src/share/vm/opto/node.hpp

Thu, 10 Dec 2015 14:51:53 +0300

author
vlivanov
date
Thu, 10 Dec 2015 14:51:53 +0300
changeset 8196
7c5babab479b
parent 8193
70649f10b88c
child 8285
535618ab1c04
child 8478
c42cb5db3601
permissions
-rw-r--r--

8144935: C2: safepoint is pruned from a non-counted loop
Reviewed-by: roland

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_NODE_HPP
    26 #define SHARE_VM_OPTO_NODE_HPP
    28 #include "libadt/port.hpp"
    29 #include "libadt/vectset.hpp"
    30 #include "opto/compile.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 // Optimization - Graph Style
    38 class AbstractLockNode;
    39 class AddNode;
    40 class AddPNode;
    41 class AliasInfo;
    42 class AllocateArrayNode;
    43 class AllocateNode;
    44 class Block;
    45 class BoolNode;
    46 class BoxLockNode;
    47 class CMoveNode;
    48 class CallDynamicJavaNode;
    49 class CallJavaNode;
    50 class CallLeafNode;
    51 class CallNode;
    52 class CallRuntimeNode;
    53 class CallStaticJavaNode;
    54 class CatchNode;
    55 class CatchProjNode;
    56 class CheckCastPPNode;
    57 class ClearArrayNode;
    58 class CmpNode;
    59 class CodeBuffer;
    60 class ConstraintCastNode;
    61 class ConNode;
    62 class CountedLoopNode;
    63 class CountedLoopEndNode;
    64 class DecodeNarrowPtrNode;
    65 class DecodeNNode;
    66 class DecodeNKlassNode;
    67 class EncodeNarrowPtrNode;
    68 class EncodePNode;
    69 class EncodePKlassNode;
    70 class FastLockNode;
    71 class FastUnlockNode;
    72 class IfNode;
    73 class IfFalseNode;
    74 class IfTrueNode;
    75 class InitializeNode;
    76 class JVMState;
    77 class JumpNode;
    78 class JumpProjNode;
    79 class LoadNode;
    80 class LoadStoreNode;
    81 class LockNode;
    82 class LoopNode;
    83 class MachBranchNode;
    84 class MachCallDynamicJavaNode;
    85 class MachCallJavaNode;
    86 class MachCallLeafNode;
    87 class MachCallNode;
    88 class MachCallRuntimeNode;
    89 class MachCallStaticJavaNode;
    90 class MachConstantBaseNode;
    91 class MachConstantNode;
    92 class MachGotoNode;
    93 class MachIfNode;
    94 class MachNode;
    95 class MachNullCheckNode;
    96 class MachProjNode;
    97 class MachReturnNode;
    98 class MachSafePointNode;
    99 class MachSpillCopyNode;
   100 class MachTempNode;
   101 class MachMergeNode;
   102 class Matcher;
   103 class MemBarNode;
   104 class MemBarStoreStoreNode;
   105 class MemNode;
   106 class MergeMemNode;
   107 class MulNode;
   108 class MultiNode;
   109 class MultiBranchNode;
   110 class NeverBranchNode;
   111 class Node;
   112 class Node_Array;
   113 class Node_List;
   114 class Node_Stack;
   115 class NullCheckNode;
   116 class OopMap;
   117 class ParmNode;
   118 class PCTableNode;
   119 class PhaseCCP;
   120 class PhaseGVN;
   121 class PhaseIterGVN;
   122 class PhaseRegAlloc;
   123 class PhaseTransform;
   124 class PhaseValues;
   125 class PhiNode;
   126 class Pipeline;
   127 class ProjNode;
   128 class RegMask;
   129 class RegionNode;
   130 class RootNode;
   131 class SafePointNode;
   132 class SafePointScalarObjectNode;
   133 class StartNode;
   134 class State;
   135 class StoreNode;
   136 class SubNode;
   137 class Type;
   138 class TypeNode;
   139 class UnlockNode;
   140 class VectorNode;
   141 class LoadVectorNode;
   142 class StoreVectorNode;
   143 class VectorSet;
   144 typedef void (*NFunc)(Node&,void*);
   145 extern "C" {
   146   typedef int (*C_sort_func_t)(const void *, const void *);
   147 }
   149 // The type of all node counts and indexes.
   150 // It must hold at least 16 bits, but must also be fast to load and store.
   151 // This type, if less than 32 bits, could limit the number of possible nodes.
   152 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
   153 typedef unsigned int node_idx_t;
   156 #ifndef OPTO_DU_ITERATOR_ASSERT
   157 #ifdef ASSERT
   158 #define OPTO_DU_ITERATOR_ASSERT 1
   159 #else
   160 #define OPTO_DU_ITERATOR_ASSERT 0
   161 #endif
   162 #endif //OPTO_DU_ITERATOR_ASSERT
   164 #if OPTO_DU_ITERATOR_ASSERT
   165 class DUIterator;
   166 class DUIterator_Fast;
   167 class DUIterator_Last;
   168 #else
   169 typedef uint   DUIterator;
   170 typedef Node** DUIterator_Fast;
   171 typedef Node** DUIterator_Last;
   172 #endif
   174 // Node Sentinel
   175 #define NodeSentinel (Node*)-1
   177 // Unknown count frequency
   178 #define COUNT_UNKNOWN (-1.0f)
   180 //------------------------------Node-------------------------------------------
   181 // Nodes define actions in the program.  They create values, which have types.
   182 // They are both vertices in a directed graph and program primitives.  Nodes
   183 // are labeled; the label is the "opcode", the primitive function in the lambda
   184 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
   185 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
   186 // the Node's function.  These inputs also define a Type equation for the Node.
   187 // Solving these Type equations amounts to doing dataflow analysis.
   188 // Control and data are uniformly represented in the graph.  Finally, Nodes
   189 // have a unique dense integer index which is used to index into side arrays
   190 // whenever I have phase-specific information.
   192 class Node {
   193   friend class VMStructs;
   195   // Lots of restrictions on cloning Nodes
   196   Node(const Node&);            // not defined; linker error to use these
   197   Node &operator=(const Node &rhs);
   199 public:
   200   friend class Compile;
   201   #if OPTO_DU_ITERATOR_ASSERT
   202   friend class DUIterator_Common;
   203   friend class DUIterator;
   204   friend class DUIterator_Fast;
   205   friend class DUIterator_Last;
   206   #endif
   208   // Because Nodes come and go, I define an Arena of Node structures to pull
   209   // from.  This should allow fast access to node creation & deletion.  This
   210   // field is a local cache of a value defined in some "program fragment" for
   211   // which these Nodes are just a part of.
   213   // New Operator that takes a Compile pointer, this will eventually
   214   // be the "new" New operator.
   215   inline void* operator new( size_t x, Compile* C) throw() {
   216     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
   217 #ifdef ASSERT
   218     n->_in = (Node**)n; // magic cookie for assertion check
   219 #endif
   220     n->_out = (Node**)C;
   221     return (void*)n;
   222   }
   224   // Delete is a NOP
   225   void operator delete( void *ptr ) {}
   226   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   227   void destruct();
   229   // Create a new Node.  Required is the number is of inputs required for
   230   // semantic correctness.
   231   Node( uint required );
   233   // Create a new Node with given input edges.
   234   // This version requires use of the "edge-count" new.
