src/share/vm/opto/library_call.cpp

Thu, 20 Feb 2014 11:05:12 +0100

author
goetz
date
Thu, 20 Feb 2014 11:05:12 +0100
changeset 6510
7c462558a08a
parent 6507
752ba2e5f6d0
child 6518
62c54fcc0a35
permissions
-rw-r--r--

8035394: PPC64: Make usage of intrinsic dsqrt depend on processor recognition.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mathexactnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/parse.hpp"
    38 #include "opto/runtime.hpp"
    39 #include "opto/subnode.hpp"
    40 #include "prims/nativeLookup.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "trace/traceMacros.hpp"
    44 class LibraryIntrinsic : public InlineCallGenerator {
    45   // Extend the set of intrinsics known to the runtime:
    46  public:
    47  private:
    48   bool             _is_virtual;
    49   bool             _is_predicted;
    50   bool             _does_virtual_dispatch;
    51   vmIntrinsics::ID _intrinsic_id;
    53  public:
    54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
    55     : InlineCallGenerator(m),
    56       _is_virtual(is_virtual),
    57       _is_predicted(is_predicted),
    58       _does_virtual_dispatch(does_virtual_dispatch),
    59       _intrinsic_id(id)
    60   {
    61   }
    62   virtual bool is_intrinsic() const { return true; }
    63   virtual bool is_virtual()   const { return _is_virtual; }
    64   virtual bool is_predicted()   const { return _is_predicted; }
    65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
    66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
    67   virtual Node* generate_predicate(JVMState* jvms);
    68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    69 };
    72 // Local helper class for LibraryIntrinsic:
    73 class LibraryCallKit : public GraphKit {
    74  private:
    75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    76   Node*             _result;        // the result node, if any
    77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    81  public:
    82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    83     : GraphKit(jvms),
    84       _intrinsic(intrinsic),
    85       _result(NULL)
    86   {
    87     // Check if this is a root compile.  In that case we don't have a caller.
    88     if (!jvms->has_method()) {
    89       _reexecute_sp = sp();
    90     } else {
    91       // Find out how many arguments the interpreter needs when deoptimizing
    92       // and save the stack pointer value so it can used by uncommon_trap.
    93       // We find the argument count by looking at the declared signature.
    94       bool ignored_will_link;
    95       ciSignature* declared_signature = NULL;
    96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
    97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
    98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
    99     }
   100   }
   102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   104   ciMethod*         caller()    const    { return jvms()->method(); }
   105   int               bci()       const    { return jvms()->bci(); }
   106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   108   ciMethod*         callee()    const    { return _intrinsic->method(); }
   110   bool try_to_inline();
   111   Node* try_to_predicate();
   113   void push_result() {
   114     // Push the result onto the stack.
   115     if (!stopped() && result() != NULL) {
   116       BasicType bt = result()->bottom_type()->basic_type();
   117       push_node(bt, result());
   118     }
   119   }
   121  private:
   122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   124   }
   126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   127   void  set_result(RegionNode* region, PhiNode* value);
   128   Node*     result() { return _result; }
   130   virtual int reexecute_sp() { return _reexecute_sp; }
   132   // Helper functions to inline natives
   133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   134   Node* generate_slow_guard(Node* test, RegionNode* region);
   135   Node* generate_fair_guard(Node* test, RegionNode* region);
   136   Node* generate_negative_guard(Node* index, RegionNode* region,
   137                                 // resulting CastII of index:
   138                                 Node* *pos_index = NULL);
   139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   140                                    // resulting CastII of index:
   141                                    Node* *pos_index = NULL);
   142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   143                              Node* array_length,
   144                              RegionNode* region);
   145   Node* generate_current_thread(Node* &tls_output);
   146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   148   Node* load_mirror_from_klass(Node* klass);
   149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   150                                       RegionNode* region, int null_path,
   151                                       int offset);
   152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   153                                RegionNode* region, int null_path) {
   154     int offset = java_lang_Class::klass_offset_in_bytes();
   155     return load_klass_from_mirror_common(mirror, never_see_null,
   156                                          region, null_path,
   157                                          offset);
   158   }
   159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   160                                      RegionNode* region, int null_path) {
   161     int offset = java_lang_Class::array_klass_offset_in_bytes();
   162     return load_klass_from_mirror_common(mirror, never_see_null,
   163                                          region, null_path,
   164                                          offset);
   165   }
   166   Node* generate_access_flags_guard(Node* kls,
   167                                     int modifier_mask, int modifier_bits,
   168                                     RegionNode* region);
   169   Node* generate_interface_guard(Node* kls, RegionNode* region);
   170   Node* generate_array_guard(Node* kls, RegionNode* region) {
   171     return generate_array_guard_common(kls, region, false, false);
   172   }
   173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   174     return generate_array_guard_common(kls, region, false, true);
   175   }
   176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   177     return generate_array_guard_common(kls, region, true, false);
   178   }
   179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   180     return generate_array_guard_common(kls, region, true, true);
   181   }
   182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   183                                     bool obj_array, bool not_array);
   184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   186                                      bool is_virtual = false, bool is_static = false);
   187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   188     return generate_method_call(method_id, false, true);
   189   }
   190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   191     return generate_method_call(method_id, true, false);
   192   }
   193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   197   bool inline_string_compareTo();
   198   bool inline_string_indexOf();
   199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   200   bool inline_string_equals();
   201   Node* round_double_node(Node* n);
   202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   203   bool inline_math_native(vmIntrinsics::ID id);
   204   bool inline_trig(vmIntrinsics::ID id);
   205   bool inline_math(vmIntrinsics::ID id);
   206   void inline_math_mathExact(Node* math);
   207   bool inline_math_addExactI(bool is_increment);
   208   bool inline_math_addExactL(bool is_increment);
   209   bool inline_math_multiplyExactI();
   210   bool inline_math_multiplyExactL();
   211   bool inline_math_negateExactI();
   212   bool inline_math_negateExactL();
   213   bool inline_math_subtractExactI(bool is_decrement);
   214   bool inline_math_subtractExactL(bool is_decrement);
   215   bool inline_exp();
   216   bool inline_pow();
   217   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   218   bool inline_min_max(vmIntrinsics::ID id);
   219   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   220   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   221   int classify_unsafe_addr(Node* &base, Node* &offset);
   222   Node* make_unsafe_address(Node* base, Node* offset);
   223   // Helper for inline_unsafe_access.
   224   // Generates the guards that check whether the result of
   225   // Unsafe.getObject should be recorded in an SATB log buffer.
   226   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   227   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   228   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   229   static bool klass_needs_init_guard(Node* kls);
   230   bool inline_unsafe_allocate();
   231   bool inline_unsafe_copyMemory();
   232   bool inline_native_currentThread();
   233 #ifdef TRACE_HAVE_INTRINSICS
   234   bool inline_native_classID();
   235   bool inline_native_threadID();
   236 #endif
   237   bool inline_native_time_funcs(address method, const char* funcName);
   238   bool inline_native_isInterrupted();
   239   bool inline_native_Class_query(vmIntrinsics::ID id);
   240   bool inline_native_subtype_check();
   242   bool inline_native_newArray();
   243   bool inline_native_getLength();
   244   bool inline_array_copyOf(bool is_copyOfRange);
   245   bool inline_array_equals();
   246   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   247   bool inline_native_clone(bool is_virtual);
   248   bool inline_native_Reflection_getCallerClass();
   249   // Helper function for inlining native object hash method
   250   bool inline_native_hashcode(bool is_virtual, bool is_static);
   251   bool inline_native_getClass();
   253   // Helper functions for inlining arraycopy
   254   bool inline_arraycopy();
   255   void generate_arraycopy(const TypePtr* adr_type,
   256                           BasicType basic_elem_type,
   257                           Node* src,  Node* src_offset,
   258                           Node* dest, Node* dest_offset,
   259                           Node* copy_length,
   260                           bool disjoint_bases = false,
   261                           bool length_never_negative = false,
   262                           RegionNode* slow_region = NULL);
   263   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   264                                                 RegionNode* slow_region);
   265   void generate_clear_array(const TypePtr* adr_type,
   266                             Node* dest,
   267                             BasicType basic_elem_type,
   268                             Node* slice_off,
   269                             Node* slice_len,
   270                             Node* slice_end);
   271   bool generate_block_arraycopy(const TypePtr* adr_type,
   272                                 BasicType basic_elem_type,
   273                                 AllocateNode* alloc,
   274                                 Node* src,  Node* src_offset,
   275                                 Node* dest, Node* dest_offset,
   276                                 Node* dest_size, bool dest_uninitialized);
   277   void generate_slow_arraycopy(const TypePtr* adr_type,
   278                                Node* src,  Node* src_offset,
   279                                Node* dest, Node* dest_offset,
   280                                Node* copy_length, bool dest_uninitialized);
   281   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   282                                      Node* dest_elem_klass,
   283                                      Node* src,  Node* src_offset,
   284                                      Node* dest, Node* dest_offset,
   285                                      Node* copy_length, bool dest_uninitialized);
   286   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   287                                    Node* src,  Node* src_offset,
   288                                    Node* dest, Node* dest_offset,
   289                                    Node* copy_length, bool dest_uninitialized);
   290   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   291                                     BasicType basic_elem_type,
   292                                     bool disjoint_bases,
   293                                     Node* src,  Node* src_offset,
   294                                     Node* dest, Node* dest_offset,
   295                                     Node* copy_length, bool dest_uninitialized);
   296   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   297   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   298   bool inline_unsafe_ordered_store(BasicType type);
   299   bool inline_unsafe_fence(vmIntrinsics::ID id);
   300   bool inline_fp_conversions(vmIntrinsics::ID id);
   301   bool inline_number_methods(vmIntrinsics::ID id);
   302   bool inline_reference_get();
   303   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   304   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   305   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   306   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   307   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
   308   bool inline_encodeISOArray();
   309   bool inline_updateCRC32();
   310   bool inline_updateBytesCRC32();
   311   bool inline_updateByteBufferCRC32();
   312 };
   315 //---------------------------make_vm_intrinsic----------------------------
   316 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   317   vmIntrinsics::ID id = m->intrinsic_id();
   318   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   320   if (DisableIntrinsic[0] != '\0'
   321       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   322     // disabled by a user request on the command line:
   323     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   324     return NULL;
   325   }
   327   if (!m->is_loaded()) {
   328     // do not attempt to inline unloaded methods
   329     return NULL;
   330   }
   332   // Only a few intrinsics implement a virtual dispatch.
   333   // They are expensive calls which are also frequently overridden.
   334   if (is_virtual) {
   335     switch (id) {
   336     case vmIntrinsics::_hashCode:
   337     case vmIntrinsics::_clone:
   338       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   339       break;
   340     default:
   341       return NULL;
   342     }
   343   }
   345   // -XX:-InlineNatives disables nearly all intrinsics:
   346   if (!InlineNatives) {
   347     switch (id) {
   348     case vmIntrinsics::_indexOf:
   349     case vmIntrinsics::_compareTo:
   350     case vmIntrinsics::_equals:
   351     case vmIntrinsics::_equalsC:
   352     case vmIntrinsics::_getAndAddInt:
   353     case vmIntrinsics::_getAndAddLong:
   354     case vmIntrinsics::_getAndSetInt:
   355     case vmIntrinsics::_getAndSetLong:
   356     case vmIntrinsics::_getAndSetObject:
   357     case vmIntrinsics::_loadFence:
   358     case vmIntrinsics::_storeFence:
   359     case vmIntrinsics::_fullFence:
   360       break;  // InlineNatives does not control String.compareTo
   361     case vmIntrinsics::_Reference_get:
   362       break;  // InlineNatives does not control Reference.get
   363     default:
   364       return NULL;
   365     }
   366   }
   368   bool is_predicted = false;
   369   bool does_virtual_dispatch = false;
   371   switch (id) {
   372   case vmIntrinsics::_compareTo:
   373     if (!SpecialStringCompareTo)  return NULL;
   374     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   375     break;
   376   case vmIntrinsics::_indexOf:
   377     if (!SpecialStringIndexOf)  return NULL;
   378     break;
   379   case vmIntrinsics::_equals:
   380     if (!SpecialStringEquals)  return NULL;
   381     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   382     break;
   383   case vmIntrinsics::_equalsC:
   384     if (!SpecialArraysEquals)  return NULL;
   385     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   386     break;
   387   case vmIntrinsics::_arraycopy:
   388     if (!InlineArrayCopy)  return NULL;
   389     break;
   390   case vmIntrinsics::_copyMemory:
   391     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   392     if (!InlineArrayCopy)  return NULL;
   393     break;
   394   case vmIntrinsics::_hashCode:
   395     if (!InlineObjectHash)  return NULL;
   396     does_virtual_dispatch = true;
   397     break;
   398   case vmIntrinsics::_clone:
   399     does_virtual_dispatch = true;
   400   case vmIntrinsics::_copyOf:
   401   case vmIntrinsics::_copyOfRange:
   402     if (!InlineObjectCopy)  return NULL;
   403     // These also use the arraycopy intrinsic mechanism:
   404     if (!InlineArrayCopy)  return NULL;
   405     break;
   406   case vmIntrinsics::_encodeISOArray:
   407     if (!SpecialEncodeISOArray)  return NULL;
   408     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   409     break;
   410   case vmIntrinsics::_checkIndex:
   411     // We do not intrinsify this.  The optimizer does fine with it.
   412     return NULL;
   414   case vmIntrinsics::_getCallerClass:
   415     if (!UseNewReflection)  return NULL;
   416     if (!InlineReflectionGetCallerClass)  return NULL;
   417     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   418     break;
   420   case vmIntrinsics::_bitCount_i:
   421     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   422     break;
   424   case vmIntrinsics::_bitCount_l:
   425     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   426     break;
   428   case vmIntrinsics::_numberOfLeadingZeros_i:
   429     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   430     break;
   432   case vmIntrinsics::_numberOfLeadingZeros_l:
   433     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   434     break;
   436   case vmIntrinsics::_numberOfTrailingZeros_i:
   437     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   438     break;
   440   case vmIntrinsics::_numberOfTrailingZeros_l:
   441     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   442     break;
   444   case vmIntrinsics::_reverseBytes_c:
   445     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   446     break;
   447   case vmIntrinsics::_reverseBytes_s:
   448     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   449     break;
   450   case vmIntrinsics::_reverseBytes_i:
   451     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   452     break;
   453   case vmIntrinsics::_reverseBytes_l:
   454     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   455     break;
   457   case vmIntrinsics::_Reference_get:
   458     // Use the intrinsic version of Reference.get() so that the value in
   459     // the referent field can be registered by the G1 pre-barrier code.
   460     // Also add memory barrier to prevent commoning reads from this field
   461     // across safepoint since GC can change it value.
   462     break;
   464   case vmIntrinsics::_compareAndSwapObject:
   465 #ifdef _LP64
   466     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   467 #endif
   468     break;
   470   case vmIntrinsics::_compareAndSwapLong:
   471     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   472     break;
   474   case vmIntrinsics::_getAndAddInt:
   475     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   476     break;
   478   case vmIntrinsics::_getAndAddLong:
   479     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   480     break;
   482   case vmIntrinsics::_getAndSetInt:
   483     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   484     break;
   486   case vmIntrinsics::_getAndSetLong:
   487     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   488     break;
   490   case vmIntrinsics::_getAndSetObject:
   491 #ifdef _LP64
   492     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   493     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   494     break;
   495 #else
   496     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   497     break;
   498 #endif
   500   case vmIntrinsics::_aescrypt_encryptBlock:
   501   case vmIntrinsics::_aescrypt_decryptBlock:
   502     if (!UseAESIntrinsics) return NULL;
   503     break;
   505   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   506   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   507     if (!UseAESIntrinsics) return NULL;
   508     // these two require the predicated logic
   509     is_predicted = true;
   510     break;
   512   case vmIntrinsics::_updateCRC32:
   513   case vmIntrinsics::_updateBytesCRC32:
   514   case vmIntrinsics::_updateByteBufferCRC32:
   515     if (!UseCRC32Intrinsics) return NULL;
   516     break;
   518   case vmIntrinsics::_incrementExactI:
   519   case vmIntrinsics::_addExactI:
   520     if (!Matcher::match_rule_supported(Op_AddExactI) || !UseMathExactIntrinsics) return NULL;
   521     break;
   522   case vmIntrinsics::_incrementExactL:
   523   case vmIntrinsics::_addExactL:
   524     if (!Matcher::match_rule_supported(Op_AddExactL) || !UseMathExactIntrinsics) return NULL;
   525     break;
   526   case vmIntrinsics::_decrementExactI:
   527   case vmIntrinsics::_subtractExactI:
   528     if (!Matcher::match_rule_supported(Op_SubExactI) || !UseMathExactIntrinsics) return NULL;
   529     break;
   530   case vmIntrinsics::_decrementExactL:
   531   case vmIntrinsics::_subtractExactL:
   532     if (!Matcher::match_rule_supported(Op_SubExactL) || !UseMathExactIntrinsics) return NULL;
   533     break;
   534   case vmIntrinsics::_negateExactI:
   535     if (!Matcher::match_rule_supported(Op_NegExactI) || !UseMathExactIntrinsics) return NULL;
   536     break;
   537   case vmIntrinsics::_negateExactL:
   538     if (!Matcher::match_rule_supported(Op_NegExactL) || !UseMathExactIntrinsics) return NULL;
   539     break;
   540   case vmIntrinsics::_multiplyExactI:
   541     if (!Matcher::match_rule_supported(Op_MulExactI) || !UseMathExactIntrinsics) return NULL;
   542     break;
   543   case vmIntrinsics::_multiplyExactL:
   544     if (!Matcher::match_rule_supported(Op_MulExactL) || !UseMathExactIntrinsics) return NULL;
   545     break;
   547  default:
   548     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   549     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   550     break;
   551   }
   553   // -XX:-InlineClassNatives disables natives from the Class class.
   554   // The flag applies to all reflective calls, notably Array.newArray
   555   // (visible to Java programmers as Array.newInstance).
   556   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   557       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   558     if (!InlineClassNatives)  return NULL;
   559   }
   561   // -XX:-InlineThreadNatives disables natives from the Thread class.
   562   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   563     if (!InlineThreadNatives)  return NULL;
   564   }
   566   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   567   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   568       m->holder()->name() == ciSymbol::java_lang_Float() ||
   569       m->holder()->name() == ciSymbol::java_lang_Double()) {
   570     if (!InlineMathNatives)  return NULL;
   571   }
   573   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   574   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   575     if (!InlineUnsafeOps)  return NULL;
   576   }
   578   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
   579 }
   581 //----------------------register_library_intrinsics-----------------------
   582 // Initialize this file's data structures, for each Compile instance.
   583 void Compile::register_library_intrinsics() {
   584   // Nothing to do here.
   585 }
   587 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
   588   LibraryCallKit kit(jvms, this);
   589   Compile* C = kit.C;
   590   int nodes = C->unique();
   591 #ifndef PRODUCT
   592   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   593     char buf[1000];
   594     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   595     tty->print_cr("Intrinsic %s", str);
   596   }
   597 #endif
   598   ciMethod* callee = kit.callee();
   599   const int bci    = kit.bci();
   601   // Try to inline the intrinsic.
   602   if (kit.try_to_inline()) {
   603     if (C->print_intrinsics() || C->print_inlining()) {
   604       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   605     }
   606     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   607     if (C->log()) {
   608       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   609                      vmIntrinsics::name_at(intrinsic_id()),
   610                      (is_virtual() ? " virtual='1'" : ""),
   611                      C->unique() - nodes);
   612     }
   613     // Push the result from the inlined method onto the stack.
   614     kit.push_result();
   615     return kit.transfer_exceptions_into_jvms();
   616   }
   618   // The intrinsic bailed out
   619   if (C->print_intrinsics() || C->print_inlining()) {
   620     if (jvms->has_method()) {
   621       // Not a root compile.
   622       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   623       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   624     } else {
   625       // Root compile
   626       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   627                vmIntrinsics::name_at(intrinsic_id()),
   628                (is_virtual() ? " (virtual)" : ""), bci);
   629     }
   630   }
   631   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   632   return NULL;
   633 }
   635 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
   636   LibraryCallKit kit(jvms, this);
   637   Compile* C = kit.C;
   638   int nodes = C->unique();
   639 #ifndef PRODUCT
   640   assert(is_predicted(), "sanity");
   641   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   642     char buf[1000];
   643     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   644     tty->print_cr("Predicate for intrinsic %s", str);
   645   }
   646 #endif
   647   ciMethod* callee = kit.callee();
   648   const int bci    = kit.bci();
   650   Node* slow_ctl = kit.try_to_predicate();
   651   if (!kit.failing()) {
   652     if (C->print_intrinsics() || C->print_inlining()) {
   653       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   654     }
   655     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   656     if (C->log()) {
   657       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   658                      vmIntrinsics::name_at(intrinsic_id()),
   659                      (is_virtual() ? " virtual='1'" : ""),
   660                      C->unique() - nodes);
   661     }
   662     return slow_ctl; // Could be NULL if the check folds.
   663   }
   665   // The intrinsic bailed out
   666   if (C->print_intrinsics() || C->print_inlining()) {
   667     if (jvms->has_method()) {
   668       // Not a root compile.
   669       const char* msg = "failed to generate predicate for intrinsic";
   670       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   671     } else {
   672       // Root compile
   673       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   674                                         vmIntrinsics::name_at(intrinsic_id()),
   675                                         (is_virtual() ? " (virtual)" : ""), bci);
   676     }
   677   }
   678   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   679   return NULL;
   680 }
   682 bool LibraryCallKit::try_to_inline() {
   683   // Handle symbolic names for otherwise undistinguished boolean switches:
   684   const bool is_store       = true;
   685   const bool is_native_ptr  = true;
   686   const bool is_static      = true;
   687   const bool is_volatile    = true;
   689   if (!jvms()->has_method()) {
   690     // Root JVMState has a null method.
