src/cpu/x86/vm/templateTable_x86_64.cpp

Mon, 03 Jul 2017 15:57:11 -0700

author
asaha
date
Mon, 03 Jul 2017 15:57:11 -0700
changeset 8984
7c2285d86b8d
parent 8368
32b682649973
child 8604
04d83ba48607
child 8997
f8a45a60bc6b
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    30 #include "memory/universe.inline.hpp"
    31 #include "oops/methodData.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/synchronizer.hpp"
    38 #include "utilities/macros.hpp"
    40 #ifndef CC_INTERP
    42 #define __ _masm->
    44 // Platform-dependent initialization
    46 void TemplateTable::pd_initialize() {
    47   // No amd64 specific initialization
    48 }
    50 // Address computation: local variables
    52 static inline Address iaddress(int n) {
    53   return Address(r14, Interpreter::local_offset_in_bytes(n));
    54 }
    56 static inline Address laddress(int n) {
    57   return iaddress(n + 1);
    58 }
    60 static inline Address faddress(int n) {
    61   return iaddress(n);
    62 }
    64 static inline Address daddress(int n) {
    65   return laddress(n);
    66 }
    68 static inline Address aaddress(int n) {
    69   return iaddress(n);
    70 }
    72 static inline Address iaddress(Register r) {
    73   return Address(r14, r, Address::times_8);
    74 }
    76 static inline Address laddress(Register r) {
    77   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    78 }
    80 static inline Address faddress(Register r) {
    81   return iaddress(r);
    82 }
    84 static inline Address daddress(Register r) {
    85   return laddress(r);
    86 }
    88 static inline Address aaddress(Register r) {
    89   return iaddress(r);
    90 }
    92 static inline Address at_rsp() {
    93   return Address(rsp, 0);
    94 }
    96 // At top of Java expression stack which may be different than esp().  It
    97 // isn't for category 1 objects.
    98 static inline Address at_tos   () {
    99   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
   100 }
   102 static inline Address at_tos_p1() {
   103   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
   104 }
   106 static inline Address at_tos_p2() {
   107   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
   108 }
   110 static inline Address at_tos_p3() {
   111   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   112 }
   114 // Condition conversion
   115 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   116   switch (cc) {
   117   case TemplateTable::equal        : return Assembler::notEqual;
   118   case TemplateTable::not_equal    : return Assembler::equal;
   119   case TemplateTable::less         : return Assembler::greaterEqual;
   120   case TemplateTable::less_equal   : return Assembler::greater;
   121   case TemplateTable::greater      : return Assembler::lessEqual;
   122   case TemplateTable::greater_equal: return Assembler::less;
   123   }
   124   ShouldNotReachHere();
   125   return Assembler::zero;
   126 }
   129 // Miscelaneous helper routines
   130 // Store an oop (or NULL) at the address described by obj.
   131 // If val == noreg this means store a NULL
   133 static void do_oop_store(InterpreterMacroAssembler* _masm,
   134                          Address obj,
   135                          Register val,
   136                          BarrierSet::Name barrier,
   137                          bool precise) {
   138   assert(val == noreg || val == rax, "parameter is just for looks");
   139   switch (barrier) {
   140 #if INCLUDE_ALL_GCS
   141     case BarrierSet::G1SATBCT:
   142     case BarrierSet::G1SATBCTLogging:
   143       {
   144         // flatten object address if needed
   145         if (obj.index() == noreg && obj.disp() == 0) {
   146           if (obj.base() != rdx) {
   147             __ movq(rdx, obj.base());
   148           }
   149         } else {
   150           __ leaq(rdx, obj);
   151         }
   152         __ g1_write_barrier_pre(rdx /* obj */,
   153                                 rbx /* pre_val */,
   154                                 r15_thread /* thread */,
   155                                 r8  /* tmp */,
   156                                 val != noreg /* tosca_live */,
   157                                 false /* expand_call */);
   158         if (val == noreg) {
   159           __ store_heap_oop_null(Address(rdx, 0));
   160         } else {
   161           // G1 barrier needs uncompressed oop for region cross check.
   162           Register new_val = val;
   163           if (UseCompressedOops) {
   164             new_val = rbx;
   165             __ movptr(new_val, val);
   166           }
   167           __ store_heap_oop(Address(rdx, 0), val);
   168           __ g1_write_barrier_post(rdx /* store_adr */,
   169                                    new_val /* new_val */,
   170                                    r15_thread /* thread */,
   171                                    r8 /* tmp */,
   172                                    rbx /* tmp2 */);
   173         }
   174       }
   175       break;
   176 #endif // INCLUDE_ALL_GCS
   177     case BarrierSet::CardTableModRef:
   178     case BarrierSet::CardTableExtension:
   179       {
   180         if (val == noreg) {
   181           __ store_heap_oop_null(obj);
   182         } else {
   183           __ store_heap_oop(obj, val);
   184           // flatten object address if needed
   185           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   186             __ store_check(obj.base());
   187           } else {
   188             __ leaq(rdx, obj);
   189             __ store_check(rdx);
   190           }
   191         }
   192       }
   193       break;
   194     case BarrierSet::ModRef:
   195     case BarrierSet::Other:
   196       if (val == noreg) {
   197         __ store_heap_oop_null(obj);
   198       } else {
   199         __ store_heap_oop(obj, val);
   200       }
   201       break;
   202     default      :
   203       ShouldNotReachHere();
   205   }
   206 }
   208 Address TemplateTable::at_bcp(int offset) {
   209   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   210   return Address(r13, offset);
   211 }
   213 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   214                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   215                                    int byte_no) {
   216   if (!RewriteBytecodes)  return;
   217   Label L_patch_done;
   219   switch (bc) {
   220   case Bytecodes::_fast_aputfield:
   221   case Bytecodes::_fast_bputfield:
   222   case Bytecodes::_fast_zputfield:
   223   case Bytecodes::_fast_cputfield:
   224   case Bytecodes::_fast_dputfield:
   225   case Bytecodes::_fast_fputfield:
   226   case Bytecodes::_fast_iputfield:
   227   case Bytecodes::_fast_lputfield:
   228   case Bytecodes::_fast_sputfield:
   229     {
   230       // We skip bytecode quickening for putfield instructions when
   231       // the put_code written to the constant pool cache is zero.
   232       // This is required so that every execution of this instruction
   233       // calls out to InterpreterRuntime::resolve_get_put to do
   234       // additional, required work.
   235       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   236       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   237       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
   238       __ movl(bc_reg, bc);
   239       __ cmpl(temp_reg, (int) 0);
   240       __ jcc(Assembler::zero, L_patch_done);  // don't patch
   241     }
   242     break;
   243   default:
   244     assert(byte_no == -1, "sanity");
   245     // the pair bytecodes have already done the load.