   235   // E.g.  new (C,3) FooNode( C, NULL, left, right );
   236   Node( Node *n0 );
   237   Node( Node *n0, Node *n1 );
   238   Node( Node *n0, Node *n1, Node *n2 );
   239   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
   240   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
   241   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
   242   Node( Node *n0, Node *n1, Node *n2, Node *n3,
   243             Node *n4, Node *n5, Node *n6 );
   245   // Clone an inherited Node given only the base Node type.
   246   Node* clone() const;
   248   // Clone a Node, immediately supplying one or two new edges.
   249   // The first and second arguments, if non-null, replace in(1) and in(2),
   250   // respectively.
   251   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
   252     Node* nn = clone();
   253     if (in1 != NULL)  nn->set_req(1, in1);
   254     if (in2 != NULL)  nn->set_req(2, in2);
   255     return nn;
   256   }
   258 private:
   259   // Shared setup for the above constructors.
   260   // Handles all interactions with Compile::current.
   261   // Puts initial values in all Node fields except _idx.
   262   // Returns the initial value for _idx, which cannot
   263   // be initialized by assignment.
   264   inline int Init(int req, Compile* C);
   266 //----------------- input edge handling
   267 protected:
   268   friend class PhaseCFG;        // Access to address of _in array elements
   269   Node **_in;                   // Array of use-def references to Nodes
   270   Node **_out;                  // Array of def-use references to Nodes
   272   // Input edges are split into two categories.  Required edges are required
   273   // for semantic correctness; order is important and NULLs are allowed.
   274   // Precedence edges are used to help determine execution order and are
   275   // added, e.g., for scheduling purposes.  They are unordered and not
   276   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
   277   // are required, from _cnt to _max-1 are precedence edges.
   278   node_idx_t _cnt;              // Total number of required Node inputs.
   280   node_idx_t _max;              // Actual length of input array.
   282   // Output edges are an unordered list of def-use edges which exactly
   283   // correspond to required input edges which point from other nodes
   284   // to this one.  Thus the count of the output edges is the number of
   285   // users of this node.
   286   node_idx_t _outcnt;           // Total number of Node outputs.
   288   node_idx_t _outmax;           // Actual length of output array.
   290   // Grow the actual input array to the next larger power-of-2 bigger than len.
   291   void grow( uint len );
   292   // Grow the output array to the next larger power-of-2 bigger than len.
   293   void out_grow( uint len );
   295  public:
   296   // Each Node is assigned a unique small/dense number.  This number is used
   297   // to index into auxiliary arrays of data and bit vectors.
   298   // The field _idx is declared constant to defend against inadvertent assignments,
   299   // since it is used by clients as a naked field. However, the field's value can be
   300   // changed using the set_idx() method.
   301   //
   302   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
   303   // Therefore, it updates the value of the _idx field. The parse-time _idx is
   304   // preserved in _parse_idx.
   305   const node_idx_t _idx;
   306   DEBUG_ONLY(const node_idx_t _parse_idx;)
   308   // Get the (read-only) number of input edges
   309   uint req() const { return _cnt; }
   310   uint len() const { return _max; }
   311   // Get the (read-only) number of output edges
   312   uint outcnt() const { return _outcnt; }
   314 #if OPTO_DU_ITERATOR_ASSERT
   315   // Iterate over the out-edges of this node.  Deletions are illegal.
   316   inline DUIterator outs() const;
   317   // Use this when the out array might have changed to suppress asserts.
   318   inline DUIterator& refresh_out_pos(DUIterator& i) const;
   319   // Does the node have an out at this position?  (Used for iteration.)
   320   inline bool has_out(DUIterator& i) const;
   321   inline Node*    out(DUIterator& i) const;
   322   // Iterate over the out-edges of this node.  All changes are illegal.
   323   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
   324   inline Node*    fast_out(DUIterator_Fast& i) const;
   325   // Iterate over the out-edges of this node, deleting one at a time.
   326   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
   327   inline Node*    last_out(DUIterator_Last& i) const;
   328   // The inline bodies of all these methods are after the iterator definitions.
   329 #else
   330   // Iterate over the out-edges of this node.  Deletions are illegal.
   331   // This iteration uses integral indexes, to decouple from array reallocations.
   332   DUIterator outs() const  { return 0; }
   333   // Use this when the out array might have changed to suppress asserts.
   334   DUIterator refresh_out_pos(DUIterator i) const { return i; }
   336   // Reference to the i'th output Node.  Error if out of bounds.
   337   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
   338   // Does the node have an out at this position?  (Used for iteration.)
   339   bool has_out(DUIterator i) const { return i < _outcnt; }
   341   // Iterate over the out-edges of this node.  All changes are illegal.
   342   // This iteration uses a pointer internal to the out array.
   343   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
   344     Node** out = _out;
   345     // Assign a limit pointer to the reference argument:
   346     max = out + (ptrdiff_t)_outcnt;
   347     // Return the base pointer:
   348     return out;
   349   }
   350   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
   351   // Iterate over the out-edges of this node, deleting one at a time.
   352   // This iteration uses a pointer internal to the out array.
   353   DUIterator_Last last_outs(DUIterator_Last& min) const {
   354     Node** out = _out;
   355     // Assign a limit pointer to the reference argument:
   356     min = out;
   357     // Return the pointer to the start of the iteration:
   358     return out + (ptrdiff_t)_outcnt - 1;
   359   }
   360   Node*    last_out(DUIterator_Last i) const  { return *i; }
   361 #endif
   363   // Reference to the i'th input Node.  Error if out of bounds.
   364   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
   365   // Reference to the i'th input Node.  NULL if out of bounds.
   366   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
   367   // Reference to the i'th output Node.  Error if out of bounds.
   368   // Use this accessor sparingly.  We are going trying to use iterators instead.
   369   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
   370   // Return the unique out edge.
   371   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
   372   // Delete out edge at position 'i' by moving last out edge to position 'i'
   373   void  raw_del_out(uint i) {
   374     assert(i < _outcnt,"oob");
   375     assert(_outcnt > 0,"oob");
   376     #if OPTO_DU_ITERATOR_ASSERT
   377     // Record that a change happened here.
   378     debug_only(_last_del = _out[i]; ++_del_tick);
   379     #endif
   380     _out[i] = _out[--_outcnt];
   381     // Smash the old edge so it can't be used accidentally.
   382     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   383   }
   385 #ifdef ASSERT
   386   bool is_dead() const;
   387 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
   388 #endif
   389   // Check whether node has become unreachable
   390   bool is_unreachable(PhaseIterGVN &igvn) const;
   392   // Set a required input edge, also updates corresponding output edge
   393   void add_req( Node *n ); // Append a NEW required input
   394   void add_req( Node *n0, Node *n1 ) {
   395     add_req(n0); add_req(n1); }
   396   void add_req( Node *n0, Node *n1, Node *n2 ) {
   397     add_req(n0); add_req(n1); add_req(n2); }
   398   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
   399   void del_req( uint idx ); // Delete required edge & compact
   400   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
   401   void ins_req( uint i, Node *n ); // Insert a NEW required input
   402   void set_req( uint i, Node *n ) {
   403     assert( is_not_dead(n), "can not use dead node");
   404     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
   405     assert( !VerifyHashTableKeys || _hash_lock == 0,
   406             "remove node from hash table before modifying it");
   407     Node** p = &_in[i];    // cache this._in, across the del_out call
   408     if (*p != NULL)  (*p)->del_out((Node *)this);
   409     (*p) = n;
   410     if (n != NULL)      n->add_out((Node *)this);
   411   }
   412   // Light version of set_req() to init inputs after node creation.
