543    // signal stack. Since our stack banging code is generated and
  1544    // is shared across threads, all threads must be bound to allow
  1545    // using alternate signal stacks.  The alternative is to interpose
  1546    // on _lwp_create to associate an alt sig stack with each LWP,
  1547    // and this could be a problem when the JVM is embedded.
  1548    // We would prefer to use alternate signal stacks with T2
  1549    // Since there is currently no accurate way to detect T2
  1550    // we do not. Assuming T2 when running T1 causes sig 11s or assertions
  1551    // on installing alternate signal stacks
  1554    // 05/09/03: removed alternate signal stack support for Solaris
  1555    // The alternate signal stack mechanism is no longer needed to
  1556    // handle stack overflow. This is now handled by allocating
  1557    // guard pages (red zone) and stackbanging.
  1558    // Initially the alternate signal stack mechanism was removed because
  1559    // it did not work with T1 llibthread. Alternate
  1560    // signal stacks MUST have all threads bound to lwps. Applications
  1561    // can create their own threads and attach them without their being
  1562    // bound under T1. This is frequently the case for the primordial thread.
  1563    // If we were ever to reenable this mechanism we would need to
  1564    // use the dynamic check for T2 libthread.
  1566   os::Solaris::init_thread_fpu_state();
  1567   std::set_terminate(_handle_uncaught_cxx_exception);
  1572 // Free Solaris resources related to the OSThread
  1573 void os::free_thread(OSThread* osthread) {
  1574   assert(osthread != NULL, "os::free_thread but osthread not set");
  1577   // We are told to free resources of the argument thread,
  1578   // but we can only really operate on the current thread.
  1579   // The main thread must take the VMThread down synchronously
  1580   // before the main thread exits and frees up CodeHeap
  1581   guarantee((Thread::current()->osthread() == osthread
  1582      || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
  1583   if (Thread::current()->osthread() == osthread) {
  1584     // Restore caller's signal mask
  1585     sigset_t sigmask = osthread->caller_sigmask();
  1586     thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
  1588   delete osthread;
  1591 void os::pd_start_thread(Thread* thread) {
  1592   int status = thr_continue(thread->osthread()->thread_id());
  1593   assert_status(status == 0, status, "thr_continue failed");
  1597 intx os::current_thread_id() {
  1598   return (intx)thr_self();
  1601 static pid_t _initial_pid = 0;
  1603 int os::current_process_id() {
  1604   return (int)(_initial_pid ? _initial_pid : getpid());
  1607 int os::allocate_thread_local_storage() {
  1608   // %%%       in Win32 this allocates a memory segment pointed to by a
  1609   //           register.  Dan Stein can implement a similar feature in
  1610   //           Solaris.  Alternatively, the VM can do the same thing
  1611   //           explicitly: malloc some storage and keep the pointer in a
  1612   //           register (which is part of the thread's context) (or keep it
  1613   //           in TLS).
  1614   // %%%       In current versions of Solaris, thr_self and TSD can
  1615   //           be accessed via short sequences of displaced indirections.
  1616   //           The value of thr_self is available as %g7(36).
  1617   //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
  1618   //           assuming that the current thread already has a value bound to k.
  1619   //           It may be worth experimenting with such access patterns,
  1620   //           and later having the parameters formally exported from a Solaris
  1621   //           interface.  I think, however, that it will be faster to
  1622   //           maintain the invariant that %g2 always contains the
  1623   //           JavaThread in Java code, and have stubs simply
  1624   //           treat %g2 as a caller-save register, preserving it in a %lN.
  1625   thread_key_t tk;
  1626   if (thr_keycreate( &tk, NULL ) )
  1627     fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
  1628                   "(%s)", strerror(errno)));
  1629   return int(tk);
  1632 void os::free_thread_local_storage(int index) {
  1633   // %%% don't think we need anything here
  1634   // if ( pthread_key_delete((pthread_key_t) tk) )
  1635   //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
  1638 #define SMALLINT 32   // libthread allocate for tsd_common is a version specific
  1639                       // small number - point is NO swap space available
  1640 void os::thread_local_storage_at_put(int index, void* value) {
  1641   // %%% this is used only in threadLocalStorage.cpp
  1642   if (thr_setspecific((thread_key_t)index, value)) {
  1643     if (errno == ENOMEM) {
  1644        vm_exit_out_of_memory(SMALLINT, "thr_setspecific: out of swap space");
  1645     } else {
  1646       fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
  1647                     "(%s)", strerror(errno)));
  1649   } else {
  1650       ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
  1654 // This function could be called before TLS is initialized, for example, when
  1655 // VM receives an async signal or when VM causes a fatal error during
  1656 // initialization. Return NULL if thr_getspecific() fails.
  1657 void* os::thread_local_storage_at(int index) {
  1658   // %%% this is used only in threadLocalStorage.cpp
  1659   void* r = NULL;
  1660   return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
  1664 // gethrtime can move backwards if read from one cpu and then a different cpu
  1665 // getTimeNanos is guaranteed to not move backward on Solaris
  1666 // local spinloop created as faster for a CAS on an int than
  1667 // a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
  1668 // supported on sparc v8 or pre supports_cx8 intel boxes.
  1669 // oldgetTimeNanos for systems which do not support CAS on 64bit jlong
  1670 // i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
  1671 inline hrtime_t oldgetTimeNanos() {
  1672   int gotlock = LOCK_INVALID;
  1673   hrtime_t newtime = gethrtime();
  1675   for (;;) {
  1676 // grab lock for max_hrtime
  1677     int curlock = max_hrtime_lock;
  1678     if (curlock & LOCK_BUSY)  continue;
  1679     if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
  1680     if (newtime > max_hrtime) {
  1681       max_hrtime = newtime;
  1682     } else {
  1683       newtime = max_hrtime;
  1685     // release lock
  1686     max_hrtime_lock = LOCK_FREE;
  1687     return newtime;
  1690 // gethrtime can move backwards if read from one cpu and then a different cpu
  1691 // getTimeNanos is guaranteed to not move backward on Solaris
  1692 inline hrtime_t getTimeNanos() {
  1693   if (VM_Version::supports_cx8()) {
  1694     const hrtime_t now = gethrtime();
  1695     // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
  1696     const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
  1697     if (now <= prev)  return prev;   // same or retrograde time;
  1698     const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
  1699     assert(obsv >= prev, "invariant");   // Monotonicity
  1700     // If the CAS succeeded then we're done and return "now".
  1701     // If the CAS failed and the observed value "obs" is >= now then
  1702     // we should return "obs".  If the CAS failed and now > obs > prv then
  1703     // some other thread raced this thread and installed a new value, in which case
  1704     // we could either (a) retry the entire operation, (b) retry trying to install now
  1705     // or (c) just return obs.  We use (c).   No loop is required although in some cases
  1706     // we might discard a higher "now" value in deference to a slightly lower but freshly
  1707     // installed obs value.   That's entirely benign -- it admits no new orderings compared
  1708     // to (a) or (b) -- and greatly reduces coherence traffic.
  1709     // We might also condition (c) on the magnitude of the delta between obs and now.
  1710     // Avoiding excessive CAS operations to hot RW locations is critical.
  1711     // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
  1712     return (prev == obsv) ? now : obsv ;
  1713   } else {
  1714     return oldgetTimeNanos();
  1718 // Time since start-up in seconds to a fine granularity.
  1719 // Used by VMSelfDestructTimer and the MemProfiler.
  1720 double os::elapsedTime() {
  1721   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
  1724 jlong os::elapsed_counter() {
  1725   return (jlong)(getTimeNanos() - first_hrtime);
  1728 jlong os::elapsed_frequency() {
  1729    return hrtime_hz;
  1732 // Return the real, user, and system times in seconds from an
  1733 // arbitrary fixed point in the past.
  1734 bool os::getTimesSecs(double* process_real_time,
  1735                   double* process_user_time,
  1736                   double* process_system_time) {
  1737   struct tms ticks;
  1738   clock_t real_ticks = times(&ticks);
  1740   if (real_ticks == (clock_t) (-1)) {
  1741     return false;
  1742   } else {
  1743     double ticks_per_second = (double) clock_tics_per_sec;
  1744     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1745     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1746     // For consistency return the real time from getTimeNanos()
  1747     // converted to seconds.
  1748     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
  1750     return true;
  1754 bool os::supports_vtime() { return true; }
  1756 bool os::enable_vtime() {
  1757   int fd = ::open("/proc/self/ctl", O_WRONLY);
  1758   if (fd == -1)
  1759     return false;
  1761   long cmd[] = { PCSET, PR_MSACCT };
  1762   int res = ::write(fd, cmd, sizeof(long) * 2);
  1763   ::close(fd);
  1764   if (res != sizeof(long) * 2)
  1765     return false;
  1767   return true;
  1770 bool os::vtime_enabled() {
  1771   int fd = ::open("/proc/self/status", O_RDONLY);
  1772   if (fd == -1)
  1773     return false;
  1775   pstatus_t status;
  1776   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
  1777   ::close(fd);
  1778   if (res != sizeof(pstatus_t))
  1779     return false;
  1781   return status.pr_flags & PR_MSACCT;
  1784 double os::elapsedVTime() {
  1785   return (double)gethrvtime() / (double)hrtime_hz;
  1788 // Used internally for comparisons only
  1789 // getTimeMillis guaranteed to not move backwards on Solaris
  1790 jlong getTimeMillis() {
  1791   jlong nanotime = getTimeNanos();
  1792   return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
  1795 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
  1796 jlong os::javaTimeMillis() {
  1797   timeval t;
  1798   if (gettimeofday( &t, NULL) == -1)
  1799     fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
  1800   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
  1803 jlong os::javaTimeNanos() {
  1804   return (jlong)getTimeNanos();
  1807 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1808   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
  1809   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
  1810   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
  1811   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
  1814 char * os::local_time_string(char *buf, size_t buflen) {
  1815   struct tm t;
  1816   time_t long_time;
  1817   time(&long_time);
  1818   localtime_r(&long_time, &t);
  1819   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1820                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1821                t.tm_hour, t.tm_min, t.tm_sec);
  1822   return buf;
  1825 // Note: os::shutdown() might be called very early during initialization, or
  1826 // called from signal handler. Before adding something to os::shutdown(), make
  1827 // sure it is async-safe and can handle partially initialized VM.
  1828 void os::shutdown() {
  1830   // allow PerfMemory to attempt cleanup of any persistent resources
  1831   perfMemory_exit();
  1833   // needs to remove object in file system
  1834   AttachListener::abort();
  1836   // flush buffered output, finish log files
  1837   ostream_abort();
  1839   // Check for abort hook
  1840   abort_hook_t abort_hook = Arguments::abort_hook();
  1841   if (abort_hook != NULL) {
  1842     abort_hook();
  1846 // Note: os::abort() might be called very early during initialization, or
  1847 // called from signal handler. Before adding something to os::abort(), make
  1848 // sure it is async-safe and can handle partially initialized VM.
  1849 void os::abort(bool dump_core) {
  1850   os::shutdown();
  1851   if (dump_core) {
  1852 #ifndef PRODUCT
  1853     fdStream out(defaultStream::output_fd());
  1854     out.print_raw("Current thread is ");
  1855     char buf[16];
  1856     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1857     out.print_raw_cr(buf);
  1858     out.print_raw_cr("Dumping core ...");
  1859 #endif
  1860     ::abort(); // dump core (for debugging)
  1863   ::exit(1);
  1866 // Die immediately, no exit hook, no abort hook, no cleanup.
  1867 void os::die() {
  1868   _exit(-1);
  1871 // unused
  1872 void os::set_error_file(const char *logfile) {}
  1874 // DLL functions
  1876 const char* os::dll_file_extension() { return ".so"; }
  1878 // This must be hard coded because it's the system's temporary
  1879 // directory not the java application's temp directory, ala java.io.tmpdir.
  1880 const char* os::get_temp_directory() { return "/tmp"; }
  1882 static bool file_exists(const char* filename) {
  1883   struct stat statbuf;
  1884   if (filename == NULL || strlen(filename) == 0) {
  1885     return false;
  1887   return os::stat(filename, &statbuf) == 0;
  1890 bool os::dll_build_name(char* buffer, size_t buflen,
  1891                         const char* pname, const char* fname) {
  1892   bool retval = false;
  1893   const size_t pnamelen = pname ? strlen(pname) : 0;
  1895   // Return error on buffer overflow.
  1896   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1897     return retval;
  1900   if (pnamelen == 0) {
  1901     snprintf(buffer, buflen, "lib%s.so", fname);
  1902     retval = true;
  1903   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1904     int n;
  1905     char** pelements = split_path(pname, &n);
  1906     for (int i = 0 ; i < n ; i++) {
  1907       // really shouldn't be NULL but what the heck, check can't hurt
  1908       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1909         continue; // skip the empty path values
  1911       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1912       if (file_exists(buffer)) {
  1913         retval = true;
  1914         break;
  1917     // release the storage
  1918     for (int i = 0 ; i < n ; i++) {
  1919       if (pelements[i] != NULL) {
  1920         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1923     if (pelements != NULL) {
  1924       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1926   } else {
  1927     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1928     retval = true;
  1930   return retval;
  1933 const char* os::get_current_directory(char *buf, int buflen) {
  1934   return getcwd(buf, buflen);
  1937 // check if addr is inside libjvm.so
  1938 bool os::address_is_in_vm(address addr) {
  1939   static address libjvm_base_addr;
  1940   Dl_info dlinfo;
  1942   if (libjvm_base_addr == NULL) {
  1943     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1944     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1945     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1948   if (dladdr((void *)addr, &dlinfo)) {
  1949     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1952   return false;
  1955 typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
  1956 static dladdr1_func_type dladdr1_func = NULL;
  1958 bool os::dll_address_to_function_name(address addr, char *buf,
  1959                                       int buflen, int * offset) {
  1960   Dl_info dlinfo;
  1962   // dladdr1_func was initialized in os::init()
  1963   if (dladdr1_func){
  1964       // yes, we have dladdr1
  1966       // Support for dladdr1 is checked at runtime; it may be
  1967       // available even if the vm is built on a machine that does
  1968       // not have dladdr1 support.  Make sure there is a value for
  1969       // RTLD_DL_SYMENT.
  1970       #ifndef RTLD_DL_SYMENT
  1971       #define RTLD_DL_SYMENT 1
  1972       #endif
  1973 #ifdef _LP64
  1974       Elf64_Sym * info;
  1975 #else
  1976       Elf32_Sym * info;
  1977 #endif
  1978       if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
  1979                        RTLD_DL_SYMENT)) {
  1980         if ((char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
  1981           if (buf != NULL) {
  1982             if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
  1983               jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1985             if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1986             return true;
  1989       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1990         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1991            buf, buflen, offset, dlinfo.dli_fname)) {
  1992           return true;
  1995       if (buf != NULL) buf[0] = '\0';
  1996       if (offset != NULL) *offset  = -1;
  1997       return false;
  1998   } else {
  1999       // no, only dladdr is available
  2000       if (dladdr((void *)addr, &dlinfo)) {
  2001         if (buf != NULL) {
  2002           if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
  2003             jio_snprintf(buf, buflen, dlinfo.dli_sname);
  2005         if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  2006         return true;
  2007       } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  2008         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  2009           buf, buflen, offset, dlinfo.dli_fname)) {
  2010           return true;
  2013       if (buf != NULL) buf[0] = '\0';
  2014       if (offset != NULL) *offset  = -1;
  2015       return false;
  2019 bool os::dll_address_to_library_name(address addr, char* buf,
  2020                                      int buflen, int* offset) {
  2021   Dl_info dlinfo;
  2023   if (dladdr((void*)addr, &dlinfo)){
  2024      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  2025      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  2026      return true;
  2027   } else {
  2028      if (buf) buf[0] = '\0';
  2029      if (offset) *offset = -1;
  2030      return false;
  2034 // Prints the names and full paths of all opened dynamic libraries
  2035 // for current process
  2036 void os::print_dll_info(outputStream * st) {
  2037     Dl_info dli;
  2038     void *handle;
  2039     Link_map *map;
  2040     Link_map *p;
  2042     st->print_cr("Dynamic libraries:"); st->flush();
  2044     if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
  2045         st->print_cr("Error: Cannot print dynamic libraries.");
  2046         return;
  2048     handle = dlopen(dli.dli_fname, RTLD_LAZY);
  2049     if (handle == NULL) {
  2050         st->print_cr("Error: Cannot print dynamic libraries.");
  2051         return;
  2053     dlinfo(handle, RTLD_DI_LINKMAP, &map);
  2054     if (map == NULL) {
  2055         st->print_cr("Error: Cannot print dynamic libraries.");
  2056         return;
  2059     while (map->l_prev != NULL)
  2060         map = map->l_prev;
  2062     while (map != NULL) {
  2063         st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
  2064         map = map->l_next;
  2067     dlclose(handle);
  2070   // Loads .dll/.so and
  2071   // in case of error it checks if .dll/.so was built for the
  2072   // same architecture as Hotspot is running on
  2074 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  2076   void * result= ::dlopen(filename, RTLD_LAZY);
  2077   if (result != NULL) {
  2078     // Successful loading
  2079     return result;
  2082   Elf32_Ehdr elf_head;
  2084   // Read system error message into ebuf
  2085   // It may or may not be overwritten below
  2086   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  2087   ebuf[ebuflen-1]='\0';
  2088   int diag_msg_max_length=ebuflen-strlen(ebuf);
  2089   char* diag_msg_buf=ebuf+strlen(ebuf);
  2091   if (diag_msg_max_length==0) {
  2092     // No more space in ebuf for additional diagnostics message
  2093     return NULL;
  2097   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  2099   if (file_descriptor < 0) {
  2100     // Can't open library, report dlerror() message
  2101     return NULL;
  2104   bool failed_to_read_elf_head=
  2105     (sizeof(elf_head)!=
  2106         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  2108   ::close(file_descriptor);
  2109   if (failed_to_read_elf_head) {
  2110     // file i/o error - report dlerror() msg
  2111     return NULL;
  2114   typedef struct {
  2115     Elf32_Half  code;         // Actual value as defined in elf.h
  2116     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  2117     char        elf_class;    // 32 or 64 bit
  2118     char        endianess;    // MSB or LSB
  2119     char*       name;         // String representation
  2120   } arch_t;
  2122   static const arch_t arch_array[]={
  2123     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2124     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2125     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  2126     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  2127     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2128     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2129     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  2130     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  2131     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  2132     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
  2133   };
  2135   #if  (defined IA32)
  2136     static  Elf32_Half running_arch_code=EM_386;
  2137   #elif   (defined AMD64)
  2138     static  Elf32_Half running_arch_code=EM_X86_64;
  2139   #elif  (defined IA64)
  2140     static  Elf32_Half running_arch_code=EM_IA_64;
  2141   #elif  (defined __sparc) && (defined _LP64)
  2142     static  Elf32_Half running_arch_code=EM_SPARCV9;
  2143   #elif  (defined __sparc) && (!defined _LP64)
  2144     static  Elf32_Half running_arch_code=EM_SPARC;
  2145   #elif  (defined __powerpc64__)
  2146     static  Elf32_Half running_arch_code=EM_PPC64;
  2147   #elif  (defined __powerpc__)
  2148     static  Elf32_Half running_arch_code=EM_PPC;
  2149   #elif (defined ARM)
  2150     static  Elf32_Half running_arch_code=EM_ARM;
  2151   #else
  2152     #error Method os::dll_load requires that one of following is defined:\
  2153          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
  2154   #endif
  2156   // Identify compatability class for VM's architecture and library's architecture
  2157   // Obtain string descriptions for architectures
  2159   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2160   int running_arch_index=-1;
  2162   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2163     if (running_arch_code == arch_array[i].code) {
  2164       running_arch_index    = i;
  2166     if (lib_arch.code == arch_array[i].code) {
  2167       lib_arch.compat_class = arch_array[i].compat_class;
  2168       lib_arch.name         = arch_array[i].name;
  2172   assert(running_arch_index != -1,
  2173     "Didn't find running architecture code (running_arch_code) in arch_array");
  2174   if (running_arch_index == -1) {
  2175     // Even though running architecture detection failed
  2176     // we may still continue with reporting dlerror() message
  2177     return NULL;
  2180   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2181     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2182     return NULL;
  2185   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2186     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2187     return NULL;
  2190   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2191     if ( lib_arch.name!=NULL ) {
  2192       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2193         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2194         lib_arch.name, arch_array[running_arch_index].name);
  2195     } else {
  2196       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2197       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2198         lib_arch.code,
  2199         arch_array[running_arch_index].name);
  2203   return NULL;
  2206 void* os::dll_lookup(void* handle, const char* name) {
  2207   return dlsym(handle, name);
  2210 int os::stat(const char *path, struct stat *sbuf) {
  2211   char pathbuf[MAX_PATH];
  2212   if (strlen(path) > MAX_PATH - 1) {
  2213     errno = ENAMETOOLONG;
  2214     return -1;
  2216   os::native_path(strcpy(pathbuf, path));
  2217   return ::stat(pathbuf, sbuf);
  2220 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2221   int fd = ::open(filename, O_RDONLY);
  2222   if (fd == -1) {
  2223      return false;
  2226   char buf[32];
  2227   int bytes;
  2228   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2229     st->print_raw(buf, bytes);
  2232   ::close(fd);
  2234   return true;
  2237 void os::print_os_info_brief(outputStream* st) {
  2238   os::Solaris::print_distro_info(st);
  2240   os::Posix::print_uname_info(st);
  2242   os::Solaris::print_libversion_info(st);
  2245 void os::print_os_info(outputStream* st) {
  2246   st->print("OS:");
  2248   os::Solaris::print_distro_info(st);
  2250   os::Posix::print_uname_info(st);
  2252   os::Solaris::print_libversion_info(st);
  2254   os::Posix::print_rlimit_info(st);
  2256   os::Posix::print_load_average(st);
  2259 void os::Solaris::print_distro_info(outputStream* st) {
  2260   if (!_print_ascii_file("/etc/release", st)) {
  2261       st->print("Solaris");
  2263     st->cr();
  2266 void os::Solaris::print_libversion_info(outputStream* st) {
  2267   if (os::Solaris::T2_libthread()) {
  2268     st->print("  (T2 libthread)");
  2270   else {
  2271     st->print("  (T1 libthread)");
  2273   st->cr();
  2276 static bool check_addr0(outputStream* st) {
  2277   jboolean status = false;
  2278   int fd = ::open("/proc/self/map",O_RDONLY);
  2279   if (fd >= 0) {
  2280     prmap_t p;
  2281     while(::read(fd, &p, sizeof(p)) > 0) {
  2282       if (p.pr_vaddr == 0x0) {
  2283         st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
  2284         st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
  2285         st->print("Access:");
  2286         st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
  2287         st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
  2288         st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
  2289         st->cr();
  2290         status = true;
  2292       ::close(fd);
  2295   return status;
  2298 void os::pd_print_cpu_info(outputStream* st) {
  2299   // Nothing to do for now.