   246     if (load_bc_into_bc_reg) {
   247       __ movl(bc_reg, bc);
   248     }
   249   }
   251   if (JvmtiExport::can_post_breakpoint()) {
   252     Label L_fast_patch;
   253     // if a breakpoint is present we can't rewrite the stream directly
   254     __ movzbl(temp_reg, at_bcp(0));
   255     __ cmpl(temp_reg, Bytecodes::_breakpoint);
   256     __ jcc(Assembler::notEqual, L_fast_patch);
   257     __ get_method(temp_reg);
   258     // Let breakpoint table handling rewrite to quicker bytecode
   259     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
   260 #ifndef ASSERT
   261     __ jmpb(L_patch_done);
   262 #else
   263     __ jmp(L_patch_done);
   264 #endif
   265     __ bind(L_fast_patch);
   266   }
   268 #ifdef ASSERT
   269   Label L_okay;
   270   __ load_unsigned_byte(temp_reg, at_bcp(0));
   271   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
   272   __ jcc(Assembler::equal, L_okay);
   273   __ cmpl(temp_reg, bc_reg);
   274   __ jcc(Assembler::equal, L_okay);
   275   __ stop("patching the wrong bytecode");
   276   __ bind(L_okay);
   277 #endif
   279   // patch bytecode
   280   __ movb(at_bcp(0), bc_reg);
   281   __ bind(L_patch_done);
   282 }
   285 // Individual instructions
   287 void TemplateTable::nop() {
   288   transition(vtos, vtos);
   289   // nothing to do
   290 }
   292 void TemplateTable::shouldnotreachhere() {
   293   transition(vtos, vtos);
   294   __ stop("shouldnotreachhere bytecode");
   295 }
   297 void TemplateTable::aconst_null() {
   298   transition(vtos, atos);
   299   __ xorl(rax, rax);
   300 }
   302 void TemplateTable::iconst(int value) {
   303   transition(vtos, itos);
   304   if (value == 0) {
   305     __ xorl(rax, rax);
   306   } else {
   307     __ movl(rax, value);
   308   }
   309 }
   311 void TemplateTable::lconst(int value) {
   312   transition(vtos, ltos);
   313   if (value == 0) {
   314     __ xorl(rax, rax);
   315   } else {
   316     __ movl(rax, value);
   317   }
   318 }
   320 void TemplateTable::fconst(int value) {
   321   transition(vtos, ftos);
   322   static float one = 1.0f, two = 2.0f;
   323   switch (value) {
   324   case 0:
   325     __ xorps(xmm0, xmm0);
   326     break;
   327   case 1:
   328     __ movflt(xmm0, ExternalAddress((address) &one));
   329     break;
   330   case 2:
   331     __ movflt(xmm0, ExternalAddress((address) &two));
   332     break;
   333   default:
   334     ShouldNotReachHere();
   335     break;
   336   }
   337 }
   339 void TemplateTable::dconst(int value) {
   340   transition(vtos, dtos);
   341   static double one = 1.0;
   342   switch (value) {
   343   case 0:
   344     __ xorpd(xmm0, xmm0);
   345     break;
   346   case 1:
   347     __ movdbl(xmm0, ExternalAddress((address) &one));
   348     break;
   349   default:
   350     ShouldNotReachHere();
   351     break;
   352   }
   353 }
   355 void TemplateTable::bipush() {
   356   transition(vtos, itos);
   357   __ load_signed_byte(rax, at_bcp(1));
   358 }
   360 void TemplateTable::sipush() {
   361   transition(vtos, itos);
   362   __ load_unsigned_short(rax, at_bcp(1));
   363   __ bswapl(rax);
   364   __ sarl(rax, 16);
   365 }
   367 void TemplateTable::ldc(bool wide) {
   368   transition(vtos, vtos);
   369   Label call_ldc, notFloat, notClass, Done;
   371   if (wide) {
   372     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   373   } else {
   374     __ load_unsigned_byte(rbx, at_bcp(1));
   375   }
   377   __ get_cpool_and_tags(rcx, rax);
   378   const int base_offset = ConstantPool::header_size() * wordSize;
   379   const int tags_offset = Array<u1>::base_offset_in_bytes();
   381   // get type
   382   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   384   // unresolved class - get the resolved class
   385   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   386   __ jccb(Assembler::equal, call_ldc);
   388   // unresolved class in error state - call into runtime to throw the error
   389   // from the first resolution attempt
   390   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   391   __ jccb(Assembler::equal, call_ldc);
   393   // resolved class - need to call vm to get java mirror of the class
   394   __ cmpl(rdx, JVM_CONSTANT_Class);
   395   __ jcc(Assembler::notEqual, notClass);
   397   __ bind(call_ldc);
   398   __ movl(c_rarg1, wide);
   399   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   400   __ push_ptr(rax);
   401   __ verify_oop(rax);
   402   __ jmp(Done);
   404   __ bind(notClass);
   405   __ cmpl(rdx, JVM_CONSTANT_Float);
   406   __ jccb(Assembler::notEqual, notFloat);
   407   // ftos
   408   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   409   __ push_f();
   410   __ jmp(Done);
   412   __ bind(notFloat);
   413 #ifdef ASSERT
   414   {
   415     Label L;
   416     __ cmpl(rdx, JVM_CONSTANT_Integer);
   417     __ jcc(Assembler::equal, L);
   418     // String and Object are rewritten to fast_aldc
   419     __ stop("unexpected tag type in ldc");
   420     __ bind(L);
   421   }
   422 #endif
   423   // itos JVM_CONSTANT_Integer only
   424   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   425   __ push_i(rax);
   426   __ bind(Done);
   427 }
   429 // Fast path for caching oop constants.
   430 void TemplateTable::fast_aldc(bool wide) {
   431   transition(vtos, atos);
   433   Register result = rax;
   434   Register tmp = rdx;
   435   int index_size = wide ? sizeof(u2) : sizeof(u1);
   437   Label resolved;
   439   // We are resolved if the resolved reference cache entry contains a
   440   // non-null object (String, MethodType, etc.)
   441   assert_different_registers(result, tmp);
   442   __ get_cache_index_at_bcp(tmp, 1, index_size);
   443   __ load_resolved_reference_at_index(result, tmp);
   444   __ testl(result, result);
   445   __ jcc(Assembler::notZero, resolved);
   447   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   449   // first time invocation - must resolve first
   450   __ movl(tmp, (int)bytecode());
   451   __ call_VM(result, entry, tmp);
   453   __ bind(resolved);
   455   if (VerifyOops) {
   456     __ verify_oop(result);
   457   }
   458 }
   460 void TemplateTable::ldc2_w() {
   461   transition(vtos, vtos);
   462   Label Long, Done;
   463   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   465   __ get_cpool_and_tags(rcx, rax);
   466   const int base_offset = ConstantPool::header_size() * wordSize;
   467   const int tags_offset = Array<u1>::base_offset_in_bytes();
   469   // get type
   470   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   471           JVM_CONSTANT_Double);
   472   __ jccb(Assembler::notEqual, Long);
   473   // dtos
   474   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   475   __ push_d();
   476   __ jmpb(Done);
   478   __ bind(Long);
   479   // ltos
   480   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   481   __ push_l();
   483   __ bind(Done);
   484 }
   486 void TemplateTable::locals_index(Register reg, int offset) {
   487   __ load_unsigned_byte(reg, at_bcp(offset));
   488   __ negptr(reg);
   489 }
   491 void TemplateTable::iload() {
   492   transition(vtos, itos);
   493   if (RewriteFrequentPairs) {
   494     Label rewrite, done;
   495     const Register bc = c_rarg3;
   496     assert(rbx != bc, "register damaged");
   498     // get next byte
   499     __ load_unsigned_byte(rbx,
   500                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   501     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   502     // last two iloads in a pair.  Comparing against fast_iload means that
   503     // the next bytecode is neither an iload or a caload, and therefore
   504     // an iload pair.
   505     __ cmpl(rbx, Bytecodes::_iload);
   506     __ jcc(Assembler::equal, done);
   508     __ cmpl(rbx, Bytecodes::_fast_iload);
   509     __ movl(bc, Bytecodes::_fast_iload2);
   510     __ jccb(Assembler::equal, rewrite);
   512     // if _caload, rewrite to fast_icaload
   513     __ cmpl(rbx, Bytecodes::_caload);
   514     __ movl(bc, Bytecodes::_fast_icaload);
   515     __ jccb(Assembler::equal, rewrite);
   517     // rewrite so iload doesn't check again.
   518     __ movl(bc, Bytecodes::_fast_iload);
   520     // rewrite
   521     // bc: fast bytecode
   522     __ bind(rewrite);
   523     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   524     __ bind(done);
   525   }
   527   // Get the local value into tos
   528   locals_index(rbx);
   529   __ movl(rax, iaddress(rbx));
   530 }
   532 void TemplateTable::fast_iload2() {
   533   transition(vtos, itos);
   534   locals_index(rbx);
   535   __ movl(rax, iaddress(rbx));
   536   __ push(itos);
   537   locals_index(rbx, 3);
   538   __ movl(rax, iaddress(rbx));
   539 }
   541 void TemplateTable::fast_iload() {
   542   transition(vtos, itos);
   543   locals_index(rbx);
   544   __ movl(rax, iaddress(rbx));
   545 }
   547 void TemplateTable::lload() {
   548   transition(vtos, ltos);
   549   locals_index(rbx);
   550   __ movq(rax, laddress(rbx));
   551 }
   553 void TemplateTable::fload() {
   554   transition(vtos, ftos);
   555   locals_index(rbx);
   556   __ movflt(xmm0, faddress(rbx));
   557 }
   559 void TemplateTable::dload() {
   560   transition(vtos, dtos);
   561   locals_index(rbx);
   562   __ movdbl(xmm0, daddress(rbx));
   563 }
   565 void TemplateTable::aload() {
   566   transition(vtos, atos);
   567   locals_index(rbx);
   568   __ movptr(rax, aaddress(rbx));
   569 }
   571 void TemplateTable::locals_index_wide(Register reg) {
   572   __ load_unsigned_short(reg, at_bcp(2));
   573   __ bswapl(reg);
   574   __ shrl(reg, 16);
   575   __ negptr(reg);
   576 }
   578 void TemplateTable::wide_iload() {
   579   transition(vtos, itos);
   580   locals_index_wide(rbx);
   581   __ movl(rax, iaddress(rbx));
   582 }
   584 void TemplateTable::wide_lload() {
   585   transition(vtos, ltos);
   586   locals_index_wide(rbx);
   587   __ movq(rax, laddress(rbx));
   588 }
   590 void TemplateTable::wide_fload() {
   591   transition(vtos, ftos);
   592   locals_index_wide(rbx);
   593   __ movflt(xmm0, faddress(rbx));
   594 }
   596 void TemplateTable::wide_dload() {
   597   transition(vtos, dtos);
   598   locals_index_wide(rbx);
   599   __ movdbl(xmm0, daddress(rbx));
   600 }
   602 void TemplateTable::wide_aload() {
   603   transition(vtos, atos);
   604   locals_index_wide(rbx);
   605   __ movptr(rax, aaddress(rbx));
   606 }
   608 void TemplateTable::index_check(Register array, Register index) {
   609   // destroys rbx
   610   // check array
   611   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   612   // sign extend index for use by indexed load
   613   __ movl2ptr(index, index);
   614   // check index
   615   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   616   if (index != rbx) {
   617     // ??? convention: move aberrant index into ebx for exception message
   618     assert(rbx != array, "different registers");
   619     __ movl(rbx, index);
   620   }
   621   __ jump_cc(Assembler::aboveEqual,
   622              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   623 }
   625 void TemplateTable::iaload() {
   626   transition(itos, itos);
   627   __ pop_ptr(rdx);
   628   // eax: index
   629   // rdx: array
   630   index_check(rdx, rax); // kills rbx
   631   __ movl(rax, Address(rdx, rax,
   632                        Address::times_4,