   691     assert(map()->memory()->Opcode() == Op_Parm, "");
   692     // Insert the memory aliasing node
   693     set_all_memory(reset_memory());
   694   }
   695   assert(merged_memory(), "");
   698   switch (intrinsic_id()) {
   699   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   700   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   701   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   703   case vmIntrinsics::_dsin:
   704   case vmIntrinsics::_dcos:
   705   case vmIntrinsics::_dtan:
   706   case vmIntrinsics::_dabs:
   707   case vmIntrinsics::_datan2:
   708   case vmIntrinsics::_dsqrt:
   709   case vmIntrinsics::_dexp:
   710   case vmIntrinsics::_dlog:
   711   case vmIntrinsics::_dlog10:
   712   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   714   case vmIntrinsics::_min:
   715   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   717   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
   718   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
   719   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
   720   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
   721   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
   722   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
   723   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
   724   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
   725   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
   726   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
   727   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
   728   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
   730   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   732   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   733   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   734   case vmIntrinsics::_equals:                   return inline_string_equals();
   736   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   737   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   738   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   739   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   740   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   741   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   742   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   743   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   744   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   746   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   747   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   748   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   749   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   750   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   751   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   752   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   753   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   754   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   756   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   757   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   758   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   759   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   760   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   761   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   762   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   763   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   765   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   766   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   767   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   768   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   769   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   770   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   771   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   772   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   774   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   775   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   776   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   777   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   778   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   779   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   780   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   781   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   782   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   784   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   785   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   786   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   787   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   788   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   789   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   790   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   791   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   792   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   794   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   795   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   796   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   797   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   799   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   800   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   801   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   803   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   804   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   805   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   807   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   808   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   809   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   810   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   811   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   813   case vmIntrinsics::_loadFence:
   814   case vmIntrinsics::_storeFence:
   815   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   817   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   818   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   820 #ifdef TRACE_HAVE_INTRINSICS
   821   case vmIntrinsics::_classID:                  return inline_native_classID();
   822   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   823   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   824 #endif
   825   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   826   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   827   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   828   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   829   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   830   case vmIntrinsics::_getLength:                return inline_native_getLength();
   831   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   832   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   833   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   834   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   836   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   838   case vmIntrinsics::_isInstance:
   839   case vmIntrinsics::_getModifiers:
   840   case vmIntrinsics::_isInterface:
   841   case vmIntrinsics::_isArray:
   842   case vmIntrinsics::_isPrimitive:
   843   case vmIntrinsics::_getSuperclass:
   844   case vmIntrinsics::_getComponentType:
   845   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   847   case vmIntrinsics::_floatToRawIntBits:
   848   case vmIntrinsics::_floatToIntBits:
   849   case vmIntrinsics::_intBitsToFloat:
   850   case vmIntrinsics::_doubleToRawLongBits:
   851   case vmIntrinsics::_doubleToLongBits:
   852   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   854   case vmIntrinsics::_numberOfLeadingZeros_i:
   855   case vmIntrinsics::_numberOfLeadingZeros_l:
   856   case vmIntrinsics::_numberOfTrailingZeros_i:
   857   case vmIntrinsics::_numberOfTrailingZeros_l:
   858   case vmIntrinsics::_bitCount_i:
   859   case vmIntrinsics::_bitCount_l:
   860   case vmIntrinsics::_reverseBytes_i:
   861   case vmIntrinsics::_reverseBytes_l:
   862   case vmIntrinsics::_reverseBytes_s:
   863   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   865   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   867   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   869   case vmIntrinsics::_aescrypt_encryptBlock:
   870   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   872   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   873   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   874     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   876   case vmIntrinsics::_encodeISOArray:
   877     return inline_encodeISOArray();
   879   case vmIntrinsics::_updateCRC32:
   880     return inline_updateCRC32();
   881   case vmIntrinsics::_updateBytesCRC32:
   882     return inline_updateBytesCRC32();
   883   case vmIntrinsics::_updateByteBufferCRC32:
   884     return inline_updateByteBufferCRC32();
   886   default:
   887     // If you get here, it may be that someone has added a new intrinsic
   888     // to the list in vmSymbols.hpp without implementing it here.
   889 #ifndef PRODUCT
   890     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   891       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   892                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   893     }
   894 #endif
   895     return false;
   896   }
   897 }
   899 Node* LibraryCallKit::try_to_predicate() {
   900   if (!jvms()->has_method()) {
   901     // Root JVMState has a null method.
   902     assert(map()->memory()->Opcode() == Op_Parm, "");
   903     // Insert the memory aliasing node
   904     set_all_memory(reset_memory());
   905   }
   906   assert(merged_memory(), "");
   908   switch (intrinsic_id()) {
   909   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   910     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   911   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   912     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   914   default:
   915     // If you get here, it may be that someone has added a new intrinsic
   916     // to the list in vmSymbols.hpp without implementing it here.
   917 #ifndef PRODUCT
   918     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   919       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   920                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   921     }
   922 #endif
   923     Node* slow_ctl = control();
   924     set_control(top()); // No fast path instrinsic
   925     return slow_ctl;
   926   }
   927 }
   929 //------------------------------set_result-------------------------------
   930 // Helper function for finishing intrinsics.
   931 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   932   record_for_igvn(region);
   933   set_control(_gvn.transform(region));
   934   set_result( _gvn.transform(value));
   935   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   936 }
   938 //------------------------------generate_guard---------------------------
   939 // Helper function for generating guarded fast-slow graph structures.
   940 // The given 'test', if true, guards a slow path.  If the test fails
   941 // then a fast path can be taken.  (We generally hope it fails.)
   942 // In all cases, GraphKit::control() is updated to the fast path.
   943 // The returned value represents the control for the slow path.
   944 // The return value is never 'top'; it is either a valid control
   945 // or NULL if it is obvious that the slow path can never be taken.
   946 // Also, if region and the slow control are not NULL, the slow edge
   947 // is appended to the region.
   948 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   949   if (stopped()) {
   950     // Already short circuited.
   951     return NULL;
   952   }
   954   // Build an if node and its projections.
   955   // If test is true we take the slow path, which we assume is uncommon.
   956   if (_gvn.type(test) == TypeInt::ZERO) {
   957     // The slow branch is never taken.  No need to build this guard.
   958     return NULL;
   959   }
   961   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   963   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
   964   if (if_slow == top()) {
   965     // The slow branch is never taken.  No need to build this guard.
   966     return NULL;
   967   }
   969   if (region != NULL)
   970     region->add_req(if_slow);
   972   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
   973   set_control(if_fast);
   975   return if_slow;
   976 }
   978 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   979   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   980 }
   981 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   982   return generate_guard(test, region, PROB_FAIR);
   983 }
   985 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   986                                                      Node* *pos_index) {
   987   if (stopped())
   988     return NULL;                // already stopped
   989   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   990     return NULL;                // index is already adequately typed
   991   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
   992   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
   993   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   994   if (is_neg != NULL && pos_index != NULL) {
   995     // Emulate effect of Parse::adjust_map_after_if.
   996     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
   997     ccast->set_req(0, control());
   998     (*pos_index) = _gvn.transform(ccast);
   999   }
  1000   return is_neg;
  1003 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
  1004                                                         Node* *pos_index) {
  1005   if (stopped())
  1006     return NULL;                // already stopped
  1007   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
  1008     return NULL;                // index is already adequately typed
  1009   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1010   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
  1011   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
  1012   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
  1013   if (is_notp != NULL && pos_index != NULL) {
  1014     // Emulate effect of Parse::adjust_map_after_if.
  1015     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
  1016     ccast->set_req(0, control());
  1017     (*pos_index) = _gvn.transform(ccast);
  1019   return is_notp;
  1022 // Make sure that 'position' is a valid limit index, in [0..length].
  1023 // There are two equivalent plans for checking this:
  1024 //   A. (offset + copyLength)  unsigned<=  arrayLength
  1025 //   B. offset  <=  (arrayLength - copyLength)
  1026 // We require that all of the values above, except for the sum and
  1027 // difference, are already known to be non-negative.
  1028 // Plan A is robust in the face of overflow, if offset and copyLength
  1029 // are both hugely positive.
  1030 //
  1031 // Plan B is less direct and intuitive, but it does not overflow at
  1032 // all, since the difference of two non-negatives is always
  1033 // representable.  Whenever Java methods must perform the equivalent
  1034 // check they generally use Plan B instead of Plan A.
  1035 // For the moment we use Plan A.
  1036 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
  1037                                                   Node* subseq_length,
  1038                                                   Node* array_length,
  1039                                                   RegionNode* region) {
  1040   if (stopped())
  1041     return NULL;                // already stopped
  1042   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  1043   if (zero_offset && subseq_length->eqv_uncast(array_length))
  1044     return NULL;                // common case of whole-array copy
  1045   Node* last = subseq_length;
  1046   if (!zero_offset)             // last += offset
  1047     last = _gvn.transform(new (C) AddINode(last, offset));
  1048   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
  1049   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1050   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1051   return is_over;
  1055 //--------------------------generate_current_thread--------------------
  1056 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1057   ciKlass*    thread_klass = env()->Thread_klass();
  1058   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1059   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1060   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1061   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
  1062   tls_output = thread;
  1063   return threadObj;
  1067 //------------------------------make_string_method_node------------------------
  1068 // Helper method for String intrinsic functions. This version is called
  1069 // with str1 and str2 pointing to String object nodes.
  1070 //
  1071 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1072   Node* no_ctrl = NULL;
  1074   // Get start addr of string
  1075   Node* str1_value   = load_String_value(no_ctrl, str1);
  1076   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1077   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1079   // Get length of string 1
  1080   Node* str1_len  = load_String_length(no_ctrl, str1);
  1082   Node* str2_value   = load_String_value(no_ctrl, str2);
  1083   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1084   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1086   Node* str2_len = NULL;
  1087   Node* result = NULL;
  1089   switch (opcode) {
  1090   case Op_StrIndexOf:
  1091     // Get length of string 2
  1092     str2_len = load_String_length(no_ctrl, str2);
  1094     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1095                                  str1_start, str1_len, str2_start, str2_len);
  1096     break;
  1097   case Op_StrComp:
  1098     // Get length of string 2
  1099     str2_len = load_String_length(no_ctrl, str2);
  1101     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1102                                  str1_start, str1_len, str2_start, str2_len);
  1103     break;
  1104   case Op_StrEquals:
  1105     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1106                                str1_start, str2_start, str1_len);
  1107     break;
  1108   default:
  1109     ShouldNotReachHere();
  1110     return NULL;
  1113   // All these intrinsics have checks.
  1114   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1116   return _gvn.transform(result);
  1119 // Helper method for String intrinsic functions. This version is called
  1120 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1121 // to Int nodes containing the lenghts of str1 and str2.
  1122 //
  1123 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1124   Node* result = NULL;
  1125   switch (opcode) {
  1126   case Op_StrIndexOf:
  1127     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1128                                  str1_start, cnt1, str2_start, cnt2);
  1129     break;
  1130   case Op_StrComp:
  1131     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1132                                  str1_start, cnt1, str2_start, cnt2);
  1133     break;
  1134   case Op_StrEquals:
  1135     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1136                                  str1_start, str2_start, cnt1);
  1137     break;
  1138   default:
  1139     ShouldNotReachHere();
  1140     return NULL;
  1143   // All these intrinsics have checks.
  1144   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1146   return _gvn.transform(result);
  1149 //------------------------------inline_string_compareTo------------------------
  1150 // public int java.lang.String.compareTo(String anotherString);
  1151 bool LibraryCallKit::inline_string_compareTo() {
  1152   Node* receiver = null_check(argument(0));
  1153   Node* arg      = null_check(argument(1));
  1154   if (stopped()) {
  1155     return true;
  1157   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1158   return true;
  1161 //------------------------------inline_string_equals------------------------
  1162 bool LibraryCallKit::inline_string_equals() {
  1163   Node* receiver = null_check_receiver();
  1164   // NOTE: Do not null check argument for String.equals() because spec
  1165   // allows to specify NULL as argument.
  1166   Node* argument = this->argument(1);
  1167   if (stopped()) {
  1168     return true;
  1171   // paths (plus control) merge
  1172   RegionNode* region = new (C) RegionNode(5);
  1173   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1175   // does source == target string?
  1176   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1177   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1179   Node* if_eq = generate_slow_guard(bol, NULL);
  1180   if (if_eq != NULL) {
  1181     // receiver == argument
  1182     phi->init_req(2, intcon(1));
  1183     region->init_req(2, if_eq);
  1186   // get String klass for instanceOf
  1187   ciInstanceKlass* klass = env()->String_klass();
  1189   if (!stopped()) {
  1190     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1191     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1192     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1194     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1195     //instanceOf == true, fallthrough
  1197     if (inst_false != NULL) {
  1198       phi->init_req(3, intcon(0));
  1199       region->init_req(3, inst_false);
  1203   if (!stopped()) {
  1204     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1206     // Properly cast the argument to String
  1207     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1208     // This path is taken only when argument's type is String:NotNull.
  1209     argument = cast_not_null(argument, false);
  1211     Node* no_ctrl = NULL;
  1213     // Get start addr of receiver
  1214     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1215     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1216     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1218     // Get length of receiver
  1219     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1221     // Get start addr of argument
  1222     Node* argument_val    = load_String_value(no_ctrl, argument);
  1223     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1224     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1226     // Get length of argument
  1227     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1229     // Check for receiver count != argument count
  1230     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1231     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1232     Node* if_ne = generate_slow_guard(bol, NULL);
  1233     if (if_ne != NULL) {
  1234       phi->init_req(4, intcon(0));
  1235       region->init_req(4, if_ne);
  1238     // Check for count == 0 is done by assembler code for StrEquals.
  1240     if (!stopped()) {
  1241       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1242       phi->init_req(1, equals);
  1243       region->init_req(1, control());
  1247   // post merge
  1248   set_control(_gvn.transform(region));
  1249   record_for_igvn(region);
  1251   set_result(_gvn.transform(phi));
  1252   return true;
  1255 //------------------------------inline_array_equals----------------------------
  1256 bool LibraryCallKit::inline_array_equals() {
  1257   Node* arg1 = argument(0);
  1258   Node* arg2 = argument(1);
  1259   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1260   return true;
  1263 // Java version of String.indexOf(constant string)
  1264 // class StringDecl {
  1265 //   StringDecl(char[] ca) {
  1266 //     offset = 0;
  1267 //     count = ca.length;
  1268 //     value = ca;
  1269 //   }
  1270 //   int offset;
  1271 //   int count;
  1272 //   char[] value;
  1273 // }
  1274 //
  1275 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1276 //                             int targetOffset, int cache_i, int md2) {
  1277 //   int cache = cache_i;
  1278 //   int sourceOffset = string_object.offset;
  1279 //   int sourceCount = string_object.count;
  1280 //   int targetCount = target_object.length;
  1281 //
  1282 //   int targetCountLess1 = targetCount - 1;
  1283 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1284 //
  1285 //   char[] source = string_object.value;
  1286 //   char[] target = target_object;
  1287 //   int lastChar = target[targetCountLess1];
  1288 //
  1289 //  outer_loop:
  1290 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1291 //     int src = source[i + targetCountLess1];
  1292 //     if (src == lastChar) {
  1293 //       // With random strings and a 4-character alphabet,
  1294 //       // reverse matching at this point sets up 0.8% fewer
  1295 //       // frames, but (paradoxically) makes 0.3% more probes.
  1296 //       // Since those probes are nearer the lastChar probe,
  1297 //       // there is may be a net D$ win with reverse matching.
  1298 //       // But, reversing loop inhibits unroll of inner loop
  1299 //       // for unknown reason.  So, does running outer loop from
  1300 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1301 //       for (int j = 0; j < targetCountLess1; j++) {
  1302 //         if (target[targetOffset + j] != source[i+j]) {
  1303 //           if ((cache & (1 << source[i+j])) == 0) {
  1304 //             if (md2 < j+1) {
  1305 //               i += j+1;
  1306 //               continue outer_loop;
  1307 //             }
  1308 //           }
  1309 //           i += md2;
  1310 //           continue outer_loop;
  1311 //         }
  1312 //       }
  1313 //       return i - sourceOffset;
  1314 //     }
  1315 //     if ((cache & (1 << src)) == 0) {
  1316 //       i += targetCountLess1;
  1317 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1318 //     i++;
  1319 //   }
  1320 //   return -1;
  1321 // }
  1323 //------------------------------string_indexOf------------------------
  1324 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1325                                      jint cache_i, jint md2_i) {
  1327   Node* no_ctrl  = NULL;
  1328   float likely   = PROB_LIKELY(0.9);
  1329   float unlikely = PROB_UNLIKELY(0.9);
  1331   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1333   Node* source        = load_String_value(no_ctrl, string_object);
  1334   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1335   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1337   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1338   jint target_length = target_array->length();
  1339   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1340   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1342   // String.value field is known to be @Stable.
  1343   if (UseImplicitStableValues) {
  1344     target = cast_array_to_stable(target, target_type);
  1347   IdealKit kit(this, false, true);
  1348 #define __ kit.
  1349   Node* zero             = __ ConI(0);
  1350   Node* one              = __ ConI(1);
  1351   Node* cache            = __ ConI(cache_i);
  1352   Node* md2              = __ ConI(md2_i);
  1353   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1354   Node* targetCount      = __ ConI(target_length);
  1355   Node* targetCountLess1 = __ ConI(target_length - 1);
  1356   Node* targetOffset     = __ ConI(targetOffset_i);
  1357   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1359   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1360   Node* outer_loop = __ make_label(2 /* goto */);
  1361   Node* return_    = __ make_label(1);
  1363   __ set(rtn,__ ConI(-1));
  1364   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1365        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1366        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1367        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1368        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1369          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1370               Node* tpj = __ AddI(targetOffset, __ value(j));
  1371               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1372               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1373               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1374               __ if_then(targ, BoolTest::ne, src2); {
  1375                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1376                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1377                     __ increment(i, __ AddI(__ value(j), one));
  1378                     __ goto_(outer_loop);
  1379                   } __ end_if(); __ dead(j);
  1380                 }__ end_if(); __ dead(j);
  1381                 __ increment(i, md2);
  1382                 __ goto_(outer_loop);
  1383               }__ end_if();
  1384               __ increment(j, one);
  1385          }__ end_loop(); __ dead(j);
  1386          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1387          __ goto_(return_);
  1388        }__ end_if();
  1389        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1390          __ increment(i, targetCountLess1);
  1391        }__ end_if();
  1392        __ increment(i, one);
  1393        __ bind(outer_loop);
  1394   }__ end_loop(); __ dead(i);
  1395   __ bind(return_);
  1397   // Final sync IdealKit and GraphKit.
  1398   final_sync(kit);
  1399   Node* result = __ value(rtn);
  1400 #undef __
  1401   C->set_has_loops(true);
  1402   return result;
  1405 //------------------------------inline_string_indexOf------------------------
  1406 bool LibraryCallKit::inline_string_indexOf() {
  1407   Node* receiver = argument(0);
  1408   Node* arg      = argument(1);
  1410   Node* result;
  1411   // Disable the use of pcmpestri until it can be guaranteed that
  1412   // the load doesn't cross into the uncommited space.
  1413   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1414       UseSSE42Intrinsics) {
  1415     // Generate SSE4.2 version of indexOf
  1416     // We currently only have match rules that use SSE4.2
  1418     receiver = null_check(receiver);
  1419     arg      = null_check(arg);
  1420     if (stopped()) {
  1421       return true;
  1424     ciInstanceKlass* str_klass = env()->String_klass();
  1425     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1427     // Make the merge point
  1428     RegionNode* result_rgn = new (C) RegionNode(4);
  1429     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1430     Node* no_ctrl  = NULL;
  1432     // Get start addr of source string
  1433     Node* source = load_String_value(no_ctrl, receiver);
  1434     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1435     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1437     // Get length of source string
  1438     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1440     // Get start addr of substring
  1441     Node* substr = load_String_value(no_ctrl, arg);
  1442     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1443     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1445     // Get length of source string
  1446     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1448     // Check for substr count > string count
  1449     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1450     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1451     Node* if_gt = generate_slow_guard(bol, NULL);
  1452     if (if_gt != NULL) {
  1453       result_phi->init_req(2, intcon(-1));
  1454       result_rgn->init_req(2, if_gt);
  1457     if (!stopped()) {
  1458       // Check for substr count == 0
  1459       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1460       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1461       Node* if_zero = generate_slow_guard(bol, NULL);
  1462       if (if_zero != NULL) {
  1463         result_phi->init_req(3, intcon(0));
  1464         result_rgn->init_req(3, if_zero);
  1468     if (!stopped()) {
  1469       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1470       result_phi->init_req(1, result);
  1471       result_rgn->init_req(1, control());
  1473     set_control(_gvn.transform(result_rgn));
  1474     record_for_igvn(result_rgn);
  1475     result = _gvn.transform(result_phi);
  1477   } else { // Use LibraryCallKit::string_indexOf
  1478     // don't intrinsify if argument isn't a constant string.
  1479     if (!arg->is_Con()) {
  1480      return false;
  1482     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1483     if (str_type == NULL) {
  1484       return false;
  1486     ciInstanceKlass* klass = env()->String_klass();
  1487     ciObject* str_const = str_type->const_oop();
  1488     if (str_const == NULL || str_const->klass() != klass) {
  1489       return false;
  1491     ciInstance* str = str_const->as_instance();
  1492     assert(str != NULL, "must be instance");
  1494     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1495     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1497     int o;
  1498     int c;
  1499     if (java_lang_String::has_offset_field()) {
  1500       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1501       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1502     } else {
  1503       o = 0;
  1504       c = pat->length();
  1507     // constant strings have no offset and count == length which
  1508     // simplifies the resulting code somewhat so lets optimize for that.
  1509     if (o != 0 || c != pat->length()) {
  1510      return false;
  1513     receiver = null_check(receiver, T_OBJECT);
  1514     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1515     if (stopped()) {
  1516       return true;
  1519     // The null string as a pattern always returns 0 (match at beginning of string)
  1520     if (c == 0) {
  1521       set_result(intcon(0));
  1522       return true;
  1525     // Generate default indexOf
  1526     jchar lastChar = pat->char_at(o + (c - 1));
  1527     int cache = 0;
  1528     int i;
  1529     for (i = 0; i < c - 1; i++) {
  1530       assert(i < pat->length(), "out of range");
  1531       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1534     int md2 = c;
  1535     for (i = 0; i < c - 1; i++) {
  1536       assert(i < pat->length(), "out of range");
  1537       if (pat->char_at(o + i) == lastChar) {
  1538         md2 = (c - 1) - i;
  1542     result = string_indexOf(receiver, pat, o, cache, md2);
  1544   set_result(result);
  1545   return true;
  1548 //--------------------------round_double_node--------------------------------
  1549 // Round a double node if necessary.
  1550 Node* LibraryCallKit::round_double_node(Node* n) {
  1551   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1552     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1553   return n;
  1556 //------------------------------inline_math-----------------------------------
  1557 // public static double Math.abs(double)
  1558 // public static double Math.sqrt(double)
  1559 // public static double Math.log(double)
  1560 // public static double Math.log10(double)
  1561 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1562   Node* arg = round_double_node(argument(0));
  1563   Node* n;
  1564   switch (id) {
  1565   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1566   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1567   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1568   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1569   default:  fatal_unexpected_iid(id);  break;
  1571   set_result(_gvn.transform(n));
  1572   return true;
  1575 //------------------------------inline_trig----------------------------------
  1576 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1577 // argument reduction which will turn into a fast/slow diamond.
  1578 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1579   Node* arg = round_double_node(argument(0));
  1580   Node* n = NULL;
  1582   switch (id) {
  1583   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1584   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1585   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1586   default:  fatal_unexpected_iid(id);  break;
  1588   n = _gvn.transform(n);
  1590   // Rounding required?  Check for argument reduction!
  1591   if (Matcher::strict_fp_requires_explicit_rounding) {
  1592     static const double     pi_4 =  0.7853981633974483;
  1593     static const double neg_pi_4 = -0.7853981633974483;
  1594     // pi/2 in 80-bit extended precision
  1595     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1596     // -pi/2 in 80-bit extended precision
  1597     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1598     // Cutoff value for using this argument reduction technique
  1599     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1600     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1602     // Pseudocode for sin:
  1603     // if (x <= Math.PI / 4.0) {
  1604     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1605     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1606     // } else {
  1607     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1608     // }
  1609     // return StrictMath.sin(x);
  1611     // Pseudocode for cos:
  1612     // if (x <= Math.PI / 4.0) {
  1613     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1614     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1615     // } else {
  1616     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1617     // }
  1618     // return StrictMath.cos(x);
  1620     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1621     // requires a special machine instruction to load it.  Instead we'll try
  1622     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1623     // probably do the math inside the SIN encoding.