  2302 void os::print_memory_info(outputStream* st) {
  2303   st->print("Memory:");
  2304   st->print(" %dk page", os::vm_page_size()>>10);
  2305   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
  2306   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
  2307   st->cr();
  2308   (void) check_addr0(st);
  2311 // Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
  2312 // but they're the same for all the solaris architectures that we support.
  2313 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2314                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2315                           "ILL_COPROC", "ILL_BADSTK" };
  2317 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2318                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2319                           "FPE_FLTINV", "FPE_FLTSUB" };
  2321 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2323 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2325 void os::print_siginfo(outputStream* st, void* siginfo) {
  2326   st->print("siginfo:");
  2328   const int buflen = 100;
  2329   char buf[buflen];
  2330   siginfo_t *si = (siginfo_t*)siginfo;
  2331   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2332   char *err = strerror(si->si_errno);
  2333   if (si->si_errno != 0 && err != NULL) {
  2334     st->print("si_errno=%s", err);
  2335   } else {
  2336     st->print("si_errno=%d", si->si_errno);
  2338   const int c = si->si_code;
  2339   assert(c > 0, "unexpected si_code");
  2340   switch (si->si_signo) {
  2341   case SIGILL:
  2342     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2343     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2344     break;
  2345   case SIGFPE:
  2346     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2347     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2348     break;
  2349   case SIGSEGV:
  2350     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2351     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2352     break;
  2353   case SIGBUS:
  2354     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2355     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2356     break;
  2357   default:
  2358     st->print(", si_code=%d", si->si_code);
  2359     // no si_addr
  2362   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2363       UseSharedSpaces) {
  2364     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2365     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2366       st->print("\n\nError accessing class data sharing archive."   \
  2367                 " Mapped file inaccessible during execution, "      \
  2368                 " possible disk/network problem.");
  2371   st->cr();
  2374 // Moved from whole group, because we need them here for diagnostic
  2375 // prints.
  2376 #define OLDMAXSIGNUM 32
  2377 static int Maxsignum = 0;
  2378 static int *ourSigFlags = NULL;
  2380 extern "C" void sigINTRHandler(int, siginfo_t*, void*);
  2382 int os::Solaris::get_our_sigflags(int sig) {
  2383   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2384   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2385   return ourSigFlags[sig];
  2388 void os::Solaris::set_our_sigflags(int sig, int flags) {
  2389   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2390   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2391   ourSigFlags[sig] = flags;
  2395 static const char* get_signal_handler_name(address handler,
  2396                                            char* buf, int buflen) {
  2397   int offset;
  2398   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  2399   if (found) {
  2400     // skip directory names
  2401     const char *p1, *p2;
  2402     p1 = buf;
  2403     size_t len = strlen(os::file_separator());
  2404     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  2405     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  2406   } else {
  2407     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  2409   return buf;
  2412 static void print_signal_handler(outputStream* st, int sig,
  2413                                   char* buf, size_t buflen) {
  2414   struct sigaction sa;
  2416   sigaction(sig, NULL, &sa);
  2418   st->print("%s: ", os::exception_name(sig, buf, buflen));
  2420   address handler = (sa.sa_flags & SA_SIGINFO)
  2421                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  2422                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
  2424   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  2425     st->print("SIG_DFL");
  2426   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  2427     st->print("SIG_IGN");
  2428   } else {
  2429     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  2432   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  2434   address rh = VMError::get_resetted_sighandler(sig);
  2435   // May be, handler was resetted by VMError?
  2436   if(rh != NULL) {
  2437     handler = rh;
  2438     sa.sa_flags = VMError::get_resetted_sigflags(sig);
  2441   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  2443   // Check: is it our handler?
  2444   if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
  2445      handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
  2446     // It is our signal handler
  2447     // check for flags
  2448     if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  2449       st->print(
  2450         ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  2451         os::Solaris::get_our_sigflags(sig));
  2454   st->cr();
  2457 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2458   st->print_cr("Signal Handlers:");
  2459   print_signal_handler(st, SIGSEGV, buf, buflen);
  2460   print_signal_handler(st, SIGBUS , buf, buflen);
  2461   print_signal_handler(st, SIGFPE , buf, buflen);
  2462   print_signal_handler(st, SIGPIPE, buf, buflen);
  2463   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2464   print_signal_handler(st, SIGILL , buf, buflen);
  2465   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2466   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
  2467   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2468   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
  2469   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2470   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
  2471   print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
  2472   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
  2475 static char saved_jvm_path[MAXPATHLEN] = { 0 };
  2477 // Find the full path to the current module, libjvm.so
  2478 void os::jvm_path(char *buf, jint buflen) {
  2479   // Error checking.
  2480   if (buflen < MAXPATHLEN) {
  2481     assert(false, "must use a large-enough buffer");
  2482     buf[0] = '\0';
  2483     return;
  2485   // Lazy resolve the path to current module.
  2486   if (saved_jvm_path[0] != 0) {
  2487     strcpy(buf, saved_jvm_path);
  2488     return;
  2491   Dl_info dlinfo;
  2492   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
  2493   assert(ret != 0, "cannot locate libjvm");
  2494   realpath((char *)dlinfo.dli_fname, buf);
  2496   if (Arguments::created_by_gamma_launcher()) {
  2497     // Support for the gamma launcher.  Typical value for buf is
  2498     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2499     // the right place in the string, then assume we are installed in a JDK and
  2500     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2501     // up the path so it looks like libjvm.so is installed there (append a
  2502     // fake suffix hotspot/libjvm.so).
  2503     const char *p = buf + strlen(buf) - 1;
  2504     for (int count = 0; p > buf && count < 5; ++count) {
  2505       for (--p; p > buf && *p != '/'; --p)
  2506         /* empty */ ;
  2509     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2510       // Look for JAVA_HOME in the environment.
  2511       char* java_home_var = ::getenv("JAVA_HOME");
  2512       if (java_home_var != NULL && java_home_var[0] != 0) {
  2513         char cpu_arch[12];
  2514         char* jrelib_p;
  2515         int   len;
  2516         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
  2517 #ifdef _LP64
  2518         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
  2519         if (strcmp(cpu_arch, "sparc") == 0) {
  2520           strcat(cpu_arch, "v9");
  2521         } else if (strcmp(cpu_arch, "i386") == 0) {
  2522           strcpy(cpu_arch, "amd64");
  2524 #endif
  2525         // Check the current module name "libjvm.so".
  2526         p = strrchr(buf, '/');
  2527         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2529         realpath(java_home_var, buf);
  2530         // determine if this is a legacy image or modules image
  2531         // modules image doesn't have "jre" subdirectory
  2532         len = strlen(buf);
  2533         jrelib_p = buf + len;
  2534         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2535         if (0 != access(buf, F_OK)) {
  2536           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2539         if (0 == access(buf, F_OK)) {
  2540           // Use current module name "libjvm.so"
  2541           len = strlen(buf);
  2542           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2543         } else {
  2544           // Go back to path of .so
  2545           realpath((char *)dlinfo.dli_fname, buf);
  2551   strcpy(saved_jvm_path, buf);
  2555 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2556   // no prefix required, not even "_"
  2560 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2561   // no suffix required
  2564 // This method is a copy of JDK's sysGetLastErrorString
  2565 // from src/solaris/hpi/src/system_md.c
  2567 size_t os::lasterror(char *buf, size_t len) {
  2569   if (errno == 0)  return 0;
  2571   const char *s = ::strerror(errno);
  2572   size_t n = ::strlen(s);
  2573   if (n >= len) {
  2574     n = len - 1;
  2576   ::strncpy(buf, s, n);
  2577   buf[n] = '\0';
  2578   return n;
  2582 // sun.misc.Signal
  2584 extern "C" {
  2585   static void UserHandler(int sig, void *siginfo, void *context) {
  2586     // Ctrl-C is pressed during error reporting, likely because the error
  2587     // handler fails to abort. Let VM die immediately.
  2588     if (sig == SIGINT && is_error_reported()) {
  2589        os::die();
  2592     os::signal_notify(sig);
  2593     // We do not need to reinstate the signal handler each time...
  2597 void* os::user_handler() {
  2598   return CAST_FROM_FN_PTR(void*, UserHandler);
  2601 extern "C" {
  2602   typedef void (*sa_handler_t)(int);
  2603   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2606 void* os::signal(int signal_number, void* handler) {
  2607   struct sigaction sigAct, oldSigAct;
  2608   sigfillset(&(sigAct.sa_mask));
  2609   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
  2610   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2612   if (sigaction(signal_number, &sigAct, &oldSigAct))
  2613     // -1 means registration failed
  2614     return (void *)-1;
  2616   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2619 void os::signal_raise(int signal_number) {
  2620   raise(signal_number);
  2623 /*
  2624  * The following code is moved from os.cpp for making this
  2625  * code platform specific, which it is by its very nature.
  2626  */
  2628 // a counter for each possible signal value
  2629 static int Sigexit = 0;
  2630 static int Maxlibjsigsigs;
  2631 static jint *pending_signals = NULL;
  2632 static int *preinstalled_sigs = NULL;
  2633 static struct sigaction *chainedsigactions = NULL;
  2634 static sema_t sig_sem;
  2635 typedef int (*version_getting_t)();
  2636 version_getting_t os::Solaris::get_libjsig_version = NULL;
  2637 static int libjsigversion = NULL;
  2639 int os::sigexitnum_pd() {
  2640   assert(Sigexit > 0, "signal memory not yet initialized");
  2641   return Sigexit;
  2644 void os::Solaris::init_signal_mem() {
  2645   // Initialize signal structures
  2646   Maxsignum = SIGRTMAX;
  2647   Sigexit = Maxsignum+1;
  2648   assert(Maxsignum >0, "Unable to obtain max signal number");
  2650   Maxlibjsigsigs = Maxsignum;
  2652   // pending_signals has one int per signal
  2653   // The additional signal is for SIGEXIT - exit signal to signal_thread
  2654   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
  2655   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
  2657   if (UseSignalChaining) {
  2658      chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
  2659        * (Maxsignum + 1), mtInternal);
  2660      memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
  2661      preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
  2662      memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
  2664   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ), mtInternal);
  2665   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
  2668 void os::signal_init_pd() {
  2669   int ret;
  2671   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
  2672   assert(ret == 0, "sema_init() failed");
  2675 void os::signal_notify(int signal_number) {
  2676   int ret;
  2678   Atomic::inc(&pending_signals[signal_number]);
  2679   ret = ::sema_post(&sig_sem);
  2680   assert(ret == 0, "sema_post() failed");
  2683 static int check_pending_signals(bool wait_for_signal) {
  2684   int ret;
  2685   while (true) {
  2686     for (int i = 0; i < Sigexit + 1; i++) {
  2687       jint n = pending_signals[i];
  2688       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2689         return i;
  2692     if (!wait_for_signal) {
  2693       return -1;
  2695     JavaThread *thread = JavaThread::current();
  2696     ThreadBlockInVM tbivm(thread);
  2698     bool threadIsSuspended;
  2699     do {
  2700       thread->set_suspend_equivalent();
  2701       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2702       while((ret = ::sema_wait(&sig_sem)) == EINTR)
  2704       assert(ret == 0, "sema_wait() failed");
  2706       // were we externally suspended while we were waiting?
  2707       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2708       if (threadIsSuspended) {
  2709         //
  2710         // The semaphore has been incremented, but while we were waiting
  2711         // another thread suspended us. We don't want to continue running
  2712         // while suspended because that would surprise the thread that
  2713         // suspended us.
  2714         //
  2715         ret = ::sema_post(&sig_sem);
  2716         assert(ret == 0, "sema_post() failed");
  2718         thread->java_suspend_self();
  2720     } while (threadIsSuspended);
  2724 int os::signal_lookup() {
  2725   return check_pending_signals(false);
  2728 int os::signal_wait() {
  2729   return check_pending_signals(true);
  2732 ////////////////////////////////////////////////////////////////////////////////
  2733 // Virtual Memory
  2735 static int page_size = -1;
  2737 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
  2738 // clear this var if support is not available.
  2739 static bool has_map_align = true;
  2741 int os::vm_page_size() {
  2742   assert(page_size != -1, "must call os::init");
  2743   return page_size;
  2746 // Solaris allocates memory by pages.
  2747 int os::vm_allocation_granularity() {
  2748   assert(page_size != -1, "must call os::init");
  2749   return page_size;
  2752 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
  2753   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2754   size_t size = bytes;
  2755   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
  2756   if (res != NULL) {
  2757     if (UseNUMAInterleaving) {
  2758       numa_make_global(addr, bytes);
  2760     return true;
  2762   return false;
  2765 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
  2766                        bool exec) {
  2767   if (commit_memory(addr, bytes, exec)) {
  2768     if (UseMPSS && alignment_hint > (size_t)vm_page_size()) {
  2769       // If the large page size has been set and the VM
  2770       // is using large pages, use the large page size
  2771       // if it is smaller than the alignment hint. This is
  2772       // a case where the VM wants to use a larger alignment size
  2773       // for its own reasons but still want to use large pages
  2774       // (which is what matters to setting the mpss range.
  2775       size_t page_size = 0;
  2776       if (large_page_size() < alignment_hint) {
  2777         assert(UseLargePages, "Expected to be here for large page use only");
  2778         page_size = large_page_size();
  2779       } else {
  2780         // If the alignment hint is less than the large page
  2781         // size, the VM wants a particular alignment (thus the hint)
  2782         // for internal reasons.  Try to set the mpss range using
  2783         // the alignment_hint.
  2784         page_size = alignment_hint;
  2786       // Since this is a hint, ignore any failures.
  2787       (void)Solaris::set_mpss_range(addr, bytes, page_size);
  2789     return true;
  2791   return false;
  2794 // Uncommit the pages in a specified region.
  2795 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
  2796   if (madvise(addr, bytes, MADV_FREE) < 0) {
  2797     debug_only(warning("MADV_FREE failed."));
  2798     return;
  2802 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2803   return os::commit_memory(addr, size);
  2806 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2807   return os::uncommit_memory(addr, size);
  2810 // Change the page size in a given range.
  2811 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2812   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
  2813   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
  2814   if (UseLargePages && UseMPSS) {
  2815     Solaris::set_mpss_range(addr, bytes, alignment_hint);
  2819 // Tell the OS to make the range local to the first-touching LWP
  2820 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2821   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2822   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
  2823     debug_only(warning("MADV_ACCESS_LWP failed."));
  2827 // Tell the OS that this range would be accessed from different LWPs.
  2828 void os::numa_make_global(char *addr, size_t bytes) {
  2829   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2830   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
  2831     debug_only(warning("MADV_ACCESS_MANY failed."));
  2835 // Get the number of the locality groups.
  2836 size_t os::numa_get_groups_num() {
  2837   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
  2838   return n != -1 ? n : 1;
  2841 // Get a list of leaf locality groups. A leaf lgroup is group that
  2842 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
  2843 // board. An LWP is assigned to one of these groups upon creation.
  2844 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2845    if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
  2846      ids[0] = 0;
  2847      return 1;
  2849    int result_size = 0, top = 1, bottom = 0, cur = 0;
  2850    for (int k = 0; k < size; k++) {
  2851      int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
  2852                                     (Solaris::lgrp_id_t*)&ids[top], size - top);
  2853      if (r == -1) {
  2854        ids[0] = 0;
  2855        return 1;
  2857      if (!r) {
  2858        // That's a leaf node.
  2859        assert (bottom <= cur, "Sanity check");
  2860        // Check if the node has memory
  2861        if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
  2862                                    NULL, 0, LGRP_RSRC_MEM) > 0) {
  2863          ids[bottom++] = ids[cur];
  2866      top += r;
  2867      cur++;
  2869    if (bottom == 0) {
  2870      // Handle a situation, when the OS reports no memory available.
  2871      // Assume UMA architecture.
