src/share/vm/opto/phaseX.hpp

Thu, 12 Nov 2009 09:24:21 -0800

author
never
date
Thu, 12 Nov 2009 09:24:21 -0800
changeset 1515
7c57aead6d3e
parent 1383
89e0543e1737
child 1844
cff162798819
permissions
-rw-r--r--

6892658: C2 should optimize some stringbuilder patterns
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class Compile;
    26 class ConINode;
    27 class ConLNode;
    28 class Node;
    29 class Type;
    30 class PhaseTransform;
    31 class   PhaseGVN;
    32 class     PhaseIterGVN;
    33 class       PhaseCCP;
    34 class   PhasePeephole;
    35 class   PhaseRegAlloc;
    38 //-----------------------------------------------------------------------------
    39 // Expandable closed hash-table of nodes, initialized to NULL.
    40 // Note that the constructor just zeros things
    41 // Storage is reclaimed when the Arena's lifetime is over.
    42 class NodeHash : public StackObj {
    43 protected:
    44   Arena *_a;                    // Arena to allocate in
    45   uint   _max;                  // Size of table (power of 2)
    46   uint   _inserts;              // For grow and debug, count of hash_inserts
    47   uint   _insert_limit;         // 'grow' when _inserts reaches _insert_limit
    48   Node **_table;                // Hash table of Node pointers
    49   Node  *_sentinel;             // Replaces deleted entries in hash table
    51 public:
    52   NodeHash(uint est_max_size);
    53   NodeHash(Arena *arena, uint est_max_size);
    54   NodeHash(NodeHash *use_this_state);
    55 #ifdef ASSERT
    56   ~NodeHash();                  // Unlock all nodes upon destruction of table.
    57   void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
    58 #endif
    59   Node  *hash_find(const Node*);// Find an equivalent version in hash table
    60   Node  *hash_find_insert(Node*);// If not in table insert else return found node
    61   void   hash_insert(Node*);    // Insert into hash table
    62   bool   hash_delete(const Node*);// Replace with _sentinel in hash table
    63   void   check_grow() {
    64     _inserts++;
    65     if( _inserts == _insert_limit ) { grow(); }
    66     assert( _inserts <= _insert_limit, "hash table overflow");
    67     assert( _inserts < _max, "hash table overflow" );
    68   }
    69   static uint round_up(uint);   // Round up to nearest power of 2
    70   void   grow();                // Grow _table to next power of 2 and rehash
    71   // Return 75% of _max, rounded up.
    72   uint   insert_limit() const { return _max - (_max>>2); }
    74   void   clear();               // Set all entries to NULL, keep storage.
    75   // Size of hash table
    76   uint   size()         const { return _max; }
    77   // Return Node* at index in table
    78   Node  *at(uint table_index) {
    79     assert(table_index < _max, "Must be within table");
    80     return _table[table_index];
    81   }
    83   void   remove_useless_nodes(VectorSet &useful); // replace with sentinel
    85   Node  *sentinel() { return _sentinel; }
    87 #ifndef PRODUCT
    88   Node  *find_index(uint idx);  // For debugging
    89   void   dump();                // For debugging, dump statistics
    90 #endif
    91   uint   _grows;                // For debugging, count of table grow()s
    92   uint   _look_probes;          // For debugging, count of hash probes
    93   uint   _lookup_hits;          // For debugging, count of hash_finds
    94   uint   _lookup_misses;        // For debugging, count of hash_finds
    95   uint   _insert_probes;        // For debugging, count of hash probes
    96   uint   _delete_probes;        // For debugging, count of hash probes for deletes
    97   uint   _delete_hits;          // For debugging, count of hash probes for deletes
    98   uint   _delete_misses;        // For debugging, count of hash probes for deletes
    99   uint   _total_inserts;        // For debugging, total inserts into hash table
   100   uint   _total_insert_probes;  // For debugging, total probes while inserting
   101 };
   104 //-----------------------------------------------------------------------------
   105 // Map dense integer indices to Types.  Uses classic doubling-array trick.
   106 // Abstractly provides an infinite array of Type*'s, initialized to NULL.
   107 // Note that the constructor just zeros things, and since I use Arena
   108 // allocation I do not need a destructor to reclaim storage.
   109 // Despite the general name, this class is customized for use by PhaseTransform.