  1625     // Make the merge point
  1626     RegionNode* r = new (C) RegionNode(3);
  1627     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1629     // Flatten arg so we need only 1 test
  1630     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1631     // Node for PI/4 constant
  1632     Node *pi4 = makecon(TypeD::make(pi_4));
  1633     // Check PI/4 : abs(arg)
  1634     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1635     // Check: If PI/4 < abs(arg) then go slow
  1636     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1637     // Branch either way
  1638     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1639     set_control(opt_iff(r,iff));
  1641     // Set fast path result
  1642     phi->init_req(2, n);
  1644     // Slow path - non-blocking leaf call
  1645     Node* call = NULL;
  1646     switch (id) {
  1647     case vmIntrinsics::_dsin:
  1648       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1649                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1650                                "Sin", NULL, arg, top());
  1651       break;
  1652     case vmIntrinsics::_dcos:
  1653       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1654                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1655                                "Cos", NULL, arg, top());
  1656       break;
  1657     case vmIntrinsics::_dtan:
  1658       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1659                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1660                                "Tan", NULL, arg, top());
  1661       break;
  1663     assert(control()->in(0) == call, "");
  1664     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1665     r->init_req(1, control());
  1666     phi->init_req(1, slow_result);
  1668     // Post-merge
  1669     set_control(_gvn.transform(r));
  1670     record_for_igvn(r);
  1671     n = _gvn.transform(phi);
  1673     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1675   set_result(n);
  1676   return true;
  1679 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1680   //-------------------
  1681   //result=(result.isNaN())? funcAddr():result;
  1682   // Check: If isNaN() by checking result!=result? then either trap
  1683   // or go to runtime
  1684   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1685   // Build the boolean node
  1686   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1688   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1689     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1690       // The pow or exp intrinsic returned a NaN, which requires a call
  1691       // to the runtime.  Recompile with the runtime call.
  1692       uncommon_trap(Deoptimization::Reason_intrinsic,
  1693                     Deoptimization::Action_make_not_entrant);
  1695     set_result(result);
  1696   } else {
  1697     // If this inlining ever returned NaN in the past, we compile a call
  1698     // to the runtime to properly handle corner cases
  1700     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1701     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1702     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1704     if (!if_slow->is_top()) {
  1705       RegionNode* result_region = new (C) RegionNode(3);
  1706       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1708       result_region->init_req(1, if_fast);
  1709       result_val->init_req(1, result);
  1711       set_control(if_slow);
  1713       const TypePtr* no_memory_effects = NULL;
  1714       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1715                                    no_memory_effects,
  1716                                    x, top(), y, y ? top() : NULL);
  1717       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1718 #ifdef ASSERT
  1719       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1720       assert(value_top == top(), "second value must be top");
  1721 #endif
  1723       result_region->init_req(2, control());
  1724       result_val->init_req(2, value);
  1725       set_result(result_region, result_val);
  1726     } else {
  1727       set_result(result);
  1732 //------------------------------inline_exp-------------------------------------
  1733 // Inline exp instructions, if possible.  The Intel hardware only misses
  1734 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1735 bool LibraryCallKit::inline_exp() {
  1736   Node* arg = round_double_node(argument(0));
  1737   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1739   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1741   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1742   return true;
  1745 //------------------------------inline_pow-------------------------------------
  1746 // Inline power instructions, if possible.
  1747 bool LibraryCallKit::inline_pow() {
  1748   // Pseudocode for pow
  1749   // if (x <= 0.0) {
  1750   //   long longy = (long)y;
  1751   //   if ((double)longy == y) { // if y is long
  1752   //     if (y + 1 == y) longy = 0; // huge number: even
  1753   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1754   //   } else {
  1755   //     result = NaN;
  1756   //   }
  1757   // } else {
  1758   //   result = DPow(x,y);
  1759   // }
  1760   // if (result != result)?  {
  1761   //   result = uncommon_trap() or runtime_call();
  1762   // }
  1763   // return result;
  1765   Node* x = round_double_node(argument(0));
  1766   Node* y = round_double_node(argument(2));
  1768   Node* result = NULL;
  1770   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1771     // Short form: skip the fancy tests and just check for NaN result.
  1772     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1773   } else {
  1774     // If this inlining ever returned NaN in the past, include all
  1775     // checks + call to the runtime.
  1777     // Set the merge point for If node with condition of (x <= 0.0)
  1778     // There are four possible paths to region node and phi node
  1779     RegionNode *r = new (C) RegionNode(4);
  1780     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1782     // Build the first if node: if (x <= 0.0)
  1783     // Node for 0 constant
  1784     Node *zeronode = makecon(TypeD::ZERO);
  1785     // Check x:0
  1786     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1787     // Check: If (x<=0) then go complex path
  1788     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1789     // Branch either way
  1790     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1791     // Fast path taken; set region slot 3
  1792     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1793     r->init_req(3,fast_taken); // Capture fast-control
  1795     // Fast path not-taken, i.e. slow path
  1796     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1798     // Set fast path result
  1799     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1800     phi->init_req(3, fast_result);
  1802     // Complex path
  1803     // Build the second if node (if y is long)
  1804     // Node for (long)y
  1805     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1806     // Node for (double)((long) y)
  1807     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1808     // Check (double)((long) y) : y
  1809     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1810     // Check if (y isn't long) then go to slow path
  1812     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1813     // Branch either way
  1814     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1815     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1817     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1819     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1820     // Node for constant 1
  1821     Node *conone = longcon(1);
  1822     // 1& (long)y
  1823     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1825     // A huge number is always even. Detect a huge number by checking
  1826     // if y + 1 == y and set integer to be tested for parity to 0.
  1827     // Required for corner case:
  1828     // (long)9.223372036854776E18 = max_jlong
  1829     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1830     // max_jlong is odd but 9.223372036854776E18 is even
  1831     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1832     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1833     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1834     Node* correctedsign = NULL;
  1835     if (ConditionalMoveLimit != 0) {
  1836       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1837     } else {
  1838       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1839       RegionNode *r = new (C) RegionNode(3);
  1840       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1841       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1842       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1843       phi->init_req(1, signnode);
  1844       phi->init_req(2, longcon(0));
  1845       correctedsign = _gvn.transform(phi);
  1846       ylong_path = _gvn.transform(r);
  1847       record_for_igvn(r);
  1850     // zero node
  1851     Node *conzero = longcon(0);
  1852     // Check (1&(long)y)==0?
  1853     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1854     // Check if (1&(long)y)!=0?, if so the result is negative
  1855     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1856     // abs(x)
  1857     Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1858     // abs(x)^y
  1859     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1860     // -abs(x)^y
  1861     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1862     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1863     Node *signresult = NULL;
  1864     if (ConditionalMoveLimit != 0) {
  1865       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1866     } else {
  1867       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1868       RegionNode *r = new (C) RegionNode(3);
  1869       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1870       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1871       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1872       phi->init_req(1, absxpowy);
  1873       phi->init_req(2, negabsxpowy);
  1874       signresult = _gvn.transform(phi);
  1875       ylong_path = _gvn.transform(r);
  1876       record_for_igvn(r);
  1878     // Set complex path fast result
  1879     r->init_req(2, ylong_path);
  1880     phi->init_req(2, signresult);
  1882     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1883     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1884     r->init_req(1,slow_path);
  1885     phi->init_req(1,slow_result);
  1887     // Post merge
  1888     set_control(_gvn.transform(r));
  1889     record_for_igvn(r);
  1890     result = _gvn.transform(phi);
  1893   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1895   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1896   return true;
  1899 //------------------------------runtime_math-----------------------------
  1900 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1901   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1902          "must be (DD)D or (D)D type");
  1904   // Inputs
  1905   Node* a = round_double_node(argument(0));
  1906   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1908   const TypePtr* no_memory_effects = NULL;
  1909   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1910                                  no_memory_effects,
  1911                                  a, top(), b, b ? top() : NULL);
  1912   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1913 #ifdef ASSERT
  1914   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1915   assert(value_top == top(), "second value must be top");
  1916 #endif
  1918   set_result(value);
  1919   return true;
  1922 //------------------------------inline_math_native-----------------------------
  1923 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1924 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  1925   switch (id) {
  1926     // These intrinsics are not properly supported on all hardware
  1927   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  1928     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  1929   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  1930     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  1931   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  1932     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  1934   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  1935     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  1936   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  1937     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  1939     // These intrinsics are supported on all hardware
  1940   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
  1941   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  1943   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  1944     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  1945   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  1946     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  1947 #undef FN_PTR
  1949    // These intrinsics are not yet correctly implemented
  1950   case vmIntrinsics::_datan2:
  1951     return false;
  1953   default:
  1954     fatal_unexpected_iid(id);
  1955     return false;
  1959 static bool is_simple_name(Node* n) {
  1960   return (n->req() == 1         // constant
  1961           || (n->is_Type() && n->as_Type()->type()->singleton())
  1962           || n->is_Proj()       // parameter or return value
  1963           || n->is_Phi()        // local of some sort
  1964           );
  1967 //----------------------------inline_min_max-----------------------------------
  1968 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1969   set_result(generate_min_max(id, argument(0), argument(1)));
  1970   return true;
  1973 void LibraryCallKit::inline_math_mathExact(Node* math) {
  1974   // If we didn't get the expected opcode it means we have optimized
  1975   // the node to something else and don't need the exception edge.
  1976   if (!math->is_MathExact()) {
  1977     set_result(math);
  1978     return;
  1981   Node* result = _gvn.transform( new(C) ProjNode(math, MathExactNode::result_proj_node));
  1982   Node* flags = _gvn.transform( new(C) FlagsProjNode(math, MathExactNode::flags_proj_node));
  1984   Node* bol = _gvn.transform( new (C) BoolNode(flags, BoolTest::overflow) );
  1985   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  1986   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
  1987   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
  1990     PreserveJVMState pjvms(this);
  1991     PreserveReexecuteState preexecs(this);
  1992     jvms()->set_should_reexecute(true);
  1994     set_control(slow_path);
  1995     set_i_o(i_o());
  1997     uncommon_trap(Deoptimization::Reason_intrinsic,
  1998                   Deoptimization::Action_none);
  2001   set_control(fast_path);
  2002   set_result(result);
  2005 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
  2006   Node* arg1 = argument(0);
  2007   Node* arg2 = NULL;
  2009   if (is_increment) {
  2010     arg2 = intcon(1);
  2011   } else {
  2012     arg2 = argument(1);
  2015   Node* add = _gvn.transform( new(C) AddExactINode(NULL, arg1, arg2) );
  2016   inline_math_mathExact(add);
  2017   return true;
  2020 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
  2021   Node* arg1 = argument(0); // type long
  2022   // argument(1) == TOP
  2023   Node* arg2 = NULL;
  2025   if (is_increment) {
  2026     arg2 = longcon(1);
  2027   } else {
  2028     arg2 = argument(2); // type long
  2029     // argument(3) == TOP
  2032   Node* add = _gvn.transform(new(C) AddExactLNode(NULL, arg1, arg2));
  2033   inline_math_mathExact(add);
  2034   return true;
  2037 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
  2038   Node* arg1 = argument(0);
  2039   Node* arg2 = NULL;
  2041   if (is_decrement) {
  2042     arg2 = intcon(1);
  2043   } else {
  2044     arg2 = argument(1);
  2047   Node* sub = _gvn.transform(new(C) SubExactINode(NULL, arg1, arg2));
  2048   inline_math_mathExact(sub);
  2049   return true;
  2052 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
  2053   Node* arg1 = argument(0); // type long
  2054   // argument(1) == TOP
  2055   Node* arg2 = NULL;
  2057   if (is_decrement) {
  2058     arg2 = longcon(1);
  2059   } else {
  2060     arg2 = argument(2); // type long
  2061     // argument(3) == TOP
  2064   Node* sub = _gvn.transform(new(C) SubExactLNode(NULL, arg1, arg2));
  2065   inline_math_mathExact(sub);
  2066   return true;
  2069 bool LibraryCallKit::inline_math_negateExactI() {
  2070   Node* arg1 = argument(0);
  2072   Node* neg = _gvn.transform(new(C) NegExactINode(NULL, arg1));
  2073   inline_math_mathExact(neg);
  2074   return true;
  2077 bool LibraryCallKit::inline_math_negateExactL() {
  2078   Node* arg1 = argument(0);
  2079   // argument(1) == TOP
  2081   Node* neg = _gvn.transform(new(C) NegExactLNode(NULL, arg1));
  2082   inline_math_mathExact(neg);
  2083   return true;
  2086 bool LibraryCallKit::inline_math_multiplyExactI() {
  2087   Node* arg1 = argument(0);
  2088   Node* arg2 = argument(1);
  2090   Node* mul = _gvn.transform(new(C) MulExactINode(NULL, arg1, arg2));
  2091   inline_math_mathExact(mul);
  2092   return true;
  2095 bool LibraryCallKit::inline_math_multiplyExactL() {
  2096   Node* arg1 = argument(0);
  2097   // argument(1) == TOP
  2098   Node* arg2 = argument(2);
  2099   // argument(3) == TOP
  2101   Node* mul = _gvn.transform(new(C) MulExactLNode(NULL, arg1, arg2));
  2102   inline_math_mathExact(mul);
  2103   return true;
  2106 Node*
  2107 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  2108   // These are the candidate return value:
  2109   Node* xvalue = x0;
  2110   Node* yvalue = y0;
  2112   if (xvalue == yvalue) {
  2113     return xvalue;
  2116   bool want_max = (id == vmIntrinsics::_max);
  2118   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  2119   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  2120   if (txvalue == NULL || tyvalue == NULL)  return top();
  2121   // This is not really necessary, but it is consistent with a
  2122   // hypothetical MaxINode::Value method:
  2123   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  2125   // %%% This folding logic should (ideally) be in a different place.
  2126   // Some should be inside IfNode, and there to be a more reliable
  2127   // transformation of ?: style patterns into cmoves.  We also want
  2128   // more powerful optimizations around cmove and min/max.
  2130   // Try to find a dominating comparison of these guys.
  2131   // It can simplify the index computation for Arrays.copyOf
  2132   // and similar uses of System.arraycopy.
  2133   // First, compute the normalized version of CmpI(x, y).
  2134   int   cmp_op = Op_CmpI;
  2135   Node* xkey = xvalue;
  2136   Node* ykey = yvalue;
  2137   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  2138   if (ideal_cmpxy->is_Cmp()) {
  2139     // E.g., if we have CmpI(length - offset, count),
  2140     // it might idealize to CmpI(length, count + offset)
  2141     cmp_op = ideal_cmpxy->Opcode();
  2142     xkey = ideal_cmpxy->in(1);
  2143     ykey = ideal_cmpxy->in(2);
  2146   // Start by locating any relevant comparisons.
  2147   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  2148   Node* cmpxy = NULL;
  2149   Node* cmpyx = NULL;
  2150   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  2151     Node* cmp = start_from->fast_out(k);
  2152     if (cmp->outcnt() > 0 &&            // must have prior uses
  2153         cmp->in(0) == NULL &&           // must be context-independent
  2154         cmp->Opcode() == cmp_op) {      // right kind of compare
  2155       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  2156       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  2160   const int NCMPS = 2;
  2161   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  2162   int cmpn;
  2163   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2164     if (cmps[cmpn] != NULL)  break;     // find a result
  2166   if (cmpn < NCMPS) {
  2167     // Look for a dominating test that tells us the min and max.
  2168     int depth = 0;                // Limit search depth for speed
  2169     Node* dom = control();
  2170     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2171       if (++depth >= 100)  break;
  2172       Node* ifproj = dom;
  2173       if (!ifproj->is_Proj())  continue;
  2174       Node* iff = ifproj->in(0);
  2175       if (!iff->is_If())  continue;
  2176       Node* bol = iff->in(1);
  2177       if (!bol->is_Bool())  continue;
  2178       Node* cmp = bol->in(1);
  2179       if (cmp == NULL)  continue;
  2180       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2181         if (cmps[cmpn] == cmp)  break;
  2182       if (cmpn == NCMPS)  continue;
  2183       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2184       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2185       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2186       // At this point, we know that 'x btest y' is true.
  2187       switch (btest) {
  2188       case BoolTest::eq:
  2189         // They are proven equal, so we can collapse the min/max.
  2190         // Either value is the answer.  Choose the simpler.
  2191         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2192           return yvalue;
  2193         return xvalue;
  2194       case BoolTest::lt:          // x < y
  2195       case BoolTest::le:          // x <= y
  2196         return (want_max ? yvalue : xvalue);
  2197       case BoolTest::gt:          // x > y
  2198       case BoolTest::ge:          // x >= y
  2199         return (want_max ? xvalue : yvalue);
  2204   // We failed to find a dominating test.
  2205   // Let's pick a test that might GVN with prior tests.
  2206   Node*          best_bol   = NULL;
  2207   BoolTest::mask best_btest = BoolTest::illegal;
  2208   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2209     Node* cmp = cmps[cmpn];
  2210     if (cmp == NULL)  continue;
  2211     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2212       Node* bol = cmp->fast_out(j);
  2213       if (!bol->is_Bool())  continue;
  2214       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2215       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2216       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2217       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2218         best_bol   = bol->as_Bool();
  2219         best_btest = btest;
  2224   Node* answer_if_true  = NULL;
  2225   Node* answer_if_false = NULL;
  2226   switch (best_btest) {
  2227   default:
  2228     if (cmpxy == NULL)
  2229       cmpxy = ideal_cmpxy;
  2230     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  2231     // and fall through:
  2232   case BoolTest::lt:          // x < y
  2233   case BoolTest::le:          // x <= y
  2234     answer_if_true  = (want_max ? yvalue : xvalue);
  2235     answer_if_false = (want_max ? xvalue : yvalue);
  2236     break;
  2237   case BoolTest::gt:          // x > y
  2238   case BoolTest::ge:          // x >= y
  2239     answer_if_true  = (want_max ? xvalue : yvalue);
  2240     answer_if_false = (want_max ? yvalue : xvalue);
  2241     break;
  2244   jint hi, lo;
  2245   if (want_max) {
  2246     // We can sharpen the minimum.
  2247     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2248     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2249   } else {
  2250     // We can sharpen the maximum.
  2251     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2252     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2255   // Use a flow-free graph structure, to avoid creating excess control edges
  2256   // which could hinder other optimizations.
  2257   // Since Math.min/max is often used with arraycopy, we want
  2258   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2259   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2260                                answer_if_false, answer_if_true,
  2261                                TypeInt::make(lo, hi, widen));
  2263   return _gvn.transform(cmov);
  2265   /*
  2266   // This is not as desirable as it may seem, since Min and Max
  2267   // nodes do not have a full set of optimizations.
  2268   // And they would interfere, anyway, with 'if' optimizations
  2269   // and with CMoveI canonical forms.
  2270   switch (id) {
  2271   case vmIntrinsics::_min:
  2272     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2273   case vmIntrinsics::_max:
  2274     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2275   default:
  2276     ShouldNotReachHere();
  2278   */
  2281 inline int
  2282 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2283   const TypePtr* base_type = TypePtr::NULL_PTR;
  2284   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2285   if (base_type == NULL) {
  2286     // Unknown type.
  2287     return Type::AnyPtr;
  2288   } else if (base_type == TypePtr::NULL_PTR) {
  2289     // Since this is a NULL+long form, we have to switch to a rawptr.
  2290     base   = _gvn.transform(new (C) CastX2PNode(offset));
  2291     offset = MakeConX(0);
  2292     return Type::RawPtr;
  2293   } else if (base_type->base() == Type::RawPtr) {
  2294     return Type::RawPtr;
  2295   } else if (base_type->isa_oopptr()) {
  2296     // Base is never null => always a heap address.
  2297     if (base_type->ptr() == TypePtr::NotNull) {
  2298       return Type::OopPtr;
  2300     // Offset is small => always a heap address.
  2301     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2302     if (offset_type != NULL &&
  2303         base_type->offset() == 0 &&     // (should always be?)
  2304         offset_type->_lo >= 0 &&
  2305         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2306       return Type::OopPtr;
  2308     // Otherwise, it might either be oop+off or NULL+addr.
  2309     return Type::AnyPtr;
  2310   } else {
  2311     // No information:
  2312     return Type::AnyPtr;
  2316 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2317   int kind = classify_unsafe_addr(base, offset);
  2318   if (kind == Type::RawPtr) {
  2319     return basic_plus_adr(top(), base, offset);
  2320   } else {
  2321     return basic_plus_adr(base, offset);
  2325 //--------------------------inline_number_methods-----------------------------
  2326 // inline int     Integer.numberOfLeadingZeros(int)
  2327 // inline int        Long.numberOfLeadingZeros(long)
  2328 //
  2329 // inline int     Integer.numberOfTrailingZeros(int)
  2330 // inline int        Long.numberOfTrailingZeros(long)
  2331 //
  2332 // inline int     Integer.bitCount(int)
  2333 // inline int        Long.bitCount(long)
  2334 //
  2335 // inline char  Character.reverseBytes(char)
  2336 // inline short     Short.reverseBytes(short)
  2337 // inline int     Integer.reverseBytes(int)
  2338 // inline long       Long.reverseBytes(long)
  2339 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2340   Node* arg = argument(0);
  2341   Node* n;
  2342   switch (id) {
  2343   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2344   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2345   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2346   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2347   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2348   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2349   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2350   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2351   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2352   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2353   default:  fatal_unexpected_iid(id);  break;
  2355   set_result(_gvn.transform(n));
  2356   return true;
  2359 //----------------------------inline_unsafe_access----------------------------
  2361 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2363 // Helper that guards and inserts a pre-barrier.
  2364 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2365                                         Node* pre_val, bool need_mem_bar) {
  2366   // We could be accessing the referent field of a reference object. If so, when G1
  2367   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2368   // This routine performs some compile time filters and generates suitable
  2369   // runtime filters that guard the pre-barrier code.
  2370   // Also add memory barrier for non volatile load from the referent field
  2371   // to prevent commoning of loads across safepoint.
  2372   if (!UseG1GC && !need_mem_bar)
  2373     return;
  2375   // Some compile time checks.
  2377   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2378   const TypeX* otype = offset->find_intptr_t_type();
  2379   if (otype != NULL && otype->is_con() &&
  2380       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2381     // Constant offset but not the reference_offset so just return
  2382     return;
  2385   // We only need to generate the runtime guards for instances.
  2386   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2387   if (btype != NULL) {
  2388     if (btype->isa_aryptr()) {
  2389       // Array type so nothing to do
  2390       return;
  2393     const TypeInstPtr* itype = btype->isa_instptr();
  2394     if (itype != NULL) {
  2395       // Can the klass of base_oop be statically determined to be
  2396       // _not_ a sub-class of Reference and _not_ Object?
  2397       ciKlass* klass = itype->klass();
  2398       if ( klass->is_loaded() &&
  2399           !klass->is_subtype_of(env()->Reference_klass()) &&
  2400           !env()->Object_klass()->is_subtype_of(klass)) {
  2401         return;
  2406   // The compile time filters did not reject base_oop/offset so
  2407   // we need to generate the following runtime filters
  2408   //
  2409   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2410   //   if (instance_of(base, java.lang.ref.Reference)) {
  2411   //     pre_barrier(_, pre_val, ...);
  2412   //   }
  2413   // }
  2415   float likely   = PROB_LIKELY(  0.999);
  2416   float unlikely = PROB_UNLIKELY(0.999);
  2418   IdealKit ideal(this);
  2419 #define __ ideal.
  2421   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2423   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2424       // Update graphKit memory and control from IdealKit.
  2425       sync_kit(ideal);
  2427       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2428       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2430       // Update IdealKit memory and control from graphKit.
  2431       __ sync_kit(this);
  2433       Node* one = __ ConI(1);
  2434       // is_instof == 0 if base_oop == NULL
  2435       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2437         // Update graphKit from IdeakKit.
  2438         sync_kit(ideal);
  2440         // Use the pre-barrier to record the value in the referent field
  2441         pre_barrier(false /* do_load */,
  2442                     __ ctrl(),
  2443                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2444                     pre_val /* pre_val */,
  2445                     T_OBJECT);
  2446         if (need_mem_bar) {
  2447           // Add memory barrier to prevent commoning reads from this field
  2448           // across safepoint since GC can change its value.
  2449           insert_mem_bar(Op_MemBarCPUOrder);
  2451         // Update IdealKit from graphKit.