  2872      ids[0] = 0;
  2873      return 1;
  2875    return bottom;
  2878 // Detect the topology change. Typically happens during CPU plugging-unplugging.
  2879 bool os::numa_topology_changed() {
  2880   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
  2881   if (is_stale != -1 && is_stale) {
  2882     Solaris::lgrp_fini(Solaris::lgrp_cookie());
  2883     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
  2884     assert(c != 0, "Failure to initialize LGRP API");
  2885     Solaris::set_lgrp_cookie(c);
  2886     return true;
  2888   return false;
  2891 // Get the group id of the current LWP.
  2892 int os::numa_get_group_id() {
  2893   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
  2894   if (lgrp_id == -1) {
  2895     return 0;
  2897   const int size = os::numa_get_groups_num();
  2898   int *ids = (int*)alloca(size * sizeof(int));
  2900   // Get the ids of all lgroups with memory; r is the count.
  2901   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
  2902                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
  2903   if (r <= 0) {
  2904     return 0;
  2906   return ids[os::random() % r];
  2909 // Request information about the page.
  2910 bool os::get_page_info(char *start, page_info* info) {
  2911   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2912   uint64_t addr = (uintptr_t)start;
  2913   uint64_t outdata[2];
  2914   uint_t validity = 0;
  2916   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
  2917     return false;
  2920   info->size = 0;
  2921   info->lgrp_id = -1;
  2923   if ((validity & 1) != 0) {
  2924     if ((validity & 2) != 0) {
  2925       info->lgrp_id = outdata[0];
  2927     if ((validity & 4) != 0) {
  2928       info->size = outdata[1];
  2930     return true;
  2932   return false;
  2935 // Scan the pages from start to end until a page different than
  2936 // the one described in the info parameter is encountered.
  2937 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2938   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2939   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
  2940   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
  2941   uint_t validity[MAX_MEMINFO_CNT];
  2943   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
  2944   uint64_t p = (uint64_t)start;
  2945   while (p < (uint64_t)end) {
  2946     addrs[0] = p;
  2947     size_t addrs_count = 1;
  2948     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] < (uint64_t)end) {
  2949       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
  2950       addrs_count++;
  2953     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
  2954       return NULL;
  2957     size_t i = 0;
  2958     for (; i < addrs_count; i++) {
  2959       if ((validity[i] & 1) != 0) {
  2960         if ((validity[i] & 4) != 0) {
  2961           if (outdata[types * i + 1] != page_expected->size) {
  2962             break;
  2964         } else
  2965           if (page_expected->size != 0) {
  2966             break;
  2969         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
  2970           if (outdata[types * i] != page_expected->lgrp_id) {
  2971             break;
  2974       } else {
  2975         return NULL;
  2979     if (i != addrs_count) {
  2980       if ((validity[i] & 2) != 0) {
  2981         page_found->lgrp_id = outdata[types * i];
  2982       } else {
  2983         page_found->lgrp_id = -1;
  2985       if ((validity[i] & 4) != 0) {
  2986         page_found->size = outdata[types * i + 1];
  2987       } else {
  2988         page_found->size = 0;
  2990       return (char*)addrs[i];
  2993     p = addrs[addrs_count - 1] + page_size;
  2995   return end;
  2998 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
  2999   size_t size = bytes;
  3000   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3001   // uncommitted page. Otherwise, the read/write might succeed if we
  3002   // have enough swap space to back the physical page.
  3003   return
  3004     NULL != Solaris::mmap_chunk(addr, size,
  3005                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
  3006                                 PROT_NONE);
  3009 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
  3010   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
  3012   if (b == MAP_FAILED) {
  3013     return NULL;
  3015   return b;
  3018 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
  3019   char* addr = requested_addr;
  3020   int flags = MAP_PRIVATE | MAP_NORESERVE;
  3022   assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
  3024   if (fixed) {
  3025     flags |= MAP_FIXED;
  3026   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
  3027     flags |= MAP_ALIGN;
  3028     addr = (char*) alignment_hint;
  3031   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3032   // uncommitted page. Otherwise, the read/write might succeed if we
  3033   // have enough swap space to back the physical page.
  3034   return mmap_chunk(addr, bytes, flags, PROT_NONE);
  3037 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
  3038   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
  3040   guarantee(requested_addr == NULL || requested_addr == addr,
  3041             "OS failed to return requested mmap address.");
  3042   return addr;
  3045 // Reserve memory at an arbitrary address, only if that area is
  3046 // available (and not reserved for something else).
  3048 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3049   const int max_tries = 10;
  3050   char* base[max_tries];
  3051   size_t size[max_tries];
  3053   // Solaris adds a gap between mmap'ed regions.  The size of the gap
  3054   // is dependent on the requested size and the MMU.  Our initial gap
  3055   // value here is just a guess and will be corrected later.
  3056   bool had_top_overlap = false;
  3057   bool have_adjusted_gap = false;
  3058   size_t gap = 0x400000;
  3060   // Assert only that the size is a multiple of the page size, since
  3061   // that's all that mmap requires, and since that's all we really know
  3062   // about at this low abstraction level.  If we need higher alignment,
  3063   // we can either pass an alignment to this method or verify alignment
  3064   // in one of the methods further up the call chain.  See bug 5044738.
  3065   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3067   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
  3068   // Give it a try, if the kernel honors the hint we can return immediately.
  3069   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
  3071   volatile int err = errno;
  3072   if (addr == requested_addr) {
  3073     return addr;
  3074   } else if (addr != NULL) {
  3075     pd_unmap_memory(addr, bytes);
  3078   if (PrintMiscellaneous && Verbose) {
  3079     char buf[256];
  3080     buf[0] = '\0';
  3081     if (addr == NULL) {
  3082       jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
  3084     warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
  3085             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
  3086             "%s", bytes, requested_addr, addr, buf);
  3089   // Address hint method didn't work.  Fall back to the old method.
  3090   // In theory, once SNV becomes our oldest supported platform, this
  3091   // code will no longer be needed.
  3092   //
  3093   // Repeatedly allocate blocks until the block is allocated at the
  3094   // right spot. Give up after max_tries.
  3095   int i;
  3096   for (i = 0; i < max_tries; ++i) {
  3097     base[i] = reserve_memory(bytes);
  3099     if (base[i] != NULL) {
  3100       // Is this the block we wanted?
  3101       if (base[i] == requested_addr) {
  3102         size[i] = bytes;
  3103         break;
  3106       // check that the gap value is right
  3107       if (had_top_overlap && !have_adjusted_gap) {
  3108         size_t actual_gap = base[i-1] - base[i] - bytes;
  3109         if (gap != actual_gap) {
  3110           // adjust the gap value and retry the last 2 allocations
  3111           assert(i > 0, "gap adjustment code problem");
  3112           have_adjusted_gap = true;  // adjust the gap only once, just in case
  3113           gap = actual_gap;
  3114           if (PrintMiscellaneous && Verbose) {
  3115             warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
  3117           unmap_memory(base[i], bytes);
  3118           unmap_memory(base[i-1], size[i-1]);
  3119           i-=2;
  3120           continue;
  3124       // Does this overlap the block we wanted? Give back the overlapped
  3125       // parts and try again.
  3126       //
  3127       // There is still a bug in this code: if top_overlap == bytes,
  3128       // the overlap is offset from requested region by the value of gap.
  3129       // In this case giving back the overlapped part will not work,
  3130       // because we'll give back the entire block at base[i] and
  3131       // therefore the subsequent allocation will not generate a new gap.
  3132       // This could be fixed with a new algorithm that used larger
  3133       // or variable size chunks to find the requested region -
  3134       // but such a change would introduce additional complications.
  3135       // It's rare enough that the planets align for this bug,
  3136       // so we'll just wait for a fix for 6204603/5003415 which
  3137       // will provide a mmap flag to allow us to avoid this business.
  3139       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3140       if (top_overlap >= 0 && top_overlap < bytes) {
  3141         had_top_overlap = true;
  3142         unmap_memory(base[i], top_overlap);
  3143         base[i] += top_overlap;
  3144         size[i] = bytes - top_overlap;
  3145       } else {
  3146         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3147         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3148           if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
  3149             warning("attempt_reserve_memory_at: possible alignment bug");
  3151           unmap_memory(requested_addr, bottom_overlap);
  3152           size[i] = bytes - bottom_overlap;
  3153         } else {
  3154           size[i] = bytes;
  3160   // Give back the unused reserved pieces.
  3162   for (int j = 0; j < i; ++j) {
  3163     if (base[j] != NULL) {
  3164       unmap_memory(base[j], size[j]);
  3168   return (i < max_tries) ? requested_addr : NULL;
  3171 bool os::pd_release_memory(char* addr, size_t bytes) {
  3172   size_t size = bytes;
  3173   return munmap(addr, size) == 0;
  3176 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
  3177   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
  3178          "addr must be page aligned");
  3179   int retVal = mprotect(addr, bytes, prot);
  3180   return retVal == 0;
  3183 // Protect memory (Used to pass readonly pages through
  3184 // JNI GetArray<type>Elements with empty arrays.)
  3185 // Also, used for serialization page and for compressed oops null pointer
  3186 // checking.
  3187 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3188                         bool is_committed) {
  3189   unsigned int p = 0;
  3190   switch (prot) {
  3191   case MEM_PROT_NONE: p = PROT_NONE; break;
  3192   case MEM_PROT_READ: p = PROT_READ; break;
  3193   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3194   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3195   default:
  3196     ShouldNotReachHere();
  3198   // is_committed is unused.
  3199   return solaris_mprotect(addr, bytes, p);
  3202 // guard_memory and unguard_memory only happens within stack guard pages.
  3203 // Since ISM pertains only to the heap, guard and unguard memory should not
  3204 /// happen with an ISM region.
  3205 bool os::guard_memory(char* addr, size_t bytes) {
  3206   return solaris_mprotect(addr, bytes, PROT_NONE);
  3209 bool os::unguard_memory(char* addr, size_t bytes) {
  3210   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
  3213 // Large page support
  3215 // UseLargePages is the master flag to enable/disable large page memory.
  3216 // UseMPSS and UseISM are supported for compatibility reasons. Their combined
  3217 // effects can be described in the following table:
  3218 //
  3219 // UseLargePages UseMPSS UseISM
  3220 //    false         *       *   => UseLargePages is the master switch, turning
  3221 //                                 it off will turn off both UseMPSS and
  3222 //                                 UseISM. VM will not use large page memory
  3223 //                                 regardless the settings of UseMPSS/UseISM.
  3224 //     true      false    false => Unless future Solaris provides other
  3225 //                                 mechanism to use large page memory, this
  3226 //                                 combination is equivalent to -UseLargePages,
  3227 //                                 VM will not use large page memory
  3228 //     true      true     false => JVM will use MPSS for large page memory.
  3229 //                                 This is the default behavior.
  3230 //     true      false    true  => JVM will use ISM for large page memory.
  3231 //     true      true     true  => JVM will use ISM if it is available.
  3232 //                                 Otherwise, JVM will fall back to MPSS.
  3233 //                                 Becaues ISM is now available on all
  3234 //                                 supported Solaris versions, this combination
  3235 //                                 is equivalent to +UseISM -UseMPSS.
  3237 static size_t _large_page_size = 0;
  3239 bool os::Solaris::ism_sanity_check(bool warn, size_t * page_size) {
  3240   // x86 uses either 2M or 4M page, depending on whether PAE (Physical Address
  3241   // Extensions) mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. Sparc
  3242   // can support multiple page sizes.
  3244   // Don't bother to probe page size because getpagesizes() comes with MPSS.
  3245   // ISM is only recommended on old Solaris where there is no MPSS support.
  3246   // Simply choose a conservative value as default.
  3247   *page_size = LargePageSizeInBytes ? LargePageSizeInBytes :
  3248                SPARC_ONLY(4 * M) IA32_ONLY(4 * M) AMD64_ONLY(2 * M)
  3249                ARM_ONLY(2 * M);
  3251   // ISM is available on all supported Solaris versions
  3252   return true;
  3255 // Insertion sort for small arrays (descending order).
  3256 static void insertion_sort_descending(size_t* array, int len) {
  3257   for (int i = 0; i < len; i++) {
  3258     size_t val = array[i];
  3259     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
  3260       size_t tmp = array[key];
  3261       array[key] = array[key - 1];
  3262       array[key - 1] = tmp;
  3267 bool os::Solaris::mpss_sanity_check(bool warn, size_t * page_size) {
  3268   const unsigned int usable_count = VM_Version::page_size_count();
  3269   if (usable_count == 1) {
  3270     return false;
  3273   // Find the right getpagesizes interface.  When solaris 11 is the minimum
  3274   // build platform, getpagesizes() (without the '2') can be called directly.
  3275   typedef int (*gps_t)(size_t[], int);
  3276   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
  3277   if (gps_func == NULL) {
  3278     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
  3279     if (gps_func == NULL) {
  3280       if (warn) {
  3281         warning("MPSS is not supported by the operating system.");
  3283       return false;
  3287   // Fill the array of page sizes.
  3288   int n = (*gps_func)(_page_sizes, page_sizes_max);
  3289   assert(n > 0, "Solaris bug?");
  3291   if (n == page_sizes_max) {
  3292     // Add a sentinel value (necessary only if the array was completely filled
  3293     // since it is static (zeroed at initialization)).
  3294     _page_sizes[--n] = 0;
  3295     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
  3297   assert(_page_sizes[n] == 0, "missing sentinel");
  3298   trace_page_sizes("available page sizes", _page_sizes, n);
  3300   if (n == 1) return false;     // Only one page size available.
  3302   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
  3303   // select up to usable_count elements.  First sort the array, find the first
  3304   // acceptable value, then copy the usable sizes to the top of the array and
  3305   // trim the rest.  Make sure to include the default page size :-).
  3306   //
  3307   // A better policy could get rid of the 4M limit by taking the sizes of the
  3308   // important VM memory regions (java heap and possibly the code cache) into
  3309   // account.
  3310   insertion_sort_descending(_page_sizes, n);
  3311   const size_t size_limit =
  3312     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
  3313   int beg;
  3314   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
  3315   const int end = MIN2((int)usable_count, n) - 1;
  3316   for (int cur = 0; cur < end; ++cur, ++beg) {
  3317     _page_sizes[cur] = _page_sizes[beg];
  3319   _page_sizes[end] = vm_page_size();
  3320   _page_sizes[end + 1] = 0;
  3322   if (_page_sizes[end] > _page_sizes[end - 1]) {
  3323     // Default page size is not the smallest; sort again.
  3324     insertion_sort_descending(_page_sizes, end + 1);
  3326   *page_size = _page_sizes[0];
  3328   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
  3329   return true;
  3332 void os::large_page_init() {
  3333   if (!UseLargePages) {
  3334     UseISM = false;
  3335     UseMPSS = false;
  3336     return;
  3339   // print a warning if any large page related flag is specified on command line
  3340   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
  3341                          !FLAG_IS_DEFAULT(UseISM)               ||
  3342                          !FLAG_IS_DEFAULT(UseMPSS)              ||
  3343                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3344   UseISM = UseISM &&
  3345            Solaris::ism_sanity_check(warn_on_failure, &_large_page_size);
  3346   if (UseISM) {
  3347     // ISM disables MPSS to be compatible with old JDK behavior
  3348     UseMPSS = false;
  3349     _page_sizes[0] = _large_page_size;
  3350     _page_sizes[1] = vm_page_size();
  3353   UseMPSS = UseMPSS &&
  3354             Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
  3356   UseLargePages = UseISM || UseMPSS;
  3359 bool os::Solaris::set_mpss_range(caddr_t start, size_t bytes, size_t align) {
  3360   // Signal to OS that we want large pages for addresses
  3361   // from addr, addr + bytes
  3362   struct memcntl_mha mpss_struct;
  3363   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
  3364   mpss_struct.mha_pagesize = align;
  3365   mpss_struct.mha_flags = 0;
  3366   if (memcntl(start, bytes, MC_HAT_ADVISE,
  3367               (caddr_t) &mpss_struct, 0, 0) < 0) {
  3368     debug_only(warning("Attempt to use MPSS failed."));
  3369     return false;
  3371   return true;
  3374 char* os::reserve_memory_special(size_t size, char* addr, bool exec) {
  3375   // "exec" is passed in but not used.  Creating the shared image for
  3376   // the code cache doesn't have an SHM_X executable permission to check.
  3377   assert(UseLargePages && UseISM, "only for ISM large pages");
  3379   char* retAddr = NULL;
  3380   int shmid;
  3381   key_t ismKey;
  3383   bool warn_on_failure = UseISM &&
  3384                         (!FLAG_IS_DEFAULT(UseLargePages)         ||
  3385                          !FLAG_IS_DEFAULT(UseISM)                ||
  3386                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3387                         );
  3388   char msg[128];
  3390   ismKey = IPC_PRIVATE;
  3392   // Create a large shared memory region to attach to based on size.
  3393   // Currently, size is the total size of the heap
  3394   shmid = shmget(ismKey, size, SHM_R | SHM_W | IPC_CREAT);
  3395   if (shmid == -1){
  3396      if (warn_on_failure) {
  3397        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3398        warning(msg);
  3400      return NULL;
  3403   // Attach to the region
  3404   retAddr = (char *) shmat(shmid, 0, SHM_SHARE_MMU | SHM_R | SHM_W);
  3405   int err = errno;
  3407   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3408   // will be deleted when it's detached by shmdt() or when the process
  3409   // terminates. If shmat() is not successful this will remove the shared
  3410   // segment immediately.
  3411   shmctl(shmid, IPC_RMID, NULL);
  3413   if (retAddr == (char *) -1) {
  3414     if (warn_on_failure) {
  3415       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3416       warning(msg);
  3418     return NULL;
  3420   if ((retAddr != NULL) && UseNUMAInterleaving) {
  3421     numa_make_global(retAddr, size);
  3423   return retAddr;
  3426 bool os::release_memory_special(char* base, size_t bytes) {
  3427   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3428   int rslt = shmdt(base);
  3429   return rslt == 0;
  3432 size_t os::large_page_size() {
  3433   return _large_page_size;
  3436 // MPSS allows application to commit large page memory on demand; with ISM
  3437 // the entire memory region must be allocated as shared memory.
  3438 bool os::can_commit_large_page_memory() {
  3439   return UseISM ? false : true;
  3442 bool os::can_execute_large_page_memory() {
  3443   return UseISM ? false : true;
  3446 static int os_sleep(jlong millis, bool interruptible) {
  3447   const jlong limit = INT_MAX;
  3448   jlong prevtime;
  3449   int res;
  3451   while (millis > limit) {
  3452     if ((res = os_sleep(limit, interruptible)) != OS_OK)
  3453       return res;
  3454     millis -= limit;
  3457   // Restart interrupted polls with new parameters until the proper delay
  3458   // has been completed.
  3460   prevtime = getTimeMillis();
  3462   while (millis > 0) {
  3463     jlong newtime;
  3465     if (!interruptible) {
  3466       // Following assert fails for os::yield_all:
  3467       // assert(!thread->is_Java_thread(), "must not be java thread");
  3468       res = poll(NULL, 0, millis);
  3469     } else {
  3470       JavaThread *jt = JavaThread::current();
  3472       INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
  3473         os::Solaris::clear_interrupted);
  3476     // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
  3477     // thread.Interrupt.
  3479     // See c/r 6751923. Poll can return 0 before time
  3480     // has elapsed if time is set via clock_settime (as NTP does).