   413   void init_req( uint i, Node *n ) {
   414     assert( i == 0 && this == n ||
   415             is_not_dead(n), "can not use dead node");
   416     assert( i < _cnt, "oob");
   417     assert( !VerifyHashTableKeys || _hash_lock == 0,
   418             "remove node from hash table before modifying it");
   419     assert( _in[i] == NULL, "sanity");
   420     _in[i] = n;
   421     if (n != NULL)      n->add_out((Node *)this);
   422   }
   423   // Find first occurrence of n among my edges:
   424   int find_edge(Node* n);
   425   int replace_edge(Node* old, Node* neww);
   426   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
   427   // NULL out all inputs to eliminate incoming Def-Use edges.
   428   // Return the number of edges between 'n' and 'this'
   429   int  disconnect_inputs(Node *n, Compile *c);
   431   // Quickly, return true if and only if I am Compile::current()->top().
   432   bool is_top() const {
   433     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
   434     return (_out == NULL);
   435   }
   436   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
   437   void setup_is_top();
   439   // Strip away casting.  (It is depth-limited.)
   440   Node* uncast() const;
   441   // Return whether two Nodes are equivalent, after stripping casting.
   442   bool eqv_uncast(const Node* n) const {
   443     return (this->uncast() == n->uncast());
   444   }
   446 private:
   447   static Node* uncast_helper(const Node* n);
   449   // Add an output edge to the end of the list
   450   void add_out( Node *n ) {
   451     if (is_top())  return;
   452     if( _outcnt == _outmax ) out_grow(_outcnt);
   453     _out[_outcnt++] = n;
   454   }
   455   // Delete an output edge
   456   void del_out( Node *n ) {
   457     if (is_top())  return;
   458     Node** outp = &_out[_outcnt];
   459     // Find and remove n
   460     do {
   461       assert(outp > _out, "Missing Def-Use edge");
   462     } while (*--outp != n);
   463     *outp = _out[--_outcnt];
   464     // Smash the old edge so it can't be used accidentally.
   465     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   466     // Record that a change happened here.
   467     #if OPTO_DU_ITERATOR_ASSERT
   468     debug_only(_last_del = n; ++_del_tick);
   469     #endif
   470   }
   472 public:
   473   // Globally replace this node by a given new node, updating all uses.
   474   void replace_by(Node* new_node);
   475   // Globally replace this node by a given new node, updating all uses
   476   // and cutting input edges of old node.
   477   void subsume_by(Node* new_node, Compile* c) {
   478     replace_by(new_node);
   479     disconnect_inputs(NULL, c);
   480   }
   481   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
   482   // Find the one non-null required input.  RegionNode only
   483   Node *nonnull_req() const;
   484   // Add or remove precedence edges
   485   void add_prec( Node *n );
   486   void rm_prec( uint i );
   487   void set_prec( uint i, Node *n ) {
   488     assert( is_not_dead(n), "can not use dead node");
   489     assert( i >= _cnt, "not a precedence edge");
   490     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
   491     _in[i] = n;
   492     if (n != NULL) n->add_out((Node *)this);
   493   }
   494   // Set this node's index, used by cisc_version to replace current node
   495   void set_idx(uint new_idx) {
   496     const node_idx_t* ref = &_idx;
   497     *(node_idx_t*)ref = new_idx;
   498   }
   499   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
   500   void swap_edges(uint i1, uint i2) {
   501     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   502     // Def-Use info is unchanged
   503     Node* n1 = in(i1);
   504     Node* n2 = in(i2);
   505     _in[i1] = n2;
   506     _in[i2] = n1;
   507     // If this node is in the hash table, make sure it doesn't need a rehash.
   508     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
   509   }
   511   // Iterators over input Nodes for a Node X are written as:
   512   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
   513   // NOTE: Required edges can contain embedded NULL pointers.
   515 //----------------- Other Node Properties
   517   // Generate class id for some ideal nodes to avoid virtual query
   518   // methods is_<Node>().
   519   // Class id is the set of bits corresponded to the node class and all its
   520   // super classes so that queries for super classes are also valid.
   521   // Subclasses of the same super class have different assigned bit
   522   // (the third parameter in the macro DEFINE_CLASS_ID).
   523   // Classes with deeper hierarchy are declared first.
   524   // Classes with the same hierarchy depth are sorted by usage frequency.
   525   //
   526   // The query method masks the bits to cut off bits of subclasses
   527   // and then compare the result with the class id
   528   // (see the macro DEFINE_CLASS_QUERY below).
   529   //
   530   //  Class_MachCall=30, ClassMask_MachCall=31
   531   // 12               8               4               0
   532   //  0   0   0   0   0   0   0   0   1   1   1   1   0
   533   //                                  |   |   |   |
   534   //                                  |   |   |   Bit_Mach=2
   535   //                                  |   |   Bit_MachReturn=4
   536   //                                  |   Bit_MachSafePoint=8
   537   //                                  Bit_MachCall=16
   538   //
   539   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
   540   // 12               8               4               0
   541   //  0   0   0   0   0   0   0   1   1   1   0   0   0
   542   //                              |   |   |
   543   //                              |   |   Bit_Region=8
   544   //                              |   Bit_Loop=16
   545   //                              Bit_CountedLoop=32
   547   #define DEFINE_CLASS_ID(cl, supcl, subn) \
   548   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
   549   Class_##cl = Class_##supcl + Bit_##cl , \
   550   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
   552   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
   553   // so that it's values fits into 16 bits.