  2452         __ sync_kit(this);
  2454       } __ end_if(); // _ref_type != ref_none
  2455   } __ end_if(); // offset == referent_offset
  2457   // Final sync IdealKit and GraphKit.
  2458   final_sync(ideal);
  2459 #undef __
  2463 // Interpret Unsafe.fieldOffset cookies correctly:
  2464 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2466 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2467   // Attempt to infer a sharper value type from the offset and base type.
  2468   ciKlass* sharpened_klass = NULL;
  2470   // See if it is an instance field, with an object type.
  2471   if (alias_type->field() != NULL) {
  2472     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2473     if (alias_type->field()->type()->is_klass()) {
  2474       sharpened_klass = alias_type->field()->type()->as_klass();
  2478   // See if it is a narrow oop array.
  2479   if (adr_type->isa_aryptr()) {
  2480     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2481       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2482       if (elem_type != NULL) {
  2483         sharpened_klass = elem_type->klass();
  2488   // The sharpened class might be unloaded if there is no class loader
  2489   // contraint in place.
  2490   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2491     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2493 #ifndef PRODUCT
  2494     if (C->print_intrinsics() || C->print_inlining()) {
  2495       tty->print("  from base type: ");  adr_type->dump();
  2496       tty->print("  sharpened value: ");  tjp->dump();
  2498 #endif
  2499     // Sharpen the value type.
  2500     return tjp;
  2502   return NULL;
  2505 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2506   if (callee()->is_static())  return false;  // caller must have the capability!
  2508 #ifndef PRODUCT
  2510     ResourceMark rm;
  2511     // Check the signatures.
  2512     ciSignature* sig = callee()->signature();
  2513 #ifdef ASSERT
  2514     if (!is_store) {
  2515       // Object getObject(Object base, int/long offset), etc.
  2516       BasicType rtype = sig->return_type()->basic_type();
  2517       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2518           rtype = T_ADDRESS;  // it is really a C void*
  2519       assert(rtype == type, "getter must return the expected value");
  2520       if (!is_native_ptr) {
  2521         assert(sig->count() == 2, "oop getter has 2 arguments");
  2522         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2523         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2524       } else {
  2525         assert(sig->count() == 1, "native getter has 1 argument");
  2526         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2528     } else {
  2529       // void putObject(Object base, int/long offset, Object x), etc.
  2530       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2531       if (!is_native_ptr) {
  2532         assert(sig->count() == 3, "oop putter has 3 arguments");
  2533         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2534         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2535       } else {
  2536         assert(sig->count() == 2, "native putter has 2 arguments");
  2537         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2539       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2540       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2541         vtype = T_ADDRESS;  // it is really a C void*
  2542       assert(vtype == type, "putter must accept the expected value");
  2544 #endif // ASSERT
  2546 #endif //PRODUCT
  2548   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2550   Node* receiver = argument(0);  // type: oop
  2552   // Build address expression.  See the code in inline_unsafe_prefetch.
  2553   Node* adr;
  2554   Node* heap_base_oop = top();
  2555   Node* offset = top();
  2556   Node* val;
  2558   if (!is_native_ptr) {
  2559     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2560     Node* base = argument(1);  // type: oop
  2561     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2562     offset = argument(2);  // type: long
  2563     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2564     // to be plain byte offsets, which are also the same as those accepted
  2565     // by oopDesc::field_base.
  2566     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2567            "fieldOffset must be byte-scaled");
  2568     // 32-bit machines ignore the high half!
  2569     offset = ConvL2X(offset);
  2570     adr = make_unsafe_address(base, offset);
  2571     heap_base_oop = base;
  2572     val = is_store ? argument(4) : NULL;
  2573   } else {
  2574     Node* ptr = argument(1);  // type: long
  2575     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2576     adr = make_unsafe_address(NULL, ptr);
  2577     val = is_store ? argument(3) : NULL;
  2580   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2582   // First guess at the value type.
  2583   const Type *value_type = Type::get_const_basic_type(type);
  2585   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2586   // there was not enough information to nail it down.
  2587   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2588   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2590   // We will need memory barriers unless we can determine a unique
  2591   // alias category for this reference.  (Note:  If for some reason
  2592   // the barriers get omitted and the unsafe reference begins to "pollute"
  2593   // the alias analysis of the rest of the graph, either Compile::can_alias
  2594   // or Compile::must_alias will throw a diagnostic assert.)
  2595   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2597   // If we are reading the value of the referent field of a Reference
  2598   // object (either by using Unsafe directly or through reflection)
  2599   // then, if G1 is enabled, we need to record the referent in an
  2600   // SATB log buffer using the pre-barrier mechanism.
  2601   // Also we need to add memory barrier to prevent commoning reads
  2602   // from this field across safepoint since GC can change its value.
  2603   bool need_read_barrier = !is_native_ptr && !is_store &&
  2604                            offset != top() && heap_base_oop != top();
  2606   if (!is_store && type == T_OBJECT) {
  2607     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2608     if (tjp != NULL) {
  2609       value_type = tjp;
  2613   receiver = null_check(receiver);
  2614   if (stopped()) {
  2615     return true;
  2617   // Heap pointers get a null-check from the interpreter,
  2618   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2619   // and it is not possible to fully distinguish unintended nulls
  2620   // from intended ones in this API.
  2622   if (is_volatile) {
  2623     // We need to emit leading and trailing CPU membars (see below) in
  2624     // addition to memory membars when is_volatile. This is a little
  2625     // too strong, but avoids the need to insert per-alias-type
  2626     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2627     // we cannot do effectively here because we probably only have a
  2628     // rough approximation of type.
  2629     need_mem_bar = true;
  2630     // For Stores, place a memory ordering barrier now.
  2631     if (is_store) {
  2632       insert_mem_bar(Op_MemBarRelease);
  2633     } else {
  2634       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2635         insert_mem_bar(Op_MemBarVolatile);
  2640   // Memory barrier to prevent normal and 'unsafe' accesses from
  2641   // bypassing each other.  Happens after null checks, so the
  2642   // exception paths do not take memory state from the memory barrier,
  2643   // so there's no problems making a strong assert about mixing users
  2644   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2645   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2646   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2648   if (!is_store) {
  2649     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
  2650     // load value
  2651     switch (type) {
  2652     case T_BOOLEAN:
  2653     case T_CHAR:
  2654     case T_BYTE:
  2655     case T_SHORT:
  2656     case T_INT:
  2657     case T_LONG:
  2658     case T_FLOAT:
  2659     case T_DOUBLE:
  2660       break;
  2661     case T_OBJECT:
  2662       if (need_read_barrier) {
  2663         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2665       break;
  2666     case T_ADDRESS:
  2667       // Cast to an int type.
  2668       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2669       p = ConvX2L(p);
  2670       break;
  2671     default:
  2672       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2673       break;
  2675     // The load node has the control of the preceding MemBarCPUOrder.  All
  2676     // following nodes will have the control of the MemBarCPUOrder inserted at
  2677     // the end of this method.  So, pushing the load onto the stack at a later
  2678     // point is fine.
  2679     set_result(p);
  2680   } else {
  2681     // place effect of store into memory
  2682     switch (type) {
  2683     case T_DOUBLE:
  2684       val = dstore_rounding(val);
  2685       break;
  2686     case T_ADDRESS:
  2687       // Repackage the long as a pointer.
  2688       val = ConvL2X(val);
  2689       val = _gvn.transform(new (C) CastX2PNode(val));
  2690       break;
  2693     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
  2694     if (type != T_OBJECT ) {
  2695       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
  2696     } else {
  2697       // Possibly an oop being stored to Java heap or native memory
  2698       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2699         // oop to Java heap.
  2700         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2701       } else {
  2702         // We can't tell at compile time if we are storing in the Java heap or outside
  2703         // of it. So we need to emit code to conditionally do the proper type of
  2704         // store.
  2706         IdealKit ideal(this);
  2707 #define __ ideal.
  2708         // QQQ who knows what probability is here??
  2709         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2710           // Sync IdealKit and graphKit.
  2711           sync_kit(ideal);
  2712           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2713           // Update IdealKit memory.
  2714           __ sync_kit(this);
  2715         } __ else_(); {
  2716           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
  2717         } __ end_if();
  2718         // Final sync IdealKit and GraphKit.
  2719         final_sync(ideal);
  2720 #undef __
  2725   if (is_volatile) {
  2726     if (!is_store) {
  2727       insert_mem_bar(Op_MemBarAcquire);
  2728     } else {
  2729       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2730         insert_mem_bar(Op_MemBarVolatile);
  2735   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2737   return true;
  2740 //----------------------------inline_unsafe_prefetch----------------------------
  2742 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2743 #ifndef PRODUCT
  2745     ResourceMark rm;
  2746     // Check the signatures.
  2747     ciSignature* sig = callee()->signature();
  2748 #ifdef ASSERT
  2749     // Object getObject(Object base, int/long offset), etc.
  2750     BasicType rtype = sig->return_type()->basic_type();
  2751     if (!is_native_ptr) {
  2752       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2753       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2754       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2755     } else {
  2756       assert(sig->count() == 1, "native prefetch has 1 argument");
  2757       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2759 #endif // ASSERT
  2761 #endif // !PRODUCT
  2763   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2765   const int idx = is_static ? 0 : 1;
  2766   if (!is_static) {
  2767     null_check_receiver();
  2768     if (stopped()) {
  2769       return true;
  2773   // Build address expression.  See the code in inline_unsafe_access.
  2774   Node *adr;
  2775   if (!is_native_ptr) {
  2776     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2777     Node* base   = argument(idx + 0);  // type: oop
  2778     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2779     Node* offset = argument(idx + 1);  // type: long
  2780     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2781     // to be plain byte offsets, which are also the same as those accepted
  2782     // by oopDesc::field_base.
  2783     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2784            "fieldOffset must be byte-scaled");
  2785     // 32-bit machines ignore the high half!
  2786     offset = ConvL2X(offset);
  2787     adr = make_unsafe_address(base, offset);
  2788   } else {
  2789     Node* ptr = argument(idx + 0);  // type: long
  2790     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2791     adr = make_unsafe_address(NULL, ptr);
  2794   // Generate the read or write prefetch
  2795   Node *prefetch;
  2796   if (is_store) {
  2797     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2798   } else {
  2799     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2801   prefetch->init_req(0, control());
  2802   set_i_o(_gvn.transform(prefetch));
  2804   return true;
  2807 //----------------------------inline_unsafe_load_store----------------------------
  2808 // This method serves a couple of different customers (depending on LoadStoreKind):
  2809 //
  2810 // LS_cmpxchg:
  2811 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2812 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2813 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2814 //
  2815 // LS_xadd:
  2816 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2817 //   public long getAndAddLong(Object o, long offset, long delta)
  2818 //
  2819 // LS_xchg:
  2820 //   int    getAndSet(Object o, long offset, int    newValue)
  2821 //   long   getAndSet(Object o, long offset, long   newValue)
  2822 //   Object getAndSet(Object o, long offset, Object newValue)
  2823 //
  2824 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2825   // This basic scheme here is the same as inline_unsafe_access, but
  2826   // differs in enough details that combining them would make the code
  2827   // overly confusing.  (This is a true fact! I originally combined
  2828   // them, but even I was confused by it!) As much code/comments as
  2829   // possible are retained from inline_unsafe_access though to make
  2830   // the correspondences clearer. - dl
  2832   if (callee()->is_static())  return false;  // caller must have the capability!
  2834 #ifndef PRODUCT
  2835   BasicType rtype;
  2837     ResourceMark rm;
  2838     // Check the signatures.
  2839     ciSignature* sig = callee()->signature();
  2840     rtype = sig->return_type()->basic_type();
  2841     if (kind == LS_xadd || kind == LS_xchg) {
  2842       // Check the signatures.
  2843 #ifdef ASSERT
  2844       assert(rtype == type, "get and set must return the expected type");
  2845       assert(sig->count() == 3, "get and set has 3 arguments");
  2846       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2847       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2848       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2849 #endif // ASSERT
  2850     } else if (kind == LS_cmpxchg) {
  2851       // Check the signatures.
  2852 #ifdef ASSERT
  2853       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2854       assert(sig->count() == 4, "CAS has 4 arguments");
  2855       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2856       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2857 #endif // ASSERT
  2858     } else {
  2859       ShouldNotReachHere();
  2862 #endif //PRODUCT
  2864   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2866   // Get arguments:
  2867   Node* receiver = NULL;
  2868   Node* base     = NULL;
  2869   Node* offset   = NULL;
  2870   Node* oldval   = NULL;
  2871   Node* newval   = NULL;
  2872   if (kind == LS_cmpxchg) {
  2873     const bool two_slot_type = type2size[type] == 2;
  2874     receiver = argument(0);  // type: oop
  2875     base     = argument(1);  // type: oop
  2876     offset   = argument(2);  // type: long
  2877     oldval   = argument(4);  // type: oop, int, or long
  2878     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2879   } else if (kind == LS_xadd || kind == LS_xchg){
  2880     receiver = argument(0);  // type: oop
  2881     base     = argument(1);  // type: oop
  2882     offset   = argument(2);  // type: long
  2883     oldval   = NULL;
  2884     newval   = argument(4);  // type: oop, int, or long
  2887   // Null check receiver.
  2888   receiver = null_check(receiver);
  2889   if (stopped()) {
  2890     return true;
  2893   // Build field offset expression.
  2894   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2895   // to be plain byte offsets, which are also the same as those accepted
  2896   // by oopDesc::field_base.
  2897   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2898   // 32-bit machines ignore the high half of long offsets
  2899   offset = ConvL2X(offset);
  2900   Node* adr = make_unsafe_address(base, offset);
  2901   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2903   // For CAS, unlike inline_unsafe_access, there seems no point in
  2904   // trying to refine types. Just use the coarse types here.
  2905   const Type *value_type = Type::get_const_basic_type(type);
  2906   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2907   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2909   if (kind == LS_xchg && type == T_OBJECT) {
  2910     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2911     if (tjp != NULL) {
  2912       value_type = tjp;
  2916   int alias_idx = C->get_alias_index(adr_type);
  2918   // Memory-model-wise, a LoadStore acts like a little synchronized
  2919   // block, so needs barriers on each side.  These don't translate
  2920   // into actual barriers on most machines, but we still need rest of
  2921   // compiler to respect ordering.
  2923   insert_mem_bar(Op_MemBarRelease);
  2924   insert_mem_bar(Op_MemBarCPUOrder);
  2926   // 4984716: MemBars must be inserted before this
  2927   //          memory node in order to avoid a false
  2928   //          dependency which will confuse the scheduler.
  2929   Node *mem = memory(alias_idx);
  2931   // For now, we handle only those cases that actually exist: ints,
  2932   // longs, and Object. Adding others should be straightforward.
  2933   Node* load_store;
  2934   switch(type) {
  2935   case T_INT:
  2936     if (kind == LS_xadd) {
  2937       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2938     } else if (kind == LS_xchg) {
  2939       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2940     } else if (kind == LS_cmpxchg) {
  2941       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2942     } else {
  2943       ShouldNotReachHere();
  2945     break;
  2946   case T_LONG:
  2947     if (kind == LS_xadd) {
  2948       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2949     } else if (kind == LS_xchg) {
  2950       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2951     } else if (kind == LS_cmpxchg) {
  2952       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2953     } else {
  2954       ShouldNotReachHere();
  2956     break;
  2957   case T_OBJECT:
  2958     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2959     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2960     // Execute transformation here to avoid barrier generation in such case.
  2961     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2962       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2964     // Reference stores need a store barrier.
  2965     if (kind == LS_xchg) {
  2966       // If pre-barrier must execute before the oop store, old value will require do_load here.
  2967       if (!can_move_pre_barrier()) {
  2968         pre_barrier(true /* do_load*/,
  2969                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2970                     NULL /* pre_val*/,
  2971                     T_OBJECT);
  2972       } // Else move pre_barrier to use load_store value, see below.
  2973     } else if (kind == LS_cmpxchg) {
  2974       // Same as for newval above:
  2975       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
  2976         oldval = _gvn.makecon(TypePtr::NULL_PTR);
  2978       // The only known value which might get overwritten is oldval.
  2979       pre_barrier(false /* do_load */,
  2980                   control(), NULL, NULL, max_juint, NULL, NULL,
  2981                   oldval /* pre_val */,
  2982                   T_OBJECT);
  2983     } else {
  2984       ShouldNotReachHere();
  2987 #ifdef _LP64
  2988     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2989       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2990       if (kind == LS_xchg) {
  2991         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2992                                                            newval_enc, adr_type, value_type->make_narrowoop()));
  2993       } else {
  2994         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2995         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2996         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  2997                                                                 newval_enc, oldval_enc));
  2999     } else
  3000 #endif
  3002       if (kind == LS_xchg) {
  3003         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  3004       } else {
  3005         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  3006         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  3009     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  3010     break;
  3011   default:
  3012     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  3013     break;
  3016   // SCMemProjNodes represent the memory state of a LoadStore. Their
  3017   // main role is to prevent LoadStore nodes from being optimized away
  3018   // when their results aren't used.
  3019   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  3020   set_memory(proj, alias_idx);
  3022   if (type == T_OBJECT && kind == LS_xchg) {
  3023 #ifdef _LP64
  3024     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  3025       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  3027 #endif
  3028     if (can_move_pre_barrier()) {
  3029       // Don't need to load pre_val. The old value is returned by load_store.
  3030       // The pre_barrier can execute after the xchg as long as no safepoint
  3031       // gets inserted between them.
  3032       pre_barrier(false /* do_load */,
  3033                   control(), NULL, NULL, max_juint, NULL, NULL,
  3034                   load_store /* pre_val */,
  3035                   T_OBJECT);
  3039   // Add the trailing membar surrounding the access
  3040   insert_mem_bar(Op_MemBarCPUOrder);
  3041   insert_mem_bar(Op_MemBarAcquire);
  3043   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  3044   set_result(load_store);
  3045   return true;
  3048 //----------------------------inline_unsafe_ordered_store----------------------
  3049 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  3050 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  3051 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  3052 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  3053   // This is another variant of inline_unsafe_access, differing in
  3054   // that it always issues store-store ("release") barrier and ensures
  3055   // store-atomicity (which only matters for "long").
  3057   if (callee()->is_static())  return false;  // caller must have the capability!
  3059 #ifndef PRODUCT
  3061     ResourceMark rm;
  3062     // Check the signatures.
  3063     ciSignature* sig = callee()->signature();
  3064 #ifdef ASSERT
  3065     BasicType rtype = sig->return_type()->basic_type();
  3066     assert(rtype == T_VOID, "must return void");
  3067     assert(sig->count() == 3, "has 3 arguments");
  3068     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  3069     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  3070 #endif // ASSERT
  3072 #endif //PRODUCT
  3074   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3076   // Get arguments:
  3077   Node* receiver = argument(0);  // type: oop
  3078   Node* base     = argument(1);  // type: oop
  3079   Node* offset   = argument(2);  // type: long
  3080   Node* val      = argument(4);  // type: oop, int, or long
  3082   // Null check receiver.
  3083   receiver = null_check(receiver);
  3084   if (stopped()) {
  3085     return true;
  3088   // Build field offset expression.
  3089   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  3090   // 32-bit machines ignore the high half of long offsets
  3091   offset = ConvL2X(offset);
  3092   Node* adr = make_unsafe_address(base, offset);
  3093   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  3094   const Type *value_type = Type::get_const_basic_type(type);
  3095   Compile::AliasType* alias_type = C->alias_type(adr_type);
  3097   insert_mem_bar(Op_MemBarRelease);
  3098   insert_mem_bar(Op_MemBarCPUOrder);
  3099   // Ensure that the store is atomic for longs:
  3100   const bool require_atomic_access = true;
  3101   Node* store;
  3102   if (type == T_OBJECT) // reference stores need a store barrier.
  3103     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
  3104   else {
  3105     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
  3107   insert_mem_bar(Op_MemBarCPUOrder);
  3108   return true;
  3111 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  3112   // Regardless of form, don't allow previous ld/st to move down,
  3113   // then issue acquire, release, or volatile mem_bar.
  3114   insert_mem_bar(Op_MemBarCPUOrder);
  3115   switch(id) {
  3116     case vmIntrinsics::_loadFence:
  3117       insert_mem_bar(Op_LoadFence);
  3118       return true;
  3119     case vmIntrinsics::_storeFence:
  3120       insert_mem_bar(Op_StoreFence);
  3121       return true;
  3122     case vmIntrinsics::_fullFence:
  3123       insert_mem_bar(Op_MemBarVolatile);
  3124       return true;
  3125     default:
  3126       fatal_unexpected_iid(id);
  3127       return false;
  3131 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  3132   if (!kls->is_Con()) {
  3133     return true;
  3135   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  3136   if (klsptr == NULL) {
  3137     return true;
  3139   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  3140   // don't need a guard for a klass that is already initialized
  3141   return !ik->is_initialized();
  3144 //----------------------------inline_unsafe_allocate---------------------------
  3145 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  3146 bool LibraryCallKit::inline_unsafe_allocate() {
  3147   if (callee()->is_static())  return false;  // caller must have the capability!
  3149   null_check_receiver();  // null-check, then ignore
  3150   Node* cls = null_check(argument(1));
  3151   if (stopped())  return true;
  3153   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3154   kls = null_check(kls);
  3155   if (stopped())  return true;  // argument was like int.class
  3157   Node* test = NULL;
  3158   if (LibraryCallKit::klass_needs_init_guard(kls)) {
  3159     // Note:  The argument might still be an illegal value like
  3160     // Serializable.class or Object[].class.   The runtime will handle it.
  3161     // But we must make an explicit check for initialization.
  3162     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3163     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3164     // can generate code to load it as unsigned byte.
  3165     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
  3166     Node* bits = intcon(InstanceKlass::fully_initialized);
  3167     test = _gvn.transform(new (C) SubINode(inst, bits));
  3168     // The 'test' is non-zero if we need to take a slow path.
  3171   Node* obj = new_instance(kls, test);
  3172   set_result(obj);
  3173   return true;
  3176 #ifdef TRACE_HAVE_INTRINSICS
  3177 /*
  3178  * oop -> myklass
  3179  * myklass->trace_id |= USED
  3180  * return myklass->trace_id & ~0x3
  3181  */
  3182 bool LibraryCallKit::inline_native_classID() {
  3183   null_check_receiver();  // null-check, then ignore
  3184   Node* cls = null_check(argument(1), T_OBJECT);
  3185   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3186   kls = null_check(kls, T_OBJECT);
  3187   ByteSize offset = TRACE_ID_OFFSET;
  3188   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3189   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
  3190   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3191   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3192   Node* clsused = longcon(0x01l); // set the class bit
  3193   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3195   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3196   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
  3197   set_result(andl);
  3198   return true;
  3201 bool LibraryCallKit::inline_native_threadID() {
  3202   Node* tls_ptr = NULL;
  3203   Node* cur_thr = generate_current_thread(tls_ptr);
  3204   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3205   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3206   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3208   Node* threadid = NULL;
  3209   size_t thread_id_size = OSThread::thread_id_size();
  3210   if (thread_id_size == (size_t) BytesPerLong) {
  3211     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
  3212   } else if (thread_id_size == (size_t) BytesPerInt) {
  3213     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
  3214   } else {
  3215     ShouldNotReachHere();
  3217   set_result(threadid);
  3218   return true;
  3220 #endif
  3222 //------------------------inline_native_time_funcs--------------
  3223 // inline code for System.currentTimeMillis() and System.nanoTime()
  3224 // these have the same type and signature
  3225 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3226   const TypeFunc* tf = OptoRuntime::void_long_Type();
  3227   const TypePtr* no_memory_effects = NULL;
  3228   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3229   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3230 #ifdef ASSERT
  3231   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  3232   assert(value_top == top(), "second value must be top");
  3233 #endif
  3234   set_result(value);
  3235   return true;
  3238 //------------------------inline_native_currentThread------------------
  3239 bool LibraryCallKit::inline_native_currentThread() {
  3240   Node* junk = NULL;
  3241   set_result(generate_current_thread(junk));
  3242   return true;
  3245 //------------------------inline_native_isInterrupted------------------
  3246 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  3247 bool LibraryCallKit::inline_native_isInterrupted() {
  3248   // Add a fast path to t.isInterrupted(clear_int):
  3249   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  3250   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3251   // So, in the common case that the interrupt bit is false,
  3252   // we avoid making a call into the VM.  Even if the interrupt bit
  3253   // is true, if the clear_int argument is false, we avoid the VM call.