  3481     // res == 0 if poll timed out (see man poll RETURN VALUES)
  3482     // using the logic below checks that we really did
  3483     // sleep at least "millis" if not we'll sleep again.
  3484     if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
  3485       newtime = getTimeMillis();
  3486       assert(newtime >= prevtime, "time moving backwards");
  3487     /* Doing prevtime and newtime in microseconds doesn't help precision,
  3488        and trying to round up to avoid lost milliseconds can result in a
  3489        too-short delay. */
  3490       millis -= newtime - prevtime;
  3491       if(millis <= 0)
  3492         return OS_OK;
  3493       prevtime = newtime;
  3494     } else
  3495       return res;
  3498   return OS_OK;
  3501 // Read calls from inside the vm need to perform state transitions
  3502 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3503   INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3506 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
  3507   INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3510 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3511   assert(thread == Thread::current(),  "thread consistency check");
  3513   // TODO-FIXME: this should be removed.
  3514   // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
  3515   // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
  3516   // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
  3517   // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
  3518   // is fooled into believing that the system is making progress. In the code below we block the
  3519   // the watcher thread while safepoint is in progress so that it would not appear as though the
  3520   // system is making progress.
  3521   if (!Solaris::T2_libthread() &&
  3522       thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
  3523     // We now try to acquire the threads lock. Since this lock is held by the VM thread during
  3524     // the entire safepoint, the watcher thread will  line up here during the safepoint.
  3525     Threads_lock->lock_without_safepoint_check();
  3526     Threads_lock->unlock();
  3529   if (thread->is_Java_thread()) {
  3530     // This is a JavaThread so we honor the _thread_blocked protocol
  3531     // even for sleeps of 0 milliseconds. This was originally done
  3532     // as a workaround for bug 4338139. However, now we also do it
  3533     // to honor the suspend-equivalent protocol.
  3535     JavaThread *jt = (JavaThread *) thread;
  3536     ThreadBlockInVM tbivm(jt);
  3538     jt->set_suspend_equivalent();
  3539     // cleared by handle_special_suspend_equivalent_condition() or
  3540     // java_suspend_self() via check_and_wait_while_suspended()
  3542     int ret_code;
  3543     if (millis <= 0) {
  3544       thr_yield();
  3545       ret_code = 0;
  3546     } else {
  3547       // The original sleep() implementation did not create an
  3548       // OSThreadWaitState helper for sleeps of 0 milliseconds.
  3549       // I'm preserving that decision for now.
  3550       OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3552       ret_code = os_sleep(millis, interruptible);
  3555     // were we externally suspended while we were waiting?
  3556     jt->check_and_wait_while_suspended();
  3558     return ret_code;
  3561   // non-JavaThread from this point on:
  3563   if (millis <= 0) {
  3564     thr_yield();
  3565     return 0;
  3568   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3570   return os_sleep(millis, interruptible);
  3573 int os::naked_sleep() {
  3574   // %% make the sleep time an integer flag. for now use 1 millisec.
  3575   return os_sleep(1, false);
  3578 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3579 void os::infinite_sleep() {
  3580   while (true) {    // sleep forever ...
  3581     ::sleep(100);   // ... 100 seconds at a time
  3585 // Used to convert frequent JVM_Yield() to nops
  3586 bool os::dont_yield() {
  3587   if (DontYieldALot) {
  3588     static hrtime_t last_time = 0;
  3589     hrtime_t diff = getTimeNanos() - last_time;
  3591     if (diff < DontYieldALotInterval * 1000000)
  3592       return true;
  3594     last_time += diff;
  3596     return false;
  3598   else {
  3599     return false;
  3603 // Caveat: Solaris os::yield() causes a thread-state transition whereas
  3604 // the linux and win32 implementations do not.  This should be checked.
  3606 void os::yield() {
  3607   // Yields to all threads with same or greater priority
  3608   os::sleep(Thread::current(), 0, false);
  3611 // Note that yield semantics are defined by the scheduling class to which
  3612 // the thread currently belongs.  Typically, yield will _not yield to
  3613 // other equal or higher priority threads that reside on the dispatch queues
  3614 // of other CPUs.
  3616 os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
  3619 // On Solaris we found that yield_all doesn't always yield to all other threads.
  3620 // There have been cases where there is a thread ready to execute but it doesn't
  3621 // get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
  3622 // The 1 millisecond wait doesn't seem long enough for the kernel to issue a
  3623 // SIGWAITING signal which will cause a new lwp to be created. So we count the
  3624 // number of times yield_all is called in the one loop and increase the sleep
  3625 // time after 8 attempts. If this fails too we increase the concurrency level
  3626 // so that the starving thread would get an lwp
  3628 void os::yield_all(int attempts) {
  3629   // Yields to all threads, including threads with lower priorities
  3630   if (attempts == 0) {
  3631     os::sleep(Thread::current(), 1, false);
  3632   } else {
  3633     int iterations = attempts % 30;
  3634     if (iterations == 0 && !os::Solaris::T2_libthread()) {
  3635       // thr_setconcurrency and _getconcurrency make sense only under T1.
  3636       int noofLWPS = thr_getconcurrency();
  3637       if (noofLWPS < (Threads::number_of_threads() + 2)) {
  3638         thr_setconcurrency(thr_getconcurrency() + 1);
  3640     } else if (iterations < 25) {
  3641       os::sleep(Thread::current(), 1, false);
  3642     } else {
  3643       os::sleep(Thread::current(), 10, false);
  3648 // Called from the tight loops to possibly influence time-sharing heuristics
  3649 void os::loop_breaker(int attempts) {
  3650   os::yield_all(attempts);
  3654 // Interface for setting lwp priorities.  If we are using T2 libthread,
  3655 // which forces the use of BoundThreads or we manually set UseBoundThreads,
  3656 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
  3657 // function is meaningless in this mode so we must adjust the real lwp's priority
  3658 // The routines below implement the getting and setting of lwp priorities.
  3659 //
  3660 // Note: There are three priority scales used on Solaris.  Java priotities
  3661 //       which range from 1 to 10, libthread "thr_setprio" scale which range
  3662 //       from 0 to 127, and the current scheduling class of the process we
  3663 //       are running in.  This is typically from -60 to +60.
  3664 //       The setting of the lwp priorities in done after a call to thr_setprio
  3665 //       so Java priorities are mapped to libthread priorities and we map from
  3666 //       the latter to lwp priorities.  We don't keep priorities stored in
  3667 //       Java priorities since some of our worker threads want to set priorities
  3668 //       higher than all Java threads.
  3669 //
  3670 // For related information:
  3671 // (1)  man -s 2 priocntl
  3672 // (2)  man -s 4 priocntl
  3673 // (3)  man dispadmin
  3674 // =    librt.so
  3675 // =    libthread/common/rtsched.c - thrp_setlwpprio().
  3676 // =    ps -cL <pid> ... to validate priority.
  3677 // =    sched_get_priority_min and _max
  3678 //              pthread_create
  3679 //              sched_setparam
  3680 //              pthread_setschedparam
  3681 //
  3682 // Assumptions:
  3683 // +    We assume that all threads in the process belong to the same
  3684 //              scheduling class.   IE. an homogenous process.
  3685 // +    Must be root or in IA group to change change "interactive" attribute.
  3686 //              Priocntl() will fail silently.  The only indication of failure is when
  3687 //              we read-back the value and notice that it hasn't changed.
  3688 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
  3689 // +    For RT, change timeslice as well.  Invariant:
  3690 //              constant "priority integral"
  3691 //              Konst == TimeSlice * (60-Priority)
  3692 //              Given a priority, compute appropriate timeslice.
  3693 // +    Higher numerical values have higher priority.
  3695 // sched class attributes
  3696 typedef struct {
  3697         int   schedPolicy;              // classID
  3698         int   maxPrio;
  3699         int   minPrio;
  3700 } SchedInfo;
  3703 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
  3705 #ifdef ASSERT
  3706 static int  ReadBackValidate = 1;
  3707 #endif
  3708 static int  myClass     = 0;
  3709 static int  myMin       = 0;
  3710 static int  myMax       = 0;
  3711 static int  myCur       = 0;
  3712 static bool priocntl_enable = false;
  3714 static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
  3715 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
  3717 // Call the version of priocntl suitable for all supported versions
  3718 // of Solaris. We need to call through this wrapper so that we can
  3719 // build on Solaris 9 and run on Solaris 8, 9 and 10.
  3720 //
  3721 // This code should be removed if we ever stop supporting Solaris 8
  3722 // and earlier releases.
  3724 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
  3725 typedef long (*priocntl_type)(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
  3726 static priocntl_type priocntl_ptr = priocntl_stub;
  3728 // Stub to set the value of the real pointer, and then call the real
  3729 // function.
  3731 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg) {
  3732   // Try Solaris 8- name only.
  3733   priocntl_type tmp = (priocntl_type)dlsym(RTLD_DEFAULT, "__priocntl");
  3734   guarantee(tmp != NULL, "priocntl function not found.");
  3735   priocntl_ptr = tmp;
  3736   return (*priocntl_ptr)(PC_VERSION, idtype, id, cmd, arg);
  3740 // lwp_priocntl_init
  3741 //
  3742 // Try to determine the priority scale for our process.
  3743 //
  3744 // Return errno or 0 if OK.
  3745 //
  3746 static
  3747 int     lwp_priocntl_init ()
  3749   int rslt;
  3750   pcinfo_t ClassInfo;
  3751   pcparms_t ParmInfo;
  3752   int i;
  3754   if (!UseThreadPriorities) return 0;
  3756   // We are using Bound threads, we need to determine our priority ranges
  3757   if (os::Solaris::T2_libthread() || UseBoundThreads) {
  3758     // If ThreadPriorityPolicy is 1, switch tables
  3759     if (ThreadPriorityPolicy == 1) {
  3760       for (i = 0 ; i < CriticalPriority+1; i++)
  3761         os::java_to_os_priority[i] = prio_policy1[i];
  3763     if (UseCriticalJavaThreadPriority) {
  3764       // MaxPriority always maps to the FX scheduling class and criticalPrio.
  3765       // See set_native_priority() and set_lwp_class_and_priority().
  3766       // Save original MaxPriority mapping in case attempt to
  3767       // use critical priority fails.
  3768       java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
  3769       // Set negative to distinguish from other priorities
  3770       os::java_to_os_priority[MaxPriority] = -criticalPrio;
  3773   // Not using Bound Threads, set to ThreadPolicy 1
  3774   else {
  3775     for ( i = 0 ; i < CriticalPriority+1; i++ ) {
  3776       os::java_to_os_priority[i] = prio_policy1[i];
  3778     return 0;
  3781   // Get IDs for a set of well-known scheduling classes.
  3782   // TODO-FIXME: GETCLINFO returns the current # of classes in the
  3783   // the system.  We should have a loop that iterates over the
  3784   // classID values, which are known to be "small" integers.
  3786   strcpy(ClassInfo.pc_clname, "TS");
  3787   ClassInfo.pc_cid = -1;
  3788   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3789   if (rslt < 0) return errno;
  3790   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
  3791   tsLimits.schedPolicy = ClassInfo.pc_cid;
  3792   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
  3793   tsLimits.minPrio = -tsLimits.maxPrio;
  3795   strcpy(ClassInfo.pc_clname, "IA");
  3796   ClassInfo.pc_cid = -1;
  3797   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3798   if (rslt < 0) return errno;
  3799   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
  3800   iaLimits.schedPolicy = ClassInfo.pc_cid;
  3801   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
  3802   iaLimits.minPrio = -iaLimits.maxPrio;
  3804   strcpy(ClassInfo.pc_clname, "RT");
  3805   ClassInfo.pc_cid = -1;
  3806   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3807   if (rslt < 0) return errno;
  3808   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
  3809   rtLimits.schedPolicy = ClassInfo.pc_cid;
  3810   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
  3811   rtLimits.minPrio = 0;
  3813   strcpy(ClassInfo.pc_clname, "FX");
  3814   ClassInfo.pc_cid = -1;
  3815   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3816   if (rslt < 0) return errno;
  3817   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
  3818   fxLimits.schedPolicy = ClassInfo.pc_cid;
  3819   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
  3820   fxLimits.minPrio = 0;
  3822   // Query our "current" scheduling class.
  3823   // This will normally be IA, TS or, rarely, FX or RT.
  3824   memset(&ParmInfo, 0, sizeof(ParmInfo));
  3825   ParmInfo.pc_cid = PC_CLNULL;
  3826   rslt = (*priocntl_ptr) (PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  3827   if (rslt < 0) return errno;
  3828   myClass = ParmInfo.pc_cid;
  3830   // We now know our scheduling classId, get specific information
  3831   // about the class.
  3832   ClassInfo.pc_cid = myClass;
  3833   ClassInfo.pc_clname[0] = 0;
  3834   rslt = (*priocntl_ptr) (PC_VERSION, (idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
  3835   if (rslt < 0) return errno;
  3837   if (ThreadPriorityVerbose) {
  3838     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
  3841   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3842   ParmInfo.pc_cid = PC_CLNULL;
  3843   rslt = (*priocntl_ptr)(PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  3844   if (rslt < 0) return errno;
  3846   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3847     myMin = rtLimits.minPrio;
  3848     myMax = rtLimits.maxPrio;
  3849   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3850     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3851     myMin = iaLimits.minPrio;
  3852     myMax = iaLimits.maxPrio;
  3853     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
  3854   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3855     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3856     myMin = tsLimits.minPrio;
  3857     myMax = tsLimits.maxPrio;
  3858     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
  3859   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
  3860     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
  3861     myMin = fxLimits.minPrio;
  3862     myMax = fxLimits.maxPrio;
  3863     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
  3864   } else {
  3865     // No clue - punt
  3866     if (ThreadPriorityVerbose)
  3867       tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
  3868     return EINVAL;      // no clue, punt
  3871   if (ThreadPriorityVerbose) {
  3872     tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
  3875   priocntl_enable = true;  // Enable changing priorities
  3876   return 0;
  3879 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
  3880 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
  3881 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
  3882 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
  3885 // scale_to_lwp_priority
  3886 //
  3887 // Convert from the libthread "thr_setprio" scale to our current
  3888 // lwp scheduling class scale.
  3889 //
  3890 static
  3891 int     scale_to_lwp_priority (int rMin, int rMax, int x)
  3893   int v;
  3895   if (x == 127) return rMax;            // avoid round-down
  3896     v = (((x*(rMax-rMin)))/128)+rMin;
  3897   return v;
  3901 // set_lwp_class_and_priority
  3902 //
  3903 // Set the class and priority of the lwp.  This call should only
  3904 // be made when using bound threads (T2 threads are bound by default).
  3905 //
  3906 int set_lwp_class_and_priority(int ThreadID, int lwpid,
  3907                                int newPrio, int new_class, bool scale) {
  3908   int rslt;
  3909   int Actual, Expected, prv;
  3910   pcparms_t ParmInfo;                   // for GET-SET
  3911 #ifdef ASSERT
  3912   pcparms_t ReadBack;                   // for readback
  3913 #endif
  3915   // Set priority via PC_GETPARMS, update, PC_SETPARMS
  3916   // Query current values.
  3917   // TODO: accelerate this by eliminating the PC_GETPARMS call.
  3918   // Cache "pcparms_t" in global ParmCache.
  3919   // TODO: elide set-to-same-value
  3921   // If something went wrong on init, don't change priorities.
  3922   if ( !priocntl_enable ) {
  3923     if (ThreadPriorityVerbose)
  3924       tty->print_cr("Trying to set priority but init failed, ignoring");
  3925     return EINVAL;
  3928   // If lwp hasn't started yet, just return
  3929   // the _start routine will call us again.
  3930   if ( lwpid <= 0 ) {
  3931     if (ThreadPriorityVerbose) {
  3932       tty->print_cr ("deferring the set_lwp_class_and_priority of thread "
  3933                      INTPTR_FORMAT " to %d, lwpid not set",
  3934                      ThreadID, newPrio);
  3936     return 0;
  3939   if (ThreadPriorityVerbose) {
  3940     tty->print_cr ("set_lwp_class_and_priority("
  3941                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
  3942                    ThreadID, lwpid, newPrio);
  3945   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3946   ParmInfo.pc_cid = PC_CLNULL;
  3947   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
  3948   if (rslt < 0) return errno;
  3950   int cur_class = ParmInfo.pc_cid;
  3951   ParmInfo.pc_cid = (id_t)new_class;
  3953   if (new_class == rtLimits.schedPolicy) {
  3954     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
  3955     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
  3956                                                        rtLimits.maxPrio, newPrio)
  3957                                : newPrio;
  3958     rtInfo->rt_tqsecs  = RT_NOCHANGE;
  3959     rtInfo->rt_tqnsecs = RT_NOCHANGE;
  3960     if (ThreadPriorityVerbose) {
  3961       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
  3963   } else if (new_class == iaLimits.schedPolicy) {
  3964     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3965     int maxClamped     = MIN2(iaLimits.maxPrio,
  3966                               cur_class == new_class
  3967                                 ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
  3968     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
  3969                                                        maxClamped, newPrio)
  3970                                : newPrio;
  3971     iaInfo->ia_uprilim = cur_class == new_class
  3972                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
  3973     iaInfo->ia_mode    = IA_NOCHANGE;
  3974     if (ThreadPriorityVerbose) {
  3975       tty->print_cr("IA: [%d...%d] %d->%d\n",
  3976                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
  3978   } else if (new_class == tsLimits.schedPolicy) {
  3979     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3980     int maxClamped     = MIN2(tsLimits.maxPrio,
  3981                               cur_class == new_class
  3982                                 ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
  3983     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
  3984                                                        maxClamped, newPrio)
  3985                                : newPrio;
  3986     tsInfo->ts_uprilim = cur_class == new_class
  3987                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
  3988     if (ThreadPriorityVerbose) {
  3989       tty->print_cr("TS: [%d...%d] %d->%d\n",
  3990                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
  3992   } else if (new_class == fxLimits.schedPolicy) {
  3993     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
  3994     int maxClamped     = MIN2(fxLimits.maxPrio,
  3995                               cur_class == new_class
  3996                                 ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
  3997     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
  3998                                                        maxClamped, newPrio)
  3999                                : newPrio;
  4000     fxInfo->fx_uprilim = cur_class == new_class
  4001                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
  4002     fxInfo->fx_tqsecs  = FX_NOCHANGE;
  4003     fxInfo->fx_tqnsecs = FX_NOCHANGE;
  4004     if (ThreadPriorityVerbose) {
  4005       tty->print_cr("FX: [%d...%d] %d->%d\n",
  4006                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
  4008   } else {
  4009     if (ThreadPriorityVerbose) {
  4010       tty->print_cr("Unknown new scheduling class %d\n", new_class);
  4012     return EINVAL;    // no clue, punt
  4015   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
  4016   if (ThreadPriorityVerbose && rslt) {
  4017     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
  4019   if (rslt < 0) return errno;
  4021 #ifdef ASSERT
  4022   // Sanity check: read back what we just attempted to set.
  4023   // In theory it could have changed in the interim ...
  4024   //
  4025   // The priocntl system call is tricky.
  4026   // Sometimes it'll validate the priority value argument and
  4027   // return EINVAL if unhappy.  At other times it fails silently.
  4028   // Readbacks are prudent.