   110 class Type_Array : public StackObj {
   111   Arena *_a;                    // Arena to allocate in
   112   uint   _max;
   113   const Type **_types;
   114   void grow( uint i );          // Grow array node to fit
   115   const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
   116   { return (i<_max) ? _types[i] : (Type*)NULL; }
   117   friend class PhaseTransform;
   118 public:
   119   Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
   120   Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
   121   const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
   122   // Extend the mapping: index i maps to Type *n.
   123   void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
   124   uint Size() const { return _max; }
   125 #ifndef PRODUCT
   126   void dump() const;
   127 #endif
   128 };
   131 //------------------------------PhaseRemoveUseless-----------------------------
   132 // Remove useless nodes from GVN hash-table, worklist, and graph
   133 class PhaseRemoveUseless : public Phase {
   134 protected:
   135   Unique_Node_List _useful;   // Nodes reachable from root
   136                               // list is allocated from current resource area
   137 public:
   138   PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist );
   140   Unique_Node_List *get_useful() { return &_useful; }
   141 };
   144 //------------------------------PhaseTransform---------------------------------
   145 // Phases that analyze, then transform.  Constructing the Phase object does any
   146 // global or slow analysis.  The results are cached later for a fast
   147 // transformation pass.  When the Phase object is deleted the cached analysis
   148 // results are deleted.
   149 class PhaseTransform : public Phase {
   150 protected:
   151   Arena*     _arena;
   152   Node_Array _nodes;           // Map old node indices to new nodes.
   153   Type_Array _types;           // Map old node indices to Types.
   155   // ConNode caches:
   156   enum { _icon_min = -1 * HeapWordSize,
   157          _icon_max = 16 * HeapWordSize,
   158          _lcon_min = _icon_min,
   159          _lcon_max = _icon_max,
   160          _zcon_max = (uint)T_CONFLICT
   161   };
   162   ConINode* _icons[_icon_max - _icon_min + 1];   // cached jint constant nodes
   163   ConLNode* _lcons[_lcon_max - _lcon_min + 1];   // cached jlong constant nodes
   164   ConNode*  _zcons[_zcon_max + 1];               // cached is_zero_type nodes
   165   void init_con_caches();
   167   // Support both int and long caches because either might be an intptr_t,
   168   // so they show up frequently in address computations.
   170 public:
   171   PhaseTransform( PhaseNumber pnum );
   172   PhaseTransform( Arena *arena, PhaseNumber pnum );
   173   PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );
   175   Arena*      arena()   { return _arena; }
   176   Type_Array& types()   { return _types; }
   177   // _nodes is used in varying ways by subclasses, which define local accessors
   179 public:
   180   // Get a previously recorded type for the node n.
   181   // This type must already have been recorded.
   182   // If you want the type of a very new (untransformed) node,
   183   // you must use type_or_null, and test the result for NULL.
   184   const Type* type(const Node* n) const {
   185     const Type* t = _types.fast_lookup(n->_idx);
   186     assert(t != NULL, "must set before get");
   187     return t;
   188   }
   189   // Get a previously recorded type for the node n,
   190   // or else return NULL if there is none.
   191   const Type* type_or_null(const Node* n) const {
   192     return _types.fast_lookup(n->_idx);
   193   }
   194   // Record a type for a node.
   195   void    set_type(const Node* n, const Type *t) {
   196     assert(t != NULL, "type must not be null");
   197     _types.map(n->_idx, t);
   198   }
   199   // Record an initial type for a node, the node's bottom type.
   200   void    set_type_bottom(const Node* n) {
   201     // Use this for initialization when bottom_type() (or better) is not handy.
   202     // Usually the initialization shoudl be to n->Value(this) instead,
   203     // or a hand-optimized value like Type::MEMORY or Type::CONTROL.
   204     assert(_types[n->_idx] == NULL, "must set the initial type just once");
   205     _types.map(n->_idx, n->bottom_type());
   206   }
   207   // Make sure the types array is big enough to record a size for the node n.
   208   // (In product builds, we never want to do range checks on the types array!)
   209   void ensure_type_or_null(const Node* n) {
   210     if (n->_idx >= _types.Size())
   211       _types.map(n->_idx, NULL);   // Grow the types array as needed.