   633                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   634 }
   636 void TemplateTable::laload() {
   637   transition(itos, ltos);
   638   __ pop_ptr(rdx);
   639   // eax: index
   640   // rdx: array
   641   index_check(rdx, rax); // kills rbx
   642   __ movq(rax, Address(rdx, rbx,
   643                        Address::times_8,
   644                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   645 }
   647 void TemplateTable::faload() {
   648   transition(itos, ftos);
   649   __ pop_ptr(rdx);
   650   // eax: index
   651   // rdx: array
   652   index_check(rdx, rax); // kills rbx
   653   __ movflt(xmm0, Address(rdx, rax,
   654                          Address::times_4,
   655                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   656 }
   658 void TemplateTable::daload() {
   659   transition(itos, dtos);
   660   __ pop_ptr(rdx);
   661   // eax: index
   662   // rdx: array
   663   index_check(rdx, rax); // kills rbx
   664   __ movdbl(xmm0, Address(rdx, rax,
   665                           Address::times_8,
   666                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   667 }
   669 void TemplateTable::aaload() {
   670   transition(itos, atos);
   671   __ pop_ptr(rdx);
   672   // eax: index
   673   // rdx: array
   674   index_check(rdx, rax); // kills rbx
   675   __ load_heap_oop(rax, Address(rdx, rax,
   676                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   677                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   678 }
   680 void TemplateTable::baload() {
   681   transition(itos, itos);
   682   __ pop_ptr(rdx);
   683   // eax: index
   684   // rdx: array
   685   index_check(rdx, rax); // kills rbx
   686   __ load_signed_byte(rax,
   687                       Address(rdx, rax,
   688                               Address::times_1,
   689                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   690 }
   692 void TemplateTable::caload() {
   693   transition(itos, itos);
   694   __ pop_ptr(rdx);
   695   // eax: index
   696   // rdx: array
   697   index_check(rdx, rax); // kills rbx
   698   __ load_unsigned_short(rax,
   699                          Address(rdx, rax,
   700                                  Address::times_2,
   701                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   702 }
   704 // iload followed by caload frequent pair
   705 void TemplateTable::fast_icaload() {
   706   transition(vtos, itos);
   707   // load index out of locals
   708   locals_index(rbx);
   709   __ movl(rax, iaddress(rbx));
   711   // eax: index
   712   // rdx: array
   713   __ pop_ptr(rdx);
   714   index_check(rdx, rax); // kills rbx
   715   __ load_unsigned_short(rax,
   716                          Address(rdx, rax,
   717                                  Address::times_2,
   718                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   719 }
   721 void TemplateTable::saload() {
   722   transition(itos, itos);
   723   __ pop_ptr(rdx);
   724   // eax: index
   725   // rdx: array
   726   index_check(rdx, rax); // kills rbx
   727   __ load_signed_short(rax,
   728                        Address(rdx, rax,
   729                                Address::times_2,
   730                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   731 }
   733 void TemplateTable::iload(int n) {
   734   transition(vtos, itos);
   735   __ movl(rax, iaddress(n));
   736 }
   738 void TemplateTable::lload(int n) {
   739   transition(vtos, ltos);
   740   __ movq(rax, laddress(n));
   741 }
   743 void TemplateTable::fload(int n) {
   744   transition(vtos, ftos);
   745   __ movflt(xmm0, faddress(n));
   746 }
   748 void TemplateTable::dload(int n) {
   749   transition(vtos, dtos);
   750   __ movdbl(xmm0, daddress(n));
   751 }
   753 void TemplateTable::aload(int n) {
   754   transition(vtos, atos);
   755   __ movptr(rax, aaddress(n));
   756 }
   758 void TemplateTable::aload_0() {
   759   transition(vtos, atos);
   760   // According to bytecode histograms, the pairs:
   761   //
   762   // _aload_0, _fast_igetfield
   763   // _aload_0, _fast_agetfield
   764   // _aload_0, _fast_fgetfield
   765   //
   766   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   767   // _aload_0 bytecode checks if the next bytecode is either
   768   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   769   // rewrites the current bytecode into a pair bytecode; otherwise it
   770   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   771   // the pair check anymore.
   772   //
   773   // Note: If the next bytecode is _getfield, the rewrite must be
   774   //       delayed, otherwise we may miss an opportunity for a pair.
   775   //
   776   // Also rewrite frequent pairs
   777   //   aload_0, aload_1
   778   //   aload_0, iload_1
   779   // These bytecodes with a small amount of code are most profitable
   780   // to rewrite
   781   if (RewriteFrequentPairs) {
   782     Label rewrite, done;
   783     const Register bc = c_rarg3;
   784     assert(rbx != bc, "register damaged");
   785     // get next byte
   786     __ load_unsigned_byte(rbx,
   787                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   789     // do actual aload_0
   790     aload(0);
   792     // if _getfield then wait with rewrite
   793     __ cmpl(rbx, Bytecodes::_getfield);
   794     __ jcc(Assembler::equal, done);
   796     // if _igetfield then reqrite to _fast_iaccess_0
   797     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   798            Bytecodes::_aload_0,
   799            "fix bytecode definition");
   800     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   801     __ movl(bc, Bytecodes::_fast_iaccess_0);
   802     __ jccb(Assembler::equal, rewrite);
   804     // if _agetfield then reqrite to _fast_aaccess_0
   805     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   806            Bytecodes::_aload_0,
   807            "fix bytecode definition");
   808     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   809     __ movl(bc, Bytecodes::_fast_aaccess_0);
   810     __ jccb(Assembler::equal, rewrite);
   812     // if _fgetfield then reqrite to _fast_faccess_0
   813     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   814            Bytecodes::_aload_0,
   815            "fix bytecode definition");
   816     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   817     __ movl(bc, Bytecodes::_fast_faccess_0);
   818     __ jccb(Assembler::equal, rewrite);
   820     // else rewrite to _fast_aload0
   821     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   822            Bytecodes::_aload_0,
   823            "fix bytecode definition");
   824     __ movl(bc, Bytecodes::_fast_aload_0);
   826     // rewrite
   827     // bc: fast bytecode
   828     __ bind(rewrite);
   829     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   831     __ bind(done);
   832   } else {
   833     aload(0);
   834   }
   835 }
   837 void TemplateTable::istore() {
   838   transition(itos, vtos);
   839   locals_index(rbx);
   840   __ movl(iaddress(rbx), rax);
   841 }
   843 void TemplateTable::lstore() {
   844   transition(ltos, vtos);
   845   locals_index(rbx);
   846   __ movq(laddress(rbx), rax);
   847 }
   849 void TemplateTable::fstore() {
   850   transition(ftos, vtos);
   851   locals_index(rbx);
   852   __ movflt(faddress(rbx), xmm0);
   853 }
   855 void TemplateTable::dstore() {
   856   transition(dtos, vtos);
   857   locals_index(rbx);
   858   __ movdbl(daddress(rbx), xmm0);
   859 }
   861 void TemplateTable::astore() {
   862   transition(vtos, vtos);
   863   __ pop_ptr(rax);
   864   locals_index(rbx);
   865   __ movptr(aaddress(rbx), rax);
   866 }
   868 void TemplateTable::wide_istore() {
   869   transition(vtos, vtos);
   870   __ pop_i();
   871   locals_index_wide(rbx);
   872   __ movl(iaddress(rbx), rax);
   873 }
   875 void TemplateTable::wide_lstore() {
   876   transition(vtos, vtos);
   877   __ pop_l();
   878   locals_index_wide(rbx);
   879   __ movq(laddress(rbx), rax);
   880 }
   882 void TemplateTable::wide_fstore() {
   883   transition(vtos, vtos);
   884   __ pop_f();
   885   locals_index_wide(rbx);
   886   __ movflt(faddress(rbx), xmm0);
   887 }
   889 void TemplateTable::wide_dstore() {
   890   transition(vtos, vtos);
   891   __ pop_d();
   892   locals_index_wide(rbx);
   893   __ movdbl(daddress(rbx), xmm0);
   894 }
   896 void TemplateTable::wide_astore() {
   897   transition(vtos, vtos);
   898   __ pop_ptr(rax);
   899   locals_index_wide(rbx);
   900   __ movptr(aaddress(rbx), rax);
   901 }
   903 void TemplateTable::iastore() {
   904   transition(itos, vtos);
   905   __ pop_i(rbx);
   906   __ pop_ptr(rdx);
   907   // eax: value
   908   // ebx: index
   909   // rdx: array
   910   index_check(rdx, rbx); // prefer index in ebx
   911   __ movl(Address(rdx, rbx,
   912                   Address::times_4,
   913                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   914           rax);
   915 }
   917 void TemplateTable::lastore() {
   918   transition(ltos, vtos);
   919   __ pop_i(rbx);
   920   __ pop_ptr(rdx);
   921   // rax: value
   922   // ebx: index
   923   // rdx: array
   924   index_check(rdx, rbx); // prefer index in ebx
   925   __ movq(Address(rdx, rbx,
   926                   Address::times_8,
   927                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   928           rax);
   929 }
   931 void TemplateTable::fastore() {
   932   transition(ftos, vtos);
   933   __ pop_i(rbx);
   934   __ pop_ptr(rdx);
   935   // xmm0: value
   936   // ebx:  index
   937   // rdx:  array
   938   index_check(rdx, rbx); // prefer index in ebx
   939   __ movflt(Address(rdx, rbx,
   940                    Address::times_4,
   941                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   942            xmm0);
   943 }
   945 void TemplateTable::dastore() {
   946   transition(dtos, vtos);
   947   __ pop_i(rbx);
   948   __ pop_ptr(rdx);
   949   // xmm0: value
   950   // ebx:  index
   951   // rdx:  array
   952   index_check(rdx, rbx); // prefer index in ebx
   953   __ movdbl(Address(rdx, rbx,
   954                    Address::times_8,
   955                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   956            xmm0);
   957 }
   959 void TemplateTable::aastore() {
   960   Label is_null, ok_is_subtype, done;
   961   transition(vtos, vtos);
   962   // stack: ..., array, index, value
   963   __ movptr(rax, at_tos());    // value
   964   __ movl(rcx, at_tos_p1()); // index
   965   __ movptr(rdx, at_tos_p2()); // array
   967   Address element_address(rdx, rcx,
   968                           UseCompressedOops? Address::times_4 : Address::times_8,
   969                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   971   index_check(rdx, rcx);     // kills rbx
   972   // do array store check - check for NULL value first
   973   __ testptr(rax, rax);
   974   __ jcc(Assembler::zero, is_null);
   976   // Move subklass into rbx
   977   __ load_klass(rbx, rax);
   978   // Move superklass into rax
   979   __ load_klass(rax, rdx);
   980   __ movptr(rax, Address(rax,
   981                          ObjArrayKlass::element_klass_offset()));
   982   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   983   __ lea(rdx, element_address);
   985   // Generate subtype check.  Blows rcx, rdi
   986   // Superklass in rax.  Subklass in rbx.