  4030   if (!ReadBackValidate) return 0;
  4032   memset(&ReadBack, 0, sizeof(pcparms_t));
  4033   ReadBack.pc_cid = PC_CLNULL;
  4034   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
  4035   assert(rslt >= 0, "priocntl failed");
  4036   Actual = Expected = 0xBAD;
  4037   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
  4038   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  4039     Actual   = RTPRI(ReadBack)->rt_pri;
  4040     Expected = RTPRI(ParmInfo)->rt_pri;
  4041   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  4042     Actual   = IAPRI(ReadBack)->ia_upri;
  4043     Expected = IAPRI(ParmInfo)->ia_upri;
  4044   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  4045     Actual   = TSPRI(ReadBack)->ts_upri;
  4046     Expected = TSPRI(ParmInfo)->ts_upri;
  4047   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
  4048     Actual   = FXPRI(ReadBack)->fx_upri;
  4049     Expected = FXPRI(ParmInfo)->fx_upri;
  4050   } else {
  4051     if (ThreadPriorityVerbose) {
  4052       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
  4053                     ParmInfo.pc_cid);
  4057   if (Actual != Expected) {
  4058     if (ThreadPriorityVerbose) {
  4059       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
  4060                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
  4063 #endif
  4065   return 0;
  4068 // Solaris only gives access to 128 real priorities at a time,
  4069 // so we expand Java's ten to fill this range.  This would be better
  4070 // if we dynamically adjusted relative priorities.
  4071 //
  4072 // The ThreadPriorityPolicy option allows us to select 2 different
  4073 // priority scales.
  4074 //
  4075 // ThreadPriorityPolicy=0
  4076 // Since the Solaris' default priority is MaximumPriority, we do not
  4077 // set a priority lower than Max unless a priority lower than
  4078 // NormPriority is requested.
  4079 //
  4080 // ThreadPriorityPolicy=1
  4081 // This mode causes the priority table to get filled with
  4082 // linear values.  NormPriority get's mapped to 50% of the
  4083 // Maximum priority an so on.  This will cause VM threads
  4084 // to get unfair treatment against other Solaris processes
  4085 // which do not explicitly alter their thread priorities.
  4086 //
  4088 int os::java_to_os_priority[CriticalPriority + 1] = {
  4089   -99999,         // 0 Entry should never be used
  4091   0,              // 1 MinPriority
  4092   32,             // 2
  4093   64,             // 3
  4095   96,             // 4
  4096   127,            // 5 NormPriority
  4097   127,            // 6
  4099   127,            // 7
  4100   127,            // 8
  4101   127,            // 9 NearMaxPriority
  4103   127,            // 10 MaxPriority
  4105   -criticalPrio   // 11 CriticalPriority
  4106 };
  4108 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4109   OSThread* osthread = thread->osthread();
  4111   // Save requested priority in case the thread hasn't been started
  4112   osthread->set_native_priority(newpri);
  4114   // Check for critical priority request
  4115   bool fxcritical = false;
  4116   if (newpri == -criticalPrio) {
  4117     fxcritical = true;
  4118     newpri = criticalPrio;
  4121   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
  4122   if (!UseThreadPriorities) return OS_OK;
  4124   int status = 0;
  4126   if (!fxcritical) {
  4127     // Use thr_setprio only if we have a priority that thr_setprio understands
  4128     status = thr_setprio(thread->osthread()->thread_id(), newpri);
  4131   if (os::Solaris::T2_libthread() ||
  4132       (UseBoundThreads && osthread->is_vm_created())) {
  4133     int lwp_status =
  4134       set_lwp_class_and_priority(osthread->thread_id(),
  4135                                  osthread->lwp_id(),
  4136                                  newpri,
  4137                                  fxcritical ? fxLimits.schedPolicy : myClass,
  4138                                  !fxcritical);
  4139     if (lwp_status != 0 && fxcritical) {
  4140       // Try again, this time without changing the scheduling class
  4141       newpri = java_MaxPriority_to_os_priority;
  4142       lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
  4143                                               osthread->lwp_id(),
  4144                                               newpri, myClass, false);
  4146     status |= lwp_status;
  4148   return (status == 0) ? OS_OK : OS_ERR;
  4152 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4153   int p;
  4154   if ( !UseThreadPriorities ) {
  4155     *priority_ptr = NormalPriority;
  4156     return OS_OK;
  4158   int status = thr_getprio(thread->osthread()->thread_id(), &p);
  4159   if (status != 0) {
  4160     return OS_ERR;
  4162   *priority_ptr = p;
  4163   return OS_OK;
  4167 // Hint to the underlying OS that a task switch would not be good.
  4168 // Void return because it's a hint and can fail.
  4169 void os::hint_no_preempt() {
  4170   schedctl_start(schedctl_init());
  4173 void os::interrupt(Thread* thread) {
  4174   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4176   OSThread* osthread = thread->osthread();
  4178   int isInterrupted = osthread->interrupted();
  4179   if (!isInterrupted) {
  4180       osthread->set_interrupted(true);
  4181       OrderAccess::fence();
  4182       // os::sleep() is implemented with either poll (NULL,0,timeout) or
  4183       // by parking on _SleepEvent.  If the former, thr_kill will unwedge
  4184       // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
  4185       ParkEvent * const slp = thread->_SleepEvent ;
  4186       if (slp != NULL) slp->unpark() ;
  4189   // For JSR166:  unpark after setting status but before thr_kill -dl
  4190   if (thread->is_Java_thread()) {
  4191     ((JavaThread*)thread)->parker()->unpark();
  4194   // Handle interruptible wait() ...
  4195   ParkEvent * const ev = thread->_ParkEvent ;
  4196   if (ev != NULL) ev->unpark() ;
  4198   // When events are used everywhere for os::sleep, then this thr_kill
  4199   // will only be needed if UseVMInterruptibleIO is true.
  4201   if (!isInterrupted) {
  4202     int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
  4203     assert_status(status == 0, status, "thr_kill");
  4205     // Bump thread interruption counter
  4206     RuntimeService::record_thread_interrupt_signaled_count();
  4211 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4212   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4214   OSThread* osthread = thread->osthread();
  4216   bool res = osthread->interrupted();
  4218   // NOTE that since there is no "lock" around these two operations,
  4219   // there is the possibility that the interrupted flag will be
  4220   // "false" but that the interrupt event will be set. This is
  4221   // intentional. The effect of this is that Object.wait() will appear
  4222   // to have a spurious wakeup, which is not harmful, and the
  4223   // possibility is so rare that it is not worth the added complexity
  4224   // to add yet another lock. It has also been recommended not to put
  4225   // the interrupted flag into the os::Solaris::Event structure,
  4226   // because it hides the issue.
  4227   if (res && clear_interrupted) {
  4228     osthread->set_interrupted(false);
  4230   return res;
  4234 void os::print_statistics() {
  4237 int os::message_box(const char* title, const char* message) {
  4238   int i;
  4239   fdStream err(defaultStream::error_fd());
  4240   for (i = 0; i < 78; i++) err.print_raw("=");
  4241   err.cr();
  4242   err.print_raw_cr(title);
  4243   for (i = 0; i < 78; i++) err.print_raw("-");
  4244   err.cr();
  4245   err.print_raw_cr(message);
  4246   for (i = 0; i < 78; i++) err.print_raw("=");
  4247   err.cr();
  4249   char buf[16];
  4250   // Prevent process from exiting upon "read error" without consuming all CPU
  4251   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4253   return buf[0] == 'y' || buf[0] == 'Y';
  4256 // A lightweight implementation that does not suspend the target thread and
  4257 // thus returns only a hint. Used for profiling only!
  4258 ExtendedPC os::get_thread_pc(Thread* thread) {
  4259   // Make sure that it is called by the watcher and the Threads lock is owned.
  4260   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
  4261   // For now, is only used to profile the VM Thread
  4262   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4263   ExtendedPC epc;
  4265   GetThreadPC_Callback  cb(ProfileVM_lock);
  4266   OSThread *osthread = thread->osthread();
  4267   const int time_to_wait = 400; // 400ms wait for initial response
  4268   int status = cb.interrupt(thread, time_to_wait);
  4270   if (cb.is_done() ) {
  4271     epc = cb.addr();
  4272   } else {
  4273     DEBUG_ONLY(tty->print_cr("Failed to get pc for thread: %d got %d status",
  4274                               osthread->thread_id(), status););
  4275     // epc is already NULL
  4277   return epc;
  4281 // This does not do anything on Solaris. This is basically a hook for being
  4282 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
  4283 void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
  4284   f(value, method, args, thread);
  4287 // This routine may be used by user applications as a "hook" to catch signals.
  4288 // The user-defined signal handler must pass unrecognized signals to this
  4289 // routine, and if it returns true (non-zero), then the signal handler must
  4290 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4291 // routine will never retun false (zero), but instead will execute a VM panic
  4292 // routine kill the process.
  4293 //
  4294 // If this routine returns false, it is OK to call it again.  This allows
  4295 // the user-defined signal handler to perform checks either before or after
  4296 // the VM performs its own checks.  Naturally, the user code would be making
  4297 // a serious error if it tried to handle an exception (such as a null check
  4298 // or breakpoint) that the VM was generating for its own correct operation.
  4299 //
  4300 // This routine may recognize any of the following kinds of signals:
  4301 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
  4302 // os::Solaris::SIGasync
  4303 // It should be consulted by handlers for any of those signals.
  4304 // It explicitly does not recognize os::Solaris::SIGinterrupt
  4305 //
  4306 // The caller of this routine must pass in the three arguments supplied
  4307 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4308 // field of the structure passed to sigaction().  This routine assumes that
  4309 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4310 //
  4311 // Note that the VM will print warnings if it detects conflicting signal
  4312 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4313 //
  4314 extern "C" JNIEXPORT int
  4315 JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext,
  4316                           int abort_if_unrecognized);
  4319 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
  4320   JVM_handle_solaris_signal(sig, info, ucVoid, true);
  4323 /* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
  4324    is needed to provoke threads blocked on IO to return an EINTR
  4325    Note: this explicitly does NOT call JVM_handle_solaris_signal and
  4326    does NOT participate in signal chaining due to requirement for
  4327    NOT setting SA_RESTART to make EINTR work. */
  4328 extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
  4329    if (UseSignalChaining) {
  4330       struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
  4331       if (actp && actp->sa_handler) {
  4332         vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
  4337 // This boolean allows users to forward their own non-matching signals
  4338 // to JVM_handle_solaris_signal, harmlessly.
  4339 bool os::Solaris::signal_handlers_are_installed = false;
  4341 // For signal-chaining
  4342 bool os::Solaris::libjsig_is_loaded = false;
  4343 typedef struct sigaction *(*get_signal_t)(int);
  4344 get_signal_t os::Solaris::get_signal_action = NULL;
  4346 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
  4347   struct sigaction *actp = NULL;
  4349   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
  4350     // Retrieve the old signal handler from libjsig
  4351     actp = (*get_signal_action)(sig);
  4353   if (actp == NULL) {
  4354     // Retrieve the preinstalled signal handler from jvm
  4355     actp = get_preinstalled_handler(sig);
  4358   return actp;
  4361 static bool call_chained_handler(struct sigaction *actp, int sig,
  4362                                  siginfo_t *siginfo, void *context) {
  4363   // Call the old signal handler
  4364   if (actp->sa_handler == SIG_DFL) {
  4365     // It's more reasonable to let jvm treat it as an unexpected exception
  4366     // instead of taking the default action.
  4367     return false;
  4368   } else if (actp->sa_handler != SIG_IGN) {
  4369     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4370       // automaticlly block the signal
  4371       sigaddset(&(actp->sa_mask), sig);
  4374     sa_handler_t hand;
  4375     sa_sigaction_t sa;
  4376     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4377     // retrieve the chained handler
  4378     if (siginfo_flag_set) {
  4379       sa = actp->sa_sigaction;
  4380     } else {
  4381       hand = actp->sa_handler;
  4384     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4385       actp->sa_handler = SIG_DFL;
  4388     // try to honor the signal mask
  4389     sigset_t oset;
  4390     thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4392     // call into the chained handler
  4393     if (siginfo_flag_set) {
  4394       (*sa)(sig, siginfo, context);
  4395     } else {
  4396       (*hand)(sig);
  4399     // restore the signal mask
  4400     thr_sigsetmask(SIG_SETMASK, &oset, 0);
  4402   // Tell jvm's signal handler the signal is taken care of.
  4403   return true;
  4406 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4407   bool chained = false;
  4408   // signal-chaining
  4409   if (UseSignalChaining) {
  4410     struct sigaction *actp = get_chained_signal_action(sig);
  4411     if (actp != NULL) {
  4412       chained = call_chained_handler(actp, sig, siginfo, context);
  4415   return chained;
  4418 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
  4419   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4420   if (preinstalled_sigs[sig] != 0) {
  4421     return &chainedsigactions[sig];
  4423   return NULL;
  4426 void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4428   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
  4429   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4430   chainedsigactions[sig] = oldAct;
  4431   preinstalled_sigs[sig] = 1;
  4434 void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
  4435   // Check for overwrite.
  4436   struct sigaction oldAct;
  4437   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4438   void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4439                                       : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4440   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4441       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4442       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
  4443     if (AllowUserSignalHandlers || !set_installed) {
  4444       // Do not overwrite; user takes responsibility to forward to us.
  4445       return;
  4446     } else if (UseSignalChaining) {
  4447       if (oktochain) {
  4448         // save the old handler in jvm
  4449         save_preinstalled_handler(sig, oldAct);
  4450       } else {
  4451         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
  4453       // libjsig also interposes the sigaction() call below and saves the
  4454       // old sigaction on it own.
  4455     } else {
  4456       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4457                     "%#lx for signal %d.", (long)oldhand, sig));
  4461   struct sigaction sigAct;
  4462   sigfillset(&(sigAct.sa_mask));
  4463   sigAct.sa_handler = SIG_DFL;
  4465   sigAct.sa_sigaction = signalHandler;
  4466   // Handle SIGSEGV on alternate signal stack if
  4467   // not using stack banging
  4468   if (!UseStackBanging && sig == SIGSEGV) {
  4469     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
  4470   // Interruptible i/o requires SA_RESTART cleared so EINTR
  4471   // is returned instead of restarting system calls
  4472   } else if (sig == os::Solaris::SIGinterrupt()) {
  4473     sigemptyset(&sigAct.sa_mask);
  4474     sigAct.sa_handler = NULL;
  4475     sigAct.sa_flags = SA_SIGINFO;
  4476     sigAct.sa_sigaction = sigINTRHandler;
  4477   } else {
  4478     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
  4480   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
  4482   sigaction(sig, &sigAct, &oldAct);
  4484   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4485                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4486   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4490 #define DO_SIGNAL_CHECK(sig) \
  4491   if (!sigismember(&check_signal_done, sig)) \
  4492     os::Solaris::check_signal_handler(sig)
  4494 // This method is a periodic task to check for misbehaving JNI applications
  4495 // under CheckJNI, we can add any periodic checks here
  4497 void os::run_periodic_checks() {
  4498   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
  4499   // thereby preventing a NULL checks.
  4500   if(!check_addr0_done) check_addr0_done = check_addr0(tty);
  4502   if (check_signals == false) return;
  4504   // SEGV and BUS if overridden could potentially prevent
  4505   // generation of hs*.log in the event of a crash, debugging
  4506   // such a case can be very challenging, so we absolutely
  4507   // check for the following for a good measure:
  4508   DO_SIGNAL_CHECK(SIGSEGV);
  4509   DO_SIGNAL_CHECK(SIGILL);
  4510   DO_SIGNAL_CHECK(SIGFPE);
  4511   DO_SIGNAL_CHECK(SIGBUS);
  4512   DO_SIGNAL_CHECK(SIGPIPE);
  4513   DO_SIGNAL_CHECK(SIGXFSZ);
  4515   // ReduceSignalUsage allows the user to override these handlers
  4516   // see comments at the very top and jvm_solaris.h
  4517   if (!ReduceSignalUsage) {
  4518     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4519     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4520     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4521     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4524   // See comments above for using JVM1/JVM2 and UseAltSigs
  4525   DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
  4526   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
  4530 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4532 static os_sigaction_t os_sigaction = NULL;
  4534 void os::Solaris::check_signal_handler(int sig) {
  4535   char buf[O_BUFLEN];
  4536   address jvmHandler = NULL;
  4538   struct sigaction act;
  4539   if (os_sigaction == NULL) {
  4540     // only trust the default sigaction, in case it has been interposed
  4541     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4542     if (os_sigaction == NULL) return;
  4545   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4547   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4548     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4549     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4552   switch(sig) {
  4553     case SIGSEGV:
  4554     case SIGBUS:
  4555     case SIGFPE:
  4556     case SIGPIPE:
  4557     case SIGXFSZ:
  4558     case SIGILL:
  4559       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4560       break;
  4562     case SHUTDOWN1_SIGNAL:
  4563     case SHUTDOWN2_SIGNAL:
  4564     case SHUTDOWN3_SIGNAL:
  4565     case BREAK_SIGNAL:
  4566       jvmHandler = (address)user_handler();
  4567       break;
  4569     default:
  4570       int intrsig = os::Solaris::SIGinterrupt();
  4571       int asynsig = os::Solaris::SIGasync();
  4573       if (sig == intrsig) {
  4574         jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
  4575       } else if (sig == asynsig) {
  4576         jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4577       } else {
  4578         return;
  4580       break;
  4584   if (thisHandler != jvmHandler) {
  4585     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4586     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4587     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4588     // No need to check this sig any longer
  4589     sigaddset(&check_signal_done, sig);
  4590   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  4591     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4592     tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
  4593     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4594     // No need to check this sig any longer
  4595     sigaddset(&check_signal_done, sig);
  4598   // Print all the signal handler state
  4599   if (sigismember(&check_signal_done, sig)) {
  4600     print_signal_handlers(tty, buf, O_BUFLEN);
  4605 void os::Solaris::install_signal_handlers() {
  4606   bool libjsigdone = false;
  4607   signal_handlers_are_installed = true;
  4609   // signal-chaining
  4610   typedef void (*signal_setting_t)();
  4611   signal_setting_t begin_signal_setting = NULL;
  4612   signal_setting_t end_signal_setting = NULL;
  4613   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4614                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4615   if (begin_signal_setting != NULL) {
  4616     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4617                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4618     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4619                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4620     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
  4621                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
  4622     libjsig_is_loaded = true;
  4623     if (os::Solaris::get_libjsig_version != NULL) {
  4624       libjsigversion =  (*os::Solaris::get_libjsig_version)();
  4626     assert(UseSignalChaining, "should enable signal-chaining");
  4628   if (libjsig_is_loaded) {
  4629     // Tell libjsig jvm is setting signal handlers
  4630     (*begin_signal_setting)();
  4633   set_signal_handler(SIGSEGV, true, true);
  4634   set_signal_handler(SIGPIPE, true, true);
  4635   set_signal_handler(SIGXFSZ, true, true);
  4636   set_signal_handler(SIGBUS, true, true);
  4637   set_signal_handler(SIGILL, true, true);
  4638   set_signal_handler(SIGFPE, true, true);
  4641   if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
  4643     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
  4644     // can not register overridable signals which might be > 32
  4645     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
  4646     // Tell libjsig jvm has finished setting signal handlers
  4647       (*end_signal_setting)();
  4648       libjsigdone = true;
  4652   // Never ok to chain our SIGinterrupt
  4653   set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
  4654   set_signal_handler(os::Solaris::SIGasync(), true, true);
  4656   if (libjsig_is_loaded && !libjsigdone) {
  4657     // Tell libjsig jvm finishes setting signal handlers
  4658     (*end_signal_setting)();
  4661   // We don't activate signal checker if libjsig is in place, we trust ourselves
  4662   // and if UserSignalHandler is installed all bets are off.