   212   }
   214   // Utility functions:
   215   const TypeInt*  find_int_type( Node* n);
   216   const TypeLong* find_long_type(Node* n);
   217   jint  find_int_con( Node* n, jint  value_if_unknown) {
   218     const TypeInt* t = find_int_type(n);
   219     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   220   }
   221   jlong find_long_con(Node* n, jlong value_if_unknown) {
   222     const TypeLong* t = find_long_type(n);
   223     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   224   }
   226   // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
   227   // Same as transform(ConNode::make(t)).
   228   ConNode* makecon(const Type* t);
   229   virtual ConNode* uncached_makecon(const Type* t)  // override in PhaseValues
   230   { ShouldNotCallThis(); return NULL; }
   232   // Fast int or long constant.  Same as TypeInt::make(i) or TypeLong::make(l).
   233   ConINode* intcon(jint i);
   234   ConLNode* longcon(jlong l);
   236   // Fast zero or null constant.  Same as makecon(Type::get_zero_type(bt)).
   237   ConNode* zerocon(BasicType bt);
   239   // Return a node which computes the same function as this node, but
   240   // in a faster or cheaper fashion.
   241   virtual Node *transform( Node *n ) = 0;
   243   // Return whether two Nodes are equivalent.
   244   // Must not be recursive, since the recursive version is built from this.
   245   // For pessimistic optimizations this is simply pointer equivalence.
   246   bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }
   248   // Return whether two Nodes are equivalent, after stripping casting.
   249   bool eqv_uncast(const Node* n1, const Node* n2) const {
   250     return eqv(n1->uncast(), n2->uncast());
   251   }
   253   // For pessimistic passes, the return type must monotonically narrow.
   254   // For optimistic  passes, the return type must monotonically widen.
   255   // It is possible to get into a "death march" in either type of pass,
   256   // where the types are continually moving but it will take 2**31 or
   257   // more steps to converge.  This doesn't happen on most normal loops.
   258   //
   259   // Here is an example of a deadly loop for an optimistic pass, along
   260   // with a partial trace of inferred types:
   261   //    x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
   262   //    0                 1                join([0..max], 1)
   263   //    [0..1]            [1..2]           join([0..max], [1..2])
   264   //    [0..2]            [1..3]           join([0..max], [1..3])
   265   //      ... ... ...
   266   //    [0..max]          [min]u[1..max]   join([0..max], [min..max])
   267   //    [0..max] ==> fixpoint
   268   // We would have proven, the hard way, that the iteration space is all
   269   // non-negative ints, with the loop terminating due to 32-bit overflow.
   270   //
   271   // Here is the corresponding example for a pessimistic pass:
   272   //    x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
   273   //    int               int              join([0..max], int)
   274   //    [0..max]          [-1..max-1]      join([0..max], [-1..max-1])
   275   //    [0..max-1]        [-1..max-2]      join([0..max], [-1..max-2])
   276   //      ... ... ...
   277   //    [0..1]            [-1..0]          join([0..max], [-1..0])
   278   //    0                 -1               join([0..max], -1)
   279   //    0 == fixpoint
   280   // We would have proven, the hard way, that the iteration space is {0}.
   281   // (Usually, other optimizations will make the "if (x >= 0)" fold up
   282   // before we get into trouble.  But not always.)
   283   //
   284   // It's a pleasant thing to observe that the pessimistic pass
   285   // will make short work of the optimistic pass's deadly loop,
   286   // and vice versa.  That is a good example of the complementary
   287   // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
   288   //
   289   // In any case, only widen or narrow a few times before going to the
   290   // correct flavor of top or bottom.
   291   //
   292   // This call only needs to be made once as the data flows around any
   293   // given cycle.  We do it at Phis, and nowhere else.
   294   // The types presented are the new type of a phi (computed by PhiNode::Value)
   295   // and the previously computed type, last time the phi was visited.
   296   //
   297   // The third argument is upper limit for the saturated value,
   298   // if the phase wishes to widen the new_type.
   299   // If the phase is narrowing, the old type provides a lower limit.
   300   // Caller guarantees that old_type and new_type are no higher than limit_type.