   987   __ gen_subtype_check(rbx, ok_is_subtype);
   989   // Come here on failure
   990   // object is at TOS
   991   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   993   // Come here on success
   994   __ bind(ok_is_subtype);
   996   // Get the value we will store
   997   __ movptr(rax, at_tos());
   998   // Now store using the appropriate barrier
   999   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
  1000   __ jmp(done);
  1002   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
  1003   __ bind(is_null);
  1004   __ profile_null_seen(rbx);
  1006   // Store a NULL
  1007   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
  1009   // Pop stack arguments
  1010   __ bind(done);
  1011   __ addptr(rsp, 3 * Interpreter::stackElementSize);
  1014 void TemplateTable::bastore() {
  1015   transition(itos, vtos);
  1016   __ pop_i(rbx);
  1017   __ pop_ptr(rdx);
  1018   // eax: value
  1019   // ebx: index
  1020   // rdx: array
  1021   index_check(rdx, rbx); // prefer index in ebx
  1022   // Need to check whether array is boolean or byte
  1023   // since both types share the bastore bytecode.
  1024   __ load_klass(rcx, rdx);
  1025   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
  1026   int diffbit = Klass::layout_helper_boolean_diffbit();
  1027   __ testl(rcx, diffbit);
  1028   Label L_skip;
  1029   __ jccb(Assembler::zero, L_skip);
  1030   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
  1031   __ bind(L_skip);
  1032   __ movb(Address(rdx, rbx,
  1033                   Address::times_1,
  1034                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
  1035           rax);
  1038 void TemplateTable::castore() {
  1039   transition(itos, vtos);
  1040   __ pop_i(rbx);
  1041   __ pop_ptr(rdx);
  1042   // eax: value
  1043   // ebx: index
  1044   // rdx: array
  1045   index_check(rdx, rbx);  // prefer index in ebx
  1046   __ movw(Address(rdx, rbx,
  1047                   Address::times_2,
  1048                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1049           rax);
  1052 void TemplateTable::sastore() {
  1053   castore();
  1056 void TemplateTable::istore(int n) {
  1057   transition(itos, vtos);
  1058   __ movl(iaddress(n), rax);
  1061 void TemplateTable::lstore(int n) {
  1062   transition(ltos, vtos);
  1063   __ movq(laddress(n), rax);
  1066 void TemplateTable::fstore(int n) {
  1067   transition(ftos, vtos);
  1068   __ movflt(faddress(n), xmm0);
  1071 void TemplateTable::dstore(int n) {
  1072   transition(dtos, vtos);
  1073   __ movdbl(daddress(n), xmm0);
  1076 void TemplateTable::astore(int n) {
  1077   transition(vtos, vtos);
  1078   __ pop_ptr(rax);
  1079   __ movptr(aaddress(n), rax);
  1082 void TemplateTable::pop() {
  1083   transition(vtos, vtos);
  1084   __ addptr(rsp, Interpreter::stackElementSize);
  1087 void TemplateTable::pop2() {
  1088   transition(vtos, vtos);
  1089   __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1092 void TemplateTable::dup() {
  1093   transition(vtos, vtos);
  1094   __ load_ptr(0, rax);
  1095   __ push_ptr(rax);
  1096   // stack: ..., a, a
  1099 void TemplateTable::dup_x1() {
  1100   transition(vtos, vtos);
  1101   // stack: ..., a, b
  1102   __ load_ptr( 0, rax);  // load b
  1103   __ load_ptr( 1, rcx);  // load a
  1104   __ store_ptr(1, rax);  // store b
  1105   __ store_ptr(0, rcx);  // store a
  1106   __ push_ptr(rax);      // push b
  1107   // stack: ..., b, a, b
  1110 void TemplateTable::dup_x2() {
  1111   transition(vtos, vtos);
  1112   // stack: ..., a, b, c
  1113   __ load_ptr( 0, rax);  // load c
  1114   __ load_ptr( 2, rcx);  // load a
  1115   __ store_ptr(2, rax);  // store c in a
  1116   __ push_ptr(rax);      // push c
  1117   // stack: ..., c, b, c, c
  1118   __ load_ptr( 2, rax);  // load b
  1119   __ store_ptr(2, rcx);  // store a in b
  1120   // stack: ..., c, a, c, c
  1121   __ store_ptr(1, rax);  // store b in c
  1122   // stack: ..., c, a, b, c
  1125 void TemplateTable::dup2() {
  1126   transition(vtos, vtos);
  1127   // stack: ..., a, b
  1128   __ load_ptr(1, rax);  // load a
  1129   __ push_ptr(rax);     // push a
  1130   __ load_ptr(1, rax);  // load b
  1131   __ push_ptr(rax);     // push b
  1132   // stack: ..., a, b, a, b
  1135 void TemplateTable::dup2_x1() {
  1136   transition(vtos, vtos);
  1137   // stack: ..., a, b, c
  1138   __ load_ptr( 0, rcx);  // load c
  1139   __ load_ptr( 1, rax);  // load b
  1140   __ push_ptr(rax);      // push b
  1141   __ push_ptr(rcx);      // push c
  1142   // stack: ..., a, b, c, b, c
  1143   __ store_ptr(3, rcx);  // store c in b
  1144   // stack: ..., a, c, c, b, c
  1145   __ load_ptr( 4, rcx);  // load a
  1146   __ store_ptr(2, rcx);  // store a in 2nd c
  1147   // stack: ..., a, c, a, b, c
  1148   __ store_ptr(4, rax);  // store b in a
  1149   // stack: ..., b, c, a, b, c
  1152 void TemplateTable::dup2_x2() {
  1153   transition(vtos, vtos);
  1154   // stack: ..., a, b, c, d
  1155   __ load_ptr( 0, rcx);  // load d
  1156   __ load_ptr( 1, rax);  // load c
  1157   __ push_ptr(rax);      // push c
  1158   __ push_ptr(rcx);      // push d
  1159   // stack: ..., a, b, c, d, c, d
  1160   __ load_ptr( 4, rax);  // load b
  1161   __ store_ptr(2, rax);  // store b in d
  1162   __ store_ptr(4, rcx);  // store d in b
  1163   // stack: ..., a, d, c, b, c, d
  1164   __ load_ptr( 5, rcx);  // load a
  1165   __ load_ptr( 3, rax);  // load c
  1166   __ store_ptr(3, rcx);  // store a in c
  1167   __ store_ptr(5, rax);  // store c in a
  1168   // stack: ..., c, d, a, b, c, d
  1171 void TemplateTable::swap() {
  1172   transition(vtos, vtos);
  1173   // stack: ..., a, b
  1174   __ load_ptr( 1, rcx);  // load a
  1175   __ load_ptr( 0, rax);  // load b
  1176   __ store_ptr(0, rcx);  // store a in b
  1177   __ store_ptr(1, rax);  // store b in a
  1178   // stack: ..., b, a
  1181 void TemplateTable::iop2(Operation op) {
  1182   transition(itos, itos);
  1183   switch (op) {
  1184   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1185   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1186   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1187   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1188   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1189   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1190   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1191   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1192   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1193   default   : ShouldNotReachHere();
  1197 void TemplateTable::lop2(Operation op) {
  1198   transition(ltos, ltos);
  1199   switch (op) {
  1200   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
  1201   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
  1202   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
  1203   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
  1204   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
  1205   default   : ShouldNotReachHere();
  1209 void TemplateTable::idiv() {
  1210   transition(itos, itos);
  1211   __ movl(rcx, rax);
  1212   __ pop_i(rax);
  1213   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1214   //       they are not equal, one could do a normal division (no correction
  1215   //       needed), which may speed up this implementation for the common case.