  4663   // Log that signal checking is off only if -verbose:jni is specified.
  4664   if (CheckJNICalls) {
  4665     if (libjsig_is_loaded) {
  4666       if (PrintJNIResolving) {
  4667         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4669       check_signals = false;
  4671     if (AllowUserSignalHandlers) {
  4672       if (PrintJNIResolving) {
  4673         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4675       check_signals = false;
  4681 void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
  4683 const char * signames[] = {
  4684   "SIG0",
  4685   "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
  4686   "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
  4687   "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
  4688   "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
  4689   "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
  4690   "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
  4691   "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
  4692   "SIGCANCEL", "SIGLOST"
  4693 };
  4695 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4696   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4697     // signal
  4698     if (exception_code < sizeof(signames)/sizeof(const char*)) {
  4699        jio_snprintf(buf, size, "%s", signames[exception_code]);
  4700     } else {
  4701        jio_snprintf(buf, size, "SIG%d", exception_code);
  4703     return buf;
  4704   } else {
  4705     return NULL;
  4709 // (Static) wrappers for the new libthread API
  4710 int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
  4711 int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
  4712 int_fnP_thread_t_i os::Solaris::_thr_setmutator;
  4713 int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
  4714 int_fnP_thread_t os::Solaris::_thr_continue_mutator;
  4716 // (Static) wrapper for getisax(2) call.
  4717 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
  4719 // (Static) wrappers for the liblgrp API
  4720 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
  4721 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
  4722 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
  4723 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
  4724 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
  4725 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
  4726 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
  4727 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
  4728 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
  4730 // (Static) wrapper for meminfo() call.
  4731 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
  4733 static address resolve_symbol_lazy(const char* name) {
  4734   address addr = (address) dlsym(RTLD_DEFAULT, name);
  4735   if(addr == NULL) {
  4736     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
  4737     addr = (address) dlsym(RTLD_NEXT, name);
  4739   return addr;
  4742 static address resolve_symbol(const char* name) {
  4743   address addr = resolve_symbol_lazy(name);
  4744   if(addr == NULL) {
  4745     fatal(dlerror());
  4747   return addr;
  4752 // isT2_libthread()
  4753 //
  4754 // Routine to determine if we are currently using the new T2 libthread.
  4755 //
  4756 // We determine if we are using T2 by reading /proc/self/lstatus and
  4757 // looking for a thread with the ASLWP bit set.  If we find this status
  4758 // bit set, we must assume that we are NOT using T2.  The T2 team
  4759 // has approved this algorithm.
  4760 //
  4761 // We need to determine if we are running with the new T2 libthread
  4762 // since setting native thread priorities is handled differently
  4763 // when using this library.  All threads created using T2 are bound
  4764 // threads. Calling thr_setprio is meaningless in this case.
  4765 //
  4766 bool isT2_libthread() {
  4767   static prheader_t * lwpArray = NULL;
  4768   static int lwpSize = 0;
  4769   static int lwpFile = -1;
  4770   lwpstatus_t * that;
  4771   char lwpName [128];
  4772   bool isT2 = false;
  4774 #define ADR(x)  ((uintptr_t)(x))
  4775 #define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
  4777   lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
  4778   if (lwpFile < 0) {
  4779       if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
  4780       return false;
  4782   lwpSize = 16*1024;
  4783   for (;;) {
  4784     ::lseek64 (lwpFile, 0, SEEK_SET);
  4785     lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize, mtInternal);
  4786     if (::read(lwpFile, lwpArray, lwpSize) < 0) {
  4787       if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
  4788       break;
  4790     if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
  4791        // We got a good snapshot - now iterate over the list.
  4792       int aslwpcount = 0;
  4793       for (int i = 0; i < lwpArray->pr_nent; i++ ) {
  4794         that = LWPINDEX(lwpArray,i);
  4795         if (that->pr_flags & PR_ASLWP) {
  4796           aslwpcount++;
  4799       if (aslwpcount == 0) isT2 = true;
  4800       break;
  4802     lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
  4803     FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);  // retry.
  4806   FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);
  4807   ::close (lwpFile);
  4808   if (ThreadPriorityVerbose) {
  4809     if (isT2) tty->print_cr("We are running with a T2 libthread\n");
  4810     else tty->print_cr("We are not running with a T2 libthread\n");
  4812   return isT2;
  4816 void os::Solaris::libthread_init() {
  4817   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
  4819   // Determine if we are running with the new T2 libthread
  4820   os::Solaris::set_T2_libthread(isT2_libthread());
  4822   lwp_priocntl_init();
  4824   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
  4825   if(func == NULL) {
  4826     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
  4827     // Guarantee that this VM is running on an new enough OS (5.6 or
  4828     // later) that it will have a new enough libthread.so.
  4829     guarantee(func != NULL, "libthread.so is too old.");
  4832   // Initialize the new libthread getstate API wrappers
  4833   func = resolve_symbol("thr_getstate");
  4834   os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
  4836   func = resolve_symbol("thr_setstate");
  4837   os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
  4839   func = resolve_symbol("thr_setmutator");
  4840   os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
  4842   func = resolve_symbol("thr_suspend_mutator");
  4843   os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4845   func = resolve_symbol("thr_continue_mutator");
  4846   os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4848   int size;
  4849   void (*handler_info_func)(address *, int *);
  4850   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
  4851   handler_info_func(&handler_start, &size);
  4852   handler_end = handler_start + size;
  4856 int_fnP_mutex_tP os::Solaris::_mutex_lock;
  4857 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
  4858 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
  4859 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
  4860 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
  4861 int os::Solaris::_mutex_scope = USYNC_THREAD;
  4863 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
  4864 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
  4865 int_fnP_cond_tP os::Solaris::_cond_signal;
  4866 int_fnP_cond_tP os::Solaris::_cond_broadcast;
  4867 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
  4868 int_fnP_cond_tP os::Solaris::_cond_destroy;
  4869 int os::Solaris::_cond_scope = USYNC_THREAD;
  4871 void os::Solaris::synchronization_init() {
  4872   if(UseLWPSynchronization) {
  4873     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
  4874     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
  4875     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
  4876     os::Solaris::set_mutex_init(lwp_mutex_init);
  4877     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
  4878     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4880     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
  4881     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
  4882     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
  4883     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
  4884     os::Solaris::set_cond_init(lwp_cond_init);
  4885     os::Solaris::set_cond_destroy(lwp_cond_destroy);
  4886     os::Solaris::set_cond_scope(USYNC_THREAD);
  4888   else {
  4889     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4890     os::Solaris::set_cond_scope(USYNC_THREAD);
  4892     if(UsePthreads) {
  4893       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
  4894       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
  4895       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
  4896       os::Solaris::set_mutex_init(pthread_mutex_default_init);
  4897       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
  4899       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
  4900       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
  4901       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
  4902       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
  4903       os::Solaris::set_cond_init(pthread_cond_default_init);
  4904       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
  4906     else {
  4907       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
  4908       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
  4909       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
  4910       os::Solaris::set_mutex_init(::mutex_init);
  4911       os::Solaris::set_mutex_destroy(::mutex_destroy);
  4913       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
  4914       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
  4915       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
  4916       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
  4917       os::Solaris::set_cond_init(::cond_init);
  4918       os::Solaris::set_cond_destroy(::cond_destroy);
  4923 bool os::Solaris::liblgrp_init() {
  4924   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
  4925   if (handle != NULL) {
  4926     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
  4927     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
  4928     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
  4929     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
  4930     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
  4931     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
  4932     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
  4933     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
  4934                                        dlsym(handle, "lgrp_cookie_stale")));
  4936     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
  4937     set_lgrp_cookie(c);
  4938     return true;
  4940   return false;
  4943 void os::Solaris::misc_sym_init() {
  4944   address func;
  4946   // getisax
  4947   func = resolve_symbol_lazy("getisax");
  4948   if (func != NULL) {
  4949     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
  4952   // meminfo
  4953   func = resolve_symbol_lazy("meminfo");
  4954   if (func != NULL) {
  4955     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
  4959 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
  4960   assert(_getisax != NULL, "_getisax not set");
  4961   return _getisax(array, n);
  4964 // Symbol doesn't exist in Solaris 8 pset.h
  4965 #ifndef PS_MYID
  4966 #define PS_MYID -3
  4967 #endif
  4969 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
  4970 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
  4971 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
  4973 void init_pset_getloadavg_ptr(void) {
  4974   pset_getloadavg_ptr =
  4975     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
  4976   if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
  4977     warning("pset_getloadavg function not found");
  4981 int os::Solaris::_dev_zero_fd = -1;
  4983 // this is called _before_ the global arguments have been parsed
  4984 void os::init(void) {
  4985   _initial_pid = getpid();
  4987   max_hrtime = first_hrtime = gethrtime();
  4989   init_random(1234567);
  4991   page_size = sysconf(_SC_PAGESIZE);
  4992   if (page_size == -1)
  4993     fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
  4994                   strerror(errno)));
  4995   init_page_sizes((size_t) page_size);
  4997   Solaris::initialize_system_info();
  4999   // Initialize misc. symbols as soon as possible, so we can use them
  5000   // if we need them.
  5001   Solaris::misc_sym_init();
  5003   int fd = ::open("/dev/zero", O_RDWR);
  5004   if (fd < 0) {
  5005     fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
  5006   } else {
  5007     Solaris::set_dev_zero_fd(fd);
  5009     // Close on exec, child won't inherit.
  5010     fcntl(fd, F_SETFD, FD_CLOEXEC);
  5013   clock_tics_per_sec = CLK_TCK;
  5015   // check if dladdr1() exists; dladdr1 can provide more information than
  5016   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
  5017   // and is available on linker patches for 5.7 and 5.8.
  5018   // libdl.so must have been loaded, this call is just an entry lookup
  5019   void * hdl = dlopen("libdl.so", RTLD_NOW);
  5020   if (hdl)
  5021     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
  5023   // (Solaris only) this switches to calls that actually do locking.
  5024   ThreadCritical::initialize();
  5026   main_thread = thr_self();
  5028   // Constant minimum stack size allowed. It must be at least
  5029   // the minimum of what the OS supports (thr_min_stack()), and
  5030   // enough to allow the thread to get to user bytecode execution.
  5031   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
  5032   // If the pagesize of the VM is greater than 8K determine the appropriate
  5033   // number of initial guard pages.  The user can change this with the
  5034   // command line arguments, if needed.
  5035   if (vm_page_size() > 8*K) {
  5036     StackYellowPages = 1;
  5037     StackRedPages = 1;
  5038     StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
  5042 // To install functions for atexit system call
  5043 extern "C" {
  5044   static void perfMemory_exit_helper() {
  5045     perfMemory_exit();
  5049 // this is called _after_ the global arguments have been parsed
  5050 jint os::init_2(void) {
  5051   // try to enable extended file IO ASAP, see 6431278
  5052   os::Solaris::try_enable_extended_io();
  5054   // Allocate a single page and mark it as readable for safepoint polling.  Also
  5055   // use this first mmap call to check support for MAP_ALIGN.
  5056   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
  5057                                                       page_size,
  5058                                                       MAP_PRIVATE | MAP_ALIGN,
  5059                                                       PROT_READ);
  5060   if (polling_page == NULL) {
  5061     has_map_align = false;
  5062     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
  5063                                                 PROT_READ);
  5066   os::set_polling_page(polling_page);
  5068 #ifndef PRODUCT
  5069   if( Verbose && PrintMiscellaneous )
  5070     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  5071 #endif
  5073   if (!UseMembar) {
  5074     address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
  5075     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  5076     os::set_memory_serialize_page( mem_serialize_page );
  5078 #ifndef PRODUCT
  5079     if(Verbose && PrintMiscellaneous)
  5080       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  5081 #endif
  5084   os::large_page_init();
  5086   // Check minimum allowable stack size for thread creation and to initialize
  5087   // the java system classes, including StackOverflowError - depends on page
  5088   // size.  Add a page for compiler2 recursion in main thread.
  5089   // Add in 2*BytesPerWord times page size to account for VM stack during
  5090   // class initialization depending on 32 or 64 bit VM.
  5091   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
  5092             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  5093                     2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
  5095   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5096   if (threadStackSizeInBytes != 0 &&
  5097     threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
  5098     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
  5099                   os::Solaris::min_stack_allowed/K);
  5100     return JNI_ERR;
  5103   // For 64kbps there will be a 64kb page size, which makes
  5104   // the usable default stack size quite a bit less.  Increase the
  5105   // stack for 64kb (or any > than 8kb) pages, this increases
  5106   // virtual memory fragmentation (since we're not creating the
  5107   // stack on a power of 2 boundary.  The real fix for this
  5108   // should be to fix the guard page mechanism.
  5110   if (vm_page_size() > 8*K) {
  5111       threadStackSizeInBytes = (threadStackSizeInBytes != 0)
  5112          ? threadStackSizeInBytes +
  5113            ((StackYellowPages + StackRedPages) * vm_page_size())
  5114          : 0;
  5115       ThreadStackSize = threadStackSizeInBytes/K;
  5118   // Make the stack size a multiple of the page size so that
  5119   // the yellow/red zones can be guarded.
  5120   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5121         vm_page_size()));
  5123   Solaris::libthread_init();
  5125   if (UseNUMA) {
  5126     if (!Solaris::liblgrp_init()) {
  5127       UseNUMA = false;
  5128     } else {
  5129       size_t lgrp_limit = os::numa_get_groups_num();
  5130       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
  5131       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
  5132       FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
  5133       if (lgrp_num < 2) {
  5134         // There's only one locality group, disable NUMA.
  5135         UseNUMA = false;
  5138     // ISM is not compatible with the NUMA allocator - it always allocates
  5139     // pages round-robin across the lgroups.
  5140     if (UseNUMA && UseLargePages && UseISM) {
  5141       if (!FLAG_IS_DEFAULT(UseNUMA)) {
  5142         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseISM)) {
  5143           UseLargePages = false;
  5144         } else {
  5145           warning("UseNUMA is not compatible with ISM large pages, disabling NUMA allocator");
  5146           UseNUMA = false;
  5148       } else {
  5149         UseNUMA = false;
  5152     if (!UseNUMA && ForceNUMA) {
  5153       UseNUMA = true;
  5157   Solaris::signal_sets_init();
  5158   Solaris::init_signal_mem();
  5159   Solaris::install_signal_handlers();
  5161   if (libjsigversion < JSIG_VERSION_1_4_1) {
  5162     Maxlibjsigsigs = OLDMAXSIGNUM;
  5165   // initialize synchronization primitives to use either thread or
  5166   // lwp synchronization (controlled by UseLWPSynchronization)
  5167   Solaris::synchronization_init();
  5169   if (MaxFDLimit) {
  5170     // set the number of file descriptors to max. print out error
  5171     // if getrlimit/setrlimit fails but continue regardless.
  5172     struct rlimit nbr_files;
  5173     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5174     if (status != 0) {
  5175       if (PrintMiscellaneous && (Verbose || WizardMode))
  5176         perror("os::init_2 getrlimit failed");
  5177     } else {
  5178       nbr_files.rlim_cur = nbr_files.rlim_max;
  5179       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5180       if (status != 0) {
  5181         if (PrintMiscellaneous && (Verbose || WizardMode))
  5182           perror("os::init_2 setrlimit failed");
  5187   // Calculate theoretical max. size of Threads to guard gainst
  5188   // artifical out-of-memory situations, where all available address-
  5189   // space has been reserved by thread stacks. Default stack size is 1Mb.
  5190   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
  5191     JavaThread::stack_size_at_create() : (1*K*K);
  5192   assert(pre_thread_stack_size != 0, "Must have a stack");
  5193   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
  5194   // we should start doing Virtual Memory banging. Currently when the threads will
  5195   // have used all but 200Mb of space.
  5196   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
  5197   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
  5199   // at-exit methods are called in the reverse order of their registration.
  5200   // In Solaris 7 and earlier, atexit functions are called on return from
  5201   // main or as a result of a call to exit(3C). There can be only 32 of
  5202   // these functions registered and atexit() does not set errno. In Solaris
  5203   // 8 and later, there is no limit to the number of functions registered
  5204   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
  5205   // functions are called upon dlclose(3DL) in addition to return from main
  5206   // and exit(3C).
  5208   if (PerfAllowAtExitRegistration) {
  5209     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5210     // atexit functions can be delayed until process exit time, which
  5211     // can be problematic for embedded VM situations. Embedded VMs should
  5212     // call DestroyJavaVM() to assure that VM resources are released.
  5214     // note: perfMemory_exit_helper atexit function may be removed in
  5215     // the future if the appropriate cleanup code can be added to the
  5216     // VM_Exit VMOperation's doit method.
  5217     if (atexit(perfMemory_exit_helper) != 0) {
  5218       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  5222   // Init pset_loadavg function pointer
  5223   init_pset_getloadavg_ptr();
  5225   return JNI_OK;
  5228 void os::init_3(void) {
  5229   return;
  5232 // Mark the polling page as unreadable
  5233 void os::make_polling_page_unreadable(void) {
  5234   if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
  5235     fatal("Could not disable polling page");
  5236 };
  5238 // Mark the polling page as readable
  5239 void os::make_polling_page_readable(void) {
  5240   if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
  5241     fatal("Could not enable polling page");
  5242 };
  5244 // OS interface.
  5246 bool os::check_heap(bool force) { return true; }
  5248 typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
  5249 static vsnprintf_t sol_vsnprintf = NULL;
  5251 int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
  5252   if (!sol_vsnprintf) {
  5253     //search  for the named symbol in the objects that were loaded after libjvm
  5254     void* where = RTLD_NEXT;
  5255     if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5256         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5257     if (!sol_vsnprintf){
  5258       //search  for the named symbol in the objects that were loaded before libjvm
  5259       where = RTLD_DEFAULT;
  5260       if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5261         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5262       assert(sol_vsnprintf != NULL, "vsnprintf not found");
  5265   return (*sol_vsnprintf)(buf, count, fmt, argptr);
  5269 // Is a (classpath) directory empty?
  5270 bool os::dir_is_empty(const char* path) {
  5271   DIR *dir = NULL;
  5272   struct dirent *ptr;
  5274   dir = opendir(path);
  5275   if (dir == NULL) return true;
  5277   /* Scan the directory */
  5278   bool result = true;
  5279   char buf[sizeof(struct dirent) + MAX_PATH];
  5280   struct dirent *dbuf = (struct dirent *) buf;
  5281   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
  5282     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5283       result = false;
  5286   closedir(dir);
  5287   return result;
  5290 // This code originates from JDK's sysOpen and open64_w
  5291 // from src/solaris/hpi/src/system_md.c
  5293 #ifndef O_DELETE
  5294 #define O_DELETE 0x10000
  5295 #endif
  5297 // Open a file. Unlink the file immediately after open returns
  5298 // if the specified oflag has the O_DELETE flag set.
