src/share/vm/opto/callnode.cpp

Thu, 12 Nov 2009 09:24:21 -0800

author
never
date
Thu, 12 Nov 2009 09:24:21 -0800
changeset 1515
7c57aead6d3e
parent 1475
873ec3787992
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6892658: C2 should optimize some stringbuilder patterns
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_callnode.cpp.incl"
    32 //=============================================================================
    33 uint StartNode::size_of() const { return sizeof(*this); }
    34 uint StartNode::cmp( const Node &n ) const
    35 { return _domain == ((StartNode&)n)._domain; }
    36 const Type *StartNode::bottom_type() const { return _domain; }
    37 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
    38 #ifndef PRODUCT
    39 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
    40 #endif
    42 //------------------------------Ideal------------------------------------------
    43 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
    44   return remove_dead_region(phase, can_reshape) ? this : NULL;
    45 }
    47 //------------------------------calling_convention-----------------------------
    48 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
    49   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
    50 }
    52 //------------------------------Registers--------------------------------------
    53 const RegMask &StartNode::in_RegMask(uint) const {
    54   return RegMask::Empty;
    55 }
    57 //------------------------------match------------------------------------------
    58 // Construct projections for incoming parameters, and their RegMask info
    59 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
    60   switch (proj->_con) {
    61   case TypeFunc::Control:
    62   case TypeFunc::I_O:
    63   case TypeFunc::Memory:
    64     return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
    65   case TypeFunc::FramePtr:
    66     return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
    67   case TypeFunc::ReturnAdr:
    68     return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
    69   case TypeFunc::Parms:
    70   default: {
    71       uint parm_num = proj->_con - TypeFunc::Parms;
    72       const Type *t = _domain->field_at(proj->_con);
    73       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
    74         return new (match->C, 1) ConNode(Type::TOP);
    75       uint ideal_reg = Matcher::base2reg[t->base()];
    76       RegMask &rm = match->_calling_convention_mask[parm_num];
    77       return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
    78     }
    79   }
    80   return NULL;
    81 }
    83 //------------------------------StartOSRNode----------------------------------
    84 // The method start node for an on stack replacement adapter
    86 //------------------------------osr_domain-----------------------------
    87 const TypeTuple *StartOSRNode::osr_domain() {
    88   const Type **fields = TypeTuple::fields(2);
    89   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
    91   return TypeTuple::make(TypeFunc::Parms+1, fields);
    92 }
    94 //=============================================================================
    95 const char * const ParmNode::names[TypeFunc::Parms+1] = {
    96   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
    97 };
    99 #ifndef PRODUCT
   100 void ParmNode::dump_spec(outputStream *st) const {
   101   if( _con < TypeFunc::Parms ) {
   102     st->print(names[_con]);
   103   } else {
   104     st->print("Parm%d: ",_con-TypeFunc::Parms);
   105     // Verbose and WizardMode dump bottom_type for all nodes
   106     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
   107   }
   108 }
   109 #endif
   111 uint ParmNode::ideal_reg() const {
   112   switch( _con ) {
   113   case TypeFunc::Control  : // fall through
   114   case TypeFunc::I_O      : // fall through
   115   case TypeFunc::Memory   : return 0;
   116   case TypeFunc::FramePtr : // fall through
   117   case TypeFunc::ReturnAdr: return Op_RegP;
   118   default                 : assert( _con > TypeFunc::Parms, "" );
   119     // fall through
   120   case TypeFunc::Parms    : {
   121     // Type of argument being passed
   122     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
   123     return Matcher::base2reg[t->base()];
   124   }
   125   }
   126   ShouldNotReachHere();
   127   return 0;
   128 }
   130 //=============================================================================
   131 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
   132   init_req(TypeFunc::Control,cntrl);
   133   init_req(TypeFunc::I_O,i_o);
   134   init_req(TypeFunc::Memory,memory);
   135   init_req(TypeFunc::FramePtr,frameptr);
   136   init_req(TypeFunc::ReturnAdr,retadr);
   137 }
   139 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
   140   return remove_dead_region(phase, can_reshape) ? this : NULL;
   141 }
   143 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
   144   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
   145     ? Type::TOP
   146     : Type::BOTTOM;
   147 }
   149 // Do we Match on this edge index or not?  No edges on return nodes
   150 uint ReturnNode::match_edge(uint idx) const {
   151   return 0;
   152 }
   155 #ifndef PRODUCT
   156 void ReturnNode::dump_req() const {
   157   // Dump the required inputs, enclosed in '(' and ')'
   158   uint i;                       // Exit value of loop
   159   for( i=0; i<req(); i++ ) {    // For all required inputs
   160     if( i == TypeFunc::Parms ) tty->print("returns");
   161     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   162     else tty->print("_ ");
   163   }
   164 }
   165 #endif
   167 //=============================================================================
   168 RethrowNode::RethrowNode(
   169   Node* cntrl,
   170   Node* i_o,
   171   Node* memory,
   172   Node* frameptr,
   173   Node* ret_adr,
   174   Node* exception
   175 ) : Node(TypeFunc::Parms + 1) {
   176   init_req(TypeFunc::Control  , cntrl    );
   177   init_req(TypeFunc::I_O      , i_o      );
   178   init_req(TypeFunc::Memory   , memory   );
   179   init_req(TypeFunc::FramePtr , frameptr );
   180   init_req(TypeFunc::ReturnAdr, ret_adr);
   181   init_req(TypeFunc::Parms    , exception);
   182 }
   184 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
   185   return remove_dead_region(phase, can_reshape) ? this : NULL;
   186 }
   188 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
   189   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
   190     ? Type::TOP
   191     : Type::BOTTOM;
   192 }
   194 uint RethrowNode::match_edge(uint idx) const {
   195   return 0;
   196 }
   198 #ifndef PRODUCT
   199 void RethrowNode::dump_req() const {
   200   // Dump the required inputs, enclosed in '(' and ')'
   201   uint i;                       // Exit value of loop
   202   for( i=0; i<req(); i++ ) {    // For all required inputs
   203     if( i == TypeFunc::Parms ) tty->print("exception");
   204     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   205     else tty->print("_ ");
   206   }
   207 }
   208 #endif
   210 //=============================================================================
   211 // Do we Match on this edge index or not?  Match only target address & method
   212 uint TailCallNode::match_edge(uint idx) const {
   213   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
   214 }
   216 //=============================================================================
   217 // Do we Match on this edge index or not?  Match only target address & oop
   218 uint TailJumpNode::match_edge(uint idx) const {