   554   enum NodeClasses {
   555     Bit_Node   = 0x0000,
   556     Class_Node = 0x0000,
   557     ClassMask_Node = 0xFFFF,
   559     DEFINE_CLASS_ID(Multi, Node, 0)
   560       DEFINE_CLASS_ID(SafePoint, Multi, 0)
   561         DEFINE_CLASS_ID(Call,      SafePoint, 0)
   562           DEFINE_CLASS_ID(CallJava,         Call, 0)
   563             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
   564             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
   565           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
   566             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
   567           DEFINE_CLASS_ID(Allocate,         Call, 2)
   568             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
   569           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
   570             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
   571             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
   572       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
   573         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
   574           DEFINE_CLASS_ID(Catch,       PCTable, 0)
   575           DEFINE_CLASS_ID(Jump,        PCTable, 1)
   576         DEFINE_CLASS_ID(If,          MultiBranch, 1)
   577           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
   578         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
   579       DEFINE_CLASS_ID(Start,       Multi, 2)
   580       DEFINE_CLASS_ID(MemBar,      Multi, 3)
   581         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
   582         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
   584     DEFINE_CLASS_ID(Mach,  Node, 1)
   585       DEFINE_CLASS_ID(MachReturn, Mach, 0)
   586         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
   587           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
   588             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
   589               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
   590               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
   591             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
   592               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
   593       DEFINE_CLASS_ID(MachBranch, Mach, 1)
   594         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
   595         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
   596         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
   597       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
   598       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
   599       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
   600       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
   601       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
   603     DEFINE_CLASS_ID(Type,  Node, 2)
   604       DEFINE_CLASS_ID(Phi,   Type, 0)
   605       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
   606       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
   607       DEFINE_CLASS_ID(CMove, Type, 3)
   608       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
   609       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
   610         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
   611         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
   612       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
   613         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
   614         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
   616     DEFINE_CLASS_ID(Proj,  Node, 3)
   617       DEFINE_CLASS_ID(CatchProj, Proj, 0)
   618       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
   619       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
   620       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
   621       DEFINE_CLASS_ID(Parm,      Proj, 4)
   622       DEFINE_CLASS_ID(MachProj,  Proj, 5)
   624     DEFINE_CLASS_ID(Mem,   Node, 4)
   625       DEFINE_CLASS_ID(Load,  Mem, 0)
   626         DEFINE_CLASS_ID(LoadVector,  Load, 0)
   627       DEFINE_CLASS_ID(Store, Mem, 1)
   628         DEFINE_CLASS_ID(StoreVector, Store, 0)
   629       DEFINE_CLASS_ID(LoadStore, Mem, 2)
   631     DEFINE_CLASS_ID(Region, Node, 5)
   632       DEFINE_CLASS_ID(Loop, Region, 0)
   633         DEFINE_CLASS_ID(Root,        Loop, 0)
   634         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
   636     DEFINE_CLASS_ID(Sub,   Node, 6)
   637       DEFINE_CLASS_ID(Cmp,   Sub, 0)
   638         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
   639         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
   641     DEFINE_CLASS_ID(MergeMem, Node, 7)
   642     DEFINE_CLASS_ID(Bool,     Node, 8)
   643     DEFINE_CLASS_ID(AddP,     Node, 9)
   644     DEFINE_CLASS_ID(BoxLock,  Node, 10)
   645     DEFINE_CLASS_ID(Add,      Node, 11)
   646     DEFINE_CLASS_ID(Mul,      Node, 12)
   647     DEFINE_CLASS_ID(Vector,   Node, 13)
   648     DEFINE_CLASS_ID(ClearArray, Node, 14)
   650     _max_classes  = ClassMask_ClearArray
   651   };
   652   #undef DEFINE_CLASS_ID
   654   // Flags are sorted by usage frequency.
   655   enum NodeFlags {
   656     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
   657     Flag_rematerialize               = Flag_is_Copy << 1,
   658     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
   659     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
   660     Flag_is_Con                      = Flag_is_macro << 1,
   661     Flag_is_cisc_alternate           = Flag_is_Con << 1,
   662     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
   663     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
   664     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
   665     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
   666     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
   667     Flag_is_expensive                = Flag_has_call << 1,
   668     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
   669   };
   671 private:
   672   jushort _class_id;
   673   jushort _flags;
   675 protected:
   676   // These methods should be called from constructors only.
   677   void init_class_id(jushort c) {
   678     assert(c <= _max_classes, "invalid node class");
   679     _class_id = c; // cast out const
   680   }
   681   void init_flags(jushort fl) {
   682     assert(fl <= _max_flags, "invalid node flag");
   683     _flags |= fl;
   684   }
   685   void clear_flag(jushort fl) {
   686     assert(fl <= _max_flags, "invalid node flag");
   687     _flags &= ~fl;
   688   }
   690 public:
   691   const jushort class_id() const { return _class_id; }
   693   const jushort flags() const { return _flags; }
   695   // Return a dense integer opcode number
   696   virtual int Opcode() const;
   698   // Virtual inherited Node size
   699   virtual uint size_of() const;
   701   // Other interesting Node properties
   702   #define DEFINE_CLASS_QUERY(type)                           \
   703   bool is_##type() const {                                   \
   704     return ((_class_id & ClassMask_##type) == Class_##type); \
   705   }                                                          \
   706   type##Node *as_##type() const {                            \
   707     assert(is_##type(), "invalid node class");               \
   708     return (type##Node*)this;                                \
   709   }                                                          \
   710   type##Node* isa_##type() const {                           \
   711     return (is_##type()) ? as_##type() : NULL;               \
   712   }
   714   DEFINE_CLASS_QUERY(AbstractLock)
   715   DEFINE_CLASS_QUERY(Add)
   716   DEFINE_CLASS_QUERY(AddP)
   717   DEFINE_CLASS_QUERY(Allocate)
   718   DEFINE_CLASS_QUERY(AllocateArray)
   719   DEFINE_CLASS_QUERY(Bool)
   720   DEFINE_CLASS_QUERY(BoxLock)
   721   DEFINE_CLASS_QUERY(Call)
   722   DEFINE_CLASS_QUERY(CallDynamicJava)
   723   DEFINE_CLASS_QUERY(CallJava)
   724   DEFINE_CLASS_QUERY(CallLeaf)
   725   DEFINE_CLASS_QUERY(CallRuntime)
   726   DEFINE_CLASS_QUERY(CallStaticJava)
   727   DEFINE_CLASS_QUERY(Catch)
   728   DEFINE_CLASS_QUERY(CatchProj)
   729   DEFINE_CLASS_QUERY(CheckCastPP)
   730   DEFINE_CLASS_QUERY(ConstraintCast)
   731   DEFINE_CLASS_QUERY(ClearArray)
   732   DEFINE_CLASS_QUERY(CMove)
   733   DEFINE_CLASS_QUERY(Cmp)
   734   DEFINE_CLASS_QUERY(CountedLoop)
   735   DEFINE_CLASS_QUERY(CountedLoopEnd)
   736   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
   737   DEFINE_CLASS_QUERY(DecodeN)
   738   DEFINE_CLASS_QUERY(DecodeNKlass)
   739   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
   740   DEFINE_CLASS_QUERY(EncodeP)
   741   DEFINE_CLASS_QUERY(EncodePKlass)
   742   DEFINE_CLASS_QUERY(FastLock)
   743   DEFINE_CLASS_QUERY(FastUnlock)
   744   DEFINE_CLASS_QUERY(If)
   745   DEFINE_CLASS_QUERY(IfFalse)
   746   DEFINE_CLASS_QUERY(IfTrue)
   747   DEFINE_CLASS_QUERY(Initialize)
   748   DEFINE_CLASS_QUERY(Jump)
   749   DEFINE_CLASS_QUERY(JumpProj)
   750   DEFINE_CLASS_QUERY(Load)
   751   DEFINE_CLASS_QUERY(LoadStore)
   752   DEFINE_CLASS_QUERY(Lock)
   753   DEFINE_CLASS_QUERY(Loop)
   754   DEFINE_CLASS_QUERY(Mach)
   755   DEFINE_CLASS_QUERY(MachBranch)
   756   DEFINE_CLASS_QUERY(MachCall)
   757   DEFINE_CLASS_QUERY(MachCallDynamicJava)
   758   DEFINE_CLASS_QUERY(MachCallJava)
   759   DEFINE_CLASS_QUERY(MachCallLeaf)
   760   DEFINE_CLASS_QUERY(MachCallRuntime)
   761   DEFINE_CLASS_QUERY(MachCallStaticJava)
   762   DEFINE_CLASS_QUERY(MachConstantBase)
   763   DEFINE_CLASS_QUERY(MachConstant)
   764   DEFINE_CLASS_QUERY(MachGoto)
   765   DEFINE_CLASS_QUERY(MachIf)
   766   DEFINE_CLASS_QUERY(MachNullCheck)
   767   DEFINE_CLASS_QUERY(MachProj)
   768   DEFINE_CLASS_QUERY(MachReturn)
   769   DEFINE_CLASS_QUERY(MachSafePoint)
   770   DEFINE_CLASS_QUERY(MachSpillCopy)
   771   DEFINE_CLASS_QUERY(MachTemp)
   772   DEFINE_CLASS_QUERY(MachMerge)
   773   DEFINE_CLASS_QUERY(Mem)
   774   DEFINE_CLASS_QUERY(MemBar)
   775   DEFINE_CLASS_QUERY(MemBarStoreStore)
   776   DEFINE_CLASS_QUERY(MergeMem)
   777   DEFINE_CLASS_QUERY(Mul)
   778   DEFINE_CLASS_QUERY(Multi)
   779   DEFINE_CLASS_QUERY(MultiBranch)
   780   DEFINE_CLASS_QUERY(Parm)
   781   DEFINE_CLASS_QUERY(PCTable)
   782   DEFINE_CLASS_QUERY(Phi)
   783   DEFINE_CLASS_QUERY(Proj)
   784   DEFINE_CLASS_QUERY(Region)
   785   DEFINE_CLASS_QUERY(Root)
   786   DEFINE_CLASS_QUERY(SafePoint)
   787   DEFINE_CLASS_QUERY(SafePointScalarObject)
   788   DEFINE_CLASS_QUERY(Start)
   789   DEFINE_CLASS_QUERY(Store)
   790   DEFINE_CLASS_QUERY(Sub)
   791   DEFINE_CLASS_QUERY(Type)
   792   DEFINE_CLASS_QUERY(Vector)
   793   DEFINE_CLASS_QUERY(LoadVector)
   794   DEFINE_CLASS_QUERY(StoreVector)
   795   DEFINE_CLASS_QUERY(Unlock)
   797   #undef DEFINE_CLASS_QUERY
   799   // duplicate of is_MachSpillCopy()
   800   bool is_SpillCopy () const {
   801     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
   802   }
   804   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
   805   // The data node which is safe to leave in dead loop during IGVN optimization.
