src/share/vm/opto/callGenerator.hpp

Thu, 12 Nov 2009 09:24:21 -0800

author
never
date
Thu, 12 Nov 2009 09:24:21 -0800
changeset 1515
7c57aead6d3e
parent 435
a61af66fc99e
child 1572
97125851f396
permissions
-rw-r--r--

6892658: C2 should optimize some stringbuilder patterns
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright 2000-2005 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 //---------------------------CallGenerator-------------------------------------
    26 // The subclasses of this class handle generation of ideal nodes for
    27 // call sites and method entry points.
    29 class CallGenerator : public ResourceObj {
    30  public:
    31   enum {
    32     xxxunusedxxx
    33   };
    35  private:
    36   ciMethod*             _method;                // The method being called.
    38  protected:
    39   CallGenerator(ciMethod* method);
    41  public:
    42   // Accessors
    43   ciMethod*         method() const              { return _method; }
    45   // is_inline: At least some code implementing the method is copied here.
    46   virtual bool      is_inline() const           { return false; }
    47   // is_intrinsic: There's a method-specific way of generating the inline code.
    48   virtual bool      is_intrinsic() const        { return false; }
    49   // is_parse: Bytecodes implementing the specific method are copied here.
    50   virtual bool      is_parse() const            { return false; }
    51   // is_virtual: The call uses the receiver type to select or check the method.
    52   virtual bool      is_virtual() const          { return false; }
    53   // is_deferred: The decision whether to inline or not is deferred.
    54   virtual bool      is_deferred() const         { return false; }
    55   // is_predicted: Uses an explicit check against a predicted type.
    56   virtual bool      is_predicted() const        { return false; }
    57   // is_trap: Does not return to the caller.  (E.g., uncommon trap.)
    58   virtual bool      is_trap() const             { return false; }
    60   // is_late_inline: supports conversion of call into an inline
    61   virtual bool      is_late_inline() const      { return false; }
    62   // Replace the call with an inline version of the code
    63   virtual void do_late_inline() { ShouldNotReachHere(); }
    65   virtual CallStaticJavaNode* call_node() const { ShouldNotReachHere(); return NULL; }
    67   // Note:  It is possible for a CG to be both inline and virtual.
    68   // (The hashCode intrinsic does a vtable check and an inlined fast path.)
    70   // Utilities:
    71   const TypeFunc*   tf() const;
    73   // The given jvms has state and arguments for a call to my method.
    74   // Edges after jvms->argoff() carry all (pre-popped) argument values.
    75   //
    76   // Update the map with state and return values (if any) and return it.
    77   // The return values (0, 1, or 2) must be pushed on the map's stack,
    78   // and the sp of the jvms incremented accordingly.
    79   //
    80   // The jvms is returned on success.  Alternatively, a copy of the
    81   // given jvms, suitably updated, may be returned, in which case the
    82   // caller should discard the original jvms.
    83   //
    84   // The non-Parm edges of the returned map will contain updated global state,
    85   // and one or two edges before jvms->sp() will carry any return values.
    86   // Other map edges may contain locals or monitors, and should not
    87   // be changed in meaning.
    88   //
    89   // If the call traps, the returned map must have a control edge of top.
    90   // If the call can throw, the returned map must report has_exceptions().
    91   //
    92   // If the result is NULL, it means that this CallGenerator was unable
    93   // to handle the given call, and another CallGenerator should be consulted.
    94   virtual JVMState* generate(JVMState* jvms) = 0;
    96   // How to generate a call site that is inlined:
    97   static CallGenerator* for_inline(ciMethod* m, float expected_uses = -1);
    98   // How to generate code for an on-stack replacement handler.
    99   static CallGenerator* for_osr(ciMethod* m, int osr_bci);
   101   // How to generate vanilla out-of-line call sites:
   102   static CallGenerator* for_direct_call(ciMethod* m, bool separate_io_projs = false);   // static, special
   103   static CallGenerator* for_virtual_call(ciMethod* m, int vtable_index);  // virtual, interface
   105   // How to generate a replace a direct call with an inline version
   106   static CallGenerator* for_late_inline(ciMethod* m, CallGenerator* inline_cg);
   108   // How to make a call but defer the decision whether to inline or not.
   109   static CallGenerator* for_warm_call(WarmCallInfo* ci,
   110                                       CallGenerator* if_cold,
   111                                       CallGenerator* if_hot);
   113   // How to make a call that optimistically assumes a receiver type:
   114   static CallGenerator* for_predicted_call(ciKlass* predicted_receiver,
   115                                            CallGenerator* if_missed,
   116                                            CallGenerator* if_hit,
   117                                            float hit_prob);
   119   // How to make a call that gives up and goes back to the interpreter:
   120   static CallGenerator* for_uncommon_trap(ciMethod* m,
   121                                           Deoptimization::DeoptReason reason,
   122                                           Deoptimization::DeoptAction action);
   124   // Registry for intrinsics:
   125   static CallGenerator* for_intrinsic(ciMethod* m);
   126   static void register_intrinsic(ciMethod* m, CallGenerator* cg);
   127 };
   129 class InlineCallGenerator : public CallGenerator {
   130   virtual bool      is_inline() const           { return true; }
   132  protected:
   133   InlineCallGenerator(ciMethod* method) : CallGenerator(method) { }
   134 };
   137 //---------------------------WarmCallInfo--------------------------------------
   138 // A struct to collect information about a given call site.
   139 // Helps sort call sites into "hot", "medium", and "cold".
   140 // Participates in the queueing of "medium" call sites for possible inlining.