   219   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
   220 }
   222 //=============================================================================
   223 JVMState::JVMState(ciMethod* method, JVMState* caller) {
   224   assert(method != NULL, "must be valid call site");
   225   _method = method;
   226   _reexecute = Reexecute_Undefined;
   227   debug_only(_bci = -99);  // random garbage value
   228   debug_only(_map = (SafePointNode*)-1);
   229   _caller = caller;
   230   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
   231   _locoff = TypeFunc::Parms;
   232   _stkoff = _locoff + _method->max_locals();
   233   _monoff = _stkoff + _method->max_stack();
   234   _scloff = _monoff;
   235   _endoff = _monoff;
   236   _sp = 0;
   237 }
   238 JVMState::JVMState(int stack_size) {
   239   _method = NULL;
   240   _bci = InvocationEntryBci;
   241   _reexecute = Reexecute_Undefined;
   242   debug_only(_map = (SafePointNode*)-1);
   243   _caller = NULL;
   244   _depth  = 1;
   245   _locoff = TypeFunc::Parms;
   246   _stkoff = _locoff;
   247   _monoff = _stkoff + stack_size;
   248   _scloff = _monoff;
   249   _endoff = _monoff;
   250   _sp = 0;
   251 }
   253 //--------------------------------of_depth-------------------------------------
   254 JVMState* JVMState::of_depth(int d) const {
   255   const JVMState* jvmp = this;
   256   assert(0 < d && (uint)d <= depth(), "oob");
   257   for (int skip = depth() - d; skip > 0; skip--) {
   258     jvmp = jvmp->caller();
   259   }
   260   assert(jvmp->depth() == (uint)d, "found the right one");
   261   return (JVMState*)jvmp;
   262 }
   264 //-----------------------------same_calls_as-----------------------------------
   265 bool JVMState::same_calls_as(const JVMState* that) const {
   266   if (this == that)                    return true;
   267   if (this->depth() != that->depth())  return false;
   268   const JVMState* p = this;
   269   const JVMState* q = that;
   270   for (;;) {
   271     if (p->_method != q->_method)    return false;
   272     if (p->_method == NULL)          return true;   // bci is irrelevant
   273     if (p->_bci    != q->_bci)       return false;
   274     if (p->_reexecute != q->_reexecute)  return false;
   275     p = p->caller();
   276     q = q->caller();
   277     if (p == q)                      return true;
   278     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
   279   }
   280 }
   282 //------------------------------debug_start------------------------------------
   283 uint JVMState::debug_start()  const {
   284   debug_only(JVMState* jvmroot = of_depth(1));
   285   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
   286   return of_depth(1)->locoff();
   287 }
   289 //-------------------------------debug_end-------------------------------------
   290 uint JVMState::debug_end() const {
   291   debug_only(JVMState* jvmroot = of_depth(1));
   292   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
   293   return endoff();
   294 }
   296 //------------------------------debug_depth------------------------------------
   297 uint JVMState::debug_depth() const {
   298   uint total = 0;
   299   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
   300     total += jvmp->debug_size();
   301   }
   302   return total;
   303 }
   305 #ifndef PRODUCT
   307 //------------------------------format_helper----------------------------------
   308 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
   309 // any defined value or not.  If it does, print out the register or constant.
   310 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
   311   if (n == NULL) { st->print(" NULL"); return; }
   312   if (n->is_SafePointScalarObject()) {
   313     // Scalar replacement.
   314     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
   315     scobjs->append_if_missing(spobj);
   316     int sco_n = scobjs->find(spobj);
   317     assert(sco_n >= 0, "");
   318     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
   319     return;
   320   }
   321   if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
   322     char buf[50];
   323     regalloc->dump_register(n,buf);
   324     st->print(" %s%d]=%s",msg,i,buf);
   325   } else {                      // No register, but might be constant
   326     const Type *t = n->bottom_type();
   327     switch (t->base()) {
   328     case Type::Int:
   329       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
   330       break;
   331     case Type::AnyPtr:
   332       assert( t == TypePtr::NULL_PTR, "" );
   333       st->print(" %s%d]=#NULL",msg,i);
   334       break;
   335     case Type::AryPtr:
   336     case Type::KlassPtr:
   337     case Type::InstPtr:
   338       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
   339       break;
   340     case Type::NarrowOop:
   341       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
   342       break;
   343     case Type::RawPtr:
   344       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
   345       break;
   346     case Type::DoubleCon:
   347       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
   348       break;
   349     case Type::FloatCon:
   350       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
   351       break;
   352     case Type::Long:
   353       st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
   354       break;
   355     case Type::Half:
   356     case Type::Top:
   357       st->print(" %s%d]=_",msg,i);
   358       break;
   359     default: ShouldNotReachHere();
   360     }
   361   }
   362 }
   364 //------------------------------format-----------------------------------------
   365 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
   366   st->print("        #");
   367   if( _method ) {
   368     _method->print_short_name(st);
   369     st->print(" @ bci:%d ",_bci);
   370   } else {
   371     st->print_cr(" runtime stub ");
   372     return;
   373   }
   374   if (n->is_MachSafePoint()) {
   375     GrowableArray<SafePointScalarObjectNode*> scobjs;
   376     MachSafePointNode *mcall = n->as_MachSafePoint();
   377     uint i;
   378     // Print locals
   379     for( i = 0; i < (uint)loc_size(); i++ )
   380       format_helper( regalloc, st, mcall->local(this, i), "L[", i, &scobjs );
   381     // Print stack
   382     for (i = 0; i < (uint)stk_size(); i++) {
   383       if ((uint)(_stkoff + i) >= mcall->len())
   384         st->print(" oob ");
   385       else
   386        format_helper( regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs );
   387     }
   388     for (i = 0; (int)i < nof_monitors(); i++) {
   389       Node *box = mcall->monitor_box(this, i);
   390       Node *obj = mcall->monitor_obj(this, i);
   391       if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
   392         while( !box->is_BoxLock() )  box = box->in(1);
   393         format_helper( regalloc, st, box, "MON-BOX[", i, &scobjs );
   394       } else {
   395         OptoReg::Name box_reg = BoxLockNode::stack_slot(box);
   396         st->print(" MON-BOX%d=%s+%d",
   397                    i,
   398                    OptoReg::regname(OptoReg::c_frame_pointer),
   399                    regalloc->reg2offset(box_reg));
   400       }
   401       const char* obj_msg = "MON-OBJ[";
   402       if (EliminateLocks) {
   403         while( !box->is_BoxLock() )  box = box->in(1);
   404         if (box->as_BoxLock()->is_eliminated())
   405           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
   406       }
   407       format_helper( regalloc, st, obj, obj_msg, i, &scobjs );
   408     }
   410     for (i = 0; i < (uint)scobjs.length(); i++) {
   411       // Scalar replaced objects.