   806   bool is_dead_loop_safe() const {
   807     return is_Phi() || (is_Proj() && in(0) == NULL) ||
   808            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
   809             (!is_Proj() || !in(0)->is_Allocate()));
   810   }
   812   // is_Copy() returns copied edge index (0 or 1)
   813   uint is_Copy() const { return (_flags & Flag_is_Copy); }
   815   virtual bool is_CFG() const { return false; }
   817   // If this node is control-dependent on a test, can it be
   818   // rerouted to a dominating equivalent test?  This is usually
   819   // true of non-CFG nodes, but can be false for operations which
   820   // depend for their correct sequencing on more than one test.
   821   // (In that case, hoisting to a dominating test may silently
   822   // skip some other important test.)
   823   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
   825   // When building basic blocks, I need to have a notion of block beginning
   826   // Nodes, next block selector Nodes (block enders), and next block
   827   // projections.  These calls need to work on their machine equivalents.  The
   828   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
   829   bool is_block_start() const {
   830     if ( is_Region() )
   831       return this == (const Node*)in(0);
   832     else
   833       return is_Start();
   834   }
   836   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
   837   // Goto and Return.  This call also returns the block ending Node.
   838   virtual const Node *is_block_proj() const;
   840   // The node is a "macro" node which needs to be expanded before matching
   841   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
   842   // The node is expensive: the best control is set during loop opts
   843   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
   845 //----------------- Optimization
   847   // Get the worst-case Type output for this Node.
   848   virtual const class Type *bottom_type() const;
   850   // If we find a better type for a node, try to record it permanently.
   851   // Return true if this node actually changed.
   852   // Be sure to do the hash_delete game in the "rehash" variant.
   853   void raise_bottom_type(const Type* new_type);
   855   // Get the address type with which this node uses and/or defs memory,
   856   // or NULL if none.  The address type is conservatively wide.
   857   // Returns non-null for calls, membars, loads, stores, etc.
   858   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
   859   virtual const class TypePtr *adr_type() const { return NULL; }
   861   // Return an existing node which computes the same function as this node.
   862   // The optimistic combined algorithm requires this to return a Node which
   863   // is a small number of steps away (e.g., one of my inputs).
   864   virtual Node *Identity( PhaseTransform *phase );
   866   // Return the set of values this Node can take on at runtime.
   867   virtual const Type *Value( PhaseTransform *phase ) const;
   869   // Return a node which is more "ideal" than the current node.
   870   // The invariants on this call are subtle.  If in doubt, read the
   871   // treatise in node.cpp above the default implemention AND TEST WITH
   872   // +VerifyIterativeGVN!
   873   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   875   // Some nodes have specific Ideal subgraph transformations only if they are
   876   // unique users of specific nodes. Such nodes should be put on IGVN worklist
   877   // for the transformations to happen.
   878   bool has_special_unique_user() const;
   880   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
   881   Node* find_exact_control(Node* ctrl);
   883   // Check if 'this' node dominates or equal to 'sub'.
   884   bool dominates(Node* sub, Node_List &nlist);
   886 protected:
   887   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
   888 public:
   890   // Idealize graph, using DU info.  Done after constant propagation
   891   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
   893   // See if there is valid pipeline info
   894   static  const Pipeline *pipeline_class();
   895   virtual const Pipeline *pipeline() const;
   897   // Compute the latency from the def to this instruction of the ith input node
   898   uint latency(uint i);
   900   // Hash & compare functions, for pessimistic value numbering
   902   // If the hash function returns the special sentinel value NO_HASH,
   903   // the node is guaranteed never to compare equal to any other node.
   904   // If we accidentally generate a hash with value NO_HASH the node
   905   // won't go into the table and we'll lose a little optimization.
   906   enum { NO_HASH = 0 };
   907   virtual uint hash() const;
   908   virtual uint cmp( const Node &n ) const;
   910   // Operation appears to be iteratively computed (such as an induction variable)
   911   // It is possible for this operation to return false for a loop-varying
   912   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
   913   bool is_iteratively_computed();
   915   // Determine if a node is Counted loop induction variable.
   916   // The method is defined in loopnode.cpp.
   917   const Node* is_loop_iv() const;
   919   // Return a node with opcode "opc" and same inputs as "this" if one can
   920   // be found; Otherwise return NULL;
   921   Node* find_similar(int opc);
   923   // Return the unique control out if only one. Null if none or more than one.
   924   Node* unique_ctrl_out();
   926 //----------------- Code Generation
   928   // Ideal register class for Matching.  Zero means unmatched instruction
   929   // (these are cloned instead of converted to machine nodes).
   930   virtual uint ideal_reg() const;
   932   static const uint NotAMachineReg;   // must be > max. machine register
   934   // Do we Match on this edge index or not?  Generally false for Control
   935   // and true for everything else.  Weird for calls & returns.
   936   virtual uint match_edge(uint idx) const;
   938   // Register class output is returned in
   939   virtual const RegMask &out_RegMask() const;
   940   // Register class input is expected in
   941   virtual const RegMask &in_RegMask(uint) const;
   942   // Should we clone rather than spill this instruction?
   943   bool rematerialize() const;
   945   // Return JVM State Object if this Node carries debug info, or NULL otherwise
   946   virtual JVMState* jvms() const;
   948   // Print as assembly
   949   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
   950   // Emit bytes starting at parameter 'ptr'
   951   // Bump 'ptr' by the number of output bytes
   952   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
   953   // Size of instruction in bytes
   954   virtual uint size(PhaseRegAlloc *ra_) const;
   956   // Convenience function to extract an integer constant from a node.
   957   // If it is not an integer constant (either Con, CastII, or Mach),
   958   // return value_if_unknown.