  1216   //       (see also JVM spec., p.243 & p.271)
  1217   __ corrected_idivl(rcx);
  1220 void TemplateTable::irem() {
  1221   transition(itos, itos);
  1222   __ movl(rcx, rax);
  1223   __ pop_i(rax);
  1224   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1225   //       they are not equal, one could do a normal division (no correction
  1226   //       needed), which may speed up this implementation for the common case.
  1227   //       (see also JVM spec., p.243 & p.271)
  1228   __ corrected_idivl(rcx);
  1229   __ movl(rax, rdx);
  1232 void TemplateTable::lmul() {
  1233   transition(ltos, ltos);
  1234   __ pop_l(rdx);
  1235   __ imulq(rax, rdx);
  1238 void TemplateTable::ldiv() {
  1239   transition(ltos, ltos);
  1240   __ mov(rcx, rax);
  1241   __ pop_l(rax);
  1242   // generate explicit div0 check
  1243   __ testq(rcx, rcx);
  1244   __ jump_cc(Assembler::zero,
  1245              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1246   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1247   //       they are not equal, one could do a normal division (no correction
  1248   //       needed), which may speed up this implementation for the common case.
  1249   //       (see also JVM spec., p.243 & p.271)
  1250   __ corrected_idivq(rcx); // kills rbx
  1253 void TemplateTable::lrem() {
  1254   transition(ltos, ltos);
  1255   __ mov(rcx, rax);
  1256   __ pop_l(rax);
  1257   __ testq(rcx, rcx);
  1258   __ jump_cc(Assembler::zero,
  1259              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1260   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1261   //       they are not equal, one could do a normal division (no correction
  1262   //       needed), which may speed up this implementation for the common case.
  1263   //       (see also JVM spec., p.243 & p.271)
  1264   __ corrected_idivq(rcx); // kills rbx
  1265   __ mov(rax, rdx);
  1268 void TemplateTable::lshl() {
  1269   transition(itos, ltos);
  1270   __ movl(rcx, rax);                             // get shift count
  1271   __ pop_l(rax);                                 // get shift value
  1272   __ shlq(rax);
  1275 void TemplateTable::lshr() {
  1276   transition(itos, ltos);
  1277   __ movl(rcx, rax);                             // get shift count
  1278   __ pop_l(rax);                                 // get shift value
  1279   __ sarq(rax);
  1282 void TemplateTable::lushr() {
  1283   transition(itos, ltos);
  1284   __ movl(rcx, rax);                             // get shift count
  1285   __ pop_l(rax);                                 // get shift value
  1286   __ shrq(rax);
  1289 void TemplateTable::fop2(Operation op) {
  1290   transition(ftos, ftos);
  1291   switch (op) {
  1292   case add:
  1293     __ addss(xmm0, at_rsp());
  1294     __ addptr(rsp, Interpreter::stackElementSize);
  1295     break;
  1296   case sub:
  1297     __ movflt(xmm1, xmm0);
  1298     __ pop_f(xmm0);
  1299     __ subss(xmm0, xmm1);
  1300     break;
  1301   case mul:
  1302     __ mulss(xmm0, at_rsp());
  1303     __ addptr(rsp, Interpreter::stackElementSize);
  1304     break;
  1305   case div:
  1306     __ movflt(xmm1, xmm0);
  1307     __ pop_f(xmm0);
  1308     __ divss(xmm0, xmm1);
  1309     break;
  1310   case rem:
  1311     __ movflt(xmm1, xmm0);
  1312     __ pop_f(xmm0);
  1313     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1314     break;
  1315   default:
  1316     ShouldNotReachHere();
  1317     break;
  1321 void TemplateTable::dop2(Operation op) {
  1322   transition(dtos, dtos);
  1323   switch (op) {
  1324   case add:
  1325     __ addsd(xmm0, at_rsp());
  1326     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1327     break;
  1328   case sub:
  1329     __ movdbl(xmm1, xmm0);
  1330     __ pop_d(xmm0);
  1331     __ subsd(xmm0, xmm1);
  1332     break;
  1333   case mul:
  1334     __ mulsd(xmm0, at_rsp());
  1335     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1336     break;
  1337   case div:
  1338     __ movdbl(xmm1, xmm0);
  1339     __ pop_d(xmm0);
  1340     __ divsd(xmm0, xmm1);
  1341     break;
  1342   case rem:
  1343     __ movdbl(xmm1, xmm0);
  1344     __ pop_d(xmm0);
  1345     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1346     break;
  1347   default:
  1348     ShouldNotReachHere();
  1349     break;
  1353 void TemplateTable::ineg() {
  1354   transition(itos, itos);
  1355   __ negl(rax);
  1358 void TemplateTable::lneg() {
  1359   transition(ltos, ltos);
  1360   __ negq(rax);
  1363 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1364 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1365   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1366   // of 128-bits operands for SSE instructions.
  1367   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1368   // Store the value to a 128-bits operand.
  1369   operand[0] = lo;
  1370   operand[1] = hi;
  1371   return operand;
  1374 // Buffer for 128-bits masks used by SSE instructions.
  1375 static jlong float_signflip_pool[2*2];
  1376 static jlong double_signflip_pool[2*2];
  1378 void TemplateTable::fneg() {
  1379   transition(ftos, ftos);
  1380   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1381   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1384 void TemplateTable::dneg() {
  1385   transition(dtos, dtos);
  1386   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1387   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1390 void TemplateTable::iinc() {
  1391   transition(vtos, vtos);
  1392   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1393   locals_index(rbx);
  1394   __ addl(iaddress(rbx), rdx);
  1397 void TemplateTable::wide_iinc() {
  1398   transition(vtos, vtos);
  1399   __ movl(rdx, at_bcp(4)); // get constant
  1400   locals_index_wide(rbx);
  1401   __ bswapl(rdx); // swap bytes & sign-extend constant
  1402   __ sarl(rdx, 16);
  1403   __ addl(iaddress(rbx), rdx);
  1404   // Note: should probably use only one movl to get both
  1405   //       the index and the constant -> fix this
  1408 void TemplateTable::convert() {
  1409   // Checking
  1410 #ifdef ASSERT
  1412     TosState tos_in  = ilgl;
  1413     TosState tos_out = ilgl;
  1414     switch (bytecode()) {
  1415     case Bytecodes::_i2l: // fall through
  1416     case Bytecodes::_i2f: // fall through
  1417     case Bytecodes::_i2d: // fall through
  1418     case Bytecodes::_i2b: // fall through
  1419     case Bytecodes::_i2c: // fall through
  1420     case Bytecodes::_i2s: tos_in = itos; break;
  1421     case Bytecodes::_l2i: // fall through
  1422     case Bytecodes::_l2f: // fall through
  1423     case Bytecodes::_l2d: tos_in = ltos; break;
  1424     case Bytecodes::_f2i: // fall through
  1425     case Bytecodes::_f2l: // fall through
  1426     case Bytecodes::_f2d: tos_in = ftos; break;
  1427     case Bytecodes::_d2i: // fall through
  1428     case Bytecodes::_d2l: // fall through
  1429     case Bytecodes::_d2f: tos_in = dtos; break;
  1430     default             : ShouldNotReachHere();
  1432     switch (bytecode()) {
  1433     case Bytecodes::_l2i: // fall through
  1434     case Bytecodes::_f2i: // fall through
  1435     case Bytecodes::_d2i: // fall through
  1436     case Bytecodes::_i2b: // fall through
  1437     case Bytecodes::_i2c: // fall through
  1438     case Bytecodes::_i2s: tos_out = itos; break;
  1439     case Bytecodes::_i2l: // fall through
  1440     case Bytecodes::_f2l: // fall through
  1441     case Bytecodes::_d2l: tos_out = ltos; break;
  1442     case Bytecodes::_i2f: // fall through
  1443     case Bytecodes::_l2f: // fall through
  1444     case Bytecodes::_d2f: tos_out = ftos; break;
  1445     case Bytecodes::_i2d: // fall through
  1446     case Bytecodes::_l2d: // fall through
  1447     case Bytecodes::_f2d: tos_out = dtos; break;
  1448     default             : ShouldNotReachHere();
  1450     transition(tos_in, tos_out);
  1452 #endif // ASSERT
  1454   static const int64_t is_nan = 0x8000000000000000L;
  1456   // Conversion
  1457   switch (bytecode()) {
  1458   case Bytecodes::_i2l:
  1459     __ movslq(rax, rax);
  1460     break;
  1461   case Bytecodes::_i2f:
  1462     __ cvtsi2ssl(xmm0, rax);
  1463     break;
  1464   case Bytecodes::_i2d:
  1465     __ cvtsi2sdl(xmm0, rax);
  1466     break;
  1467   case Bytecodes::_i2b:
  1468     __ movsbl(rax, rax);
  1469     break;
  1470   case Bytecodes::_i2c:
  1471     __ movzwl(rax, rax);
  1472     break;
  1473   case Bytecodes::_i2s:
  1474     __ movswl(rax, rax);
  1475     break;
  1476   case Bytecodes::_l2i:
  1477     __ movl(rax, rax);
  1478     break;
  1479   case Bytecodes::_l2f:
  1480     __ cvtsi2ssq(xmm0, rax);
  1481     break;
  1482   case Bytecodes::_l2d:
  1483     __ cvtsi2sdq(xmm0, rax);
  1484     break;
  1485   case Bytecodes::_f2i:
  1487     Label L;
  1488     __ cvttss2sil(rax, xmm0);
  1489     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1490     __ jcc(Assembler::notEqual, L);
  1491     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1492     __ bind(L);
  1494     break;
  1495   case Bytecodes::_f2l:
  1497     Label L;
  1498     __ cvttss2siq(rax, xmm0);
  1499     // NaN or overflow/underflow?