   412       st->print_cr("");
   413       st->print("        # ScObj" INT32_FORMAT " ", i);
   414       SafePointScalarObjectNode* spobj = scobjs.at(i);
   415       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
   416       assert(cik->is_instance_klass() ||
   417              cik->is_array_klass(), "Not supported allocation.");
   418       ciInstanceKlass *iklass = NULL;
   419       if (cik->is_instance_klass()) {
   420         cik->print_name_on(st);
   421         iklass = cik->as_instance_klass();
   422       } else if (cik->is_type_array_klass()) {
   423         cik->as_array_klass()->base_element_type()->print_name_on(st);
   424         st->print("[%d]", spobj->n_fields());
   425       } else if (cik->is_obj_array_klass()) {
   426         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
   427         if (cie->is_instance_klass()) {
   428           cie->print_name_on(st);
   429         } else if (cie->is_type_array_klass()) {
   430           cie->as_array_klass()->base_element_type()->print_name_on(st);
   431         } else {
   432           ShouldNotReachHere();
   433         }
   434         st->print("[%d]", spobj->n_fields());
   435         int ndim = cik->as_array_klass()->dimension() - 1;
   436         while (ndim-- > 0) {
   437           st->print("[]");
   438         }
   439       }
   440       st->print("={");
   441       uint nf = spobj->n_fields();
   442       if (nf > 0) {
   443         uint first_ind = spobj->first_index();
   444         Node* fld_node = mcall->in(first_ind);
   445         ciField* cifield;
   446         if (iklass != NULL) {
   447           st->print(" [");
   448           cifield = iklass->nonstatic_field_at(0);
   449           cifield->print_name_on(st);
   450           format_helper( regalloc, st, fld_node, ":", 0, &scobjs );
   451         } else {
   452           format_helper( regalloc, st, fld_node, "[", 0, &scobjs );
   453         }
   454         for (uint j = 1; j < nf; j++) {
   455           fld_node = mcall->in(first_ind+j);
   456           if (iklass != NULL) {
   457             st->print(", [");
   458             cifield = iklass->nonstatic_field_at(j);
   459             cifield->print_name_on(st);
   460             format_helper( regalloc, st, fld_node, ":", j, &scobjs );
   461           } else {
   462             format_helper( regalloc, st, fld_node, ", [", j, &scobjs );
   463           }
   464         }
   465       }
   466       st->print(" }");
   467     }
   468   }
   469   st->print_cr("");
   470   if (caller() != NULL)  caller()->format(regalloc, n, st);
   471 }
   474 void JVMState::dump_spec(outputStream *st) const {
   475   if (_method != NULL) {
   476     bool printed = false;
   477     if (!Verbose) {
   478       // The JVMS dumps make really, really long lines.
   479       // Take out the most boring parts, which are the package prefixes.
   480       char buf[500];
   481       stringStream namest(buf, sizeof(buf));
   482       _method->print_short_name(&namest);
   483       if (namest.count() < sizeof(buf)) {
   484         const char* name = namest.base();
   485         if (name[0] == ' ')  ++name;
   486         const char* endcn = strchr(name, ':');  // end of class name
   487         if (endcn == NULL)  endcn = strchr(name, '(');
   488         if (endcn == NULL)  endcn = name + strlen(name);
   489         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
   490           --endcn;
   491         st->print(" %s", endcn);
   492         printed = true;
   493       }
   494     }
   495     if (!printed)
   496       _method->print_short_name(st);
   497     st->print(" @ bci:%d",_bci);
   498     if(_reexecute == Reexecute_True)
   499       st->print(" reexecute");
   500   } else {
   501     st->print(" runtime stub");
   502   }
   503   if (caller() != NULL)  caller()->dump_spec(st);
   504 }
   507 void JVMState::dump_on(outputStream* st) const {
   508   if (_map && !((uintptr_t)_map & 1)) {
   509     if (_map->len() > _map->req()) {  // _map->has_exceptions()
   510       Node* ex = _map->in(_map->req());  // _map->next_exception()
   511       // skip the first one; it's already being printed
   512       while (ex != NULL && ex->len() > ex->req()) {
   513         ex = ex->in(ex->req());  // ex->next_exception()
   514         ex->dump(1);
   515       }
   516     }
   517     _map->dump(2);
   518   }
   519   st->print("JVMS depth=%d loc=%d stk=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
   520              depth(), locoff(), stkoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
   521   if (_method == NULL) {
   522     st->print_cr("(none)");
   523   } else {
   524     _method->print_name(st);
   525     st->cr();
   526     if (bci() >= 0 && bci() < _method->code_size()) {
   527       st->print("    bc: ");
   528       _method->print_codes_on(bci(), bci()+1, st);
   529     }
   530   }
   531   if (caller() != NULL) {
   532     caller()->dump_on(st);
   533   }
   534 }
   536 // Extra way to dump a jvms from the debugger,
   537 // to avoid a bug with C++ member function calls.
   538 void dump_jvms(JVMState* jvms) {
   539   jvms->dump();
   540 }
   541 #endif
   543 //--------------------------clone_shallow--------------------------------------
   544 JVMState* JVMState::clone_shallow(Compile* C) const {
   545   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
   546   n->set_bci(_bci);
   547   n->_reexecute = _reexecute;
   548   n->set_locoff(_locoff);
   549   n->set_stkoff(_stkoff);
   550   n->set_monoff(_monoff);
   551   n->set_scloff(_scloff);
   552   n->set_endoff(_endoff);
   553   n->set_sp(_sp);
   554   n->set_map(_map);
   555   return n;
   556 }
   558 //---------------------------clone_deep----------------------------------------
   559 JVMState* JVMState::clone_deep(Compile* C) const {
   560   JVMState* n = clone_shallow(C);
   561   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
   562     p->_caller = p->_caller->clone_shallow(C);
   563   }
   564   assert(n->depth() == depth(), "sanity");
   565   assert(n->debug_depth() == debug_depth(), "sanity");
   566   return n;
   567 }
   569 //=============================================================================
   570 uint CallNode::cmp( const Node &n ) const
   571 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
   572 #ifndef PRODUCT
   573 void CallNode::dump_req() const {
   574   // Dump the required inputs, enclosed in '(' and ')'
   575   uint i;                       // Exit value of loop
   576   for( i=0; i<req(); i++ ) {    // For all required inputs
   577     if( i == TypeFunc::Parms ) tty->print("(");
   578     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   579     else tty->print("_ ");
   580   }
   581   tty->print(")");
   582 }
   584 void CallNode::dump_spec(outputStream *st) const {
   585   st->print(" ");
   586   tf()->dump_on(st);
   587   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
   588   if (jvms() != NULL)  jvms()->dump_spec(st);
   589 }
   590 #endif
   592 const Type *CallNode::bottom_type() const { return tf()->range(); }
   593 const Type *CallNode::Value(PhaseTransform *phase) const {
   594   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
   595   return tf()->range();
   596 }
   598 //------------------------------calling_convention-----------------------------
   599 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
   600   // Use the standard compiler calling convention
   601   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
   602 }
   605 //------------------------------match------------------------------------------
   606 // Construct projections for control, I/O, memory-fields, ..., and
   607 // return result(s) along with their RegMask info
   608 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
   609   switch (proj->_con) {
   610   case TypeFunc::Control:
   611   case TypeFunc::I_O:
   612   case TypeFunc::Memory:
   613     return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
   615   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
   616     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
   617     // 2nd half of doubles and longs
   618     return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
   620   case TypeFunc::Parms: {       // Normal returns
   621     uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
   622     OptoRegPair regs = is_CallRuntime()
   623       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
   624       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
   625     RegMask rm = RegMask(regs.first());
   626     if( OptoReg::is_valid(regs.second()) )
   627       rm.Insert( regs.second() );
   628     return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
   629   }
   631   case TypeFunc::ReturnAdr:
   632   case TypeFunc::FramePtr:
   633   default:
   634     ShouldNotReachHere();
   635   }
   636   return NULL;
   637 }
   639 // Do we Match on this edge index or not?  Match no edges
   640 uint CallNode::match_edge(uint idx) const {
   641   return 0;
   642 }
   644 //
   645 // Determine whether the call could modify the field of the specified
   646 // instance at the specified offset.