   301   virtual const Type* saturate(const Type* new_type, const Type* old_type,
   302                                const Type* limit_type) const
   303   { ShouldNotCallThis(); return NULL; }
   305 #ifndef PRODUCT
   306   void dump_old2new_map() const;
   307   void dump_new( uint new_lidx ) const;
   308   void dump_types() const;
   309   void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
   310   void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);
   312   uint   _count_progress;       // For profiling, count transforms that make progress
   313   void   set_progress()        { ++_count_progress; assert( allow_progress(),"No progress allowed during verification") }
   314   void   clear_progress()      { _count_progress = 0; }
   315   uint   made_progress() const { return _count_progress; }
   317   uint   _count_transforms;     // For profiling, count transforms performed
   318   void   set_transforms()      { ++_count_transforms; }
   319   void   clear_transforms()    { _count_transforms = 0; }
   320   uint   made_transforms() const{ return _count_transforms; }
   322   bool   _allow_progress;      // progress not allowed during verification pass
   323   void   set_allow_progress(bool allow) { _allow_progress = allow; }
   324   bool   allow_progress()               { return _allow_progress; }
   325 #endif
   326 };
   328 //------------------------------PhaseValues------------------------------------
   329 // Phase infrastructure to support values
   330 class PhaseValues : public PhaseTransform {
   331 protected:
   332   NodeHash  _table;             // Hash table for value-numbering
   334 public:
   335   PhaseValues( Arena *arena, uint est_max_size );
   336   PhaseValues( PhaseValues *pt );
   337   PhaseValues( PhaseValues *ptv, const char *dummy );
   338   NOT_PRODUCT( ~PhaseValues(); )
   339   virtual PhaseIterGVN *is_IterGVN() { return 0; }
   341   // Some Ideal and other transforms delete --> modify --> insert values
   342   bool   hash_delete(Node *n)     { return _table.hash_delete(n); }
   343   void   hash_insert(Node *n)     { _table.hash_insert(n); }
   344   Node  *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
   345   Node  *hash_find(const Node *n) { return _table.hash_find(n); }
   347   // Used after parsing to eliminate values that are no longer in program
   348   void   remove_useless_nodes(VectorSet &useful) {
   349     _table.remove_useless_nodes(useful);
   350     // this may invalidate cached cons so reset the cache
   351     init_con_caches();
   352   }
   354   virtual ConNode* uncached_makecon(const Type* t);  // override from PhaseTransform
   356   virtual const Type* saturate(const Type* new_type, const Type* old_type,
   357                                const Type* limit_type) const
   358   { return new_type; }
   360 #ifndef PRODUCT
   361   uint   _count_new_values;     // For profiling, count new values produced
   362   void    inc_new_values()        { ++_count_new_values; }
   363   void    clear_new_values()      { _count_new_values = 0; }
   364   uint    made_new_values() const { return _count_new_values; }
   365 #endif
   366 };
   369 //------------------------------PhaseGVN---------------------------------------
   370 // Phase for performing local, pessimistic GVN-style optimizations.
   371 class PhaseGVN : public PhaseValues {
   372 public:
   373   PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
   374   PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
   375   PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}
   377   // Return a node which computes the same function as this node, but
   378   // in a faster or cheaper fashion.
   379   Node  *transform( Node *n );
   380   Node  *transform_no_reclaim( Node *n );
   382   // Check for a simple dead loop when a data node references itself.
   383   DEBUG_ONLY(void dead_loop_check(Node *n);)
   384 };
   386 //------------------------------PhaseIterGVN-----------------------------------
   387 // Phase for iteratively performing local, pessimistic GVN-style optimizations.
   388 // and ideal transformations on the graph.
   389 class PhaseIterGVN : public PhaseGVN {
   390  private:
   391   bool _delay_transform;  // When true simply register the node when calling transform
   392                           // instead of actually optimizing it
   394   // Idealize old Node 'n' with respect to its inputs and its value
   395   virtual Node *transform_old( Node *a_node );
   396 protected:
   398   // Idealize new Node 'n' with respect to its inputs and its value
   399   virtual Node *transform( Node *a_node );
   401   // Warm up hash table, type table and initial worklist
   402   void init_worklist( Node *a_root );
   404   virtual const Type* saturate(const Type* new_type, const Type* old_type,
   405                                const Type* limit_type) const;
   406   // Usually returns new_type.  Returns old_type if new_type is only a slight
   407   // improvement, such that it would take many (>>10) steps to reach 2**32.
   409 public:
   410   PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
   411   PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
   412   PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto
   414   virtual PhaseIterGVN *is_IterGVN() { return this; }
   416   Unique_Node_List _worklist;       // Iterative worklist
   418   // Given def-use info and an initial worklist, apply Node::Ideal,
   419   // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
   420   // and dominator info to a fixed point.