  1500     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1501     __ jcc(Assembler::notEqual, L);
  1502     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1503     __ bind(L);
  1505     break;
  1506   case Bytecodes::_f2d:
  1507     __ cvtss2sd(xmm0, xmm0);
  1508     break;
  1509   case Bytecodes::_d2i:
  1511     Label L;
  1512     __ cvttsd2sil(rax, xmm0);
  1513     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1514     __ jcc(Assembler::notEqual, L);
  1515     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1516     __ bind(L);
  1518     break;
  1519   case Bytecodes::_d2l:
  1521     Label L;
  1522     __ cvttsd2siq(rax, xmm0);
  1523     // NaN or overflow/underflow?
  1524     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1525     __ jcc(Assembler::notEqual, L);
  1526     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1527     __ bind(L);
  1529     break;
  1530   case Bytecodes::_d2f:
  1531     __ cvtsd2ss(xmm0, xmm0);
  1532     break;
  1533   default:
  1534     ShouldNotReachHere();
  1538 void TemplateTable::lcmp() {
  1539   transition(ltos, itos);
  1540   Label done;
  1541   __ pop_l(rdx);
  1542   __ cmpq(rdx, rax);
  1543   __ movl(rax, -1);
  1544   __ jccb(Assembler::less, done);
  1545   __ setb(Assembler::notEqual, rax);
  1546   __ movzbl(rax, rax);
  1547   __ bind(done);
  1550 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1551   Label done;
  1552   if (is_float) {
  1553     // XXX get rid of pop here, use ... reg, mem32
  1554     __ pop_f(xmm1);
  1555     __ ucomiss(xmm1, xmm0);
  1556   } else {
  1557     // XXX get rid of pop here, use ... reg, mem64
  1558     __ pop_d(xmm1);
  1559     __ ucomisd(xmm1, xmm0);
  1561   if (unordered_result < 0) {
  1562     __ movl(rax, -1);
  1563     __ jccb(Assembler::parity, done);
  1564     __ jccb(Assembler::below, done);
  1565     __ setb(Assembler::notEqual, rdx);
  1566     __ movzbl(rax, rdx);
  1567   } else {
  1568     __ movl(rax, 1);
  1569     __ jccb(Assembler::parity, done);
  1570     __ jccb(Assembler::above, done);
  1571     __ movl(rax, 0);
  1572     __ jccb(Assembler::equal, done);
  1573     __ decrementl(rax);
  1575   __ bind(done);
  1578 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1579   __ get_method(rcx); // rcx holds method
  1580   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1581                                      // holds bumped taken count
  1583   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
  1584                              InvocationCounter::counter_offset();
  1585   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
  1586                               InvocationCounter::counter_offset();
  1588   // Load up edx with the branch displacement
  1589   if (is_wide) {
  1590     __ movl(rdx, at_bcp(1));
  1591   } else {
  1592     __ load_signed_short(rdx, at_bcp(1));
  1594   __ bswapl(rdx);
  1596   if (!is_wide) {
  1597     __ sarl(rdx, 16);
  1599   __ movl2ptr(rdx, rdx);
  1601   // Handle all the JSR stuff here, then exit.
  1602   // It's much shorter and cleaner than intermingling with the non-JSR
  1603   // normal-branch stuff occurring below.
  1604   if (is_jsr) {
  1605     // Pre-load the next target bytecode into rbx
  1606     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1608     // compute return address as bci in rax
  1609     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1610                         in_bytes(ConstMethod::codes_offset())));
  1611     __ subptr(rax, Address(rcx, Method::const_offset()));
  1612     // Adjust the bcp in r13 by the displacement in rdx
  1613     __ addptr(r13, rdx);
  1614     // jsr returns atos that is not an oop
  1615     __ push_i(rax);
  1616     __ dispatch_only(vtos);
  1617     return;
  1620   // Normal (non-jsr) branch handling
  1622   // Adjust the bcp in r13 by the displacement in rdx
  1623   __ addptr(r13, rdx);
  1625   assert(UseLoopCounter || !UseOnStackReplacement,
  1626          "on-stack-replacement requires loop counters");
  1627   Label backedge_counter_overflow;
  1628   Label profile_method;
  1629   Label dispatch;
  1630   if (UseLoopCounter) {
  1631     // increment backedge counter for backward branches
  1632     // rax: MDO
  1633     // ebx: MDO bumped taken-count
  1634     // rcx: method
  1635     // rdx: target offset
  1636     // r13: target bcp
  1637     // r14: locals pointer
  1638     __ testl(rdx, rdx);             // check if forward or backward branch
  1639     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1641     // check if MethodCounters exists
  1642     Label has_counters;
  1643     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
  1644     __ testptr(rax, rax);
  1645     __ jcc(Assembler::notZero, has_counters);
  1646     __ push(rdx);
  1647     __ push(rcx);
  1648     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
  1649                rcx);
  1650     __ pop(rcx);
  1651     __ pop(rdx);
  1652     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
  1653     __ jcc(Assembler::zero, dispatch);
  1654     __ bind(has_counters);
  1656     if (TieredCompilation) {
  1657       Label no_mdo;
  1658       int increment = InvocationCounter::count_increment;
  1659       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1660       if (ProfileInterpreter) {
  1661         // Are we profiling?
  1662         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
  1663         __ testptr(rbx, rbx);
  1664         __ jccb(Assembler::zero, no_mdo);
  1665         // Increment the MDO backedge counter
  1666         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
  1667                                            in_bytes(InvocationCounter::counter_offset()));
  1668         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1669                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1670         __ jmp(dispatch);
  1672       __ bind(no_mdo);
  1673       // Increment backedge counter in MethodCounters*
  1674       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
  1675       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1676                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1677     } else {
  1678       // increment counter
  1679       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
  1680       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1681       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1682       __ movl(Address(rcx, be_offset), rax);        // store counter
  1684       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1686       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1687       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1689       if (ProfileInterpreter) {
  1690         // Test to see if we should create a method data oop
  1691         __ cmp32(rax,
  1692                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1693         __ jcc(Assembler::less, dispatch);
  1695         // if no method data exists, go to profile method
  1696         __ test_method_data_pointer(rax, profile_method);
  1698         if (UseOnStackReplacement) {
  1699           // check for overflow against ebx which is the MDO taken count
  1700           __ cmp32(rbx,
  1701                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1702           __ jcc(Assembler::below, dispatch);
  1704           // When ProfileInterpreter is on, the backedge_count comes
  1705           // from the MethodData*, which value does not get reset on
  1706           // the call to frequency_counter_overflow().  To avoid
  1707           // excessive calls to the overflow routine while the method is
  1708           // being compiled, add a second test to make sure the overflow
  1709           // function is called only once every overflow_frequency.
  1710           const int overflow_frequency = 1024;
  1711           __ andl(rbx, overflow_frequency - 1);
  1712           __ jcc(Assembler::zero, backedge_counter_overflow);
  1715       } else {
  1716         if (UseOnStackReplacement) {
  1717           // check for overflow against eax, which is the sum of the
  1718           // counters
  1719           __ cmp32(rax,
  1720                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1721           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1726     __ bind(dispatch);
  1729   // Pre-load the next target bytecode into rbx
  1730   __ load_unsigned_byte(rbx, Address(r13, 0));
  1732   // continue with the bytecode @ target
  1733   // eax: return bci for jsr's, unused otherwise
  1734   // ebx: target bytecode
  1735   // r13: target bcp
  1736   __ dispatch_only(vtos);
  1738   if (UseLoopCounter) {
  1739     if (ProfileInterpreter) {
  1740       // Out-of-line code to allocate method data oop.
  1741       __ bind(profile_method);
  1742       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1743       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1744       __ set_method_data_pointer_for_bcp();
  1745       __ jmp(dispatch);
  1748     if (UseOnStackReplacement) {
  1749       // invocation counter overflow
  1750       __ bind(backedge_counter_overflow);
  1751       __ negptr(rdx);
  1752       __ addptr(rdx, r13); // branch bcp
  1753       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1754       __ call_VM(noreg,
  1755                  CAST_FROM_FN_PTR(address,
  1756                                   InterpreterRuntime::frequency_counter_overflow),
  1757                  rdx);
  1758       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1760       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1761       // ebx: target bytecode
  1762       // rdx: scratch
  1763       // r14: locals pointer
  1764       // r13: bcp
  1765       __ testptr(rax, rax);                        // test result
  1766       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1767       // nmethod may have been invalidated (VM may block upon call_VM return)
  1768       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1769       __ cmpl(rcx, InvalidOSREntryBci);
  1770       __ jcc(Assembler::equal, dispatch);
  1772       // We have the address of an on stack replacement routine in eax
  1773       // We need to prepare to execute the OSR method. First we must
  1774       // migrate the locals and monitors off of the stack.
  1776       __ mov(r13, rax);                             // save the nmethod
  1778       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1780       // eax is OSR buffer, move it to expected parameter location
  1781       __ mov(j_rarg0, rax);
  1783       // We use j_rarg definitions here so that registers don't conflict as parameter
  1784       // registers change across platforms as we are in the midst of a calling
  1785       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1787       const Register retaddr = j_rarg2;
  1788       const Register sender_sp = j_rarg1;
  1790       // pop the interpreter frame
  1791       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1792       __ leave();                                // remove frame anchor
  1793       __ pop(retaddr);                           // get return address
  1794       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1795       // Ensure compiled code always sees stack at proper alignment
  1796       __ andptr(rsp, -(StackAlignmentInBytes));
  1798       // unlike x86 we need no specialized return from compiled code
  1799       // to the interpreter or the call stub.