  3254   // However, if the receiver is not currentThread, we must call the VM,
  3255   // because there must be some locking done around the operation.
  3257   // We only go to the fast case code if we pass two guards.
  3258   // Paths which do not pass are accumulated in the slow_region.
  3260   enum {
  3261     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  3262     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  3263     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  3264     PATH_LIMIT
  3265   };
  3267   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3268   // out of the function.
  3269   insert_mem_bar(Op_MemBarCPUOrder);
  3271   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3272   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3274   RegionNode* slow_region = new (C) RegionNode(1);
  3275   record_for_igvn(slow_region);
  3277   // (a) Receiving thread must be the current thread.
  3278   Node* rec_thr = argument(0);
  3279   Node* tls_ptr = NULL;
  3280   Node* cur_thr = generate_current_thread(tls_ptr);
  3281   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  3282   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  3284   generate_slow_guard(bol_thr, slow_region);
  3286   // (b) Interrupt bit on TLS must be false.
  3287   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3288   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3289   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3291   // Set the control input on the field _interrupted read to prevent it floating up.
  3292   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
  3293   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  3294   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  3296   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3298   // First fast path:  if (!TLS._interrupted) return false;
  3299   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  3300   result_rgn->init_req(no_int_result_path, false_bit);
  3301   result_val->init_req(no_int_result_path, intcon(0));
  3303   // drop through to next case
  3304   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  3306   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3307   Node* clr_arg = argument(1);
  3308   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  3309   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  3310   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3312   // Second fast path:  ... else if (!clear_int) return true;
  3313   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  3314   result_rgn->init_req(no_clear_result_path, false_arg);
  3315   result_val->init_req(no_clear_result_path, intcon(1));
  3317   // drop through to next case
  3318   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  3320   // (d) Otherwise, go to the slow path.
  3321   slow_region->add_req(control());
  3322   set_control( _gvn.transform(slow_region));
  3324   if (stopped()) {
  3325     // There is no slow path.
  3326     result_rgn->init_req(slow_result_path, top());
  3327     result_val->init_req(slow_result_path, top());
  3328   } else {
  3329     // non-virtual because it is a private non-static
  3330     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3332     Node* slow_val = set_results_for_java_call(slow_call);
  3333     // this->control() comes from set_results_for_java_call
  3335     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3336     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3338     // These two phis are pre-filled with copies of of the fast IO and Memory
  3339     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3340     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3342     result_rgn->init_req(slow_result_path, control());
  3343     result_io ->init_req(slow_result_path, i_o());
  3344     result_mem->init_req(slow_result_path, reset_memory());
  3345     result_val->init_req(slow_result_path, slow_val);
  3347     set_all_memory(_gvn.transform(result_mem));
  3348     set_i_o(       _gvn.transform(result_io));
  3351   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3352   set_result(result_rgn, result_val);
  3353   return true;
  3356 //---------------------------load_mirror_from_klass----------------------------
  3357 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3358 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3359   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3360   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3363 //-----------------------load_klass_from_mirror_common-------------------------
  3364 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3365 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3366 // and branch to the given path on the region.
  3367 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3368 // compile for the non-null case.
  3369 // If the region is NULL, force never_see_null = true.
  3370 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3371                                                     bool never_see_null,
  3372                                                     RegionNode* region,
  3373                                                     int null_path,
  3374                                                     int offset) {
  3375   if (region == NULL)  never_see_null = true;
  3376   Node* p = basic_plus_adr(mirror, offset);
  3377   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3378   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  3379   Node* null_ctl = top();
  3380   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3381   if (region != NULL) {
  3382     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3383     region->init_req(null_path, null_ctl);
  3384   } else {
  3385     assert(null_ctl == top(), "no loose ends");
  3387   return kls;
  3390 //--------------------(inline_native_Class_query helpers)---------------------
  3391 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3392 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3393 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3394   // Branch around if the given klass has the given modifier bit set.
  3395   // Like generate_guard, adds a new path onto the region.
  3396   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3397   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
  3398   Node* mask = intcon(modifier_mask);
  3399   Node* bits = intcon(modifier_bits);
  3400   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  3401   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  3402   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  3403   return generate_fair_guard(bol, region);
  3405 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3406   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3409 //-------------------------inline_native_Class_query-------------------
  3410 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3411   const Type* return_type = TypeInt::BOOL;
  3412   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3413   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3414   bool expect_prim = false;     // most of these guys expect to work on refs
  3416   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3418   Node* mirror = argument(0);
  3419   Node* obj    = top();
  3421   switch (id) {
  3422   case vmIntrinsics::_isInstance:
  3423     // nothing is an instance of a primitive type
  3424     prim_return_value = intcon(0);
  3425     obj = argument(1);
  3426     break;
  3427   case vmIntrinsics::_getModifiers:
  3428     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3429     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3430     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3431     break;
  3432   case vmIntrinsics::_isInterface:
  3433     prim_return_value = intcon(0);
  3434     break;
  3435   case vmIntrinsics::_isArray:
  3436     prim_return_value = intcon(0);
  3437     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3438     break;
  3439   case vmIntrinsics::_isPrimitive:
  3440     prim_return_value = intcon(1);
  3441     expect_prim = true;  // obviously
  3442     break;
  3443   case vmIntrinsics::_getSuperclass:
  3444     prim_return_value = null();
  3445     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3446     break;
  3447   case vmIntrinsics::_getComponentType:
  3448     prim_return_value = null();
  3449     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3450     break;
  3451   case vmIntrinsics::_getClassAccessFlags:
  3452     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3453     return_type = TypeInt::INT;  // not bool!  6297094
  3454     break;
  3455   default:
  3456     fatal_unexpected_iid(id);
  3457     break;
  3460   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3461   if (mirror_con == NULL)  return false;  // cannot happen?
  3463 #ifndef PRODUCT
  3464   if (C->print_intrinsics() || C->print_inlining()) {
  3465     ciType* k = mirror_con->java_mirror_type();
  3466     if (k) {
  3467       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3468       k->print_name();
  3469       tty->cr();
  3472 #endif
  3474   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3475   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3476   record_for_igvn(region);
  3477   PhiNode* phi = new (C) PhiNode(region, return_type);
  3479   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3480   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3481   // if it is. See bug 4774291.
  3483   // For Reflection.getClassAccessFlags(), the null check occurs in
  3484   // the wrong place; see inline_unsafe_access(), above, for a similar
  3485   // situation.
  3486   mirror = null_check(mirror);
  3487   // If mirror or obj is dead, only null-path is taken.
  3488   if (stopped())  return true;
  3490   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3492   // Now load the mirror's klass metaobject, and null-check it.
  3493   // Side-effects region with the control path if the klass is null.
  3494   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3495   // If kls is null, we have a primitive mirror.
  3496   phi->init_req(_prim_path, prim_return_value);
  3497   if (stopped()) { set_result(region, phi); return true; }
  3498   bool safe_for_replace = (region->in(_prim_path) == top());
  3500   Node* p;  // handy temp
  3501   Node* null_ctl;
  3503   // Now that we have the non-null klass, we can perform the real query.
  3504   // For constant classes, the query will constant-fold in LoadNode::Value.
  3505   Node* query_value = top();
  3506   switch (id) {
  3507   case vmIntrinsics::_isInstance:
  3508     // nothing is an instance of a primitive type
  3509     query_value = gen_instanceof(obj, kls, safe_for_replace);
  3510     break;
  3512   case vmIntrinsics::_getModifiers:
  3513     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3514     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3515     break;
  3517   case vmIntrinsics::_isInterface:
  3518     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3519     if (generate_interface_guard(kls, region) != NULL)
  3520       // A guard was added.  If the guard is taken, it was an interface.
  3521       phi->add_req(intcon(1));
  3522     // If we fall through, it's a plain class.
  3523     query_value = intcon(0);
  3524     break;
  3526   case vmIntrinsics::_isArray:
  3527     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3528     if (generate_array_guard(kls, region) != NULL)
  3529       // A guard was added.  If the guard is taken, it was an array.
  3530       phi->add_req(intcon(1));
  3531     // If we fall through, it's a plain class.
  3532     query_value = intcon(0);
  3533     break;
  3535   case vmIntrinsics::_isPrimitive:
  3536     query_value = intcon(0); // "normal" path produces false
  3537     break;
  3539   case vmIntrinsics::_getSuperclass:
  3540     // The rules here are somewhat unfortunate, but we can still do better
  3541     // with random logic than with a JNI call.
  3542     // Interfaces store null or Object as _super, but must report null.
  3543     // Arrays store an intermediate super as _super, but must report Object.
  3544     // Other types can report the actual _super.
  3545     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3546     if (generate_interface_guard(kls, region) != NULL)
  3547       // A guard was added.  If the guard is taken, it was an interface.
  3548       phi->add_req(null());
  3549     if (generate_array_guard(kls, region) != NULL)
  3550       // A guard was added.  If the guard is taken, it was an array.
  3551       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3552     // If we fall through, it's a plain class.  Get its _super.
  3553     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3554     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  3555     null_ctl = top();
  3556     kls = null_check_oop(kls, &null_ctl);
  3557     if (null_ctl != top()) {
  3558       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3559       region->add_req(null_ctl);
  3560       phi   ->add_req(null());
  3562     if (!stopped()) {
  3563       query_value = load_mirror_from_klass(kls);
  3565     break;
  3567   case vmIntrinsics::_getComponentType:
  3568     if (generate_array_guard(kls, region) != NULL) {
  3569       // Be sure to pin the oop load to the guard edge just created:
  3570       Node* is_array_ctrl = region->in(region->req()-1);
  3571       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3572       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3573       phi->add_req(cmo);
  3575     query_value = null();  // non-array case is null
  3576     break;
  3578   case vmIntrinsics::_getClassAccessFlags:
  3579     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3580     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3581     break;
  3583   default:
  3584     fatal_unexpected_iid(id);
  3585     break;
  3588   // Fall-through is the normal case of a query to a real class.
  3589   phi->init_req(1, query_value);
  3590   region->init_req(1, control());
  3592   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3593   set_result(region, phi);
  3594   return true;
  3597 //--------------------------inline_native_subtype_check------------------------
  3598 // This intrinsic takes the JNI calls out of the heart of
  3599 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3600 bool LibraryCallKit::inline_native_subtype_check() {
  3601   // Pull both arguments off the stack.
  3602   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3603   args[0] = argument(0);
  3604   args[1] = argument(1);
  3605   Node* klasses[2];             // corresponding Klasses: superk, subk
  3606   klasses[0] = klasses[1] = top();
  3608   enum {
  3609     // A full decision tree on {superc is prim, subc is prim}:
  3610     _prim_0_path = 1,           // {P,N} => false
  3611                                 // {P,P} & superc!=subc => false
  3612     _prim_same_path,            // {P,P} & superc==subc => true
  3613     _prim_1_path,               // {N,P} => false
  3614     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3615     _both_ref_path,             // {N,N} & subtype check loses => false
  3616     PATH_LIMIT
  3617   };
  3619   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3620   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3621   record_for_igvn(region);
  3623   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3624   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3625   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3627   // First null-check both mirrors and load each mirror's klass metaobject.
  3628   int which_arg;
  3629   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3630     Node* arg = args[which_arg];
  3631     arg = null_check(arg);
  3632     if (stopped())  break;
  3633     args[which_arg] = arg;
  3635     Node* p = basic_plus_adr(arg, class_klass_offset);
  3636     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3637     klasses[which_arg] = _gvn.transform(kls);
  3640   // Having loaded both klasses, test each for null.
  3641   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3642   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3643     Node* kls = klasses[which_arg];
  3644     Node* null_ctl = top();
  3645     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3646     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3647     region->init_req(prim_path, null_ctl);
  3648     if (stopped())  break;
  3649     klasses[which_arg] = kls;
  3652   if (!stopped()) {
  3653     // now we have two reference types, in klasses[0..1]
  3654     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3655     Node* superk = klasses[0];  // the receiver
  3656     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3657     // now we have a successful reference subtype check
  3658     region->set_req(_ref_subtype_path, control());
  3661   // If both operands are primitive (both klasses null), then
  3662   // we must return true when they are identical primitives.
  3663   // It is convenient to test this after the first null klass check.
  3664   set_control(region->in(_prim_0_path)); // go back to first null check
  3665   if (!stopped()) {
  3666     // Since superc is primitive, make a guard for the superc==subc case.
  3667     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  3668     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  3669     generate_guard(bol_eq, region, PROB_FAIR);
  3670     if (region->req() == PATH_LIMIT+1) {
  3671       // A guard was added.  If the added guard is taken, superc==subc.
  3672       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3673       region->del_req(PATH_LIMIT);
  3675     region->set_req(_prim_0_path, control()); // Not equal after all.
  3678   // these are the only paths that produce 'true':
  3679   phi->set_req(_prim_same_path,   intcon(1));
  3680   phi->set_req(_ref_subtype_path, intcon(1));
  3682   // pull together the cases:
  3683   assert(region->req() == PATH_LIMIT, "sane region");
  3684   for (uint i = 1; i < region->req(); i++) {
  3685     Node* ctl = region->in(i);
  3686     if (ctl == NULL || ctl == top()) {
  3687       region->set_req(i, top());
  3688       phi   ->set_req(i, top());
  3689     } else if (phi->in(i) == NULL) {
  3690       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3694   set_control(_gvn.transform(region));
  3695   set_result(_gvn.transform(phi));
  3696   return true;
  3699 //---------------------generate_array_guard_common------------------------
  3700 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3701                                                   bool obj_array, bool not_array) {
  3702   // If obj_array/non_array==false/false:
  3703   // Branch around if the given klass is in fact an array (either obj or prim).
  3704   // If obj_array/non_array==false/true:
  3705   // Branch around if the given klass is not an array klass of any kind.
  3706   // If obj_array/non_array==true/true:
  3707   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3708   // If obj_array/non_array==true/false:
  3709   // Branch around if the kls is an oop array (Object[] or subtype)
  3710   //
  3711   // Like generate_guard, adds a new path onto the region.
  3712   jint  layout_con = 0;
  3713   Node* layout_val = get_layout_helper(kls, layout_con);
  3714   if (layout_val == NULL) {
  3715     bool query = (obj_array
  3716                   ? Klass::layout_helper_is_objArray(layout_con)
  3717                   : Klass::layout_helper_is_array(layout_con));
  3718     if (query == not_array) {
  3719       return NULL;                       // never a branch
  3720     } else {                             // always a branch
  3721       Node* always_branch = control();
  3722       if (region != NULL)
  3723         region->add_req(always_branch);
  3724       set_control(top());
  3725       return always_branch;
  3728   // Now test the correct condition.
  3729   jint  nval = (obj_array
  3730                 ? ((jint)Klass::_lh_array_tag_type_value
  3731                    <<    Klass::_lh_array_tag_shift)
  3732                 : Klass::_lh_neutral_value);
  3733   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  3734   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3735   // invert the test if we are looking for a non-array
  3736   if (not_array)  btest = BoolTest(btest).negate();
  3737   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  3738   return generate_fair_guard(bol, region);
  3742 //-----------------------inline_native_newArray--------------------------
  3743 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3744 bool LibraryCallKit::inline_native_newArray() {
  3745   Node* mirror    = argument(0);
  3746   Node* count_val = argument(1);
  3748   mirror = null_check(mirror);
  3749   // If mirror or obj is dead, only null-path is taken.
  3750   if (stopped())  return true;
  3752   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3753   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3754   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3755                                           TypeInstPtr::NOTNULL);
  3756   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3757   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3758                                           TypePtr::BOTTOM);
  3760   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3761   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3762                                                   result_reg, _slow_path);
  3763   Node* normal_ctl   = control();
  3764   Node* no_array_ctl = result_reg->in(_slow_path);
  3766   // Generate code for the slow case.  We make a call to newArray().
  3767   set_control(no_array_ctl);
  3768   if (!stopped()) {
  3769     // Either the input type is void.class, or else the
  3770     // array klass has not yet been cached.  Either the
  3771     // ensuing call will throw an exception, or else it
  3772     // will cache the array klass for next time.
  3773     PreserveJVMState pjvms(this);
  3774     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3775     Node* slow_result = set_results_for_java_call(slow_call);
  3776     // this->control() comes from set_results_for_java_call
  3777     result_reg->set_req(_slow_path, control());
  3778     result_val->set_req(_slow_path, slow_result);
  3779     result_io ->set_req(_slow_path, i_o());
  3780     result_mem->set_req(_slow_path, reset_memory());
  3783   set_control(normal_ctl);
  3784   if (!stopped()) {
  3785     // Normal case:  The array type has been cached in the java.lang.Class.
  3786     // The following call works fine even if the array type is polymorphic.
  3787     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3788     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3789     result_reg->init_req(_normal_path, control());
  3790     result_val->init_req(_normal_path, obj);
  3791     result_io ->init_req(_normal_path, i_o());
  3792     result_mem->init_req(_normal_path, reset_memory());
  3795   // Return the combined state.
  3796   set_i_o(        _gvn.transform(result_io)  );
  3797   set_all_memory( _gvn.transform(result_mem));
  3799   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3800   set_result(result_reg, result_val);
  3801   return true;
  3804 //----------------------inline_native_getLength--------------------------
  3805 // public static native int java.lang.reflect.Array.getLength(Object array);
  3806 bool LibraryCallKit::inline_native_getLength() {
  3807   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3809   Node* array = null_check(argument(0));
  3810   // If array is dead, only null-path is taken.
  3811   if (stopped())  return true;
  3813   // Deoptimize if it is a non-array.
  3814   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3816   if (non_array != NULL) {
  3817     PreserveJVMState pjvms(this);
  3818     set_control(non_array);
  3819     uncommon_trap(Deoptimization::Reason_intrinsic,
  3820                   Deoptimization::Action_maybe_recompile);
  3823   // If control is dead, only non-array-path is taken.
  3824   if (stopped())  return true;
  3826   // The works fine even if the array type is polymorphic.
  3827   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3828   Node* result = load_array_length(array);
  3830   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3831   set_result(result);
  3832   return true;
  3835 //------------------------inline_array_copyOf----------------------------
  3836 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3837 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3838 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3839   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3841   // Get the arguments.
  3842   Node* original          = argument(0);
  3843   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3844   Node* end               = is_copyOfRange? argument(2): argument(1);
  3845   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3847   Node* newcopy;
  3849   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3850   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3851   { PreserveReexecuteState preexecs(this);
  3852     jvms()->set_should_reexecute(true);
  3854     array_type_mirror = null_check(array_type_mirror);
  3855     original          = null_check(original);
  3857     // Check if a null path was taken unconditionally.
  3858     if (stopped())  return true;
  3860     Node* orig_length = load_array_length(original);
  3862     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3863     klass_node = null_check(klass_node);
  3865     RegionNode* bailout = new (C) RegionNode(1);
  3866     record_for_igvn(bailout);
  3868     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3869     // Bail out if that is so.
  3870     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3871     if (not_objArray != NULL) {
  3872       // Improve the klass node's type from the new optimistic assumption:
  3873       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3874       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3875       Node* cast = new (C) CastPPNode(klass_node, akls);
  3876       cast->init_req(0, control());
  3877       klass_node = _gvn.transform(cast);
  3880     // Bail out if either start or end is negative.
  3881     generate_negative_guard(start, bailout, &start);
  3882     generate_negative_guard(end,   bailout, &end);
  3884     Node* length = end;
  3885     if (_gvn.type(start) != TypeInt::ZERO) {
  3886       length = _gvn.transform(new (C) SubINode(end, start));
  3889     // Bail out if length is negative.
  3890     // Without this the new_array would throw
  3891     // NegativeArraySizeException but IllegalArgumentException is what
  3892     // should be thrown
  3893     generate_negative_guard(length, bailout, &length);
  3895     if (bailout->req() > 1) {
  3896       PreserveJVMState pjvms(this);
  3897       set_control(_gvn.transform(bailout));
  3898       uncommon_trap(Deoptimization::Reason_intrinsic,
  3899                     Deoptimization::Action_maybe_recompile);
  3902     if (!stopped()) {
  3903       // How many elements will we copy from the original?
  3904       // The answer is MinI(orig_length - start, length).
  3905       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3906       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3908       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3910       // Generate a direct call to the right arraycopy function(s).
  3911       // We know the copy is disjoint but we might not know if the
  3912       // oop stores need checking.
  3913       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3914       // This will fail a store-check if x contains any non-nulls.
  3915       bool disjoint_bases = true;
  3916       // if start > orig_length then the length of the copy may be
  3917       // negative.
  3918       bool length_never_negative = !is_copyOfRange;
  3919       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3920                          original, start, newcopy, intcon(0), moved,
  3921                          disjoint_bases, length_never_negative);
  3923   } // original reexecute is set back here
  3925   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3926   if (!stopped()) {
  3927     set_result(newcopy);
  3929   return true;
  3933 //----------------------generate_virtual_guard---------------------------
  3934 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3935 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3936                                              RegionNode* slow_region) {
  3937   ciMethod* method = callee();
  3938   int vtable_index = method->vtable_index();
  3939   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3940          err_msg_res("bad index %d", vtable_index));
  3941   // Get the Method* out of the appropriate vtable entry.
  3942   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3943                      vtable_index*vtableEntry::size()) * wordSize +
  3944                      vtableEntry::method_offset_in_bytes();
  3945   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3946   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3948   // Compare the target method with the expected method (e.g., Object.hashCode).
  3949   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3951   Node* native_call = makecon(native_call_addr);
  3952   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  3953   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  3955   return generate_slow_guard(test_native, slow_region);
  3958 //-----------------------generate_method_call----------------------------
  3959 // Use generate_method_call to make a slow-call to the real
  3960 // method if the fast path fails.  An alternative would be to
  3961 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3962 // This only works for expanding the current library call,
  3963 // not another intrinsic.  (E.g., don't use this for making an
  3964 // arraycopy call inside of the copyOf intrinsic.)
  3965 CallJavaNode*
  3966 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3967   // When compiling the intrinsic method itself, do not use this technique.
  3968   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3970   ciMethod* method = callee();
  3971   // ensure the JVMS we have will be correct for this call
  3972   guarantee(method_id == method->intrinsic_id(), "must match");
  3974   const TypeFunc* tf = TypeFunc::make(method);
  3975   CallJavaNode* slow_call;
  3976   if (is_static) {
  3977     assert(!is_virtual, "");
  3978     slow_call = new(C) CallStaticJavaNode(C, tf,
  3979                            SharedRuntime::get_resolve_static_call_stub(),
  3980                            method, bci());
  3981   } else if (is_virtual) {
  3982     null_check_receiver();
  3983     int vtable_index = Method::invalid_vtable_index;
  3984     if (UseInlineCaches) {
  3985       // Suppress the vtable call
  3986     } else {
  3987       // hashCode and clone are not a miranda methods,
  3988       // so the vtable index is fixed.
  3989       // No need to use the linkResolver to get it.