   647 //
   648 bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
   649   const TypeOopPtr *adrInst_t  = addr_t->isa_oopptr();
   651   // If not an OopPtr or not an instance type, assume the worst.
   652   // Note: currently this method is called only for instance types.
   653   if (adrInst_t == NULL || !adrInst_t->is_known_instance()) {
   654     return true;
   655   }
   656   // The instance_id is set only for scalar-replaceable allocations which
   657   // are not passed as arguments according to Escape Analysis.
   658   return false;
   659 }
   661 // Does this call have a direct reference to n other than debug information?
   662 bool CallNode::has_non_debug_use(Node *n) {
   663   const TypeTuple * d = tf()->domain();
   664   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   665     Node *arg = in(i);
   666     if (arg == n) {
   667       return true;
   668     }
   669   }
   670   return false;
   671 }
   673 // Returns the unique CheckCastPP of a call
   674 // or 'this' if there are several CheckCastPP
   675 // or returns NULL if there is no one.
   676 Node *CallNode::result_cast() {
   677   Node *cast = NULL;
   679   Node *p = proj_out(TypeFunc::Parms);
   680   if (p == NULL)
   681     return NULL;
   683   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
   684     Node *use = p->fast_out(i);
   685     if (use->is_CheckCastPP()) {
   686       if (cast != NULL) {
   687         return this;  // more than 1 CheckCastPP
   688       }
   689       cast = use;
   690     }
   691   }
   692   return cast;
   693 }
   696 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
   697   projs->fallthrough_proj      = NULL;
   698   projs->fallthrough_catchproj = NULL;
   699   projs->fallthrough_ioproj    = NULL;
   700   projs->catchall_ioproj       = NULL;
   701   projs->catchall_catchproj    = NULL;
   702   projs->fallthrough_memproj   = NULL;
   703   projs->catchall_memproj      = NULL;
   704   projs->resproj               = NULL;
   705   projs->exobj                 = NULL;
   707   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
   708     ProjNode *pn = fast_out(i)->as_Proj();
   709     if (pn->outcnt() == 0) continue;
   710     switch (pn->_con) {
   711     case TypeFunc::Control:
   712       {
   713         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   714         projs->fallthrough_proj = pn;
   715         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   716         const Node *cn = pn->fast_out(j);
   717         if (cn->is_Catch()) {
   718           ProjNode *cpn = NULL;
   719           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   720             cpn = cn->fast_out(k)->as_Proj();
   721             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   722             if (cpn->_con == CatchProjNode::fall_through_index)
   723               projs->fallthrough_catchproj = cpn;
   724             else {
   725               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   726               projs->catchall_catchproj = cpn;
   727             }
   728           }
   729         }
   730         break;
   731       }
   732     case TypeFunc::I_O:
   733       if (pn->_is_io_use)
   734         projs->catchall_ioproj = pn;
   735       else
   736         projs->fallthrough_ioproj = pn;
   737       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
   738         Node* e = pn->out(j);
   739         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj()) {
   740           assert(projs->exobj == NULL, "only one");
   741           projs->exobj = e;
   742         }
   743       }
   744       break;
   745     case TypeFunc::Memory:
   746       if (pn->_is_io_use)
   747         projs->catchall_memproj = pn;
   748       else
   749         projs->fallthrough_memproj = pn;
   750       break;
   751     case TypeFunc::Parms:
   752       projs->resproj = pn;
   753       break;
   754     default:
   755       assert(false, "unexpected projection from allocation node.");
   756     }
   757   }
   759   // The resproj may not exist because the result couuld be ignored
   760   // and the exception object may not exist if an exception handler
   761   // swallows the exception but all the other must exist and be found.
   762   assert(projs->fallthrough_proj      != NULL, "must be found");
   763   assert(projs->fallthrough_catchproj != NULL, "must be found");
   764   assert(projs->fallthrough_memproj   != NULL, "must be found");
   765   assert(projs->fallthrough_ioproj    != NULL, "must be found");
   766   assert(projs->catchall_catchproj    != NULL, "must be found");
   767   if (separate_io_proj) {
   768     assert(projs->catchall_memproj      != NULL, "must be found");
   769     assert(projs->catchall_ioproj       != NULL, "must be found");
   770   }
   771 }
   774 //=============================================================================
   775 uint CallJavaNode::size_of() const { return sizeof(*this); }
   776 uint CallJavaNode::cmp( const Node &n ) const {
   777   CallJavaNode &call = (CallJavaNode&)n;
   778   return CallNode::cmp(call) && _method == call._method;
   779 }
   780 #ifndef PRODUCT
   781 void CallJavaNode::dump_spec(outputStream *st) const {
   782   if( _method ) _method->print_short_name(st);
   783   CallNode::dump_spec(st);
   784 }
   785 #endif
   787 //=============================================================================
   788 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
   789 uint CallStaticJavaNode::cmp( const Node &n ) const {
   790   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
   791   return CallJavaNode::cmp(call);
   792 }
   794 //----------------------------uncommon_trap_request----------------------------
   795 // If this is an uncommon trap, return the request code, else zero.