  1801       // push the return address
  1802       __ push(retaddr);
  1804       // and begin the OSR nmethod
  1805       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1811 void TemplateTable::if_0cmp(Condition cc) {
  1812   transition(itos, vtos);
  1813   // assume branch is more often taken than not (loops use backward branches)
  1814   Label not_taken;
  1815   __ testl(rax, rax);
  1816   __ jcc(j_not(cc), not_taken);
  1817   branch(false, false);
  1818   __ bind(not_taken);
  1819   __ profile_not_taken_branch(rax);
  1822 void TemplateTable::if_icmp(Condition cc) {
  1823   transition(itos, vtos);
  1824   // assume branch is more often taken than not (loops use backward branches)
  1825   Label not_taken;
  1826   __ pop_i(rdx);
  1827   __ cmpl(rdx, rax);
  1828   __ jcc(j_not(cc), not_taken);
  1829   branch(false, false);
  1830   __ bind(not_taken);
  1831   __ profile_not_taken_branch(rax);
  1834 void TemplateTable::if_nullcmp(Condition cc) {
  1835   transition(atos, vtos);
  1836   // assume branch is more often taken than not (loops use backward branches)
  1837   Label not_taken;
  1838   __ testptr(rax, rax);
  1839   __ jcc(j_not(cc), not_taken);
  1840   branch(false, false);
  1841   __ bind(not_taken);
  1842   __ profile_not_taken_branch(rax);
  1845 void TemplateTable::if_acmp(Condition cc) {
  1846   transition(atos, vtos);
  1847   // assume branch is more often taken than not (loops use backward branches)
  1848   Label not_taken;
  1849   __ pop_ptr(rdx);
  1850   __ cmpptr(rdx, rax);
  1851   __ jcc(j_not(cc), not_taken);
  1852   branch(false, false);
  1853   __ bind(not_taken);
  1854   __ profile_not_taken_branch(rax);
  1857 void TemplateTable::ret() {
  1858   transition(vtos, vtos);
  1859   locals_index(rbx);
  1860   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1861   __ profile_ret(rbx, rcx);
  1862   __ get_method(rax);
  1863   __ movptr(r13, Address(rax, Method::const_offset()));
  1864   __ lea(r13, Address(r13, rbx, Address::times_1,
  1865                       ConstMethod::codes_offset()));
  1866   __ dispatch_next(vtos);
  1869 void TemplateTable::wide_ret() {
  1870   transition(vtos, vtos);
  1871   locals_index_wide(rbx);
  1872   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1873   __ profile_ret(rbx, rcx);
  1874   __ get_method(rax);
  1875   __ movptr(r13, Address(rax, Method::const_offset()));
  1876   __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset()));
  1877   __ dispatch_next(vtos);
  1880 void TemplateTable::tableswitch() {
  1881   Label default_case, continue_execution;
  1882   transition(itos, vtos);
  1883   // align r13
  1884   __ lea(rbx, at_bcp(BytesPerInt));
  1885   __ andptr(rbx, -BytesPerInt);
  1886   // load lo & hi
  1887   __ movl(rcx, Address(rbx, BytesPerInt));
  1888   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1889   __ bswapl(rcx);
  1890   __ bswapl(rdx);
  1891   // check against lo & hi
  1892   __ cmpl(rax, rcx);
  1893   __ jcc(Assembler::less, default_case);
  1894   __ cmpl(rax, rdx);
  1895   __ jcc(Assembler::greater, default_case);
  1896   // lookup dispatch offset
  1897   __ subl(rax, rcx);
  1898   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1899   __ profile_switch_case(rax, rbx, rcx);
  1900   // continue execution
  1901   __ bind(continue_execution);
  1902   __ bswapl(rdx);
  1903   __ movl2ptr(rdx, rdx);
  1904   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1905   __ addptr(r13, rdx);
  1906   __ dispatch_only(vtos);
  1907   // handle default
  1908   __ bind(default_case);
  1909   __ profile_switch_default(rax);
  1910   __ movl(rdx, Address(rbx, 0));
  1911   __ jmp(continue_execution);
  1914 void TemplateTable::lookupswitch() {
  1915   transition(itos, itos);
  1916   __ stop("lookupswitch bytecode should have been rewritten");
  1919 void TemplateTable::fast_linearswitch() {
  1920   transition(itos, vtos);
  1921   Label loop_entry, loop, found, continue_execution;
  1922   // bswap rax so we can avoid bswapping the table entries
  1923   __ bswapl(rax);
  1924   // align r13
  1925   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1926                                     // this instruction (change offsets
  1927                                     // below)
  1928   __ andptr(rbx, -BytesPerInt);
  1929   // set counter
  1930   __ movl(rcx, Address(rbx, BytesPerInt));
  1931   __ bswapl(rcx);
  1932   __ jmpb(loop_entry);
  1933   // table search
  1934   __ bind(loop);
  1935   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1936   __ jcc(Assembler::equal, found);
  1937   __ bind(loop_entry);
  1938   __ decrementl(rcx);
  1939   __ jcc(Assembler::greaterEqual, loop);
  1940   // default case
  1941   __ profile_switch_default(rax);
  1942   __ movl(rdx, Address(rbx, 0));
  1943   __ jmp(continue_execution);
  1944   // entry found -> get offset
  1945   __ bind(found);
  1946   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1947   __ profile_switch_case(rcx, rax, rbx);
  1948   // continue execution
  1949   __ bind(continue_execution);
  1950   __ bswapl(rdx);
  1951   __ movl2ptr(rdx, rdx);
  1952   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1953   __ addptr(r13, rdx);
  1954   __ dispatch_only(vtos);
  1957 void TemplateTable::fast_binaryswitch() {
  1958   transition(itos, vtos);
  1959   // Implementation using the following core algorithm:
  1960   //
  1961   // int binary_search(int key, LookupswitchPair* array, int n) {
  1962   //   // Binary search according to "Methodik des Programmierens" by
  1963   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1964   //   int i = 0;
  1965   //   int j = n;
  1966   //   while (i+1 < j) {
  1967   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1968   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1969   //     // where a stands for the array and assuming that the (inexisting)
  1970   //     // element a[n] is infinitely big.
  1971   //     int h = (i + j) >> 1;
  1972   //     // i < h < j
  1973   //     if (key < array[h].fast_match()) {
  1974   //       j = h;
  1975   //     } else {
  1976   //       i = h;
  1977   //     }
  1978   //   }
  1979   //   // R: a[i] <= key < a[i+1] or Q
  1980   //   // (i.e., if key is within array, i is the correct index)
  1981   //   return i;
  1982   // }
  1984   // Register allocation
  1985   const Register key   = rax; // already set (tosca)
  1986   const Register array = rbx;
  1987   const Register i     = rcx;
  1988   const Register j     = rdx;
  1989   const Register h     = rdi;
  1990   const Register temp  = rsi;
  1992   // Find array start
  1993   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1994                                           // get rid of this
  1995                                           // instruction (change
  1996                                           // offsets below)
  1997   __ andptr(array, -BytesPerInt);
  1999   // Initialize i & j
  2000   __ xorl(i, i);                            // i = 0;
  2001   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  2003   // Convert j into native byteordering
  2004   __ bswapl(j);
  2006   // And start
  2007   Label entry;
  2008   __ jmp(entry);
  2010   // binary search loop
  2012     Label loop;
  2013     __ bind(loop);
  2014     // int h = (i + j) >> 1;
  2015     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  2016     __ sarl(h, 1);                               // h = (i + j) >> 1;
  2017     // if (key < array[h].fast_match()) {
  2018     //   j = h;
  2019     // } else {
  2020     //   i = h;
  2021     // }
  2022     // Convert array[h].match to native byte-ordering before compare
  2023     __ movl(temp, Address(array, h, Address::times_8));
  2024     __ bswapl(temp);
  2025     __ cmpl(key, temp);
  2026     // j = h if (key <  array[h].fast_match())
  2027     __ cmovl(Assembler::less, j, h);
  2028     // i = h if (key >= array[h].fast_match())
  2029     __ cmovl(Assembler::greaterEqual, i, h);
  2030     // while (i+1 < j)
  2031     __ bind(entry);
  2032     __ leal(h, Address(i, 1)); // i+1
  2033     __ cmpl(h, j);             // i+1 < j
  2034     __ jcc(Assembler::less, loop);
  2037   // end of binary search, result index is i (must check again!)