  3990        vtable_index = method->vtable_index();
  3991        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3992               err_msg_res("bad index %d", vtable_index));
  3994     slow_call = new(C) CallDynamicJavaNode(tf,
  3995                           SharedRuntime::get_resolve_virtual_call_stub(),
  3996                           method, vtable_index, bci());
  3997   } else {  // neither virtual nor static:  opt_virtual
  3998     null_check_receiver();
  3999     slow_call = new(C) CallStaticJavaNode(C, tf,
  4000                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  4001                                 method, bci());
  4002     slow_call->set_optimized_virtual(true);
  4004   set_arguments_for_java_call(slow_call);
  4005   set_edges_for_java_call(slow_call);
  4006   return slow_call;
  4010 //------------------------------inline_native_hashcode--------------------
  4011 // Build special case code for calls to hashCode on an object.
  4012 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  4013   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  4014   assert(!(is_virtual && is_static), "either virtual, special, or static");
  4016   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  4018   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4019   PhiNode*    result_val = new(C) PhiNode(result_reg,
  4020                                           TypeInt::INT);
  4021   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  4022   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4023                                           TypePtr::BOTTOM);
  4024   Node* obj = NULL;
  4025   if (!is_static) {
  4026     // Check for hashing null object
  4027     obj = null_check_receiver();
  4028     if (stopped())  return true;        // unconditionally null
  4029     result_reg->init_req(_null_path, top());
  4030     result_val->init_req(_null_path, top());
  4031   } else {
  4032     // Do a null check, and return zero if null.
  4033     // System.identityHashCode(null) == 0
  4034     obj = argument(0);
  4035     Node* null_ctl = top();
  4036     obj = null_check_oop(obj, &null_ctl);
  4037     result_reg->init_req(_null_path, null_ctl);
  4038     result_val->init_req(_null_path, _gvn.intcon(0));
  4041   // Unconditionally null?  Then return right away.
  4042   if (stopped()) {
  4043     set_control( result_reg->in(_null_path));
  4044     if (!stopped())
  4045       set_result(result_val->in(_null_path));
  4046     return true;
  4049   // After null check, get the object's klass.
  4050   Node* obj_klass = load_object_klass(obj);
  4052   // This call may be virtual (invokevirtual) or bound (invokespecial).
  4053   // For each case we generate slightly different code.
  4055   // We only go to the fast case code if we pass a number of guards.  The
  4056   // paths which do not pass are accumulated in the slow_region.
  4057   RegionNode* slow_region = new (C) RegionNode(1);
  4058   record_for_igvn(slow_region);
  4060   // If this is a virtual call, we generate a funny guard.  We pull out
  4061   // the vtable entry corresponding to hashCode() from the target object.
  4062   // If the target method which we are calling happens to be the native
  4063   // Object hashCode() method, we pass the guard.  We do not need this
  4064   // guard for non-virtual calls -- the caller is known to be the native
  4065   // Object hashCode().
  4066   if (is_virtual) {
  4067     generate_virtual_guard(obj_klass, slow_region);
  4070   // Get the header out of the object, use LoadMarkNode when available
  4071   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  4072   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
  4074   // Test the header to see if it is unlocked.
  4075   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  4076   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  4077   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  4078   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  4079   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  4081   generate_slow_guard(test_unlocked, slow_region);
  4083   // Get the hash value and check to see that it has been properly assigned.
  4084   // We depend on hash_mask being at most 32 bits and avoid the use of
  4085   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  4086   // vm: see markOop.hpp.
  4087   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  4088   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  4089   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  4090   // This hack lets the hash bits live anywhere in the mark object now, as long
  4091   // as the shift drops the relevant bits into the low 32 bits.  Note that
  4092   // Java spec says that HashCode is an int so there's no point in capturing
  4093   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  4094   hshifted_header      = ConvX2I(hshifted_header);
  4095   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  4097   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  4098   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  4099   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  4101   generate_slow_guard(test_assigned, slow_region);
  4103   Node* init_mem = reset_memory();
  4104   // fill in the rest of the null path:
  4105   result_io ->init_req(_null_path, i_o());
  4106   result_mem->init_req(_null_path, init_mem);
  4108   result_val->init_req(_fast_path, hash_val);
  4109   result_reg->init_req(_fast_path, control());
  4110   result_io ->init_req(_fast_path, i_o());
  4111   result_mem->init_req(_fast_path, init_mem);
  4113   // Generate code for the slow case.  We make a call to hashCode().
  4114   set_control(_gvn.transform(slow_region));
  4115   if (!stopped()) {
  4116     // No need for PreserveJVMState, because we're using up the present state.
  4117     set_all_memory(init_mem);
  4118     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  4119     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  4120     Node* slow_result = set_results_for_java_call(slow_call);
  4121     // this->control() comes from set_results_for_java_call
  4122     result_reg->init_req(_slow_path, control());
  4123     result_val->init_req(_slow_path, slow_result);
  4124     result_io  ->set_req(_slow_path, i_o());
  4125     result_mem ->set_req(_slow_path, reset_memory());
  4128   // Return the combined state.
  4129   set_i_o(        _gvn.transform(result_io)  );
  4130   set_all_memory( _gvn.transform(result_mem));
  4132   set_result(result_reg, result_val);
  4133   return true;
  4136 //---------------------------inline_native_getClass----------------------------
  4137 // public final native Class<?> java.lang.Object.getClass();
  4138 //
  4139 // Build special case code for calls to getClass on an object.
  4140 bool LibraryCallKit::inline_native_getClass() {
  4141   Node* obj = null_check_receiver();
  4142   if (stopped())  return true;
  4143   set_result(load_mirror_from_klass(load_object_klass(obj)));
  4144   return true;
  4147 //-----------------inline_native_Reflection_getCallerClass---------------------
  4148 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  4149 //
  4150 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4151 //
  4152 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  4153 // in that it must skip particular security frames and checks for
  4154 // caller sensitive methods.
  4155 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4156 #ifndef PRODUCT
  4157   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4158     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4160 #endif
  4162   if (!jvms()->has_method()) {
  4163 #ifndef PRODUCT
  4164     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4165       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4167 #endif
  4168     return false;
  4171   // Walk back up the JVM state to find the caller at the required
  4172   // depth.
  4173   JVMState* caller_jvms = jvms();
  4175   // Cf. JVM_GetCallerClass
  4176   // NOTE: Start the loop at depth 1 because the current JVM state does
  4177   // not include the Reflection.getCallerClass() frame.
  4178   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  4179     ciMethod* m = caller_jvms->method();
  4180     switch (n) {
  4181     case 0:
  4182       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  4183       break;
  4184     case 1:
  4185       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  4186       if (!m->caller_sensitive()) {
  4187 #ifndef PRODUCT
  4188         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4189           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  4191 #endif
  4192         return false;  // bail-out; let JVM_GetCallerClass do the work
  4194       break;
  4195     default:
  4196       if (!m->is_ignored_by_security_stack_walk()) {
  4197         // We have reached the desired frame; return the holder class.
  4198         // Acquire method holder as java.lang.Class and push as constant.
  4199         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  4200         ciInstance* caller_mirror = caller_klass->java_mirror();
  4201         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  4203 #ifndef PRODUCT
  4204         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4205           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  4206           tty->print_cr("  JVM state at this point:");
  4207           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4208             ciMethod* m = jvms()->of_depth(i)->method();
  4209             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4212 #endif
  4213         return true;
  4215       break;
  4219 #ifndef PRODUCT
  4220   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4221     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  4222     tty->print_cr("  JVM state at this point:");
  4223     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4224       ciMethod* m = jvms()->of_depth(i)->method();
  4225       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4228 #endif
  4230   return false;  // bail-out; let JVM_GetCallerClass do the work
  4233 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4234   Node* arg = argument(0);
  4235   Node* result;
  4237   switch (id) {
  4238   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  4239   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4240   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4241   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4243   case vmIntrinsics::_doubleToLongBits: {
  4244     // two paths (plus control) merge in a wood
  4245     RegionNode *r = new (C) RegionNode(3);
  4246     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4248     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4249     // Build the boolean node
  4250     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4252     // Branch either way.
  4253     // NaN case is less traveled, which makes all the difference.
  4254     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4255     Node *opt_isnan = _gvn.transform(ifisnan);
  4256     assert( opt_isnan->is_If(), "Expect an IfNode");
  4257     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4258     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4260     set_control(iftrue);
  4262     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4263     Node *slow_result = longcon(nan_bits); // return NaN
  4264     phi->init_req(1, _gvn.transform( slow_result ));
  4265     r->init_req(1, iftrue);
  4267     // Else fall through
  4268     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4269     set_control(iffalse);
  4271     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4272     r->init_req(2, iffalse);
  4274     // Post merge
  4275     set_control(_gvn.transform(r));
  4276     record_for_igvn(r);
  4278     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4279     result = phi;
  4280     assert(result->bottom_type()->isa_long(), "must be");
  4281     break;
  4284   case vmIntrinsics::_floatToIntBits: {
  4285     // two paths (plus control) merge in a wood
  4286     RegionNode *r = new (C) RegionNode(3);
  4287     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4289     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4290     // Build the boolean node
  4291     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4293     // Branch either way.
  4294     // NaN case is less traveled, which makes all the difference.
  4295     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4296     Node *opt_isnan = _gvn.transform(ifisnan);
  4297     assert( opt_isnan->is_If(), "Expect an IfNode");
  4298     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4299     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4301     set_control(iftrue);
  4303     static const jint nan_bits = 0x7fc00000;
  4304     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4305     phi->init_req(1, _gvn.transform( slow_result ));
  4306     r->init_req(1, iftrue);
  4308     // Else fall through
  4309     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4310     set_control(iffalse);
  4312     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4313     r->init_req(2, iffalse);
  4315     // Post merge
  4316     set_control(_gvn.transform(r));
  4317     record_for_igvn(r);
  4319     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4320     result = phi;
  4321     assert(result->bottom_type()->isa_int(), "must be");
  4322     break;
  4325   default:
  4326     fatal_unexpected_iid(id);
  4327     break;
  4329   set_result(_gvn.transform(result));
  4330   return true;
  4333 #ifdef _LP64
  4334 #define XTOP ,top() /*additional argument*/
  4335 #else  //_LP64
  4336 #define XTOP        /*no additional argument*/
  4337 #endif //_LP64
  4339 //----------------------inline_unsafe_copyMemory-------------------------
  4340 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4341 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4342   if (callee()->is_static())  return false;  // caller must have the capability!
  4343   null_check_receiver();  // null-check receiver
  4344   if (stopped())  return true;
  4346   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4348   Node* src_ptr =         argument(1);   // type: oop
  4349   Node* src_off = ConvL2X(argument(2));  // type: long
  4350   Node* dst_ptr =         argument(4);   // type: oop
  4351   Node* dst_off = ConvL2X(argument(5));  // type: long
  4352   Node* size    = ConvL2X(argument(7));  // type: long
  4354   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4355          "fieldOffset must be byte-scaled");
  4357   Node* src = make_unsafe_address(src_ptr, src_off);
  4358   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4360   // Conservatively insert a memory barrier on all memory slices.
  4361   // Do not let writes of the copy source or destination float below the copy.
  4362   insert_mem_bar(Op_MemBarCPUOrder);
  4364   // Call it.  Note that the length argument is not scaled.
  4365   make_runtime_call(RC_LEAF|RC_NO_FP,
  4366                     OptoRuntime::fast_arraycopy_Type(),
  4367                     StubRoutines::unsafe_arraycopy(),
  4368                     "unsafe_arraycopy",
  4369                     TypeRawPtr::BOTTOM,
  4370                     src, dst, size XTOP);
  4372   // Do not let reads of the copy destination float above the copy.
  4373   insert_mem_bar(Op_MemBarCPUOrder);
  4375   return true;
  4378 //------------------------clone_coping-----------------------------------
  4379 // Helper function for inline_native_clone.
  4380 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4381   assert(obj_size != NULL, "");
  4382   Node* raw_obj = alloc_obj->in(1);
  4383   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4385   AllocateNode* alloc = NULL;
  4386   if (ReduceBulkZeroing) {
  4387     // We will be completely responsible for initializing this object -
  4388     // mark Initialize node as complete.
  4389     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4390     // The object was just allocated - there should be no any stores!
  4391     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4392     // Mark as complete_with_arraycopy so that on AllocateNode
  4393     // expansion, we know this AllocateNode is initialized by an array
  4394     // copy and a StoreStore barrier exists after the array copy.
  4395     alloc->initialization()->set_complete_with_arraycopy();
  4398   // Copy the fastest available way.
  4399   // TODO: generate fields copies for small objects instead.
  4400   Node* src  = obj;
  4401   Node* dest = alloc_obj;
  4402   Node* size = _gvn.transform(obj_size);
  4404   // Exclude the header but include array length to copy by 8 bytes words.
  4405   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4406   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4407                             instanceOopDesc::base_offset_in_bytes();
  4408   // base_off:
  4409   // 8  - 32-bit VM
  4410   // 12 - 64-bit VM, compressed klass
  4411   // 16 - 64-bit VM, normal klass
  4412   if (base_off % BytesPerLong != 0) {
  4413     assert(UseCompressedClassPointers, "");
  4414     if (is_array) {
  4415       // Exclude length to copy by 8 bytes words.
  4416       base_off += sizeof(int);
  4417     } else {
  4418       // Include klass to copy by 8 bytes words.
  4419       base_off = instanceOopDesc::klass_offset_in_bytes();
  4421     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4423   src  = basic_plus_adr(src,  base_off);
  4424   dest = basic_plus_adr(dest, base_off);
  4426   // Compute the length also, if needed:
  4427   Node* countx = size;
  4428   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  4429   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4431   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4432   bool disjoint_bases = true;
  4433   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4434                                src, NULL, dest, NULL, countx,
  4435                                /*dest_uninitialized*/true);
  4437   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4438   if (card_mark) {
  4439     assert(!is_array, "");
  4440     // Put in store barrier for any and all oops we are sticking
  4441     // into this object.  (We could avoid this if we could prove
  4442     // that the object type contains no oop fields at all.)
  4443     Node* no_particular_value = NULL;
  4444     Node* no_particular_field = NULL;
  4445     int raw_adr_idx = Compile::AliasIdxRaw;
  4446     post_barrier(control(),
  4447                  memory(raw_adr_type),
  4448                  alloc_obj,
  4449                  no_particular_field,
  4450                  raw_adr_idx,
  4451                  no_particular_value,
  4452                  T_OBJECT,
  4453                  false);
  4456   // Do not let reads from the cloned object float above the arraycopy.
  4457   if (alloc != NULL) {
  4458     // Do not let stores that initialize this object be reordered with
  4459     // a subsequent store that would make this object accessible by
  4460     // other threads.
  4461     // Record what AllocateNode this StoreStore protects so that
  4462     // escape analysis can go from the MemBarStoreStoreNode to the
  4463     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4464     // based on the escape status of the AllocateNode.
  4465     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4466   } else {
  4467     insert_mem_bar(Op_MemBarCPUOrder);
  4471 //------------------------inline_native_clone----------------------------
  4472 // protected native Object java.lang.Object.clone();
  4473 //
  4474 // Here are the simple edge cases:
  4475 //  null receiver => normal trap
  4476 //  virtual and clone was overridden => slow path to out-of-line clone
  4477 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4478 //
  4479 // The general case has two steps, allocation and copying.
  4480 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4481 //
  4482 // Copying also has two cases, oop arrays and everything else.
  4483 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4484 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4485 //
  4486 // These steps fold up nicely if and when the cloned object's klass
  4487 // can be sharply typed as an object array, a type array, or an instance.
  4488 //
  4489 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4490   PhiNode* result_val;
  4492   // Set the reexecute bit for the interpreter to reexecute
  4493   // the bytecode that invokes Object.clone if deoptimization happens.
  4494   { PreserveReexecuteState preexecs(this);
  4495     jvms()->set_should_reexecute(true);
  4497     Node* obj = null_check_receiver();
  4498     if (stopped())  return true;
  4500     Node* obj_klass = load_object_klass(obj);
  4501     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4502     const TypeOopPtr*   toop   = ((tklass != NULL)
  4503                                 ? tklass->as_instance_type()
  4504                                 : TypeInstPtr::NOTNULL);
  4506     // Conservatively insert a memory barrier on all memory slices.
  4507     // Do not let writes into the original float below the clone.
  4508     insert_mem_bar(Op_MemBarCPUOrder);
  4510     // paths into result_reg:
  4511     enum {
  4512       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4513       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4514       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4515       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4516       PATH_LIMIT
  4517     };
  4518     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4519     result_val             = new(C) PhiNode(result_reg,
  4520                                             TypeInstPtr::NOTNULL);
  4521     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4522     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4523                                             TypePtr::BOTTOM);
  4524     record_for_igvn(result_reg);
  4526     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4527     int raw_adr_idx = Compile::AliasIdxRaw;
  4529     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4530     if (array_ctl != NULL) {
  4531       // It's an array.
  4532       PreserveJVMState pjvms(this);
  4533       set_control(array_ctl);
  4534       Node* obj_length = load_array_length(obj);
  4535       Node* obj_size  = NULL;
  4536       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4538       if (!use_ReduceInitialCardMarks()) {
  4539         // If it is an oop array, it requires very special treatment,
  4540         // because card marking is required on each card of the array.
  4541         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4542         if (is_obja != NULL) {
  4543           PreserveJVMState pjvms2(this);
  4544           set_control(is_obja);
  4545           // Generate a direct call to the right arraycopy function(s).
  4546           bool disjoint_bases = true;
  4547           bool length_never_negative = true;
  4548           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4549                              obj, intcon(0), alloc_obj, intcon(0),
  4550                              obj_length,
  4551                              disjoint_bases, length_never_negative);
  4552           result_reg->init_req(_objArray_path, control());
  4553           result_val->init_req(_objArray_path, alloc_obj);
  4554           result_i_o ->set_req(_objArray_path, i_o());
  4555           result_mem ->set_req(_objArray_path, reset_memory());
  4558       // Otherwise, there are no card marks to worry about.
  4559       // (We can dispense with card marks if we know the allocation
  4560       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4561       //  causes the non-eden paths to take compensating steps to
  4562       //  simulate a fresh allocation, so that no further
  4563       //  card marks are required in compiled code to initialize
  4564       //  the object.)
  4566       if (!stopped()) {
  4567         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4569         // Present the results of the copy.
  4570         result_reg->init_req(_array_path, control());
  4571         result_val->init_req(_array_path, alloc_obj);
  4572         result_i_o ->set_req(_array_path, i_o());
  4573         result_mem ->set_req(_array_path, reset_memory());
  4577     // We only go to the instance fast case code if we pass a number of guards.
  4578     // The paths which do not pass are accumulated in the slow_region.
  4579     RegionNode* slow_region = new (C) RegionNode(1);
  4580     record_for_igvn(slow_region);
  4581     if (!stopped()) {
  4582       // It's an instance (we did array above).  Make the slow-path tests.
  4583       // If this is a virtual call, we generate a funny guard.  We grab
  4584       // the vtable entry corresponding to clone() from the target object.
  4585       // If the target method which we are calling happens to be the
  4586       // Object clone() method, we pass the guard.  We do not need this
  4587       // guard for non-virtual calls; the caller is known to be the native
  4588       // Object clone().
  4589       if (is_virtual) {
  4590         generate_virtual_guard(obj_klass, slow_region);
  4593       // The object must be cloneable and must not have a finalizer.
  4594       // Both of these conditions may be checked in a single test.
  4595       // We could optimize the cloneable test further, but we don't care.
  4596       generate_access_flags_guard(obj_klass,
  4597                                   // Test both conditions:
  4598                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4599                                   // Must be cloneable but not finalizer:
  4600                                   JVM_ACC_IS_CLONEABLE,
  4601                                   slow_region);
  4604     if (!stopped()) {
  4605       // It's an instance, and it passed the slow-path tests.
  4606       PreserveJVMState pjvms(this);
  4607       Node* obj_size  = NULL;
  4608       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4610       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4612       // Present the results of the slow call.
  4613       result_reg->init_req(_instance_path, control());
  4614       result_val->init_req(_instance_path, alloc_obj);
  4615       result_i_o ->set_req(_instance_path, i_o());
  4616       result_mem ->set_req(_instance_path, reset_memory());
  4619     // Generate code for the slow case.  We make a call to clone().
  4620     set_control(_gvn.transform(slow_region));
  4621     if (!stopped()) {
  4622       PreserveJVMState pjvms(this);
  4623       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4624       Node* slow_result = set_results_for_java_call(slow_call);
  4625       // this->control() comes from set_results_for_java_call
  4626       result_reg->init_req(_slow_path, control());
  4627       result_val->init_req(_slow_path, slow_result);
  4628       result_i_o ->set_req(_slow_path, i_o());
  4629       result_mem ->set_req(_slow_path, reset_memory());
  4632     // Return the combined state.
  4633     set_control(    _gvn.transform(result_reg));
  4634     set_i_o(        _gvn.transform(result_i_o));
  4635     set_all_memory( _gvn.transform(result_mem));
  4636   } // original reexecute is set back here
  4638   set_result(_gvn.transform(result_val));
  4639   return true;
  4642 //------------------------------basictype2arraycopy----------------------------
  4643 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4644                                             Node* src_offset,
  4645                                             Node* dest_offset,
  4646                                             bool disjoint_bases,
  4647                                             const char* &name,
  4648                                             bool dest_uninitialized) {
  4649   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4650   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4652   bool aligned = false;
  4653   bool disjoint = disjoint_bases;
  4655   // if the offsets are the same, we can treat the memory regions as
  4656   // disjoint, because either the memory regions are in different arrays,
  4657   // or they are identical (which we can treat as disjoint.)  We can also
  4658   // treat a copy with a destination index  less that the source index
  4659   // as disjoint since a low->high copy will work correctly in this case.
  4660   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4661       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4662     // both indices are constants
  4663     int s_offs = src_offset_inttype->get_con();
  4664     int d_offs = dest_offset_inttype->get_con();
  4665     int element_size = type2aelembytes(t);
  4666     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4667               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4668     if (s_offs >= d_offs)  disjoint = true;
  4669   } else if (src_offset == dest_offset && src_offset != NULL) {
  4670     // This can occur if the offsets are identical non-constants.
  4671     disjoint = true;
  4674   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4678 //------------------------------inline_arraycopy-----------------------
  4679 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4680 //                                                      Object dest, int destPos,
  4681 //                                                      int length);
  4682 bool LibraryCallKit::inline_arraycopy() {
  4683   // Get the arguments.
  4684   Node* src         = argument(0);  // type: oop
  4685   Node* src_offset  = argument(1);  // type: int
  4686   Node* dest        = argument(2);  // type: oop
  4687   Node* dest_offset = argument(3);  // type: int
  4688   Node* length      = argument(4);  // type: int
  4690   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4691   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4692   // is.  The checks we choose to mandate at compile time are:
  4693   //
  4694   // (1) src and dest are arrays.
  4695   const Type* src_type  = src->Value(&_gvn);
  4696   const Type* dest_type = dest->Value(&_gvn);
  4697   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4698   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4700   // Do we have the type of src?
  4701   bool has_src = (top_src != NULL && top_src->klass() != NULL);
  4702   // Do we have the type of dest?
  4703   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4704   // Is the type for src from speculation?
  4705   bool src_spec = false;
  4706   // Is the type for dest from speculation?
  4707   bool dest_spec = false;
  4709   if (!has_src || !has_dest) {
  4710     // We don't have sufficient type information, let's see if
  4711     // speculative types can help. We need to have types for both src
  4712     // and dest so that it pays off.