   796 int CallStaticJavaNode::uncommon_trap_request() const {
   797   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
   798     return extract_uncommon_trap_request(this);
   799   }
   800   return 0;
   801 }
   802 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
   803 #ifndef PRODUCT
   804   if (!(call->req() > TypeFunc::Parms &&
   805         call->in(TypeFunc::Parms) != NULL &&
   806         call->in(TypeFunc::Parms)->is_Con())) {
   807     assert(_in_dump_cnt != 0, "OK if dumping");
   808     tty->print("[bad uncommon trap]");
   809     return 0;
   810   }
   811 #endif
   812   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
   813 }
   815 #ifndef PRODUCT
   816 void CallStaticJavaNode::dump_spec(outputStream *st) const {
   817   st->print("# Static ");
   818   if (_name != NULL) {
   819     st->print("%s", _name);
   820     int trap_req = uncommon_trap_request();
   821     if (trap_req != 0) {
   822       char buf[100];
   823       st->print("(%s)",
   824                  Deoptimization::format_trap_request(buf, sizeof(buf),
   825                                                      trap_req));
   826     }
   827     st->print(" ");
   828   }
   829   CallJavaNode::dump_spec(st);
   830 }
   831 #endif
   833 //=============================================================================
   834 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
   835 uint CallDynamicJavaNode::cmp( const Node &n ) const {
   836   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
   837   return CallJavaNode::cmp(call);
   838 }
   839 #ifndef PRODUCT
   840 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
   841   st->print("# Dynamic ");
   842   CallJavaNode::dump_spec(st);
   843 }
   844 #endif
   846 //=============================================================================
   847 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
   848 uint CallRuntimeNode::cmp( const Node &n ) const {
   849   CallRuntimeNode &call = (CallRuntimeNode&)n;
   850   return CallNode::cmp(call) && !strcmp(_name,call._name);
   851 }
   852 #ifndef PRODUCT
   853 void CallRuntimeNode::dump_spec(outputStream *st) const {
   854   st->print("# ");
   855   st->print(_name);
   856   CallNode::dump_spec(st);
   857 }
   858 #endif
   860 //------------------------------calling_convention-----------------------------
   861 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
   862   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
   863 }
   865 //=============================================================================
   866 //------------------------------calling_convention-----------------------------
   869 //=============================================================================
   870 #ifndef PRODUCT
   871 void CallLeafNode::dump_spec(outputStream *st) const {
   872   st->print("# ");
   873   st->print(_name);
   874   CallNode::dump_spec(st);
   875 }
   876 #endif
   878 //=============================================================================
   880 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
   881   assert(verify_jvms(jvms), "jvms must match");
   882   int loc = jvms->locoff() + idx;
   883   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
   884     // If current local idx is top then local idx - 1 could
   885     // be a long/double that needs to be killed since top could
   886     // represent the 2nd half ofthe long/double.
   887     uint ideal = in(loc -1)->ideal_reg();
   888     if (ideal == Op_RegD || ideal == Op_RegL) {
   889       // set other (low index) half to top
   890       set_req(loc - 1, in(loc));
   891     }
   892   }
   893   set_req(loc, c);
   894 }
   896 uint SafePointNode::size_of() const { return sizeof(*this); }
   897 uint SafePointNode::cmp( const Node &n ) const {
   898   return (&n == this);          // Always fail except on self
   899 }
   901 //-------------------------set_next_exception----------------------------------
   902 void SafePointNode::set_next_exception(SafePointNode* n) {
   903   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
   904   if (len() == req()) {
   905     if (n != NULL)  add_prec(n);
   906   } else {
   907     set_prec(req(), n);
   908   }
   909 }
   912 //----------------------------next_exception-----------------------------------
   913 SafePointNode* SafePointNode::next_exception() const {
   914   if (len() == req()) {
   915     return NULL;
   916   } else {
   917     Node* n = in(req());
   918     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
   919     return (SafePointNode*) n;
   920   }
   921 }
   924 //------------------------------Ideal------------------------------------------
   925 // Skip over any collapsed Regions
   926 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   927   return remove_dead_region(phase, can_reshape) ? this : NULL;
   928 }
   930 //------------------------------Identity---------------------------------------
   931 // Remove obviously duplicate safepoints
   932 Node *SafePointNode::Identity( PhaseTransform *phase ) {
   934   // If you have back to back safepoints, remove one
   935   if( in(TypeFunc::Control)->is_SafePoint() )
   936     return in(TypeFunc::Control);
   938   if( in(0)->is_Proj() ) {
   939     Node *n0 = in(0)->in(0);
   940     // Check if he is a call projection (except Leaf Call)
   941     if( n0->is_Catch() ) {
   942       n0 = n0->in(0)->in(0);
   943       assert( n0->is_Call(), "expect a call here" );
   944     }
   945     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
   946       // Useless Safepoint, so remove it
   947       return in(TypeFunc::Control);
   948     }
   949   }
   951   return this;
   952 }
   954 //------------------------------Value------------------------------------------
   955 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
   956   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
   957   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
   958   return Type::CONTROL;
   959 }
   961 #ifndef PRODUCT
   962 void SafePointNode::dump_spec(outputStream *st) const {
   963   st->print(" SafePoint ");
   964 }
   965 #endif
   967 const RegMask &SafePointNode::in_RegMask(uint idx) const {
   968   if( idx < TypeFunc::Parms ) return RegMask::Empty;
   969   // Values outside the domain represent debug info
   970   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
   971 }
   972 const RegMask &SafePointNode::out_RegMask() const {
   973   return RegMask::Empty;
   974 }
   977 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
   978   assert((int)grow_by > 0, "sanity");
   979   int monoff = jvms->monoff();
   980   int scloff = jvms->scloff();
   981   int endoff = jvms->endoff();
   982   assert(endoff == (int)req(), "no other states or debug info after me");
   983   Node* top = Compile::current()->top();
   984   for (uint i = 0; i < grow_by; i++) {
   985     ins_req(monoff, top);
   986   }
   987   jvms->set_monoff(monoff + grow_by);
   988   jvms->set_scloff(scloff + grow_by);
   989   jvms->set_endoff(endoff + grow_by);
   990 }
   992 void SafePointNode::push_monitor(const FastLockNode *lock) {
   993   // Add a LockNode, which points to both the original BoxLockNode (the
   994   // stack space for the monitor) and the Object being locked.