  5299 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5301 int os::open(const char *path, int oflag, int mode) {
  5302   if (strlen(path) > MAX_PATH - 1) {
  5303     errno = ENAMETOOLONG;
  5304     return -1;
  5306   int fd;
  5307   int o_delete = (oflag & O_DELETE);
  5308   oflag = oflag & ~O_DELETE;
  5310   fd = ::open64(path, oflag, mode);
  5311   if (fd == -1) return -1;
  5313   //If the open succeeded, the file might still be a directory
  5315     struct stat64 buf64;
  5316     int ret = ::fstat64(fd, &buf64);
  5317     int st_mode = buf64.st_mode;
  5319     if (ret != -1) {
  5320       if ((st_mode & S_IFMT) == S_IFDIR) {
  5321         errno = EISDIR;
  5322         ::close(fd);
  5323         return -1;
  5325     } else {
  5326       ::close(fd);
  5327       return -1;
  5330     /*
  5331      * 32-bit Solaris systems suffer from:
  5333      * - an historical default soft limit of 256 per-process file
  5334      *   descriptors that is too low for many Java programs.
  5336      * - a design flaw where file descriptors created using stdio
  5337      *   fopen must be less than 256, _even_ when the first limit above
  5338      *   has been raised.  This can cause calls to fopen (but not calls to
  5339      *   open, for example) to fail mysteriously, perhaps in 3rd party
  5340      *   native code (although the JDK itself uses fopen).  One can hardly
  5341      *   criticize them for using this most standard of all functions.
  5343      * We attempt to make everything work anyways by:
  5345      * - raising the soft limit on per-process file descriptors beyond
  5346      *   256
  5348      * - As of Solaris 10u4, we can request that Solaris raise the 256
  5349      *   stdio fopen limit by calling function enable_extended_FILE_stdio.
  5350      *   This is done in init_2 and recorded in enabled_extended_FILE_stdio
  5352      * - If we are stuck on an old (pre 10u4) Solaris system, we can
  5353      *   workaround the bug by remapping non-stdio file descriptors below
  5354      *   256 to ones beyond 256, which is done below.
  5356      * See:
  5357      * 1085341: 32-bit stdio routines should support file descriptors >255
  5358      * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
  5359      * 6431278: Netbeans crash on 32 bit Solaris: need to call
  5360      *          enable_extended_FILE_stdio() in VM initialisation
  5361      * Giri Mandalika's blog
  5362      * http://technopark02.blogspot.com/2005_05_01_archive.html
  5363      */
  5364 #ifndef  _LP64
  5365      if ((!enabled_extended_FILE_stdio) && fd < 256) {
  5366          int newfd = ::fcntl(fd, F_DUPFD, 256);
  5367          if (newfd != -1) {
  5368              ::close(fd);
  5369              fd = newfd;
  5372 #endif // 32-bit Solaris
  5373     /*
  5374      * All file descriptors that are opened in the JVM and not
  5375      * specifically destined for a subprocess should have the
  5376      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5377      * party native code might fork and exec without closing all
  5378      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5379      * UNIXProcess.c), and this in turn might:
  5381      * - cause end-of-file to fail to be detected on some file
  5382      *   descriptors, resulting in mysterious hangs, or
  5384      * - might cause an fopen in the subprocess to fail on a system
  5385      *   suffering from bug 1085341.
  5387      * (Yes, the default setting of the close-on-exec flag is a Unix
  5388      * design flaw)
  5390      * See:
  5391      * 1085341: 32-bit stdio routines should support file descriptors >255
  5392      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5393      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5394      */
  5395 #ifdef FD_CLOEXEC
  5397         int flags = ::fcntl(fd, F_GETFD);
  5398         if (flags != -1)
  5399             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5401 #endif
  5403   if (o_delete != 0) {
  5404     ::unlink(path);
  5406   return fd;
  5409 // create binary file, rewriting existing file if required
  5410 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5411   int oflags = O_WRONLY | O_CREAT;
  5412   if (!rewrite_existing) {
  5413     oflags |= O_EXCL;
  5415   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5418 // return current position of file pointer
  5419 jlong os::current_file_offset(int fd) {
  5420   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5423 // move file pointer to the specified offset
  5424 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5425   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5428 jlong os::lseek(int fd, jlong offset, int whence) {
  5429   return (jlong) ::lseek64(fd, offset, whence);
  5432 char * os::native_path(char *path) {
  5433   return path;
  5436 int os::ftruncate(int fd, jlong length) {
  5437   return ::ftruncate64(fd, length);
  5440 int os::fsync(int fd)  {
  5441   RESTARTABLE_RETURN_INT(::fsync(fd));
  5444 int os::available(int fd, jlong *bytes) {
  5445   jlong cur, end;
  5446   int mode;
  5447   struct stat64 buf64;
  5449   if (::fstat64(fd, &buf64) >= 0) {
  5450     mode = buf64.st_mode;
  5451     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5452       /*
  5453       * XXX: is the following call interruptible? If so, this might
  5454       * need to go through the INTERRUPT_IO() wrapper as for other
  5455       * blocking, interruptible calls in this file.
  5456       */
  5457       int n,ioctl_return;
  5459       INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
  5460       if (ioctl_return>= 0) {
  5461           *bytes = n;
  5462         return 1;
  5466   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5467     return 0;
  5468   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5469     return 0;
  5470   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5471     return 0;
  5473   *bytes = end - cur;
  5474   return 1;
  5477 // Map a block of memory.
  5478 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5479                      char *addr, size_t bytes, bool read_only,
  5480                      bool allow_exec) {
  5481   int prot;
  5482   int flags;
  5484   if (read_only) {
  5485     prot = PROT_READ;
  5486     flags = MAP_SHARED;
  5487   } else {
  5488     prot = PROT_READ | PROT_WRITE;
  5489     flags = MAP_PRIVATE;
  5492   if (allow_exec) {
  5493     prot |= PROT_EXEC;
  5496   if (addr != NULL) {
  5497     flags |= MAP_FIXED;
  5500   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5501                                      fd, file_offset);
  5502   if (mapped_address == MAP_FAILED) {
  5503     return NULL;
  5505   return mapped_address;
  5509 // Remap a block of memory.
  5510 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5511                        char *addr, size_t bytes, bool read_only,
  5512                        bool allow_exec) {
  5513   // same as map_memory() on this OS
  5514   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5515                         allow_exec);
  5519 // Unmap a block of memory.
  5520 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5521   return munmap(addr, bytes) == 0;
  5524 void os::pause() {
  5525   char filename[MAX_PATH];
  5526   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5527     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5528   } else {
  5529     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5532   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5533   if (fd != -1) {
  5534     struct stat buf;
  5535     ::close(fd);
  5536     while (::stat(filename, &buf) == 0) {
  5537       (void)::poll(NULL, 0, 100);
  5539   } else {
  5540     jio_fprintf(stderr,
  5541       "Could not open pause file '%s', continuing immediately.\n", filename);
  5545 #ifndef PRODUCT
  5546 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5547 // Turn this on if you need to trace synch operations.
  5548 // Set RECORD_SYNCH_LIMIT to a large-enough value,
  5549 // and call record_synch_enable and record_synch_disable
  5550 // around the computation of interest.
  5552 void record_synch(char* name, bool returning);  // defined below
  5554 class RecordSynch {
  5555   char* _name;
  5556  public:
  5557   RecordSynch(char* name) :_name(name)
  5558                  { record_synch(_name, false); }
  5559   ~RecordSynch() { record_synch(_name,   true);  }
  5560 };
  5562 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
  5563 extern "C" ret name params {                                    \
  5564   typedef ret name##_t params;                                  \
  5565   static name##_t* implem = NULL;                               \
  5566   static int callcount = 0;                                     \
  5567   if (implem == NULL) {                                         \
  5568     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
  5569     if (implem == NULL)  fatal(dlerror());                      \
  5570   }                                                             \
  5571   ++callcount;                                                  \
  5572   RecordSynch _rs(#name);                                       \
  5573   inner;                                                        \
  5574   return implem args;                                           \
  5576 // in dbx, examine callcounts this way:
  5577 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
  5579 #define CHECK_POINTER_OK(p) \
  5580   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
  5581 #define CHECK_MU \
  5582   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
  5583 #define CHECK_CV \
  5584   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
  5585 #define CHECK_P(p) \
  5586   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
  5588 #define CHECK_MUTEX(mutex_op) \
  5589 CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
  5591 CHECK_MUTEX(   mutex_lock)
  5592 CHECK_MUTEX(  _mutex_lock)
  5593 CHECK_MUTEX( mutex_unlock)
  5594 CHECK_MUTEX(_mutex_unlock)
  5595 CHECK_MUTEX( mutex_trylock)
  5596 CHECK_MUTEX(_mutex_trylock)
  5598 #define CHECK_COND(cond_op) \
  5599 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
  5601 CHECK_COND( cond_wait);
  5602 CHECK_COND(_cond_wait);
  5603 CHECK_COND(_cond_wait_cancel);
  5605 #define CHECK_COND2(cond_op) \
  5606 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
  5608 CHECK_COND2( cond_timedwait);
  5609 CHECK_COND2(_cond_timedwait);
  5610 CHECK_COND2(_cond_timedwait_cancel);
  5612 // do the _lwp_* versions too
  5613 #define mutex_t lwp_mutex_t
  5614 #define cond_t  lwp_cond_t
  5615 CHECK_MUTEX(  _lwp_mutex_lock)
  5616 CHECK_MUTEX(  _lwp_mutex_unlock)
  5617 CHECK_MUTEX(  _lwp_mutex_trylock)
  5618 CHECK_MUTEX( __lwp_mutex_lock)
  5619 CHECK_MUTEX( __lwp_mutex_unlock)
  5620 CHECK_MUTEX( __lwp_mutex_trylock)
  5621 CHECK_MUTEX(___lwp_mutex_lock)
  5622 CHECK_MUTEX(___lwp_mutex_unlock)
  5624 CHECK_COND(  _lwp_cond_wait);
  5625 CHECK_COND( __lwp_cond_wait);
  5626 CHECK_COND(___lwp_cond_wait);
  5628 CHECK_COND2(  _lwp_cond_timedwait);
  5629 CHECK_COND2( __lwp_cond_timedwait);
  5630 #undef mutex_t
  5631 #undef cond_t
  5633 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5634 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5635 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5636 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5637 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5638 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5639 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5640 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5643 // recording machinery:
  5645 enum { RECORD_SYNCH_LIMIT = 200 };
  5646 char* record_synch_name[RECORD_SYNCH_LIMIT];
  5647 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
  5648 bool record_synch_returning[RECORD_SYNCH_LIMIT];
  5649 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
  5650 int record_synch_count = 0;
  5651 bool record_synch_enabled = false;
  5653 // in dbx, examine recorded data this way:
  5654 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
  5656 void record_synch(char* name, bool returning) {
  5657   if (record_synch_enabled) {
  5658     if (record_synch_count < RECORD_SYNCH_LIMIT) {
  5659       record_synch_name[record_synch_count] = name;
  5660       record_synch_returning[record_synch_count] = returning;
  5661       record_synch_thread[record_synch_count] = thr_self();
  5662       record_synch_arg0ptr[record_synch_count] = &name;
  5663       record_synch_count++;
  5665     // put more checking code here:
  5666     // ...
  5670 void record_synch_enable() {
  5671   // start collecting trace data, if not already doing so
  5672   if (!record_synch_enabled)  record_synch_count = 0;
  5673   record_synch_enabled = true;
  5676 void record_synch_disable() {
  5677   // stop collecting trace data
  5678   record_synch_enabled = false;
  5681 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5682 #endif // PRODUCT
  5684 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5685 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
  5686                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5689 // JVMTI & JVM monitoring and management support
  5690 // The thread_cpu_time() and current_thread_cpu_time() are only
  5691 // supported if is_thread_cpu_time_supported() returns true.
  5692 // They are not supported on Solaris T1.
  5694 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5695 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5696 // of a thread.
  5697 //
  5698 // current_thread_cpu_time() and thread_cpu_time(Thread *)
  5699 // returns the fast estimate available on the platform.
  5701 // hrtime_t gethrvtime() return value includes
  5702 // user time but does not include system time
  5703 jlong os::current_thread_cpu_time() {
  5704   return (jlong) gethrvtime();
  5707 jlong os::thread_cpu_time(Thread *thread) {
  5708   // return user level CPU time only to be consistent with
  5709   // what current_thread_cpu_time returns.
  5710   // thread_cpu_time_info() must be changed if this changes
  5711   return os::thread_cpu_time(thread, false /* user time only */);
  5714 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5715   if (user_sys_cpu_time) {
  5716     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5717   } else {
  5718     return os::current_thread_cpu_time();
  5722 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5723   char proc_name[64];
  5724   int count;
  5725   prusage_t prusage;
  5726   jlong lwp_time;
  5727   int fd;
  5729   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
  5730                      getpid(),
  5731                      thread->osthread()->lwp_id());
  5732   fd = ::open(proc_name, O_RDONLY);
  5733   if ( fd == -1 ) return -1;
  5735   do {
  5736     count = ::pread(fd,
  5737                   (void *)&prusage.pr_utime,
  5738                   thr_time_size,
  5739                   thr_time_off);
  5740   } while (count < 0 && errno == EINTR);
  5741   ::close(fd);
  5742   if ( count < 0 ) return -1;
  5744   if (user_sys_cpu_time) {
  5745     // user + system CPU time
  5746     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
  5747                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
  5748                  (jlong)prusage.pr_stime.tv_nsec +
  5749                  (jlong)prusage.pr_utime.tv_nsec;
  5750   } else {
  5751     // user level CPU time only
  5752     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
  5753                 (jlong)prusage.pr_utime.tv_nsec;
  5756   return(lwp_time);
  5759 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5760   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5761   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5762   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5763   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5766 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5767   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5768   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5769   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5770   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5773 bool os::is_thread_cpu_time_supported() {
  5774   if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
  5775     return true;
  5776   } else {
  5777     return false;
  5781 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5782 // Return the load average for our processor set if the primitive exists
  5783 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
  5784 int os::loadavg(double loadavg[], int nelem) {
  5785   if (pset_getloadavg_ptr != NULL) {
  5786     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
  5787   } else {
  5788     return ::getloadavg(loadavg, nelem);
  5792 //---------------------------------------------------------------------------------
  5794 static address same_page(address x, address y) {
  5795   intptr_t page_bits = -os::vm_page_size();
  5796   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  5797     return x;
  5798   else if (x > y)
  5799     return (address)(intptr_t(y) | ~page_bits) + 1;
  5800   else
  5801     return (address)(intptr_t(y) & page_bits);
  5804 bool os::find(address addr, outputStream* st) {
  5805   Dl_info dlinfo;
  5806   memset(&dlinfo, 0, sizeof(dlinfo));
  5807   if (dladdr(addr, &dlinfo)) {
  5808 #ifdef _LP64
  5809     st->print("0x%016lx: ", addr);
  5810 #else
  5811     st->print("0x%08x: ", addr);
  5812 #endif
  5813     if (dlinfo.dli_sname != NULL)
  5814       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
  5815     else if (dlinfo.dli_fname)
  5816       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
  5817     else
  5818       st->print("<absolute address>");
  5819     if (dlinfo.dli_fname)  st->print(" in %s", dlinfo.dli_fname);
  5820 #ifdef _LP64
  5821     if (dlinfo.dli_fbase)  st->print(" at 0x%016lx", dlinfo.dli_fbase);
  5822 #else
  5823     if (dlinfo.dli_fbase)  st->print(" at 0x%08x", dlinfo.dli_fbase);
  5824 #endif
  5825     st->cr();
  5827     if (Verbose) {
  5828       // decode some bytes around the PC
  5829       address begin = same_page(addr-40, addr);
  5830       address end   = same_page(addr+40, addr);
  5831       address       lowest = (address) dlinfo.dli_sname;
  5832       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5833       if (begin < lowest)  begin = lowest;
  5834       Dl_info dlinfo2;
  5835       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5836           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5837         end = (address) dlinfo2.dli_saddr;
  5838       Disassembler::decode(begin, end, st);
  5840     return true;
  5842   return false;
  5845 // Following function has been added to support HotSparc's libjvm.so running
  5846 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
  5847 // src/solaris/hpi/native_threads in the EVM codebase.
  5848 //
  5849 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
  5850 // libraries and should thus be removed. We will leave it behind for a while
  5851 // until we no longer want to able to run on top of 1.3.0 Solaris production
  5852 // JDK. See 4341971.
  5854 #define STACK_SLACK 0x800
  5856 extern "C" {
  5857   intptr_t sysThreadAvailableStackWithSlack() {
  5858     stack_t st;
  5859     intptr_t retval, stack_top;
  5860     retval = thr_stksegment(&st);
  5861     assert(retval == 0, "incorrect return value from thr_stksegment");
  5862     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
  5863     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
  5864     stack_top=(intptr_t)st.ss_sp-st.ss_size;
  5865     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
  5869 // ObjectMonitor park-unpark infrastructure ...
  5870 //
  5871 // We implement Solaris and Linux PlatformEvents with the
  5872 // obvious condvar-mutex-flag triple.
  5873 // Another alternative that works quite well is pipes:
  5874 // Each PlatformEvent consists of a pipe-pair.
  5875 // The thread associated with the PlatformEvent
  5876 // calls park(), which reads from the input end of the pipe.
  5877 // Unpark() writes into the other end of the pipe.
  5878 // The write-side of the pipe must be set NDELAY.
  5879 // Unfortunately pipes consume a large # of handles.
  5880 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
  5881 // Using pipes for the 1st few threads might be workable, however.
  5882 //
  5883 // park() is permitted to return spuriously.
  5884 // Callers of park() should wrap the call to park() in
  5885 // an appropriate loop.  A litmus test for the correct
  5886 // usage of park is the following: if park() were modified
  5887 // to immediately return 0 your code should still work,
  5888 // albeit degenerating to a spin loop.
  5889 //
  5890 // An interesting optimization for park() is to use a trylock()
  5891 // to attempt to acquire the mutex.  If the trylock() fails
  5892 // then we know that a concurrent unpark() operation is in-progress.
  5893 // in that case the park() code could simply set _count to 0
  5894 // and return immediately.  The subsequent park() operation *might*
  5895 // return immediately.  That's harmless as the caller of park() is
  5896 // expected to loop.  By using trylock() we will have avoided a
  5897 // avoided a context switch caused by contention on the per-thread mutex.
  5898 //
  5899 // TODO-FIXME:
  5900 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
  5901 //     objectmonitor implementation.
  5902 // 2.  Collapse the JSR166 parker event, and the
  5903 //     objectmonitor ParkEvent into a single "Event" construct.
  5904 // 3.  In park() and unpark() add:
  5905 //     assert (Thread::current() == AssociatedWith).
  5906 // 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
  5907 //     1-out-of-N park() operations will return immediately.
  5908 //
  5909 // _Event transitions in park()
  5910 //   -1 => -1 : illegal
  5911 //    1 =>  0 : pass - return immediately
  5912 //    0 => -1 : block
  5913 //
  5914 // _Event serves as a restricted-range semaphore.
  5915 //
  5916 // Another possible encoding of _Event would be with
  5917 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
  5918 //
  5919 // TODO-FIXME: add DTRACE probes for:
  5920 // 1.   Tx parks
  5921 // 2.   Ty unparks Tx
  5922 // 3.   Tx resumes from park
  5925 // value determined through experimentation
  5926 #define ROUNDINGFIX 11
  5928 // utility to compute the abstime argument to timedwait.
  5929 // TODO-FIXME: switch from compute_abstime() to unpackTime().