  4714     // Do we already have or could we have type information for src
  4715     bool could_have_src = has_src;
  4716     // Do we already have or could we have type information for dest
  4717     bool could_have_dest = has_dest;
  4719     ciKlass* src_k = NULL;
  4720     if (!has_src) {
  4721       src_k = src_type->speculative_type();
  4722       if (src_k != NULL && src_k->is_array_klass()) {
  4723         could_have_src = true;
  4727     ciKlass* dest_k = NULL;
  4728     if (!has_dest) {
  4729       dest_k = dest_type->speculative_type();
  4730       if (dest_k != NULL && dest_k->is_array_klass()) {
  4731         could_have_dest = true;
  4735     if (could_have_src && could_have_dest) {
  4736       // This is going to pay off so emit the required guards
  4737       if (!has_src) {
  4738         src = maybe_cast_profiled_obj(src, src_k);
  4739         src_type  = _gvn.type(src);
  4740         top_src  = src_type->isa_aryptr();
  4741         has_src = (top_src != NULL && top_src->klass() != NULL);
  4742         src_spec = true;
  4744       if (!has_dest) {
  4745         dest = maybe_cast_profiled_obj(dest, dest_k);
  4746         dest_type  = _gvn.type(dest);
  4747         top_dest  = dest_type->isa_aryptr();
  4748         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4749         dest_spec = true;
  4754   if (!has_src || !has_dest) {
  4755     // Conservatively insert a memory barrier on all memory slices.
  4756     // Do not let writes into the source float below the arraycopy.
  4757     insert_mem_bar(Op_MemBarCPUOrder);
  4759     // Call StubRoutines::generic_arraycopy stub.
  4760     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4761                        src, src_offset, dest, dest_offset, length);
  4763     // Do not let reads from the destination float above the arraycopy.
  4764     // Since we cannot type the arrays, we don't know which slices
  4765     // might be affected.  We could restrict this barrier only to those
  4766     // memory slices which pertain to array elements--but don't bother.
  4767     if (!InsertMemBarAfterArraycopy)
  4768       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4769       insert_mem_bar(Op_MemBarCPUOrder);
  4770     return true;
  4773   // (2) src and dest arrays must have elements of the same BasicType
  4774   // Figure out the size and type of the elements we will be copying.
  4775   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4776   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4777   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4778   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4780   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4781     // The component types are not the same or are not recognized.  Punt.
  4782     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4783     generate_slow_arraycopy(TypePtr::BOTTOM,
  4784                             src, src_offset, dest, dest_offset, length,
  4785                             /*dest_uninitialized*/false);
  4786     return true;
  4789   if (src_elem == T_OBJECT) {
  4790     // If both arrays are object arrays then having the exact types
  4791     // for both will remove the need for a subtype check at runtime
  4792     // before the call and may make it possible to pick a faster copy
  4793     // routine (without a subtype check on every element)
  4794     // Do we have the exact type of src?
  4795     bool could_have_src = src_spec;
  4796     // Do we have the exact type of dest?
  4797     bool could_have_dest = dest_spec;
  4798     ciKlass* src_k = top_src->klass();
  4799     ciKlass* dest_k = top_dest->klass();
  4800     if (!src_spec) {
  4801       src_k = src_type->speculative_type();
  4802       if (src_k != NULL && src_k->is_array_klass()) {
  4803           could_have_src = true;
  4806     if (!dest_spec) {
  4807       dest_k = dest_type->speculative_type();
  4808       if (dest_k != NULL && dest_k->is_array_klass()) {
  4809         could_have_dest = true;
  4812     if (could_have_src && could_have_dest) {
  4813       // If we can have both exact types, emit the missing guards
  4814       if (could_have_src && !src_spec) {
  4815         src = maybe_cast_profiled_obj(src, src_k);
  4817       if (could_have_dest && !dest_spec) {
  4818         dest = maybe_cast_profiled_obj(dest, dest_k);
  4823   //---------------------------------------------------------------------------
  4824   // We will make a fast path for this call to arraycopy.
  4826   // We have the following tests left to perform:
  4827   //
  4828   // (3) src and dest must not be null.
  4829   // (4) src_offset must not be negative.
  4830   // (5) dest_offset must not be negative.
  4831   // (6) length must not be negative.
  4832   // (7) src_offset + length must not exceed length of src.
  4833   // (8) dest_offset + length must not exceed length of dest.
  4834   // (9) each element of an oop array must be assignable
  4836   RegionNode* slow_region = new (C) RegionNode(1);
  4837   record_for_igvn(slow_region);
  4839   // (3) operands must not be null
  4840   // We currently perform our null checks with the null_check routine.
  4841   // This means that the null exceptions will be reported in the caller
  4842   // rather than (correctly) reported inside of the native arraycopy call.
  4843   // This should be corrected, given time.  We do our null check with the
  4844   // stack pointer restored.
  4845   src  = null_check(src,  T_ARRAY);
  4846   dest = null_check(dest, T_ARRAY);
  4848   // (4) src_offset must not be negative.
  4849   generate_negative_guard(src_offset, slow_region);
  4851   // (5) dest_offset must not be negative.
  4852   generate_negative_guard(dest_offset, slow_region);
  4854   // (6) length must not be negative (moved to generate_arraycopy()).
  4855   // generate_negative_guard(length, slow_region);
  4857   // (7) src_offset + length must not exceed length of src.
  4858   generate_limit_guard(src_offset, length,
  4859                        load_array_length(src),
  4860                        slow_region);
  4862   // (8) dest_offset + length must not exceed length of dest.
  4863   generate_limit_guard(dest_offset, length,
  4864                        load_array_length(dest),
  4865                        slow_region);
  4867   // (9) each element of an oop array must be assignable
  4868   // The generate_arraycopy subroutine checks this.
  4870   // This is where the memory effects are placed:
  4871   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4872   generate_arraycopy(adr_type, dest_elem,
  4873                      src, src_offset, dest, dest_offset, length,
  4874                      false, false, slow_region);
  4876   return true;
  4879 //-----------------------------generate_arraycopy----------------------
  4880 // Generate an optimized call to arraycopy.
  4881 // Caller must guard against non-arrays.
  4882 // Caller must determine a common array basic-type for both arrays.
  4883 // Caller must validate offsets against array bounds.
  4884 // The slow_region has already collected guard failure paths
  4885 // (such as out of bounds length or non-conformable array types).
  4886 // The generated code has this shape, in general:
  4887 //
  4888 //     if (length == 0)  return   // via zero_path
  4889 //     slowval = -1
  4890 //     if (types unknown) {
  4891 //       slowval = call generic copy loop
  4892 //       if (slowval == 0)  return  // via checked_path
  4893 //     } else if (indexes in bounds) {
  4894 //       if ((is object array) && !(array type check)) {
  4895 //         slowval = call checked copy loop
  4896 //         if (slowval == 0)  return  // via checked_path
  4897 //       } else {
  4898 //         call bulk copy loop
  4899 //         return  // via fast_path
  4900 //       }
  4901 //     }
  4902 //     // adjust params for remaining work:
  4903 //     if (slowval != -1) {
  4904 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4905 //     }
  4906 //   slow_region:
  4907 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4908 //     return  // via slow_call_path
  4909 //
  4910 // This routine is used from several intrinsics:  System.arraycopy,
  4911 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4912 //
  4913 void
  4914 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4915                                    BasicType basic_elem_type,
  4916                                    Node* src,  Node* src_offset,
  4917                                    Node* dest, Node* dest_offset,
  4918                                    Node* copy_length,
  4919                                    bool disjoint_bases,
  4920                                    bool length_never_negative,
  4921                                    RegionNode* slow_region) {
  4923   if (slow_region == NULL) {
  4924     slow_region = new(C) RegionNode(1);
  4925     record_for_igvn(slow_region);
  4928   Node* original_dest      = dest;
  4929   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4930   bool  dest_uninitialized = false;
  4932   // See if this is the initialization of a newly-allocated array.
  4933   // If so, we will take responsibility here for initializing it to zero.
  4934   // (Note:  Because tightly_coupled_allocation performs checks on the
  4935   // out-edges of the dest, we need to avoid making derived pointers
  4936   // from it until we have checked its uses.)
  4937   if (ReduceBulkZeroing
  4938       && !ZeroTLAB              // pointless if already zeroed
  4939       && basic_elem_type != T_CONFLICT // avoid corner case
  4940       && !src->eqv_uncast(dest)
  4941       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4942           != NULL)
  4943       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4944       && alloc->maybe_set_complete(&_gvn)) {
  4945     // "You break it, you buy it."
  4946     InitializeNode* init = alloc->initialization();
  4947     assert(init->is_complete(), "we just did this");
  4948     init->set_complete_with_arraycopy();
  4949     assert(dest->is_CheckCastPP(), "sanity");
  4950     assert(dest->in(0)->in(0) == init, "dest pinned");
  4951     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4952     // From this point on, every exit path is responsible for
  4953     // initializing any non-copied parts of the object to zero.
  4954     // Also, if this flag is set we make sure that arraycopy interacts properly
  4955     // with G1, eliding pre-barriers. See CR 6627983.
  4956     dest_uninitialized = true;
  4957   } else {
  4958     // No zeroing elimination here.
  4959     alloc             = NULL;
  4960     //original_dest   = dest;
  4961     //dest_uninitialized = false;
  4964   // Results are placed here:
  4965   enum { fast_path        = 1,  // normal void-returning assembly stub
  4966          checked_path     = 2,  // special assembly stub with cleanup
  4967          slow_call_path   = 3,  // something went wrong; call the VM
  4968          zero_path        = 4,  // bypass when length of copy is zero
  4969          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4970          PATH_LIMIT       = 6
  4971   };
  4972   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4973   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4974   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4975   record_for_igvn(result_region);
  4976   _gvn.set_type_bottom(result_i_o);
  4977   _gvn.set_type_bottom(result_memory);
  4978   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4980   // The slow_control path:
  4981   Node* slow_control;
  4982   Node* slow_i_o = i_o();
  4983   Node* slow_mem = memory(adr_type);
  4984   debug_only(slow_control = (Node*) badAddress);
  4986   // Checked control path:
  4987   Node* checked_control = top();
  4988   Node* checked_mem     = NULL;
  4989   Node* checked_i_o     = NULL;
  4990   Node* checked_value   = NULL;
  4992   if (basic_elem_type == T_CONFLICT) {
  4993     assert(!dest_uninitialized, "");
  4994     Node* cv = generate_generic_arraycopy(adr_type,
  4995                                           src, src_offset, dest, dest_offset,
  4996                                           copy_length, dest_uninitialized);
  4997     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4998     checked_control = control();
  4999     checked_i_o     = i_o();
  5000     checked_mem     = memory(adr_type);
  5001     checked_value   = cv;
  5002     set_control(top());         // no fast path
  5005   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  5006   if (not_pos != NULL) {
  5007     PreserveJVMState pjvms(this);
  5008     set_control(not_pos);
  5010     // (6) length must not be negative.
  5011     if (!length_never_negative) {
  5012       generate_negative_guard(copy_length, slow_region);
  5015     // copy_length is 0.
  5016     if (!stopped() && dest_uninitialized) {
  5017       Node* dest_length = alloc->in(AllocateNode::ALength);
  5018       if (copy_length->eqv_uncast(dest_length)
  5019           || _gvn.find_int_con(dest_length, 1) <= 0) {
  5020         // There is no zeroing to do. No need for a secondary raw memory barrier.
  5021       } else {
  5022         // Clear the whole thing since there are no source elements to copy.
  5023         generate_clear_array(adr_type, dest, basic_elem_type,
  5024                              intcon(0), NULL,
  5025                              alloc->in(AllocateNode::AllocSize));
  5026         // Use a secondary InitializeNode as raw memory barrier.
  5027         // Currently it is needed only on this path since other
  5028         // paths have stub or runtime calls as raw memory barriers.
  5029         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  5030                                                        Compile::AliasIdxRaw,
  5031                                                        top())->as_Initialize();
  5032         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  5036     // Present the results of the fast call.
  5037     result_region->init_req(zero_path, control());
  5038     result_i_o   ->init_req(zero_path, i_o());
  5039     result_memory->init_req(zero_path, memory(adr_type));
  5042   if (!stopped() && dest_uninitialized) {
  5043     // We have to initialize the *uncopied* part of the array to zero.
  5044     // The copy destination is the slice dest[off..off+len].  The other slices
  5045     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  5046     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  5047     Node* dest_length = alloc->in(AllocateNode::ALength);
  5048     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  5049                                                           copy_length));
  5051     // If there is a head section that needs zeroing, do it now.
  5052     if (find_int_con(dest_offset, -1) != 0) {
  5053       generate_clear_array(adr_type, dest, basic_elem_type,
  5054                            intcon(0), dest_offset,
  5055                            NULL);
  5058     // Next, perform a dynamic check on the tail length.
  5059     // It is often zero, and we can win big if we prove this.
  5060     // There are two wins:  Avoid generating the ClearArray
  5061     // with its attendant messy index arithmetic, and upgrade
  5062     // the copy to a more hardware-friendly word size of 64 bits.
  5063     Node* tail_ctl = NULL;
  5064     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  5065       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  5066       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  5067       tail_ctl = generate_slow_guard(bol_lt, NULL);
  5068       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  5071     // At this point, let's assume there is no tail.
  5072     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  5073       // There is no tail.  Try an upgrade to a 64-bit copy.
  5074       bool didit = false;
  5075       { PreserveJVMState pjvms(this);
  5076         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  5077                                          src, src_offset, dest, dest_offset,
  5078                                          dest_size, dest_uninitialized);
  5079         if (didit) {
  5080           // Present the results of the block-copying fast call.
  5081           result_region->init_req(bcopy_path, control());
  5082           result_i_o   ->init_req(bcopy_path, i_o());
  5083           result_memory->init_req(bcopy_path, memory(adr_type));
  5086       if (didit)
  5087         set_control(top());     // no regular fast path
  5090     // Clear the tail, if any.
  5091     if (tail_ctl != NULL) {
  5092       Node* notail_ctl = stopped() ? NULL : control();
  5093       set_control(tail_ctl);
  5094       if (notail_ctl == NULL) {
  5095         generate_clear_array(adr_type, dest, basic_elem_type,
  5096                              dest_tail, NULL,
  5097                              dest_size);
  5098       } else {
  5099         // Make a local merge.
  5100         Node* done_ctl = new(C) RegionNode(3);
  5101         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  5102         done_ctl->init_req(1, notail_ctl);
  5103         done_mem->init_req(1, memory(adr_type));
  5104         generate_clear_array(adr_type, dest, basic_elem_type,
  5105                              dest_tail, NULL,
  5106                              dest_size);
  5107         done_ctl->init_req(2, control());
  5108         done_mem->init_req(2, memory(adr_type));
  5109         set_control( _gvn.transform(done_ctl));
  5110         set_memory(  _gvn.transform(done_mem), adr_type );
  5115   BasicType copy_type = basic_elem_type;
  5116   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  5117   if (!stopped() && copy_type == T_OBJECT) {
  5118     // If src and dest have compatible element types, we can copy bits.
  5119     // Types S[] and D[] are compatible if D is a supertype of S.
  5120     //
  5121     // If they are not, we will use checked_oop_disjoint_arraycopy,
  5122     // which performs a fast optimistic per-oop check, and backs off
  5123     // further to JVM_ArrayCopy on the first per-oop check that fails.
  5124     // (Actually, we don't move raw bits only; the GC requires card marks.)
  5126     // Get the Klass* for both src and dest
  5127     Node* src_klass  = load_object_klass(src);
  5128     Node* dest_klass = load_object_klass(dest);
  5130     // Generate the subtype check.
  5131     // This might fold up statically, or then again it might not.
  5132     //
  5133     // Non-static example:  Copying List<String>.elements to a new String[].
  5134     // The backing store for a List<String> is always an Object[],
  5135     // but its elements are always type String, if the generic types
  5136     // are correct at the source level.
  5137     //
  5138     // Test S[] against D[], not S against D, because (probably)
  5139     // the secondary supertype cache is less busy for S[] than S.
  5140     // This usually only matters when D is an interface.
  5141     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  5142     // Plug failing path into checked_oop_disjoint_arraycopy
  5143     if (not_subtype_ctrl != top()) {
  5144       PreserveJVMState pjvms(this);
  5145       set_control(not_subtype_ctrl);
  5146       // (At this point we can assume disjoint_bases, since types differ.)
  5147       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  5148       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  5149       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  5150       Node* dest_elem_klass = _gvn.transform(n1);
  5151       Node* cv = generate_checkcast_arraycopy(adr_type,
  5152                                               dest_elem_klass,
  5153                                               src, src_offset, dest, dest_offset,
  5154                                               ConvI2X(copy_length), dest_uninitialized);
  5155       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5156       checked_control = control();
  5157       checked_i_o     = i_o();
  5158       checked_mem     = memory(adr_type);
  5159       checked_value   = cv;
  5161     // At this point we know we do not need type checks on oop stores.
  5163     // Let's see if we need card marks:
  5164     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  5165       // If we do not need card marks, copy using the jint or jlong stub.
  5166       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  5167       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  5168              "sizes agree");
  5172   if (!stopped()) {
  5173     // Generate the fast path, if possible.
  5174     PreserveJVMState pjvms(this);
  5175     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  5176                                  src, src_offset, dest, dest_offset,
  5177                                  ConvI2X(copy_length), dest_uninitialized);
  5179     // Present the results of the fast call.
  5180     result_region->init_req(fast_path, control());
  5181     result_i_o   ->init_req(fast_path, i_o());
  5182     result_memory->init_req(fast_path, memory(adr_type));
  5185   // Here are all the slow paths up to this point, in one bundle:
  5186   slow_control = top();
  5187   if (slow_region != NULL)
  5188     slow_control = _gvn.transform(slow_region);
  5189   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  5191   set_control(checked_control);
  5192   if (!stopped()) {
  5193     // Clean up after the checked call.
  5194     // The returned value is either 0 or -1^K,
  5195     // where K = number of partially transferred array elements.
  5196     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  5197     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  5198     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  5200     // If it is 0, we are done, so transfer to the end.
  5201     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  5202     result_region->init_req(checked_path, checks_done);
  5203     result_i_o   ->init_req(checked_path, checked_i_o);
  5204     result_memory->init_req(checked_path, checked_mem);
  5206     // If it is not zero, merge into the slow call.
  5207     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  5208     RegionNode* slow_reg2 = new(C) RegionNode(3);
  5209     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  5210     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5211     record_for_igvn(slow_reg2);
  5212     slow_reg2  ->init_req(1, slow_control);
  5213     slow_i_o2  ->init_req(1, slow_i_o);
  5214     slow_mem2  ->init_req(1, slow_mem);
  5215     slow_reg2  ->init_req(2, control());
  5216     slow_i_o2  ->init_req(2, checked_i_o);
  5217     slow_mem2  ->init_req(2, checked_mem);
  5219     slow_control = _gvn.transform(slow_reg2);
  5220     slow_i_o     = _gvn.transform(slow_i_o2);
  5221     slow_mem     = _gvn.transform(slow_mem2);
  5223     if (alloc != NULL) {
  5224       // We'll restart from the very beginning, after zeroing the whole thing.
  5225       // This can cause double writes, but that's OK since dest is brand new.
  5226       // So we ignore the low 31 bits of the value returned from the stub.
  5227     } else {
  5228       // We must continue the copy exactly where it failed, or else
  5229       // another thread might see the wrong number of writes to dest.
  5230       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  5231       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  5232       slow_offset->init_req(1, intcon(0));
  5233       slow_offset->init_req(2, checked_offset);
  5234       slow_offset  = _gvn.transform(slow_offset);
  5236       // Adjust the arguments by the conditionally incoming offset.
  5237       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  5238       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  5239       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  5241       // Tweak the node variables to adjust the code produced below:
  5242       src_offset  = src_off_plus;
  5243       dest_offset = dest_off_plus;
  5244       copy_length = length_minus;
  5248   set_control(slow_control);
  5249   if (!stopped()) {
  5250     // Generate the slow path, if needed.
  5251     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5253     set_memory(slow_mem, adr_type);
  5254     set_i_o(slow_i_o);
  5256     if (dest_uninitialized) {
  5257       generate_clear_array(adr_type, dest, basic_elem_type,
  5258                            intcon(0), NULL,
  5259                            alloc->in(AllocateNode::AllocSize));
  5262     generate_slow_arraycopy(adr_type,
  5263                             src, src_offset, dest, dest_offset,
  5264                             copy_length, /*dest_uninitialized*/false);
  5266     result_region->init_req(slow_call_path, control());
  5267     result_i_o   ->init_req(slow_call_path, i_o());
  5268     result_memory->init_req(slow_call_path, memory(adr_type));
  5271   // Remove unused edges.
  5272   for (uint i = 1; i < result_region->req(); i++) {
  5273     if (result_region->in(i) == NULL)
  5274       result_region->init_req(i, top());
  5277   // Finished; return the combined state.
  5278   set_control( _gvn.transform(result_region));
  5279   set_i_o(     _gvn.transform(result_i_o)    );
  5280   set_memory(  _gvn.transform(result_memory), adr_type );
  5282   // The memory edges above are precise in order to model effects around
  5283   // array copies accurately to allow value numbering of field loads around
  5284   // arraycopy.  Such field loads, both before and after, are common in Java
  5285   // collections and similar classes involving header/array data structures.
  5286   //
  5287   // But with low number of register or when some registers are used or killed
  5288   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5289   // The next memory barrier is added to avoid it. If the arraycopy can be
  5290   // optimized away (which it can, sometimes) then we can manually remove
  5291   // the membar also.
  5292   //
  5293   // Do not let reads from the cloned object float above the arraycopy.
  5294   if (alloc != NULL) {
  5295     // Do not let stores that initialize this object be reordered with
  5296     // a subsequent store that would make this object accessible by
  5297     // other threads.
  5298     // Record what AllocateNode this StoreStore protects so that
  5299     // escape analysis can go from the MemBarStoreStoreNode to the
  5300     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5301     // based on the escape status of the AllocateNode.
  5302     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5303   } else if (InsertMemBarAfterArraycopy)
  5304     insert_mem_bar(Op_MemBarCPUOrder);
  5308 // Helper function which determines if an arraycopy immediately follows
  5309 // an allocation, with no intervening tests or other escapes for the object.
  5310 AllocateArrayNode*
  5311 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5312                                            RegionNode* slow_region) {
  5313   if (stopped())             return NULL;  // no fast path
  5314   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5316   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5317   if (alloc == NULL)  return NULL;
  5319   Node* rawmem = memory(Compile::AliasIdxRaw);
  5320   // Is the allocation's memory state untouched?
  5321   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5322     // Bail out if there have been raw-memory effects since the allocation.
  5323     // (Example:  There might have been a call or safepoint.)
  5324     return NULL;
  5326   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5327   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5328     return NULL;
  5331   // There must be no unexpected observers of this allocation.
  5332   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5333     Node* obs = ptr->fast_out(i);
  5334     if (obs != this->map()) {
  5335       return NULL;
  5339   // This arraycopy must unconditionally follow the allocation of the ptr.
  5340   Node* alloc_ctl = ptr->in(0);
  5341   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5343   Node* ctl = control();
  5344   while (ctl != alloc_ctl) {
  5345     // There may be guards which feed into the slow_region.
  5346     // Any other control flow means that we might not get a chance
  5347     // to finish initializing the allocated object.
  5348     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5349       IfNode* iff = ctl->in(0)->as_If();
  5350       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5351       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5352       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5353         ctl = iff->in(0);       // This test feeds the known slow_region.
  5354         continue;
  5356       // One more try:  Various low-level checks bottom out in
  5357       // uncommon traps.  If the debug-info of the trap omits
  5358       // any reference to the allocation, as we've already
  5359       // observed, then there can be no objection to the trap.