   995   const int MonitorEdges = 2;
   996   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
   997   assert(req() == jvms()->endoff(), "correct sizing");
   998   int nextmon = jvms()->scloff();
   999   if (GenerateSynchronizationCode) {
  1000     add_req(lock->box_node());
  1001     add_req(lock->obj_node());
  1002   } else {
  1003     Node* top = Compile::current()->top();
  1004     add_req(top);
  1005     add_req(top);
  1007   jvms()->set_scloff(nextmon+MonitorEdges);
  1008   jvms()->set_endoff(req());
  1011 void SafePointNode::pop_monitor() {
  1012   // Delete last monitor from debug info
  1013   debug_only(int num_before_pop = jvms()->nof_monitors());
  1014   const int MonitorEdges = (1<<JVMState::logMonitorEdges);
  1015   int scloff = jvms()->scloff();
  1016   int endoff = jvms()->endoff();
  1017   int new_scloff = scloff - MonitorEdges;
  1018   int new_endoff = endoff - MonitorEdges;
  1019   jvms()->set_scloff(new_scloff);
  1020   jvms()->set_endoff(new_endoff);
  1021   while (scloff > new_scloff)  del_req(--scloff);
  1022   assert(jvms()->nof_monitors() == num_before_pop-1, "");
  1025 Node *SafePointNode::peek_monitor_box() const {
  1026   int mon = jvms()->nof_monitors() - 1;
  1027   assert(mon >= 0, "most have a monitor");
  1028   return monitor_box(jvms(), mon);
  1031 Node *SafePointNode::peek_monitor_obj() const {
  1032   int mon = jvms()->nof_monitors() - 1;
  1033   assert(mon >= 0, "most have a monitor");
  1034   return monitor_obj(jvms(), mon);
  1037 // Do we Match on this edge index or not?  Match no edges
  1038 uint SafePointNode::match_edge(uint idx) const {
  1039   if( !needs_polling_address_input() )
  1040     return 0;
  1042   return (TypeFunc::Parms == idx);
  1045 //==============  SafePointScalarObjectNode  ==============
  1047 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
  1048 #ifdef ASSERT
  1049                                                      AllocateNode* alloc,
  1050 #endif
  1051                                                      uint first_index,
  1052                                                      uint n_fields) :
  1053   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
  1054 #ifdef ASSERT
  1055   _alloc(alloc),
  1056 #endif
  1057   _first_index(first_index),
  1058   _n_fields(n_fields)
  1060   init_class_id(Class_SafePointScalarObject);
  1063 bool SafePointScalarObjectNode::pinned() const { return true; }
  1064 bool SafePointScalarObjectNode::depends_only_on_test() const { return false; }
  1066 uint SafePointScalarObjectNode::ideal_reg() const {
  1067   return 0; // No matching to machine instruction
  1070 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
  1071   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
  1074 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
  1075   return RegMask::Empty;
  1078 uint SafePointScalarObjectNode::match_edge(uint idx) const {
  1079   return 0;
  1082 SafePointScalarObjectNode*
  1083 SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
  1084   void* cached = (*sosn_map)[(void*)this];
  1085   if (cached != NULL) {
  1086     return (SafePointScalarObjectNode*)cached;
  1088   Compile* C = Compile::current();
  1089   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
  1090   res->_first_index += jvms_adj;
  1091   sosn_map->Insert((void*)this, (void*)res);
  1092   return res;
  1096 #ifndef PRODUCT
  1097 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
  1098   st->print(" # fields@[%d..%d]", first_index(),
  1099              first_index() + n_fields() - 1);
  1102 #endif
  1104 //=============================================================================
  1105 uint AllocateNode::size_of() const { return sizeof(*this); }
  1107 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
  1108                            Node *ctrl, Node *mem, Node *abio,
  1109                            Node *size, Node *klass_node, Node *initial_test)
  1110   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
  1112   init_class_id(Class_Allocate);
  1113   init_flags(Flag_is_macro);
  1114   _is_scalar_replaceable = false;
  1115   Node *topnode = C->top();
  1117   init_req( TypeFunc::Control  , ctrl );
  1118   init_req( TypeFunc::I_O      , abio );
  1119   init_req( TypeFunc::Memory   , mem );
  1120   init_req( TypeFunc::ReturnAdr, topnode );
  1121   init_req( TypeFunc::FramePtr , topnode );
  1122   init_req( AllocSize          , size);
  1123   init_req( KlassNode          , klass_node);
  1124   init_req( InitialTest        , initial_test);
  1125   init_req( ALength            , topnode);
  1126   C->add_macro_node(this);
  1129 //=============================================================================
  1130 uint AllocateArrayNode::size_of() const { return sizeof(*this); }
  1132 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1133   if (remove_dead_region(phase, can_reshape))  return this;
  1135   const Type* type = phase->type(Ideal_length());
  1136   if (type->isa_int() && type->is_int()->_hi < 0) {
  1137     if (can_reshape) {
  1138       PhaseIterGVN *igvn = phase->is_IterGVN();
  1139       // Unreachable fall through path (negative array length),
  1140       // the allocation can only throw so disconnect it.
  1141       Node* proj = proj_out(TypeFunc::Control);
  1142       Node* catchproj = NULL;
  1143       if (proj != NULL) {
  1144         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
  1145           Node *cn = proj->fast_out(i);
  1146           if (cn->is_Catch()) {
  1147             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
  1148             break;
  1152       if (catchproj != NULL && catchproj->outcnt() > 0 &&
  1153           (catchproj->outcnt() > 1 ||
  1154            catchproj->unique_out()->Opcode() != Op_Halt)) {
  1155         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
  1156         Node* nproj = catchproj->clone();
  1157         igvn->register_new_node_with_optimizer(nproj);
  1159         Node *frame = new (phase->C, 1) ParmNode( phase->C->start(), TypeFunc::FramePtr );
  1160         frame = phase->transform(frame);
  1161         // Halt & Catch Fire
  1162         Node *halt = new (phase->C, TypeFunc::Parms) HaltNode( nproj, frame );
  1163         phase->C->root()->add_req(halt);
  1164         phase->transform(halt);
  1166         igvn->replace_node(catchproj, phase->C->top());
  1167         return this;
  1169     } else {
  1170       // Can't correct it during regular GVN so register for IGVN
  1171       phase->C->record_for_igvn(this);
  1174   return NULL;
  1177 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
  1178 // CastII, if appropriate.  If we are not allowed to create new nodes, and
  1179 // a CastII is appropriate, return NULL.
  1180 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
  1181   Node *length = in(AllocateNode::ALength);
  1182   assert(length != NULL, "length is not null");
  1184   const TypeInt* length_type = phase->find_int_type(length);
  1185   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
  1187   if (ary_type != NULL && length_type != NULL) {
  1188     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
  1189     if (narrow_length_type != length_type) {
  1190       // Assert one of:
  1191       //   - the narrow_length is 0
  1192       //   - the narrow_length is not wider than length
  1193       assert(narrow_length_type == TypeInt::ZERO ||
  1194              (narrow_length_type->_hi <= length_type->_hi &&
  1195               narrow_length_type->_lo >= length_type->_lo),
  1196              "narrow type must be narrower than length type");
  1198       // Return NULL if new nodes are not allowed
  1199       if (!allow_new_nodes) return NULL;
  1200       // Create a cast which is control dependent on the initialization to
  1201       // propagate the fact that the array length must be positive.
  1202       length = new (phase->C, 2) CastIINode(length, narrow_length_type);
  1203       length->set_req(0, initialization()->proj_out(0));
  1207   return length;
  1210 //=============================================================================
  1211 uint LockNode::size_of() const { return sizeof(*this); }
  1213 // Redundant lock elimination
  1214 //
  1215 // There are various patterns of locking where we release and
  1216 // immediately reacquire a lock in a piece of code where no operations
  1217 // occur in between that would be observable.  In those cases we can
  1218 // skip releasing and reacquiring the lock without violating any
  1219 // fairness requirements.  Doing this around a loop could cause a lock
  1220 // to be held for a very long time so we concentrate on non-looping
  1221 // control flow.  We also require that the operations are fully
  1222 // redundant meaning that we don't introduce new lock operations on
  1223 // some paths so to be able to eliminate it on others ala PRE.  This
  1224 // would probably require some more extensive graph manipulation to
  1225 // guarantee that the memory edges were all handled correctly.