   959   jint find_int_con(jint value_if_unknown) const {
   960     const TypeInt* t = find_int_type();
   961     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   962   }
   963   // Return the constant, knowing it is an integer constant already
   964   jint get_int() const {
   965     const TypeInt* t = find_int_type();
   966     guarantee(t != NULL, "must be con");
   967     return t->get_con();
   968   }
   969   // Here's where the work is done.  Can produce non-constant int types too.
   970   const TypeInt* find_int_type() const;
   972   // Same thing for long (and intptr_t, via type.hpp):
   973   jlong get_long() const {
   974     const TypeLong* t = find_long_type();
   975     guarantee(t != NULL, "must be con");
   976     return t->get_con();
   977   }
   978   jlong find_long_con(jint value_if_unknown) const {
   979     const TypeLong* t = find_long_type();
   980     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   981   }
   982   const TypeLong* find_long_type() const;
   984   const TypePtr* get_ptr_type() const;
   986   // These guys are called by code generated by ADLC:
   987   intptr_t get_ptr() const;
   988   intptr_t get_narrowcon() const;
   989   jdouble getd() const;
   990   jfloat getf() const;
   992   // Nodes which are pinned into basic blocks
   993   virtual bool pinned() const { return false; }
   995   // Nodes which use memory without consuming it, hence need antidependences
   996   // More specifically, needs_anti_dependence_check returns true iff the node
   997   // (a) does a load, and (b) does not perform a store (except perhaps to a
   998   // stack slot or some other unaliased location).
   999   bool needs_anti_dependence_check() const;
  1001   // Return which operand this instruction may cisc-spill. In other words,
  1002   // return operand position that can convert from reg to memory access
  1003   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
  1004   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
  1006 //----------------- Graph walking
  1007 public:
  1008   // Walk and apply member functions recursively.
  1009   // Supplied (this) pointer is root.
  1010   void walk(NFunc pre, NFunc post, void *env);
  1011   static void nop(Node &, void*); // Dummy empty function
  1012   static void packregion( Node &n, void* );
  1013 private:
  1014   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
  1016 //----------------- Printing, etc
  1017 public:
  1018 #ifndef PRODUCT
  1019   Node* find(int idx) const;         // Search the graph for the given idx.
  1020   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
  1021   void dump() const { dump("\n"); }  // Print this node.
  1022   void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
  1023   void dump(int depth) const;        // Print this node, recursively to depth d
  1024   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
  1025   virtual void dump_req(outputStream *st = tty) const;     // Print required-edge info
  1026   virtual void dump_prec(outputStream *st = tty) const;    // Print precedence-edge info
  1027   virtual void dump_out(outputStream *st = tty) const;     // Print the output edge info
  1028   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
  1029   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
  1030   void verify() const;               // Check Def-Use info for my subgraph
  1031   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
  1033   // This call defines a class-unique string used to identify class instances
  1034   virtual const char *Name() const;
  1036   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
  1037   // RegMask Print Functions
  1038   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
  1039   void dump_out_regmask() { out_RegMask().dump(); }
  1040   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
  1041   void fast_dump() const {
  1042     tty->print("%4d: %-17s", _idx, Name());
  1043     for (uint i = 0; i < len(); i++)
  1044       if (in(i))
  1045         tty->print(" %4d", in(i)->_idx);
  1046       else
  1047         tty->print(" NULL");
  1048     tty->print("\n");
  1050 #endif
  1051 #ifdef ASSERT
  1052   void verify_construction();
  1053   bool verify_jvms(const JVMState* jvms) const;
  1054   int  _debug_idx;                     // Unique value assigned to every node.
  1055   int   debug_idx() const              { return _debug_idx; }
  1056   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
  1058   Node* _debug_orig;                   // Original version of this, if any.
  1059   Node*  debug_orig() const            { return _debug_orig; }
  1060   void   set_debug_orig(Node* orig);   // _debug_orig = orig
  1062   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  1063   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  1064   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
  1066   static void init_NodeProperty();
  1068   #if OPTO_DU_ITERATOR_ASSERT
  1069   const Node* _last_del;               // The last deleted node.
  1070   uint        _del_tick;               // Bumped when a deletion happens..
  1071   #endif
  1072 #endif
  1073 };
  1075 //-----------------------------------------------------------------------------
  1076 // Iterators over DU info, and associated Node functions.
  1078 #if OPTO_DU_ITERATOR_ASSERT
  1080 // Common code for assertion checking on DU iterators.
  1081 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
  1082 #ifdef ASSERT
  1083  protected:
  1084   bool         _vdui;               // cached value of VerifyDUIterators
  1085   const Node*  _node;               // the node containing the _out array
  1086   uint         _outcnt;             // cached node->_outcnt
  1087   uint         _del_tick;           // cached node->_del_tick
  1088   Node*        _last;               // last value produced by the iterator
  1090   void sample(const Node* node);    // used by c'tor to set up for verifies
  1091   void verify(const Node* node, bool at_end_ok = false);
  1092   void verify_resync();
  1093   void reset(const DUIterator_Common& that);
  1095 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  1096   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
  1097 #else
  1098   #define I_VDUI_ONLY(i,x) { }
  1099 #endif //ASSERT
  1100 };
  1102 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
  1104 // Default DU iterator.  Allows appends onto the out array.
  1105 // Allows deletion from the out array only at the current point.
  1106 // Usage:
  1107 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
  1108 //    Node* y = x->out(i);
  1109 //    ...
  1110 //  }
  1111 // Compiles in product mode to a unsigned integer index, which indexes
  1112 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
  1113 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
  1114 // before continuing the loop.  You must delete only the last-produced
  1115 // edge.  You must delete only a single copy of the last-produced edge,
  1116 // or else you must delete all copies at once (the first time the edge
  1117 // is produced by the iterator).
  1118 class DUIterator : public DUIterator_Common {
  1119   friend class Node;
  1121   // This is the index which provides the product-mode behavior.
  1122   // Whatever the product-mode version of the system does to the
  1123   // DUI index is done to this index.  All other fields in
  1124   // this class are used only for assertion checking.
  1125   uint         _idx;
  1127   #ifdef ASSERT
  1128   uint         _refresh_tick;    // Records the refresh activity.
  1130   void sample(const Node* node); // Initialize _refresh_tick etc.
  1131   void verify(const Node* node, bool at_end_ok = false);
  1132   void verify_increment();       // Verify an increment operation.
  1133   void verify_resync();          // Verify that we can back up over a deletion.
  1134   void verify_finish();          // Verify that the loop terminated properly.
  1135   void refresh();                // Resample verification info.
  1136   void reset(const DUIterator& that);  // Resample after assignment.
  1137   #endif
  1139   DUIterator(const Node* node, int dummy_to_avoid_conversion)
  1140     { _idx = 0;                         debug_only(sample(node)); }
  1142  public:
  1143   // initialize to garbage; clear _vdui to disable asserts
  1144   DUIterator()
  1145     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1147   void operator++(int dummy_to_specify_postfix_op)
  1148     { _idx++;                           VDUI_ONLY(verify_increment()); }
  1150   void operator--()
  1151     { VDUI_ONLY(verify_resync());       --_idx; }
  1153   ~DUIterator()
  1154     { VDUI_ONLY(verify_finish()); }
  1156   void operator=(const DUIterator& that)
  1157     { _idx = that._idx;                 debug_only(reset(that)); }
  1158 };
  1160 DUIterator Node::outs() const
  1161   { return DUIterator(this, 0); }
  1162 DUIterator& Node::refresh_out_pos(DUIterator& i) const
  1163   { I_VDUI_ONLY(i, i.refresh());        return i; }
  1164 bool Node::has_out(DUIterator& i) const
  1165   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
  1166 Node*    Node::out(DUIterator& i) const
  1167   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
  1170 // Faster DU iterator.  Disallows insertions into the out array.