  5931 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
  5932   // millis is the relative timeout time
  5933   // abstime will be the absolute timeout time
  5934   if (millis < 0)  millis = 0;
  5935   struct timeval now;
  5936   int status = gettimeofday(&now, NULL);
  5937   assert(status == 0, "gettimeofday");
  5938   jlong seconds = millis / 1000;
  5939   jlong max_wait_period;
  5941   if (UseLWPSynchronization) {
  5942     // forward port of fix for 4275818 (not sleeping long enough)
  5943     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
  5944     // _lwp_cond_timedwait() used a round_down algorithm rather
  5945     // than a round_up. For millis less than our roundfactor
  5946     // it rounded down to 0 which doesn't meet the spec.
  5947     // For millis > roundfactor we may return a bit sooner, but
  5948     // since we can not accurately identify the patch level and
  5949     // this has already been fixed in Solaris 9 and 8 we will
  5950     // leave it alone rather than always rounding down.
  5952     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
  5953        // It appears that when we go directly through Solaris _lwp_cond_timedwait()
  5954            // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
  5955            max_wait_period = 21000000;
  5956   } else {
  5957     max_wait_period = 50000000;
  5959   millis %= 1000;
  5960   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
  5961      seconds = max_wait_period;
  5963   abstime->tv_sec = now.tv_sec  + seconds;
  5964   long       usec = now.tv_usec + millis * 1000;
  5965   if (usec >= 1000000) {
  5966     abstime->tv_sec += 1;
  5967     usec -= 1000000;
  5969   abstime->tv_nsec = usec * 1000;
  5970   return abstime;
  5973 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5974 // Conceptually TryPark() should be equivalent to park(0).
  5976 int os::PlatformEvent::TryPark() {
  5977   for (;;) {
  5978     const int v = _Event ;
  5979     guarantee ((v == 0) || (v == 1), "invariant") ;
  5980     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5984 void os::PlatformEvent::park() {           // AKA: down()
  5985   // Invariant: Only the thread associated with the Event/PlatformEvent
  5986   // may call park().
  5987   int v ;
  5988   for (;;) {
  5989       v = _Event ;
  5990       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5992   guarantee (v >= 0, "invariant") ;
  5993   if (v == 0) {
  5994      // Do this the hard way by blocking ...
  5995      // See http://monaco.sfbay/detail.jsf?cr=5094058.
  5996      // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  5997      // Only for SPARC >= V8PlusA
  5998 #if defined(__sparc) && defined(COMPILER2)
  5999      if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6000 #endif
  6001      int status = os::Solaris::mutex_lock(_mutex);
  6002      assert_status(status == 0, status,  "mutex_lock");
  6003      guarantee (_nParked == 0, "invariant") ;
  6004      ++ _nParked ;
  6005      while (_Event < 0) {
  6006         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  6007         // Treat this the same as if the wait was interrupted
  6008         // With usr/lib/lwp going to kernel, always handle ETIME
  6009         status = os::Solaris::cond_wait(_cond, _mutex);
  6010         if (status == ETIME) status = EINTR ;
  6011         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  6013      -- _nParked ;
  6014      _Event = 0 ;
  6015      status = os::Solaris::mutex_unlock(_mutex);
  6016      assert_status(status == 0, status, "mutex_unlock");
  6020 int os::PlatformEvent::park(jlong millis) {
  6021   guarantee (_nParked == 0, "invariant") ;
  6022   int v ;
  6023   for (;;) {
  6024       v = _Event ;
  6025       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6027   guarantee (v >= 0, "invariant") ;
  6028   if (v != 0) return OS_OK ;
  6030   int ret = OS_TIMEOUT;
  6031   timestruc_t abst;
  6032   compute_abstime (&abst, millis);
  6034   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6035   // For Solaris SPARC set fprs.FEF=0 prior to parking.
  6036   // Only for SPARC >= V8PlusA
  6037 #if defined(__sparc) && defined(COMPILER2)
  6038  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6039 #endif
  6040   int status = os::Solaris::mutex_lock(_mutex);
  6041   assert_status(status == 0, status, "mutex_lock");
  6042   guarantee (_nParked == 0, "invariant") ;
  6043   ++ _nParked ;
  6044   while (_Event < 0) {
  6045      int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
  6046      assert_status(status == 0 || status == EINTR ||
  6047                    status == ETIME || status == ETIMEDOUT,
  6048                    status, "cond_timedwait");
  6049      if (!FilterSpuriousWakeups) break ;                // previous semantics
  6050      if (status == ETIME || status == ETIMEDOUT) break ;
  6051      // We consume and ignore EINTR and spurious wakeups.
  6053   -- _nParked ;
  6054   if (_Event >= 0) ret = OS_OK ;
  6055   _Event = 0 ;
  6056   status = os::Solaris::mutex_unlock(_mutex);
  6057   assert_status(status == 0, status, "mutex_unlock");
  6058   return ret;
  6061 void os::PlatformEvent::unpark() {
  6062   int v, AnyWaiters;
  6064   // Increment _Event.
  6065   // Another acceptable implementation would be to simply swap 1
  6066   // into _Event:
  6067   //   if (Swap (&_Event, 1) < 0) {
  6068   //      mutex_lock (_mutex) ; AnyWaiters = nParked; mutex_unlock (_mutex) ;
  6069   //      if (AnyWaiters) cond_signal (_cond) ;
  6070   //   }
  6072   for (;;) {
  6073     v = _Event ;
  6074     if (v > 0) {
  6075        // The LD of _Event could have reordered or be satisfied
  6076        // by a read-aside from this processor's write buffer.
  6077        // To avoid problems execute a barrier and then
  6078        // ratify the value.  A degenerate CAS() would also work.
  6079        // Viz., CAS (v+0, &_Event, v) == v).
  6080        OrderAccess::fence() ;
  6081        if (_Event == v) return ;
  6082        continue ;
  6084     if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  6087   // If the thread associated with the event was parked, wake it.
  6088   if (v < 0) {
  6089      int status ;
  6090      // Wait for the thread assoc with the PlatformEvent to vacate.
  6091      status = os::Solaris::mutex_lock(_mutex);
  6092      assert_status(status == 0, status, "mutex_lock");
  6093      AnyWaiters = _nParked ;
  6094      status = os::Solaris::mutex_unlock(_mutex);
  6095      assert_status(status == 0, status, "mutex_unlock");
  6096      guarantee (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  6097      if (AnyWaiters != 0) {
  6098        // We intentional signal *after* dropping the lock
  6099        // to avoid a common class of futile wakeups.
  6100        status = os::Solaris::cond_signal(_cond);
  6101        assert_status(status == 0, status, "cond_signal");
  6106 // JSR166
  6107 // -------------------------------------------------------
  6109 /*
  6110  * The solaris and linux implementations of park/unpark are fairly
  6111  * conservative for now, but can be improved. They currently use a
  6112  * mutex/condvar pair, plus _counter.
  6113  * Park decrements _counter if > 0, else does a condvar wait.  Unpark
  6114  * sets count to 1 and signals condvar.  Only one thread ever waits
  6115  * on the condvar. Contention seen when trying to park implies that someone
  6116  * is unparking you, so don't wait. And spurious returns are fine, so there
  6117  * is no need to track notifications.
  6118  */
  6120 #define MAX_SECS 100000000
  6121 /*
  6122  * This code is common to linux and solaris and will be moved to a
  6123  * common place in dolphin.
  6125  * The passed in time value is either a relative time in nanoseconds
  6126  * or an absolute time in milliseconds. Either way it has to be unpacked
  6127  * into suitable seconds and nanoseconds components and stored in the
  6128  * given timespec structure.
  6129  * Given time is a 64-bit value and the time_t used in the timespec is only
  6130  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6131  * overflow if times way in the future are given. Further on Solaris versions
  6132  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6133  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6134  * As it will be 28 years before "now + 100000000" will overflow we can
  6135  * ignore overflow and just impose a hard-limit on seconds using the value
  6136  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6137  * years from "now".
  6138  */
  6139 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6140   assert (time > 0, "convertTime");
  6142   struct timeval now;
  6143   int status = gettimeofday(&now, NULL);
  6144   assert(status == 0, "gettimeofday");
  6146   time_t max_secs = now.tv_sec + MAX_SECS;
  6148   if (isAbsolute) {
  6149     jlong secs = time / 1000;
  6150     if (secs > max_secs) {
  6151       absTime->tv_sec = max_secs;
  6153     else {
  6154       absTime->tv_sec = secs;
  6156     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6158   else {
  6159     jlong secs = time / NANOSECS_PER_SEC;
  6160     if (secs >= MAX_SECS) {
  6161       absTime->tv_sec = max_secs;
  6162       absTime->tv_nsec = 0;
  6164     else {
  6165       absTime->tv_sec = now.tv_sec + secs;
  6166       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6167       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6168         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6169         ++absTime->tv_sec; // note: this must be <= max_secs
  6173   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6174   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6175   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6176   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6179 void Parker::park(bool isAbsolute, jlong time) {
  6181   // Optional fast-path check:
  6182   // Return immediately if a permit is available.
  6183   if (_counter > 0) {
  6184       _counter = 0 ;
  6185       OrderAccess::fence();
  6186       return ;
  6189   // Optional fast-exit: Check interrupt before trying to wait
  6190   Thread* thread = Thread::current();
  6191   assert(thread->is_Java_thread(), "Must be JavaThread");
  6192   JavaThread *jt = (JavaThread *)thread;
  6193   if (Thread::is_interrupted(thread, false)) {
  6194     return;
  6197   // First, demultiplex/decode time arguments
  6198   timespec absTime;
  6199   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6200     return;
  6202   if (time > 0) {
  6203     // Warning: this code might be exposed to the old Solaris time
  6204     // round-down bugs.  Grep "roundingFix" for details.
  6205     unpackTime(&absTime, isAbsolute, time);
  6208   // Enter safepoint region
  6209   // Beware of deadlocks such as 6317397.
  6210   // The per-thread Parker:: _mutex is a classic leaf-lock.
  6211   // In particular a thread must never block on the Threads_lock while
  6212   // holding the Parker:: mutex.  If safepoints are pending both the
  6213   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6214   ThreadBlockInVM tbivm(jt);
  6216   // Don't wait if cannot get lock since interference arises from
  6217   // unblocking.  Also. check interrupt before trying wait
  6218   if (Thread::is_interrupted(thread, false) ||
  6219       os::Solaris::mutex_trylock(_mutex) != 0) {
  6220     return;
  6223   int status ;
  6225   if (_counter > 0)  { // no wait needed
  6226     _counter = 0;
  6227     status = os::Solaris::mutex_unlock(_mutex);
  6228     assert (status == 0, "invariant") ;
  6229     OrderAccess::fence();
  6230     return;
  6233 #ifdef ASSERT
  6234   // Don't catch signals while blocked; let the running threads have the signals.
  6235   // (This allows a debugger to break into the running thread.)
  6236   sigset_t oldsigs;
  6237   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
  6238   thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6239 #endif
  6241   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6242   jt->set_suspend_equivalent();
  6243   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6245   // Do this the hard way by blocking ...
  6246   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6247   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  6248   // Only for SPARC >= V8PlusA
  6249 #if defined(__sparc) && defined(COMPILER2)
  6250   if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6251 #endif
  6253   if (time == 0) {
  6254     status = os::Solaris::cond_wait (_cond, _mutex) ;
  6255   } else {
  6256     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
  6258   // Note that an untimed cond_wait() can sometimes return ETIME on older
  6259   // versions of the Solaris.
  6260   assert_status(status == 0 || status == EINTR ||
  6261                 status == ETIME || status == ETIMEDOUT,
  6262                 status, "cond_timedwait");
  6264 #ifdef ASSERT
  6265   thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
  6266 #endif
  6267   _counter = 0 ;
  6268   status = os::Solaris::mutex_unlock(_mutex);
  6269   assert_status(status == 0, status, "mutex_unlock") ;
  6271   // If externally suspended while waiting, re-suspend
  6272   if (jt->handle_special_suspend_equivalent_condition()) {
  6273     jt->java_suspend_self();
  6275   OrderAccess::fence();
  6278 void Parker::unpark() {
  6279   int s, status ;
  6280   status = os::Solaris::mutex_lock (_mutex) ;
  6281   assert (status == 0, "invariant") ;
  6282   s = _counter;
  6283   _counter = 1;
  6284   status = os::Solaris::mutex_unlock (_mutex) ;
  6285   assert (status == 0, "invariant") ;
  6287   if (s < 1) {
  6288     status = os::Solaris::cond_signal (_cond) ;
  6289     assert (status == 0, "invariant") ;
  6293 extern char** environ;
  6295 // Run the specified command in a separate process. Return its exit value,
  6296 // or -1 on failure (e.g. can't fork a new process).
  6297 // Unlike system(), this function can be called from signal handler. It
  6298 // doesn't block SIGINT et al.
  6299 int os::fork_and_exec(char* cmd) {
  6300   char * argv[4];
  6301   argv[0] = (char *)"sh";
  6302   argv[1] = (char *)"-c";
  6303   argv[2] = cmd;
  6304   argv[3] = NULL;
  6306   // fork is async-safe, fork1 is not so can't use in signal handler
  6307   pid_t pid;
  6308   Thread* t = ThreadLocalStorage::get_thread_slow();
  6309   if (t != NULL && t->is_inside_signal_handler()) {
  6310     pid = fork();
  6311   } else {
  6312     pid = fork1();
  6315   if (pid < 0) {
  6316     // fork failed
  6317     warning("fork failed: %s", strerror(errno));
  6318     return -1;
  6320   } else if (pid == 0) {
  6321     // child process
  6323     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
  6324     execve("/usr/bin/sh", argv, environ);
  6326     // execve failed
  6327     _exit(-1);
  6329   } else  {
  6330     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6331     // care about the actual exit code, for now.
  6333     int status;
  6335     // Wait for the child process to exit.  This returns immediately if
  6336     // the child has already exited. */
  6337     while (waitpid(pid, &status, 0) < 0) {
  6338         switch (errno) {
  6339         case ECHILD: return 0;
  6340         case EINTR: break;
  6341         default: return -1;
  6345     if (WIFEXITED(status)) {
  6346        // The child exited normally; get its exit code.
  6347        return WEXITSTATUS(status);
  6348     } else if (WIFSIGNALED(status)) {
  6349        // The child exited because of a signal
  6350        // The best value to return is 0x80 + signal number,
  6351        // because that is what all Unix shells do, and because
  6352        // it allows callers to distinguish between process exit and
  6353        // process death by signal.
  6354        return 0x80 + WTERMSIG(status);
  6355     } else {
  6356        // Unknown exit code; pass it through
  6357        return status;
  6362 // is_headless_jre()
  6363 //
  6364 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6365 // in order to report if we are running in a headless jre
  6366 //
  6367 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6368 // as libawt.so, and renamed libawt_xawt.so
  6369 //
  6370 bool os::is_headless_jre() {
  6371     struct stat statbuf;
  6372     char buf[MAXPATHLEN];
  6373     char libmawtpath[MAXPATHLEN];
  6374     const char *xawtstr  = "/xawt/libmawt.so";
  6375     const char *new_xawtstr = "/libawt_xawt.so";
  6376     char *p;
  6378     // Get path to libjvm.so
  6379     os::jvm_path(buf, sizeof(buf));
  6381     // Get rid of libjvm.so
  6382     p = strrchr(buf, '/');
  6383     if (p == NULL) return false;
  6384     else *p = '\0';
  6386     // Get rid of client or server
  6387     p = strrchr(buf, '/');
  6388     if (p == NULL) return false;
  6389     else *p = '\0';
  6391     // check xawt/libmawt.so
  6392     strcpy(libmawtpath, buf);
  6393     strcat(libmawtpath, xawtstr);
  6394     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6396     // check libawt_xawt.so
  6397     strcpy(libmawtpath, buf);
  6398     strcat(libmawtpath, new_xawtstr);
  6399     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6401     return true;
  6404 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
  6405   INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
  6408 int os::close(int fd) {
  6409   RESTARTABLE_RETURN_INT(::close(fd));
  6412 int os::socket_close(int fd) {
  6413   RESTARTABLE_RETURN_INT(::close(fd));
  6416 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  6417   INTERRUPTIBLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6420 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  6421   INTERRUPTIBLE_RETURN_INT((int)::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6424 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  6425   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
  6428 // As both poll and select can be interrupted by signals, we have to be
  6429 // prepared to restart the system call after updating the timeout, unless
  6430 // a poll() is done with timeout == -1, in which case we repeat with this
  6431 // "wait forever" value.
  6433 int os::timeout(int fd, long timeout) {
  6434   int res;
  6435   struct timeval t;
  6436   julong prevtime, newtime;
  6437   static const char* aNull = 0;
  6438   struct pollfd pfd;
  6439   pfd.fd = fd;
  6440   pfd.events = POLLIN;
  6442   gettimeofday(&t, &aNull);
  6443   prevtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec / 1000;
  6445   for(;;) {
  6446     INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
  6447     if(res == OS_ERR && errno == EINTR) {
  6448         if(timeout != -1) {
  6449           gettimeofday(&t, &aNull);
  6450           newtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec /1000;
  6451           timeout -= newtime - prevtime;
  6452           if(timeout <= 0)
  6453             return OS_OK;
  6454           prevtime = newtime;
  6456     } else return res;
  6460 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
  6461   int _result;
  6462   INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,\
  6463                           os::Solaris::clear_interrupted);
  6465   // Depending on when thread interruption is reset, _result could be
  6466   // one of two values when errno == EINTR
  6468   if (((_result == OS_INTRPT) || (_result == OS_ERR))
  6469       && (errno == EINTR)) {
  6470      /* restarting a connect() changes its errno semantics */
  6471      INTERRUPTIBLE(::connect(fd, him, len), _result,\
  6472                    os::Solaris::clear_interrupted);
  6473      /* undo these changes */
  6474      if (_result == OS_ERR) {
  6475        if (errno == EALREADY) {
  6476          errno = EINPROGRESS; /* fall through */
  6477        } else if (errno == EISCONN) {
  6478          errno = 0;
  6479          return OS_OK;
  6483    return _result;
  6486 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  6487   if (fd < 0) {
  6488     return OS_ERR;
  6490   INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him, len),\
  6491                            os::Solaris::clear_interrupted);
  6494 int os::recvfrom(int fd, char* buf, size_t nBytes, uint flags,
  6495                  sockaddr* from, socklen_t* fromlen) {
  6496   INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen),\
  6497                            os::Solaris::clear_interrupted);
  6500 int os::sendto(int fd, char* buf, size_t len, uint flags,
  6501                struct sockaddr* to, socklen_t tolen) {
  6502   INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen),\
  6503                            os::Solaris::clear_interrupted);
  6506 int os::socket_available(int fd, jint *pbytes) {
  6507   if (fd < 0) {
  6508     return OS_OK;
  6510   int ret;
  6511   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
  6512   // note: ioctl can return 0 when successful, JVM_SocketAvailable
  6513   // is expected to return 0 on failure and 1 on success to the jdk.
  6514   return (ret == OS_ERR) ? 0 : 1;
  6517 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  6518    INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
  6519                                       os::Solaris::clear_interrupted);
  6522 // Get the default path to the core file
  6523 // Returns the length of the string
  6524 int os::get_core_path(char* buffer, size_t bufferSize) {
  6525   const char* p = get_current_directory(buffer, bufferSize);
  6527   if (p == NULL) {
  6528     assert(p != NULL, "failed to get current directory");
  6529     return 0;
  6532   return strlen(buffer);

mercurial