  1226 //
  1227 // Assuming p is a simple predicate which can't trap in any way and s
  1228 // is a synchronized method consider this code:
  1229 //
  1230 //   s();
  1231 //   if (p)
  1232 //     s();
  1233 //   else
  1234 //     s();
  1235 //   s();
  1236 //
  1237 // 1. The unlocks of the first call to s can be eliminated if the
  1238 // locks inside the then and else branches are eliminated.
  1239 //
  1240 // 2. The unlocks of the then and else branches can be eliminated if
  1241 // the lock of the final call to s is eliminated.
  1242 //
  1243 // Either of these cases subsumes the simple case of sequential control flow
  1244 //
  1245 // Addtionally we can eliminate versions without the else case:
  1246 //
  1247 //   s();
  1248 //   if (p)
  1249 //     s();
  1250 //   s();
  1251 //
  1252 // 3. In this case we eliminate the unlock of the first s, the lock
  1253 // and unlock in the then case and the lock in the final s.
  1254 //
  1255 // Note also that in all these cases the then/else pieces don't have
  1256 // to be trivial as long as they begin and end with synchronization
  1257 // operations.
  1258 //
  1259 //   s();
  1260 //   if (p)
  1261 //     s();
  1262 //     f();
  1263 //     s();
  1264 //   s();
  1265 //
  1266 // The code will work properly for this case, leaving in the unlock
  1267 // before the call to f and the relock after it.
  1268 //
  1269 // A potentially interesting case which isn't handled here is when the
  1270 // locking is partially redundant.
  1271 //
  1272 //   s();
  1273 //   if (p)
  1274 //     s();
  1275 //
  1276 // This could be eliminated putting unlocking on the else case and
  1277 // eliminating the first unlock and the lock in the then side.
  1278 // Alternatively the unlock could be moved out of the then side so it
  1279 // was after the merge and the first unlock and second lock
  1280 // eliminated.  This might require less manipulation of the memory
  1281 // state to get correct.
  1282 //
  1283 // Additionally we might allow work between a unlock and lock before
  1284 // giving up eliminating the locks.  The current code disallows any
  1285 // conditional control flow between these operations.  A formulation
  1286 // similar to partial redundancy elimination computing the
  1287 // availability of unlocking and the anticipatability of locking at a
  1288 // program point would allow detection of fully redundant locking with
  1289 // some amount of work in between.  I'm not sure how often I really
  1290 // think that would occur though.  Most of the cases I've seen
  1291 // indicate it's likely non-trivial work would occur in between.
  1292 // There may be other more complicated constructs where we could
  1293 // eliminate locking but I haven't seen any others appear as hot or
  1294 // interesting.
  1295 //
  1296 // Locking and unlocking have a canonical form in ideal that looks
  1297 // roughly like this:
  1298 //
  1299 //              <obj>
  1300 //                | \\------+
  1301 //                |  \       \
  1302 //                | BoxLock   \
  1303 //                |  |   |     \
  1304 //                |  |    \     \
  1305 //                |  |   FastLock
  1306 //                |  |   /
  1307 //                |  |  /
  1308 //                |  |  |
  1309 //
  1310 //               Lock
  1311 //                |
  1312 //            Proj #0
  1313 //                |
  1314 //            MembarAcquire
  1315 //                |
  1316 //            Proj #0
  1317 //
  1318 //            MembarRelease
  1319 //                |
  1320 //            Proj #0
  1321 //                |
  1322 //              Unlock
  1323 //                |
  1324 //            Proj #0
  1325 //
  1326 //
  1327 // This code proceeds by processing Lock nodes during PhaseIterGVN
  1328 // and searching back through its control for the proper code
  1329 // patterns.  Once it finds a set of lock and unlock operations to
  1330 // eliminate they are marked as eliminatable which causes the
  1331 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
  1332 //
  1333 //=============================================================================
  1335 //
  1336 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
  1337 //   - copy regions.  (These may not have been optimized away yet.)
  1338 //   - eliminated locking nodes
  1339 //
  1340 static Node *next_control(Node *ctrl) {
  1341   if (ctrl == NULL)
  1342     return NULL;
  1343   while (1) {
  1344     if (ctrl->is_Region()) {
  1345       RegionNode *r = ctrl->as_Region();
  1346       Node *n = r->is_copy();
  1347       if (n == NULL)
  1348         break;  // hit a region, return it
  1349       else
  1350         ctrl = n;
  1351     } else if (ctrl->is_Proj()) {
  1352       Node *in0 = ctrl->in(0);
  1353       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
  1354         ctrl = in0->in(0);
  1355       } else {
  1356         break;
  1358     } else {
  1359       break; // found an interesting control
  1362   return ctrl;
  1364 //
  1365 // Given a control, see if it's the control projection of an Unlock which
  1366 // operating on the same object as lock.
  1367 //
  1368 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
  1369                                             GrowableArray<AbstractLockNode*> &lock_ops) {
  1370   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
  1371   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
  1372     Node *n = ctrl_proj->in(0);
  1373     if (n != NULL && n->is_Unlock()) {
  1374       UnlockNode *unlock = n->as_Unlock();
  1375       if ((lock->obj_node() == unlock->obj_node()) &&
  1376           (lock->box_node() == unlock->box_node()) && !unlock->is_eliminated()) {
  1377         lock_ops.append(unlock);
  1378         return true;
  1382   return false;
  1385 //
  1386 // Find the lock matching an unlock.  Returns null if a safepoint
  1387 // or complicated control is encountered first.
  1388 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
  1389   LockNode *lock_result = NULL;
  1390   // find the matching lock, or an intervening safepoint
  1391   Node *ctrl = next_control(unlock->in(0));
  1392   while (1) {
  1393     assert(ctrl != NULL, "invalid control graph");
  1394     assert(!ctrl->is_Start(), "missing lock for unlock");
  1395     if (ctrl->is_top()) break;  // dead control path
  1396     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
  1397     if (ctrl->is_SafePoint()) {
  1398         break;  // found a safepoint (may be the lock we are searching for)
  1399     } else if (ctrl->is_Region()) {
  1400       // Check for a simple diamond pattern.  Punt on anything more complicated
  1401       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
  1402         Node *in1 = next_control(ctrl->in(1));
  1403         Node *in2 = next_control(ctrl->in(2));
  1404         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
  1405              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
  1406           ctrl = next_control(in1->in(0)->in(0));
  1407         } else {
  1408           break;
  1410       } else {
  1411         break;
  1413     } else {
  1414       ctrl = next_control(ctrl->in(0));  // keep searching
  1417   if (ctrl->is_Lock()) {
  1418     LockNode *lock = ctrl->as_Lock();
  1419     if ((lock->obj_node() == unlock->obj_node()) &&
  1420             (lock->box_node() == unlock->box_node())) {
  1421       lock_result = lock;
  1424   return lock_result;
  1427 // This code corresponds to case 3 above.