  1171 // Allows deletion from the out array only at the current point.
  1172 // Usage:
  1173 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
  1174 //    Node* y = x->fast_out(i);
  1175 //    ...
  1176 //  }
  1177 // Compiles in product mode to raw Node** pointer arithmetic, with
  1178 // no reloading of pointers from the original node x.  If you delete,
  1179 // you must perform "--i; --imax" just before continuing the loop.
  1180 // If you delete multiple copies of the same edge, you must decrement
  1181 // imax, but not i, multiple times:  "--i, imax -= num_edges".
  1182 class DUIterator_Fast : public DUIterator_Common {
  1183   friend class Node;
  1184   friend class DUIterator_Last;
  1186   // This is the pointer which provides the product-mode behavior.
  1187   // Whatever the product-mode version of the system does to the
  1188   // DUI pointer is done to this pointer.  All other fields in
  1189   // this class are used only for assertion checking.
  1190   Node**       _outp;
  1192   #ifdef ASSERT
  1193   void verify(const Node* node, bool at_end_ok = false);
  1194   void verify_limit();
  1195   void verify_resync();
  1196   void verify_relimit(uint n);
  1197   void reset(const DUIterator_Fast& that);
  1198   #endif
  1200   // Note:  offset must be signed, since -1 is sometimes passed
  1201   DUIterator_Fast(const Node* node, ptrdiff_t offset)
  1202     { _outp = node->_out + offset;      debug_only(sample(node)); }
  1204  public:
  1205   // initialize to garbage; clear _vdui to disable asserts
  1206   DUIterator_Fast()
  1207     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1209   void operator++(int dummy_to_specify_postfix_op)
  1210     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
  1212   void operator--()
  1213     { VDUI_ONLY(verify_resync());       --_outp; }
  1215   void operator-=(uint n)   // applied to the limit only
  1216     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
  1218   bool operator<(DUIterator_Fast& limit) {
  1219     I_VDUI_ONLY(*this, this->verify(_node, true));
  1220     I_VDUI_ONLY(limit, limit.verify_limit());
  1221     return _outp < limit._outp;
  1224   void operator=(const DUIterator_Fast& that)
  1225     { _outp = that._outp;               debug_only(reset(that)); }
  1226 };
  1228 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  1229   // Assign a limit pointer to the reference argument:
  1230   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  1231   // Return the base pointer:
  1232   return DUIterator_Fast(this, 0);
  1234 Node* Node::fast_out(DUIterator_Fast& i) const {
  1235   I_VDUI_ONLY(i, i.verify(this));
  1236   return debug_only(i._last=) *i._outp;
  1240 // Faster DU iterator.  Requires each successive edge to be removed.
  1241 // Does not allow insertion of any edges.
  1242 // Usage:
  1243 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
  1244 //    Node* y = x->last_out(i);
  1245 //    ...
  1246 //  }
  1247 // Compiles in product mode to raw Node** pointer arithmetic, with
  1248 // no reloading of pointers from the original node x.
  1249 class DUIterator_Last : private DUIterator_Fast {
  1250   friend class Node;
  1252   #ifdef ASSERT
  1253   void verify(const Node* node, bool at_end_ok = false);
  1254   void verify_limit();
  1255   void verify_step(uint num_edges);
  1256   #endif
  1258   // Note:  offset must be signed, since -1 is sometimes passed
  1259   DUIterator_Last(const Node* node, ptrdiff_t offset)
  1260     : DUIterator_Fast(node, offset) { }
  1262   void operator++(int dummy_to_specify_postfix_op) {} // do not use
  1263   void operator<(int)                              {} // do not use
  1265  public:
  1266   DUIterator_Last() { }
  1267   // initialize to garbage
  1269   void operator--()
  1270     { _outp--;              VDUI_ONLY(verify_step(1));  }
  1272   void operator-=(uint n)
  1273     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
  1275   bool operator>=(DUIterator_Last& limit) {
  1276     I_VDUI_ONLY(*this, this->verify(_node, true));
  1277     I_VDUI_ONLY(limit, limit.verify_limit());
  1278     return _outp >= limit._outp;
  1281   void operator=(const DUIterator_Last& that)
  1282     { DUIterator_Fast::operator=(that); }
  1283 };
  1285 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  1286   // Assign a limit pointer to the reference argument:
  1287   imin = DUIterator_Last(this, 0);
  1288   // Return the initial pointer:
  1289   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
  1291 Node* Node::last_out(DUIterator_Last& i) const {
  1292   I_VDUI_ONLY(i, i.verify(this));
  1293   return debug_only(i._last=) *i._outp;
  1296 #endif //OPTO_DU_ITERATOR_ASSERT
  1298 #undef I_VDUI_ONLY
  1299 #undef VDUI_ONLY
  1301 // An Iterator that truly follows the iterator pattern.  Doesn't
  1302 // support deletion but could be made to.
  1303 //
  1304 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
  1305 //     Node* m = i.get();
  1306 //
  1307 class SimpleDUIterator : public StackObj {
  1308  private:
  1309   Node* node;
  1310   DUIterator_Fast i;
  1311   DUIterator_Fast imax;
  1312  public:
  1313   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
  1314   bool has_next() { return i < imax; }
  1315   void next() { i++; }
  1316   Node* get() { return node->fast_out(i); }
  1317 };
  1320 //-----------------------------------------------------------------------------
  1321 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
  1322 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
  1323 // Note that the constructor just zeros things, and since I use Arena
  1324 // allocation I do not need a destructor to reclaim storage.
  1325 class Node_Array : public ResourceObj {
  1326   friend class VMStructs;
  1327 protected:
  1328   Arena *_a;                    // Arena to allocate in
  1329   uint   _max;
  1330   Node **_nodes;
  1331   void   grow( uint i );        // Grow array node to fit
  1332 public:
  1333   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
  1334     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
  1335     for( int i = 0; i < OptoNodeListSize; i++ ) {
  1336       _nodes[i] = NULL;
  1340   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  1341   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  1342   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  1343   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
  1344   Node **adr() { return _nodes; }
  1345   // Extend the mapping: index i maps to Node *n.