   421   void optimize();
   423   // Register a new node with the iter GVN pass without transforming it.
   424   // Used when we need to restructure a Region/Phi area and all the Regions
   425   // and Phis need to complete this one big transform before any other
   426   // transforms can be triggered on the region.
   427   // Optional 'orig' is an earlier version of this node.
   428   // It is significant only for debugging and profiling.
   429   Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);
   431   // Kill a globally dead Node.   It is allowed to have uses which are
   432   // assumed dead and left 'in limbo'.
   433   void remove_globally_dead_node( Node *dead );
   435   // Kill all inputs to a dead node, recursively making more dead nodes.
   436   // The Node must be dead locally, i.e., have no uses.
   437   void remove_dead_node( Node *dead ) {
   438     assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
   439     remove_globally_dead_node(dead);
   440   }
   442   // Subsume users of node 'old' into node 'nn'
   443   // If no Def-Use info existed for 'nn' it will after call.
   444   void subsume_node( Node *old, Node *nn );
   446   // Add users of 'n' to worklist
   447   void add_users_to_worklist0( Node *n );
   448   void add_users_to_worklist ( Node *n );
   450   // Replace old node with new one.
   451   void replace_node( Node *old, Node *nn ) {
   452     add_users_to_worklist(old);
   453     hash_delete(old);
   454     subsume_node(old, nn);
   455   }
   457   bool delay_transform() const { return _delay_transform; }
   459   void set_delay_transform(bool delay) {
   460     _delay_transform = delay;
   461   }
   463 #ifndef PRODUCT
   464 protected:
   465   // Sub-quadratic implementation of VerifyIterativeGVN.
   466   unsigned long _verify_counter;
   467   unsigned long _verify_full_passes;
   468   enum { _verify_window_size = 30 };
   469   Node* _verify_window[_verify_window_size];
   470   void verify_step(Node* n);
   471 #endif
   472 };
   474 //------------------------------PhaseCCP---------------------------------------
   475 // Phase for performing global Conditional Constant Propagation.
   476 // Should be replaced with combined CCP & GVN someday.
   477 class PhaseCCP : public PhaseIterGVN {
   478   // Non-recursive.  Use analysis to transform single Node.
   479   virtual Node *transform_once( Node *n );
   481 public:
   482   PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
   483   NOT_PRODUCT( ~PhaseCCP(); )
   485   // Worklist algorithm identifies constants
   486   void analyze();
   487   // Recursive traversal of program.  Used analysis to modify program.
   488   virtual Node *transform( Node *n );
   489   // Do any transformation after analysis
   490   void          do_transform();
   492   virtual const Type* saturate(const Type* new_type, const Type* old_type,
   493                                const Type* limit_type) const;
   494   // Returns new_type->widen(old_type), which increments the widen bits until
   495   // giving up with TypeInt::INT or TypeLong::LONG.
   496   // Result is clipped to limit_type if necessary.
   498 #ifndef PRODUCT
   499   static uint _total_invokes;    // For profiling, count invocations
   500   void    inc_invokes()          { ++PhaseCCP::_total_invokes; }
   502   static uint _total_constants;  // For profiling, count constants found
   503   uint   _count_constants;
   504   void    clear_constants()      { _count_constants = 0; }
   505   void    inc_constants()        { ++_count_constants; }
   506   uint    count_constants() const { return _count_constants; }
   508   static void print_statistics();
   509 #endif
   510 };
   513 //------------------------------PhasePeephole----------------------------------
   514 // Phase for performing peephole optimizations on register allocated basic blocks.
   515 class PhasePeephole : public PhaseTransform {
   516   PhaseRegAlloc *_regalloc;
   517   PhaseCFG     &_cfg;
   518   // Recursive traversal of program.  Pure function is unused in this phase
   519   virtual Node *transform( Node *n );
   521 public:
   522   PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
   523   NOT_PRODUCT( ~PhasePeephole(); )
   525   // Do any transformation after analysis
   526   void          do_transform();
   528 #ifndef PRODUCT
   529   static uint _total_peepholes;  // For profiling, count peephole rules applied
   530   uint   _count_peepholes;
   531   void    clear_peepholes()      { _count_peepholes = 0; }
   532   void    inc_peepholes()        { ++_count_peepholes; }
   533   uint    count_peepholes() const { return _count_peepholes; }
   535   static void print_statistics();
   536 #endif
   537 };

mercurial