   141 class WarmCallInfo : public ResourceObj {
   142  private:
   144   CallNode*     _call;   // The CallNode which may be inlined.
   145   CallGenerator* _hot_cg;// CG for expanding the call node
   147   // These are the metrics we use to evaluate call sites:
   149   float         _count;  // How often do we expect to reach this site?
   150   float         _profit; // How much time do we expect to save by inlining?
   151   float         _work;   // How long do we expect the average call to take?
   152   float         _size;   // How big do we expect the inlined code to be?
   154   float         _heat;   // Combined score inducing total order on call sites.
   155   WarmCallInfo* _next;   // Next cooler call info in pending queue.
   157   // Count is the number of times this call site is expected to be executed.
   158   // Large count is favorable for inlining, because the extra compilation
   159   // work will be amortized more completely.
   161   // Profit is a rough measure of the amount of time we expect to save
   162   // per execution of this site if we inline it.  (1.0 == call overhead)
   163   // Large profit favors inlining.  Negative profit disables inlining.
   165   // Work is a rough measure of the amount of time a typical out-of-line
   166   // call from this site is expected to take.  (1.0 == call, no-op, return)
   167   // Small work is somewhat favorable for inlining, since methods with
   168   // short "hot" traces are more likely to inline smoothly.
   170   // Size is the number of graph nodes we expect this method to produce,
   171   // not counting the inlining of any further warm calls it may include.
   172   // Small size favors inlining, since small methods are more likely to
   173   // inline smoothly.  The size is estimated by examining the native code
   174   // if available.  The method bytecodes are also examined, assuming
   175   // empirically observed node counts for each kind of bytecode.
   177   // Heat is the combined "goodness" of a site's inlining.  If we were
   178   // omniscient, it would be the difference of two sums of future execution
   179   // times of code emitted for this site (amortized across multiple sites if
   180   // sharing applies).  The two sums are for versions of this call site with
   181   // and without inlining.
   183   // We approximate this mythical quantity by playing with averages,
   184   // rough estimates, and assumptions that history repeats itself.
   185   // The basic formula count * profit is heuristically adjusted
   186   // by looking at the expected compilation and execution times of
   187   // of the inlined call.
   189   // Note:  Some of these metrics may not be present in the final product,
   190   // but exist in development builds to experiment with inline policy tuning.
   192   // This heuristic framework does not model well the very significant
   193   // effects of multiple-level inlining.  It is possible to see no immediate
   194   // profit from inlining X->Y, but to get great profit from a subsequent
   195   // inlining X->Y->Z.
   197   // This framework does not take well into account the problem of N**2 code
   198   // size in a clique of mutually inlinable methods.
   200   WarmCallInfo*  next() const          { return _next; }
   201   void       set_next(WarmCallInfo* n) { _next = n; }
   203   static WarmCallInfo* _always_hot;
   204   static WarmCallInfo* _always_cold;
   206  public:
   207   // Because WarmInfo objects live over the entire lifetime of the
   208   // Compile object, they are allocated into the comp_arena, which
   209   // does not get resource marked or reset during the compile process
   210   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   211   void operator delete( void * ) { } // fast deallocation
   213   static WarmCallInfo* always_hot();
   214   static WarmCallInfo* always_cold();
   216   WarmCallInfo() {
   217     _call = NULL;
   218     _hot_cg = NULL;
   219     _next = NULL;
   220     _count = _profit = _work = _size = _heat = 0;
   221   }
   223   CallNode* call() const { return _call; }
   224   float count()    const { return _count; }
   225   float size()     const { return _size; }
   226   float work()     const { return _work; }
   227   float profit()   const { return _profit; }
   228   float heat()     const { return _heat; }
   230   void set_count(float x)     { _count = x; }
   231   void set_size(float x)      { _size = x; }
   232   void set_work(float x)      { _work = x; }
   233   void set_profit(float x)    { _profit = x; }
   234   void set_heat(float x)      { _heat = x; }
   236   // Load initial heuristics from profiles, etc.
   237   // The heuristics can be tweaked further by the caller.
   238   void init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor);
   240   static float MAX_VALUE() { return +1.0e10; }
   241   static float MIN_VALUE() { return -1.0e10; }
   243   float compute_heat() const;
   245   void set_call(CallNode* call)      { _call = call; }
   246   void set_hot_cg(CallGenerator* cg) { _hot_cg = cg; }
   248   // Do not queue very hot or very cold calls.
   249   // Make very cold ones out of line immediately.
   250   // Inline very hot ones immediately.
   251   // These queries apply various tunable limits
   252   // to the above metrics in a systematic way.
   253   // Test for coldness before testing for hotness.
   254   bool is_cold() const;
   255   bool is_hot() const;
   257   // Force a warm call to be hot.  This worklists the call node for inlining.
   258   void make_hot();
   260   // Force a warm call to be cold.  This worklists the call node for out-of-lining.
   261   void make_cold();
   263   // A reproducible total ordering, in which heat is the major key.
   264   bool warmer_than(WarmCallInfo* that);
   266   // List management.  These methods are called with the list head,
   267   // and return the new list head, inserting or removing the receiver.
   268   WarmCallInfo* insert_into(WarmCallInfo* head);
   269   WarmCallInfo* remove_from(WarmCallInfo* head);
   271 #ifndef PRODUCT
   272   void print() const;
   273   void print_all() const;
   274   int count_all() const;
   275 #endif
   276 };

mercurial