  1429 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
  1430                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
  1431   Node* if_node = node->in(0);
  1432   bool  if_true = node->is_IfTrue();
  1434   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
  1435     Node *lock_ctrl = next_control(if_node->in(0));
  1436     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
  1437       Node* lock1_node = NULL;
  1438       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
  1439       if (if_true) {
  1440         if (proj->is_IfFalse() && proj->outcnt() == 1) {
  1441           lock1_node = proj->unique_out();
  1443       } else {
  1444         if (proj->is_IfTrue() && proj->outcnt() == 1) {
  1445           lock1_node = proj->unique_out();
  1448       if (lock1_node != NULL && lock1_node->is_Lock()) {
  1449         LockNode *lock1 = lock1_node->as_Lock();
  1450         if ((lock->obj_node() == lock1->obj_node()) &&
  1451             (lock->box_node() == lock1->box_node()) && !lock1->is_eliminated()) {
  1452           lock_ops.append(lock1);
  1453           return true;
  1459   lock_ops.trunc_to(0);
  1460   return false;
  1463 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
  1464                                GrowableArray<AbstractLockNode*> &lock_ops) {
  1465   // check each control merging at this point for a matching unlock.
  1466   // in(0) should be self edge so skip it.
  1467   for (int i = 1; i < (int)region->req(); i++) {
  1468     Node *in_node = next_control(region->in(i));
  1469     if (in_node != NULL) {
  1470       if (find_matching_unlock(in_node, lock, lock_ops)) {
  1471         // found a match so keep on checking.
  1472         continue;
  1473       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
  1474         continue;
  1477       // If we fall through to here then it was some kind of node we
  1478       // don't understand or there wasn't a matching unlock, so give
  1479       // up trying to merge locks.
  1480       lock_ops.trunc_to(0);
  1481       return false;
  1484   return true;
  1488 #ifndef PRODUCT
  1489 //
  1490 // Create a counter which counts the number of times this lock is acquired
  1491 //
  1492 void AbstractLockNode::create_lock_counter(JVMState* state) {
  1493   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
  1495 #endif
  1497 void AbstractLockNode::set_eliminated() {
  1498   _eliminate = true;
  1499 #ifndef PRODUCT
  1500   if (_counter) {
  1501     // Update the counter to indicate that this lock was eliminated.
  1502     // The counter update code will stay around even though the
  1503     // optimizer will eliminate the lock operation itself.
  1504     _counter->set_tag(NamedCounter::EliminatedLockCounter);
  1506 #endif
  1509 //=============================================================================
  1510 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1512   // perform any generic optimizations first (returns 'this' or NULL)
  1513   Node *result = SafePointNode::Ideal(phase, can_reshape);
  1515   // Now see if we can optimize away this lock.  We don't actually
  1516   // remove the locking here, we simply set the _eliminate flag which
  1517   // prevents macro expansion from expanding the lock.  Since we don't
  1518   // modify the graph, the value returned from this function is the
  1519   // one computed above.
  1520   if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
  1521     //
  1522     // If we are locking an unescaped object, the lock/unlock is unnecessary
  1523     //
  1524     ConnectionGraph *cgr = phase->C->congraph();
  1525     PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
  1526     if (cgr != NULL)
  1527       es = cgr->escape_state(obj_node(), phase);
  1528     if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
  1529       // Mark it eliminated to update any counters
  1530       this->set_eliminated();
  1531       return result;
  1534     //
  1535     // Try lock coarsening
  1536     //
  1537     PhaseIterGVN* iter = phase->is_IterGVN();
  1538     if (iter != NULL) {
  1540       GrowableArray<AbstractLockNode*>   lock_ops;
  1542       Node *ctrl = next_control(in(0));
  1544       // now search back for a matching Unlock
  1545       if (find_matching_unlock(ctrl, this, lock_ops)) {
  1546         // found an unlock directly preceding this lock.  This is the
  1547         // case of single unlock directly control dependent on a
  1548         // single lock which is the trivial version of case 1 or 2.
  1549       } else if (ctrl->is_Region() ) {
  1550         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
  1551         // found lock preceded by multiple unlocks along all paths
  1552         // joining at this point which is case 3 in description above.
  1554       } else {
  1555         // see if this lock comes from either half of an if and the
  1556         // predecessors merges unlocks and the other half of the if
  1557         // performs a lock.
  1558         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
  1559           // found unlock splitting to an if with locks on both branches.
  1563       if (lock_ops.length() > 0) {
  1564         // add ourselves to the list of locks to be eliminated.
  1565         lock_ops.append(this);
  1567   #ifndef PRODUCT
  1568         if (PrintEliminateLocks) {
  1569           int locks = 0;
  1570           int unlocks = 0;
  1571           for (int i = 0; i < lock_ops.length(); i++) {
  1572             AbstractLockNode* lock = lock_ops.at(i);
  1573             if (lock->Opcode() == Op_Lock)
  1574               locks++;
  1575             else
  1576               unlocks++;
  1577             if (Verbose) {
  1578               lock->dump(1);
  1581           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
  1583   #endif
  1585         // for each of the identified locks, mark them
  1586         // as eliminatable
  1587         for (int i = 0; i < lock_ops.length(); i++) {
  1588           AbstractLockNode* lock = lock_ops.at(i);
  1590           // Mark it eliminated to update any counters
  1591           lock->set_eliminated();
  1592           lock->set_coarsened();
  1594       } else if (result != NULL && ctrl->is_Region() &&
  1595                  iter->_worklist.member(ctrl)) {
  1596         // We weren't able to find any opportunities but the region this
  1597         // lock is control dependent on hasn't been processed yet so put
  1598         // this lock back on the worklist so we can check again once any
  1599         // region simplification has occurred.
  1600         iter->_worklist.push(this);
  1605   return result;
  1608 //=============================================================================
  1609 uint UnlockNode::size_of() const { return sizeof(*this); }
  1611 //=============================================================================
  1612 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1614   // perform any generic optimizations first (returns 'this' or NULL)
  1615   Node * result = SafePointNode::Ideal(phase, can_reshape);
  1617   // Now see if we can optimize away this unlock.  We don't actually
  1618   // remove the unlocking here, we simply set the _eliminate flag which
  1619   // prevents macro expansion from expanding the unlock.  Since we don't
  1620   // modify the graph, the value returned from this function is the
  1621   // one computed above.
  1622   // Escape state is defined after Parse phase.
  1623   if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
  1624     //
  1625     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
  1626     //
  1627     ConnectionGraph *cgr = phase->C->congraph();
  1628     PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
  1629     if (cgr != NULL)
  1630       es = cgr->escape_state(obj_node(), phase);
  1631     if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
  1632       // Mark it eliminated to update any counters
  1633       this->set_eliminated();
  1636   return result;

mercurial