  5360       bool found_trap = false;
  5361       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5362         Node* obs = not_ctl->fast_out(j);
  5363         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5364             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5365           found_trap = true; break;
  5368       if (found_trap) {
  5369         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5370         continue;
  5373     return NULL;
  5376   // If we get this far, we have an allocation which immediately
  5377   // precedes the arraycopy, and we can take over zeroing the new object.
  5378   // The arraycopy will finish the initialization, and provide
  5379   // a new control state to which we will anchor the destination pointer.
  5381   return alloc;
  5384 // Helper for initialization of arrays, creating a ClearArray.
  5385 // It writes zero bits in [start..end), within the body of an array object.
  5386 // The memory effects are all chained onto the 'adr_type' alias category.
  5387 //
  5388 // Since the object is otherwise uninitialized, we are free
  5389 // to put a little "slop" around the edges of the cleared area,
  5390 // as long as it does not go back into the array's header,
  5391 // or beyond the array end within the heap.
  5392 //
  5393 // The lower edge can be rounded down to the nearest jint and the
  5394 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5395 //
  5396 // Arguments:
  5397 //   adr_type           memory slice where writes are generated
  5398 //   dest               oop of the destination array
  5399 //   basic_elem_type    element type of the destination
  5400 //   slice_idx          array index of first element to store
  5401 //   slice_len          number of elements to store (or NULL)
  5402 //   dest_size          total size in bytes of the array object
  5403 //
  5404 // Exactly one of slice_len or dest_size must be non-NULL.
  5405 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5406 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5407 void
  5408 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5409                                      Node* dest,
  5410                                      BasicType basic_elem_type,
  5411                                      Node* slice_idx,
  5412                                      Node* slice_len,
  5413                                      Node* dest_size) {
  5414   // one or the other but not both of slice_len and dest_size:
  5415   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5416   if (slice_len == NULL)  slice_len = top();
  5417   if (dest_size == NULL)  dest_size = top();
  5419   // operate on this memory slice:
  5420   Node* mem = memory(adr_type); // memory slice to operate on
  5422   // scaling and rounding of indexes:
  5423   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5424   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5425   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5426   int bump_bit  = (-1 << scale) & BytesPerInt;
  5428   // determine constant starts and ends
  5429   const intptr_t BIG_NEG = -128;
  5430   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5431   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5432   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5433   if (slice_len_con == 0) {
  5434     return;                     // nothing to do here
  5436   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5437   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5438   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5439     assert(end_con < 0, "not two cons");
  5440     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5441                        BytesPerLong);
  5444   if (start_con >= 0 && end_con >= 0) {
  5445     // Constant start and end.  Simple.
  5446     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5447                                        start_con, end_con, &_gvn);
  5448   } else if (start_con >= 0 && dest_size != top()) {
  5449     // Constant start, pre-rounded end after the tail of the array.
  5450     Node* end = dest_size;
  5451     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5452                                        start_con, end, &_gvn);
  5453   } else if (start_con >= 0 && slice_len != top()) {
  5454     // Constant start, non-constant end.  End needs rounding up.
  5455     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5456     intptr_t end_base  = abase + (slice_idx_con << scale);
  5457     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5458     Node*    end       = ConvI2X(slice_len);
  5459     if (scale != 0)
  5460       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  5461     end_base += end_round;
  5462     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  5463     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  5464     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5465                                        start_con, end, &_gvn);
  5466   } else if (start_con < 0 && dest_size != top()) {
  5467     // Non-constant start, pre-rounded end after the tail of the array.
  5468     // This is almost certainly a "round-to-end" operation.
  5469     Node* start = slice_idx;
  5470     start = ConvI2X(start);
  5471     if (scale != 0)
  5472       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  5473     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  5474     if ((bump_bit | clear_low) != 0) {
  5475       int to_clear = (bump_bit | clear_low);
  5476       // Align up mod 8, then store a jint zero unconditionally
  5477       // just before the mod-8 boundary.
  5478       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5479           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5480         bump_bit = 0;
  5481         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5482       } else {
  5483         // Bump 'start' up to (or past) the next jint boundary:
  5484         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  5485         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5487       // Round bumped 'start' down to jlong boundary in body of array.
  5488       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  5489       if (bump_bit != 0) {
  5490         // Store a zero to the immediately preceding jint:
  5491         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  5492         Node* p1 = basic_plus_adr(dest, x1);
  5493         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
  5494         mem = _gvn.transform(mem);
  5497     Node* end = dest_size; // pre-rounded
  5498     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5499                                        start, end, &_gvn);
  5500   } else {
  5501     // Non-constant start, unrounded non-constant end.
  5502     // (Nobody zeroes a random midsection of an array using this routine.)
  5503     ShouldNotReachHere();       // fix caller
  5506   // Done.
  5507   set_memory(mem, adr_type);
  5511 bool
  5512 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5513                                          BasicType basic_elem_type,
  5514                                          AllocateNode* alloc,
  5515                                          Node* src,  Node* src_offset,
  5516                                          Node* dest, Node* dest_offset,
  5517                                          Node* dest_size, bool dest_uninitialized) {
  5518   // See if there is an advantage from block transfer.
  5519   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5520   if (scale >= LogBytesPerLong)
  5521     return false;               // it is already a block transfer
  5523   // Look at the alignment of the starting offsets.
  5524   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5526   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5527   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5528   if (src_off_con < 0 || dest_off_con < 0)
  5529     // At present, we can only understand constants.
  5530     return false;
  5532   intptr_t src_off  = abase + (src_off_con  << scale);
  5533   intptr_t dest_off = abase + (dest_off_con << scale);
  5535   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5536     // Non-aligned; too bad.
  5537     // One more chance:  Pick off an initial 32-bit word.
  5538     // This is a common case, since abase can be odd mod 8.
  5539     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5540         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5541       Node* sptr = basic_plus_adr(src,  src_off);
  5542       Node* dptr = basic_plus_adr(dest, dest_off);
  5543       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  5544       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
  5545       src_off += BytesPerInt;
  5546       dest_off += BytesPerInt;
  5547     } else {
  5548       return false;
  5551   assert(src_off % BytesPerLong == 0, "");
  5552   assert(dest_off % BytesPerLong == 0, "");
  5554   // Do this copy by giant steps.
  5555   Node* sptr  = basic_plus_adr(src,  src_off);
  5556   Node* dptr  = basic_plus_adr(dest, dest_off);
  5557   Node* countx = dest_size;
  5558   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  5559   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  5561   bool disjoint_bases = true;   // since alloc != NULL
  5562   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5563                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5565   return true;
  5569 // Helper function; generates code for the slow case.
  5570 // We make a call to a runtime method which emulates the native method,
  5571 // but without the native wrapper overhead.
  5572 void
  5573 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5574                                         Node* src,  Node* src_offset,
  5575                                         Node* dest, Node* dest_offset,
  5576                                         Node* copy_length, bool dest_uninitialized) {
  5577   assert(!dest_uninitialized, "Invariant");
  5578   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5579                                  OptoRuntime::slow_arraycopy_Type(),
  5580                                  OptoRuntime::slow_arraycopy_Java(),
  5581                                  "slow_arraycopy", adr_type,
  5582                                  src, src_offset, dest, dest_offset,
  5583                                  copy_length);
  5585   // Handle exceptions thrown by this fellow:
  5586   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5589 // Helper function; generates code for cases requiring runtime checks.
  5590 Node*
  5591 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5592                                              Node* dest_elem_klass,
  5593                                              Node* src,  Node* src_offset,
  5594                                              Node* dest, Node* dest_offset,
  5595                                              Node* copy_length, bool dest_uninitialized) {
  5596   if (stopped())  return NULL;
  5598   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5599   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5600     return NULL;
  5603   // Pick out the parameters required to perform a store-check
  5604   // for the target array.  This is an optimistic check.  It will
  5605   // look in each non-null element's class, at the desired klass's
  5606   // super_check_offset, for the desired klass.
  5607   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5608   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5609   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
  5610   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5611   Node* check_value  = dest_elem_klass;
  5613   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5614   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5616   // (We know the arrays are never conjoint, because their types differ.)
  5617   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5618                                  OptoRuntime::checkcast_arraycopy_Type(),
  5619                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5620                                  // five arguments, of which two are
  5621                                  // intptr_t (jlong in LP64)
  5622                                  src_start, dest_start,
  5623                                  copy_length XTOP,
  5624                                  check_offset XTOP,
  5625                                  check_value);
  5627   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5631 // Helper function; generates code for cases requiring runtime checks.
  5632 Node*
  5633 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5634                                            Node* src,  Node* src_offset,
  5635                                            Node* dest, Node* dest_offset,
  5636                                            Node* copy_length, bool dest_uninitialized) {
  5637   assert(!dest_uninitialized, "Invariant");
  5638   if (stopped())  return NULL;
  5639   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5640   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5641     return NULL;
  5644   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5645                     OptoRuntime::generic_arraycopy_Type(),
  5646                     copyfunc_addr, "generic_arraycopy", adr_type,
  5647                     src, src_offset, dest, dest_offset, copy_length);
  5649   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5652 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5653 void
  5654 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5655                                              BasicType basic_elem_type,
  5656                                              bool disjoint_bases,
  5657                                              Node* src,  Node* src_offset,
  5658                                              Node* dest, Node* dest_offset,
  5659                                              Node* copy_length, bool dest_uninitialized) {
  5660   if (stopped())  return;               // nothing to do
  5662   Node* src_start  = src;
  5663   Node* dest_start = dest;
  5664   if (src_offset != NULL || dest_offset != NULL) {
  5665     assert(src_offset != NULL && dest_offset != NULL, "");
  5666     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5667     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5670   // Figure out which arraycopy runtime method to call.
  5671   const char* copyfunc_name = "arraycopy";
  5672   address     copyfunc_addr =
  5673       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5674                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5676   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5677   make_runtime_call(RC_LEAF|RC_NO_FP,
  5678                     OptoRuntime::fast_arraycopy_Type(),
  5679                     copyfunc_addr, copyfunc_name, adr_type,
  5680                     src_start, dest_start, copy_length XTOP);
  5683 //-------------inline_encodeISOArray-----------------------------------
  5684 // encode char[] to byte[] in ISO_8859_1
  5685 bool LibraryCallKit::inline_encodeISOArray() {
  5686   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5687   // no receiver since it is static method
  5688   Node *src         = argument(0);
  5689   Node *src_offset  = argument(1);
  5690   Node *dst         = argument(2);
  5691   Node *dst_offset  = argument(3);
  5692   Node *length      = argument(4);
  5694   const Type* src_type = src->Value(&_gvn);
  5695   const Type* dst_type = dst->Value(&_gvn);
  5696   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5697   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5698   if (top_src  == NULL || top_src->klass()  == NULL ||
  5699       top_dest == NULL || top_dest->klass() == NULL) {
  5700     // failed array check
  5701     return false;
  5704   // Figure out the size and type of the elements we will be copying.
  5705   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5706   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5707   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5708     return false;
  5710   Node* src_start = array_element_address(src, src_offset, src_elem);
  5711   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5712   // 'src_start' points to src array + scaled offset
  5713   // 'dst_start' points to dst array + scaled offset
  5715   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5716   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5717   enc = _gvn.transform(enc);
  5718   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5719   set_memory(res_mem, mtype);
  5720   set_result(enc);
  5721   return true;
  5724 /**
  5725  * Calculate CRC32 for byte.
  5726  * int java.util.zip.CRC32.update(int crc, int b)
  5727  */
  5728 bool LibraryCallKit::inline_updateCRC32() {
  5729   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5730   assert(callee()->signature()->size() == 2, "update has 2 parameters");
  5731   // no receiver since it is static method
  5732   Node* crc  = argument(0); // type: int
  5733   Node* b    = argument(1); // type: int
  5735   /*
  5736    *    int c = ~ crc;
  5737    *    b = timesXtoThe32[(b ^ c) & 0xFF];
  5738    *    b = b ^ (c >>> 8);
  5739    *    crc = ~b;
  5740    */
  5742   Node* M1 = intcon(-1);
  5743   crc = _gvn.transform(new (C) XorINode(crc, M1));
  5744   Node* result = _gvn.transform(new (C) XorINode(crc, b));
  5745   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  5747   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  5748   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  5749   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  5750   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
  5752   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  5753   result = _gvn.transform(new (C) XorINode(crc, result));
  5754   result = _gvn.transform(new (C) XorINode(result, M1));
  5755   set_result(result);
  5756   return true;
  5759 /**
  5760  * Calculate CRC32 for byte[] array.
  5761  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  5762  */
  5763 bool LibraryCallKit::inline_updateBytesCRC32() {
  5764   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5765   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  5766   // no receiver since it is static method
  5767   Node* crc     = argument(0); // type: int
  5768   Node* src     = argument(1); // type: oop
  5769   Node* offset  = argument(2); // type: int
  5770   Node* length  = argument(3); // type: int
  5772   const Type* src_type = src->Value(&_gvn);
  5773   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5774   if (top_src  == NULL || top_src->klass()  == NULL) {
  5775     // failed array check
  5776     return false;
  5779   // Figure out the size and type of the elements we will be copying.
  5780   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5781   if (src_elem != T_BYTE) {
  5782     return false;
  5785   // 'src_start' points to src array + scaled offset
  5786   Node* src_start = array_element_address(src, offset, src_elem);
  5788   // We assume that range check is done by caller.
  5789   // TODO: generate range check (offset+length < src.length) in debug VM.
  5791   // Call the stub.
  5792   address stubAddr = StubRoutines::updateBytesCRC32();
  5793   const char *stubName = "updateBytesCRC32";
  5795   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5796                                  stubAddr, stubName, TypePtr::BOTTOM,
  5797                                  crc, src_start, length);
  5798   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5799   set_result(result);
  5800   return true;
  5803 /**
  5804  * Calculate CRC32 for ByteBuffer.
  5805  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  5806  */
  5807 bool LibraryCallKit::inline_updateByteBufferCRC32() {
  5808   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5809   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  5810   // no receiver since it is static method
  5811   Node* crc     = argument(0); // type: int
  5812   Node* src     = argument(1); // type: long
  5813   Node* offset  = argument(3); // type: int
  5814   Node* length  = argument(4); // type: int
  5816   src = ConvL2X(src);  // adjust Java long to machine word
  5817   Node* base = _gvn.transform(new (C) CastX2PNode(src));
  5818   offset = ConvI2X(offset);
  5820   // 'src_start' points to src array + scaled offset
  5821   Node* src_start = basic_plus_adr(top(), base, offset);
  5823   // Call the stub.
  5824   address stubAddr = StubRoutines::updateBytesCRC32();
  5825   const char *stubName = "updateBytesCRC32";
  5827   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5828                                  stubAddr, stubName, TypePtr::BOTTOM,
  5829                                  crc, src_start, length);
  5830   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5831   set_result(result);
  5832   return true;
  5835 //----------------------------inline_reference_get----------------------------
  5836 // public T java.lang.ref.Reference.get();
  5837 bool LibraryCallKit::inline_reference_get() {
  5838   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5839   guarantee(referent_offset > 0, "should have already been set");
  5841   // Get the argument:
  5842   Node* reference_obj = null_check_receiver();
  5843   if (stopped()) return true;
  5845   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5847   ciInstanceKlass* klass = env()->Object_klass();
  5848   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5850   Node* no_ctrl = NULL;
  5851   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
  5853   // Use the pre-barrier to record the value in the referent field
  5854   pre_barrier(false /* do_load */,
  5855               control(),
  5856               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5857               result /* pre_val */,
  5858               T_OBJECT);
  5860   // Add memory barrier to prevent commoning reads from this field
  5861   // across safepoint since GC can change its value.
  5862   insert_mem_bar(Op_MemBarCPUOrder);
  5864   set_result(result);
  5865   return true;
  5869 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5870                                               bool is_exact=true, bool is_static=false) {
  5872   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5873   assert(tinst != NULL, "obj is null");
  5874   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  5875   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  5877   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  5878                                                                           ciSymbol::make(fieldTypeString),
  5879                                                                           is_static);
  5880   if (field == NULL) return (Node *) NULL;
  5881   assert (field != NULL, "undefined field");
  5883   // Next code  copied from Parse::do_get_xxx():
  5885   // Compute address and memory type.
  5886   int offset  = field->offset_in_bytes();
  5887   bool is_vol = field->is_volatile();
  5888   ciType* field_klass = field->type();
  5889   assert(field_klass->is_loaded(), "should be loaded");
  5890   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  5891   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  5892   BasicType bt = field->layout_type();
  5894   // Build the resultant type of the load
  5895   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  5897   // Build the load.
  5898   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
  5899   return loadedField;
  5903 //------------------------------inline_aescrypt_Block-----------------------
  5904 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  5905   address stubAddr;
  5906   const char *stubName;
  5907   assert(UseAES, "need AES instruction support");
  5909   switch(id) {
  5910   case vmIntrinsics::_aescrypt_encryptBlock:
  5911     stubAddr = StubRoutines::aescrypt_encryptBlock();
  5912     stubName = "aescrypt_encryptBlock";
  5913     break;
  5914   case vmIntrinsics::_aescrypt_decryptBlock:
  5915     stubAddr = StubRoutines::aescrypt_decryptBlock();
  5916     stubName = "aescrypt_decryptBlock";
  5917     break;
  5919   if (stubAddr == NULL) return false;
  5921   Node* aescrypt_object = argument(0);
  5922   Node* src             = argument(1);
  5923   Node* src_offset      = argument(2);
  5924   Node* dest            = argument(3);
  5925   Node* dest_offset     = argument(4);
  5927   // (1) src and dest are arrays.
  5928   const Type* src_type = src->Value(&_gvn);
  5929   const Type* dest_type = dest->Value(&_gvn);
  5930   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5931   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5932   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5934   // for the quick and dirty code we will skip all the checks.
  5935   // we are just trying to get the call to be generated.
  5936   Node* src_start  = src;
  5937   Node* dest_start = dest;
  5938   if (src_offset != NULL || dest_offset != NULL) {
  5939     assert(src_offset != NULL && dest_offset != NULL, "");
  5940     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5941     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5944   // now need to get the start of its expanded key array
  5945   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5946   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5947   if (k_start == NULL) return false;
  5949   if (Matcher::pass_original_key_for_aes()) {
  5950     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  5951     // compatibility issues between Java key expansion and SPARC crypto instructions
  5952     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  5953     if (original_k_start == NULL) return false;
  5955     // Call the stub.
  5956     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5957                       stubAddr, stubName, TypePtr::BOTTOM,
  5958                       src_start, dest_start, k_start, original_k_start);
  5959   } else {
  5960     // Call the stub.
  5961     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5962                       stubAddr, stubName, TypePtr::BOTTOM,
  5963                       src_start, dest_start, k_start);
  5966   return true;
  5969 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  5970 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  5971   address stubAddr;
  5972   const char *stubName;
  5974   assert(UseAES, "need AES instruction support");
  5976   switch(id) {
  5977   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  5978     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  5979     stubName = "cipherBlockChaining_encryptAESCrypt";
  5980     break;
  5981   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  5982     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  5983     stubName = "cipherBlockChaining_decryptAESCrypt";
  5984     break;
  5986   if (stubAddr == NULL) return false;
  5988   Node* cipherBlockChaining_object = argument(0);
  5989   Node* src                        = argument(1);
  5990   Node* src_offset                 = argument(2);
  5991   Node* len                        = argument(3);
  5992   Node* dest                       = argument(4);
  5993   Node* dest_offset                = argument(5);
  5995   // (1) src and dest are arrays.
  5996   const Type* src_type = src->Value(&_gvn);
  5997   const Type* dest_type = dest->Value(&_gvn);
  5998   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5999   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  6000   assert (top_src  != NULL && top_src->klass()  != NULL
  6001           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  6003   // checks are the responsibility of the caller
  6004   Node* src_start  = src;
  6005   Node* dest_start = dest;
  6006   if (src_offset != NULL || dest_offset != NULL) {
  6007     assert(src_offset != NULL && dest_offset != NULL, "");
  6008     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  6009     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  6012   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  6013   // (because of the predicated logic executed earlier).
  6014   // so we cast it here safely.
  6015   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  6017   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6018   if (embeddedCipherObj == NULL) return false;
  6020   // cast it to what we know it will be at runtime
  6021   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  6022   assert(tinst != NULL, "CBC obj is null");
  6023   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  6024   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6025   if (!klass_AESCrypt->is_loaded()) return false;
  6027   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6028   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  6029   const TypeOopPtr* xtype = aklass->as_instance_type();
  6030   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  6031   aescrypt_object = _gvn.transform(aescrypt_object);
  6033   // we need to get the start of the aescrypt_object's expanded key array
  6034   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  6035   if (k_start == NULL) return false;
  6037   // similarly, get the start address of the r vector
  6038   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  6039   if (objRvec == NULL) return false;
  6040   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  6042   Node* cbcCrypt;
  6043   if (Matcher::pass_original_key_for_aes()) {
  6044     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  6045     // compatibility issues between Java key expansion and SPARC crypto instructions
  6046     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  6047     if (original_k_start == NULL) return false;
  6049     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
  6050     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6051                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6052                                  stubAddr, stubName, TypePtr::BOTTOM,
  6053                                  src_start, dest_start, k_start, r_start, len, original_k_start);
  6054   } else {
  6055     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  6056     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6057                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6058                                  stubAddr, stubName, TypePtr::BOTTOM,
  6059                                  src_start, dest_start, k_start, r_start, len);
  6062   // return cipher length (int)
  6063   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
  6064   set_result(retvalue);
  6065   return true;
  6068 //------------------------------get_key_start_from_aescrypt_object-----------------------
  6069 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6070   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  6071   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6072   if (objAESCryptKey == NULL) return (Node *) NULL;
  6074   // now have the array, need to get the start address of the K array
  6075   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  6076   return k_start;
  6079 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
  6080 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6081   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
  6082   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6083   if (objAESCryptKey == NULL) return (Node *) NULL;
  6085   // now have the array, need to get the start address of the lastKey array
  6086   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
  6087   return original_k_start;
  6090 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  6091 // Return node representing slow path of predicate check.
  6092 // the pseudo code we want to emulate with this predicate is:
  6093 // for encryption:
  6094 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  6095 // for decryption:
  6096 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  6097 //    note cipher==plain is more conservative than the original java code but that's OK
  6098 //
  6099 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  6100   // First, check receiver for NULL since it is virtual method.
  6101   Node* objCBC = argument(0);
  6102   objCBC = null_check(objCBC);
  6104   if (stopped()) return NULL; // Always NULL
  6106   // Load embeddedCipher field of CipherBlockChaining object.
  6107   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6109   // get AESCrypt klass for instanceOf check
  6110   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  6111   // will have same classloader as CipherBlockChaining object
  6112   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  6113   assert(tinst != NULL, "CBCobj is null");
  6114   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  6116   // we want to do an instanceof comparison against the AESCrypt class
  6117   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6118   if (!klass_AESCrypt->is_loaded()) {
  6119     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  6120     Node* ctrl = control();
  6121     set_control(top()); // no regular fast path
  6122     return ctrl;
  6124   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6126   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  6127   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  6128   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6130   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6132   // for encryption, we are done
  6133   if (!decrypting)
  6134     return instof_false;  // even if it is NULL
  6136   // for decryption, we need to add a further check to avoid
  6137   // taking the intrinsic path when cipher and plain are the same
  6138   // see the original java code for why.
  6139   RegionNode* region = new(C) RegionNode(3);
  6140   region->init_req(1, instof_false);
  6141   Node* src = argument(1);
  6142   Node* dest = argument(4);
  6143   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  6144   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  6145   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  6146   region->init_req(2, src_dest_conjoint);
  6148   record_for_igvn(region);
  6149   return _gvn.transform(region);

mercurial