  1346   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  1347   void insert( uint i, Node *n );
  1348   void remove( uint i );        // Remove, preserving order
  1349   void sort( C_sort_func_t func);
  1350   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
  1351   void clear();                 // Set all entries to NULL, keep storage
  1352   uint Size() const { return _max; }
  1353   void dump() const;
  1354 };
  1356 class Node_List : public Node_Array {
  1357   friend class VMStructs;
  1358   uint _cnt;
  1359 public:
  1360   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
  1361   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
  1362   bool contains(const Node* n) const {
  1363     for (uint e = 0; e < size(); e++) {
  1364       if (at(e) == n) return true;
  1366     return false;
  1368   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  1369   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  1370   void push( Node *b ) { map(_cnt++,b); }
  1371   void yank( Node *n );         // Find and remove
  1372   Node *pop() { return _nodes[--_cnt]; }
  1373   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
  1374   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  1375   uint size() const { return _cnt; }
  1376   void dump() const;
  1377   void dump_simple() const;
  1378 };
  1380 //------------------------------Unique_Node_List-------------------------------
  1381 class Unique_Node_List : public Node_List {
  1382   friend class VMStructs;
  1383   VectorSet _in_worklist;
  1384   uint _clock_index;            // Index in list where to pop from next
  1385 public:
  1386   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
  1387   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
  1389   void remove( Node *n );
  1390   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  1391   VectorSet &member_set(){ return _in_worklist; }
  1393   void push( Node *b ) {
  1394     if( !_in_worklist.test_set(b->_idx) )
  1395       Node_List::push(b);
  1397   Node *pop() {
  1398     if( _clock_index >= size() ) _clock_index = 0;
  1399     Node *b = at(_clock_index);
  1400     map( _clock_index, Node_List::pop());
  1401     if (size() != 0) _clock_index++; // Always start from 0
  1402     _in_worklist >>= b->_idx;
  1403     return b;
  1405   Node *remove( uint i ) {
  1406     Node *b = Node_List::at(i);
  1407     _in_worklist >>= b->_idx;
  1408     map(i,Node_List::pop());
  1409     return b;
  1411   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
  1412   void  clear() {
  1413     _in_worklist.Clear();        // Discards storage but grows automatically
  1414     Node_List::clear();
  1415     _clock_index = 0;
  1418   // Used after parsing to remove useless nodes before Iterative GVN
  1419   void remove_useless_nodes(VectorSet &useful);
  1421 #ifndef PRODUCT
  1422   void print_set() const { _in_worklist.print(); }
  1423 #endif
  1424 };
  1426 // Inline definition of Compile::record_for_igvn must be deferred to this point.
  1427 inline void Compile::record_for_igvn(Node* n) {
  1428   _for_igvn->push(n);
  1431 //------------------------------Node_Stack-------------------------------------
  1432 class Node_Stack {
  1433   friend class VMStructs;
  1434 protected:
  1435   struct INode {
  1436     Node *node; // Processed node
  1437     uint  indx; // Index of next node's child
  1438   };
  1439   INode *_inode_top; // tos, stack grows up
  1440   INode *_inode_max; // End of _inodes == _inodes + _max
  1441   INode *_inodes;    // Array storage for the stack
  1442   Arena *_a;         // Arena to allocate in
  1443   void grow();
  1444 public:
  1445   Node_Stack(int size) {
  1446     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1447     _a = Thread::current()->resource_area();
  1448     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1449     _inode_max = _inodes + max;
  1450     _inode_top = _inodes - 1; // stack is empty
  1453   Node_Stack(Arena *a, int size) : _a(a) {
  1454     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1455     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1456     _inode_max = _inodes + max;
  1457     _inode_top = _inodes - 1; // stack is empty
  1460   void pop() {
  1461     assert(_inode_top >= _inodes, "node stack underflow");
  1462     --_inode_top;
  1464   void push(Node *n, uint i) {
  1465     ++_inode_top;
  1466     if (_inode_top >= _inode_max) grow();
  1467     INode *top = _inode_top; // optimization
  1468     top->node = n;
  1469     top->indx = i;
  1471   Node *node() const {
  1472     return _inode_top->node;
  1474   Node* node_at(uint i) const {
  1475     assert(_inodes + i <= _inode_top, "in range");
  1476     return _inodes[i].node;
  1478   uint index() const {
  1479     return _inode_top->indx;
  1481   uint index_at(uint i) const {
  1482     assert(_inodes + i <= _inode_top, "in range");
  1483     return _inodes[i].indx;
  1485   void set_node(Node *n) {
  1486     _inode_top->node = n;
  1488   void set_index(uint i) {
  1489     _inode_top->indx = i;
  1491   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
  1492   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
  1493   bool is_nonempty() const { return (_inode_top >= _inodes); }
  1494   bool is_empty() const { return (_inode_top < _inodes); }
  1495   void clear() { _inode_top = _inodes - 1; } // retain storage
  1497   // Node_Stack is used to map nodes.
  1498   Node* find(uint idx) const;
  1499 };
  1502 //-----------------------------Node_Notes--------------------------------------
  1503 // Debugging or profiling annotations loosely and sparsely associated
  1504 // with some nodes.  See Compile::node_notes_at for the accessor.
  1505 class Node_Notes VALUE_OBJ_CLASS_SPEC {
  1506   friend class VMStructs;
  1507   JVMState* _jvms;
  1509 public:
  1510   Node_Notes(JVMState* jvms = NULL) {
  1511     _jvms = jvms;
  1514   JVMState* jvms()            { return _jvms; }
  1515   void  set_jvms(JVMState* x) {        _jvms = x; }
  1517   // True if there is nothing here.
  1518   bool is_clear() {
  1519     return (_jvms == NULL);
  1522   // Make there be nothing here.
  1523   void clear() {
  1524     _jvms = NULL;
  1527   // Make a new, clean node notes.
  1528   static Node_Notes* make(Compile* C) {
  1529     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1530     nn->clear();
  1531     return nn;
  1534   Node_Notes* clone(Compile* C) {
  1535     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1536     (*nn) = (*this);
  1537     return nn;
  1540   // Absorb any information from source.
  1541   bool update_from(Node_Notes* source) {
  1542     bool changed = false;
  1543     if (source != NULL) {
  1544       if (source->jvms() != NULL) {
  1545         set_jvms(source->jvms());
  1546         changed = true;
  1549     return changed;
  1551 };
  1553 // Inlined accessors for Compile::node_nodes that require the preceding class:
  1554 inline Node_Notes*
  1555 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
  1556                            int idx, bool can_grow) {
  1557   assert(idx >= 0, "oob");
  1558   int block_idx = (idx >> _log2_node_notes_block_size);
  1559   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
  1560   if (grow_by >= 0) {
  1561     if (!can_grow)  return NULL;
  1562     grow_node_notes(arr, grow_by + 1);
  1564   // (Every element of arr is a sub-array of length _node_notes_block_size.)
  1565   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
  1568 inline bool
  1569 Compile::set_node_notes_at(int idx, Node_Notes* value) {
  1570   if (value == NULL || value->is_clear())
  1571     return false;  // nothing to write => write nothing
  1572   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
  1573   assert(loc != NULL, "");
  1574   return loc->update_from(value);
  1578 //------------------------------TypeNode---------------------------------------
  1579 // Node with a Type constant.
  1580 class TypeNode : public Node {
  1581 protected:
  1582   virtual uint hash() const;    // Check the type
  1583   virtual uint cmp( const Node &n ) const;
  1584   virtual uint size_of() const; // Size is bigger
  1585   const Type* const _type;
  1586 public:
  1587   void set_type(const Type* t) {
  1588     assert(t != NULL, "sanity");
  1589     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
  1590     *(const Type**)&_type = t;   // cast away const-ness
  1591     // If this node is in the hash table, make sure it doesn't need a rehash.
  1592     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  1594   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
  1595   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
  1596     init_class_id(Class_Type);
  1598   virtual const Type *Value( PhaseTransform *phase ) const;
  1599   virtual const Type *bottom_type() const;
  1600   virtual       uint  ideal_reg() const;
  1601 #ifndef PRODUCT
  1602   virtual void dump_spec(outputStream *st) const;
  1603 #endif
  1604 };
  1606 #endif // SHARE_VM_OPTO_NODE_HPP

mercurial