  2038   Label default_case;
  2039   // Convert array[i].match to native byte-ordering before compare
  2040   __ movl(temp, Address(array, i, Address::times_8));
  2041   __ bswapl(temp);
  2042   __ cmpl(key, temp);
  2043   __ jcc(Assembler::notEqual, default_case);
  2045   // entry found -> j = offset
  2046   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  2047   __ profile_switch_case(i, key, array);
  2048   __ bswapl(j);
  2049   __ movl2ptr(j, j);
  2050   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2051   __ addptr(r13, j);
  2052   __ dispatch_only(vtos);
  2054   // default case -> j = default offset
  2055   __ bind(default_case);
  2056   __ profile_switch_default(i);
  2057   __ movl(j, Address(array, -2 * BytesPerInt));
  2058   __ bswapl(j);
  2059   __ movl2ptr(j, j);
  2060   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2061   __ addptr(r13, j);
  2062   __ dispatch_only(vtos);
  2066 void TemplateTable::_return(TosState state) {
  2067   transition(state, state);
  2068   assert(_desc->calls_vm(),
  2069          "inconsistent calls_vm information"); // call in remove_activation
  2071   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2072     assert(state == vtos, "only valid state");
  2073     __ movptr(c_rarg1, aaddress(0));
  2074     __ load_klass(rdi, c_rarg1);
  2075     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
  2076     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2077     Label skip_register_finalizer;
  2078     __ jcc(Assembler::zero, skip_register_finalizer);
  2080     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2082     __ bind(skip_register_finalizer);
  2085   // Narrow result if state is itos but result type is smaller.
  2086   // Need to narrow in the return bytecode rather than in generate_return_entry
  2087   // since compiled code callers expect the result to already be narrowed.
  2088   if (state == itos) {
  2089     __ narrow(rax);
  2091   __ remove_activation(state, r13);
  2093   __ jmp(r13);
  2096 // ----------------------------------------------------------------------------
  2097 // Volatile variables demand their effects be made known to all CPU's
  2098 // in order.  Store buffers on most chips allow reads & writes to
  2099 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2100 // without some kind of memory barrier (i.e., it's not sufficient that
  2101 // the interpreter does not reorder volatile references, the hardware
  2102 // also must not reorder them).
  2103 //
  2104 // According to the new Java Memory Model (JMM):
  2105 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2106 //     writes act as aquire & release, so:
  2107 // (2) A read cannot let unrelated NON-volatile memory refs that
  2108 //     happen after the read float up to before the read.  It's OK for
  2109 //     non-volatile memory refs that happen before the volatile read to
  2110 //     float down below it.
  2111 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2112 //     memory refs that happen BEFORE the write float down to after the
  2113 //     write.  It's OK for non-volatile memory refs that happen after the
  2114 //     volatile write to float up before it.
  2115 //
  2116 // We only put in barriers around volatile refs (they are expensive),
  2117 // not _between_ memory refs (that would require us to track the
  2118 // flavor of the previous memory refs).  Requirements (2) and (3)
  2119 // require some barriers before volatile stores and after volatile
  2120 // loads.  These nearly cover requirement (1) but miss the
  2121 // volatile-store-volatile-load case.  This final case is placed after
  2122 // volatile-stores although it could just as well go before
  2123 // volatile-loads.
  2124 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2125                                      order_constraint) {
  2126   // Helper function to insert a is-volatile test and memory barrier
  2127   if (os::is_MP()) { // Not needed on single CPU
  2128     __ membar(order_constraint);
  2132 void TemplateTable::resolve_cache_and_index(int byte_no,
  2133                                             Register Rcache,
  2134                                             Register index,
  2135                                             size_t index_size) {
  2136   const Register temp = rbx;
  2137   assert_different_registers(Rcache, index, temp);
  2139   Label resolved;
  2140     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2141     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
  2142     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
  2143     __ jcc(Assembler::equal, resolved);
  2145   // resolve first time through
  2146   address entry;
  2147   switch (bytecode()) {
  2148   case Bytecodes::_getstatic:
  2149   case Bytecodes::_putstatic:
  2150   case Bytecodes::_getfield:
  2151   case Bytecodes::_putfield:
  2152     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2153     break;
  2154   case Bytecodes::_invokevirtual:
  2155   case Bytecodes::_invokespecial:
  2156   case Bytecodes::_invokestatic:
  2157   case Bytecodes::_invokeinterface:
  2158     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2159     break;
  2160   case Bytecodes::_invokehandle:
  2161     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
  2162     break;
  2163   case Bytecodes::_invokedynamic:
  2164     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2165     break;
  2166   default:
  2167     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2168     break;
  2170   __ movl(temp, (int) bytecode());
  2171   __ call_VM(noreg, entry, temp);
  2173   // Update registers with resolved info
  2174   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2175   __ bind(resolved);
  2178 // The cache and index registers must be set before call
  2179 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2180                                               Register cache,
  2181                                               Register index,
  2182                                               Register off,
  2183                                               Register flags,
  2184                                               bool is_static = false) {
  2185   assert_different_registers(cache, index, flags, off);
  2187   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2188   // Field offset
  2189   __ movptr(off, Address(cache, index, Address::times_ptr,
  2190                          in_bytes(cp_base_offset +
  2191                                   ConstantPoolCacheEntry::f2_offset())));
  2192   // Flags
  2193   __ movl(flags, Address(cache, index, Address::times_ptr,
  2194                          in_bytes(cp_base_offset +
  2195                                   ConstantPoolCacheEntry::flags_offset())));
  2197   // klass overwrite register
  2198   if (is_static) {
  2199     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2200                            in_bytes(cp_base_offset +
  2201                                     ConstantPoolCacheEntry::f1_offset())));
  2202     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2203     __ movptr(obj, Address(obj, mirror_offset));
  2207 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2208                                                Register method,
  2209                                                Register itable_index,
  2210                                                Register flags,
  2211                                                bool is_invokevirtual,
  2212                                                bool is_invokevfinal, /*unused*/
  2213                                                bool is_invokedynamic) {
  2214   // setup registers
  2215   const Register cache = rcx;
  2216   const Register index = rdx;
  2217   assert_different_registers(method, flags);
  2218   assert_different_registers(method, cache, index);
  2219   assert_different_registers(itable_index, flags);
  2220   assert_different_registers(itable_index, cache, index);
  2221   // determine constant pool cache field offsets
  2222   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2223   const int method_offset = in_bytes(
  2224     ConstantPoolCache::base_offset() +
  2225       ((byte_no == f2_byte)
  2226        ? ConstantPoolCacheEntry::f2_offset()
  2227        : ConstantPoolCacheEntry::f1_offset()));
  2228   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2229                                     ConstantPoolCacheEntry::flags_offset());
  2230   // access constant pool cache fields
  2231   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2232                                     ConstantPoolCacheEntry::f2_offset());
  2234   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2235   resolve_cache_and_index(byte_no, cache, index, index_size);
  2236     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2238   if (itable_index != noreg) {
  2239     // pick up itable or appendix index from f2 also:
  2240     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2242   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2245 // Correct values of the cache and index registers are preserved.
  2246 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2247                                             bool is_static, bool has_tos) {
  2248   // do the JVMTI work here to avoid disturbing the register state below
  2249   // We use c_rarg registers here because we want to use the register used in
  2250   // the call to the VM
  2251   if (JvmtiExport::can_post_field_access()) {
  2252     // Check to see if a field access watch has been set before we
  2253     // take the time to call into the VM.
  2254     Label L1;
  2255     assert_different_registers(cache, index, rax);
  2256     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2257     __ testl(rax, rax);
  2258     __ jcc(Assembler::zero, L1);
  2260     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2262     // cache entry pointer
  2263     __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset()));
  2264     __ shll(c_rarg3, LogBytesPerWord);
  2265     __ addptr(c_rarg2, c_rarg3);
  2266     if (is_static) {
  2267       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2268     } else {
  2269       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2270       __ verify_oop(c_rarg1);
  2272     // c_rarg1: object pointer or NULL
  2273     // c_rarg2: cache entry pointer
  2274     // c_rarg3: jvalue object on the stack
  2275     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2276                                        InterpreterRuntime::post_field_access),
  2277                c_rarg1, c_rarg2, c_rarg3);
  2278     __ get_cache_and_index_at_bcp(cache, index, 1);
  2279     __ bind(L1);
  2283 void TemplateTable::pop_and_check_object(Register r) {
  2284   __ pop_ptr(r);
  2285   __ null_check(r);  // for field access must check obj.
  2286   __ verify_oop(r);
  2289 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2290   transition(vtos, vtos);
  2292   const Register cache = rcx;
  2293   const Register index = rdx;
  2294   const Register obj   = c_rarg3;
  2295   const Register off   = rbx;
  2296   const Register flags = rax;
  2297   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2299   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2300   jvmti_post_field_access(cache, index, is_static, false);
  2301   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2303   if (!is_static) {
  2304     // obj is on the stack
  2305     pop_and_check_object(obj);
  2308   const Address field(obj, off, Address::times_1);
  2310   Label Done, notByte, notBool, notInt, notShort, notChar,
  2311               notLong, notFloat, notObj, notDouble;
  2313   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2314   // Make sure we don't need to mask edx after the above shift
  2315   assert(btos == 0, "change code, btos != 0");
  2317   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2318   __ jcc(Assembler::notZero, notByte);
  2319   // btos
  2320   __ load_signed_byte(rax, field);
  2321   __ push(btos);
  2322   // Rewrite bytecode to be faster
  2323   if (!is_static) {
  2324     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2326   __ jmp(Done);
  2328   __ bind(notByte);
  2329   __ cmpl(flags, ztos);
  2330   __ jcc(Assembler::notEqual, notBool);
  2332   // ztos (same code as btos)
  2333   __ load_signed_byte(rax, field);
  2334   __ push(ztos);
  2335   // Rewrite bytecode to be faster
  2336   if (!is_static) {
  2337     // use btos rewriting, no truncating to t/f bit is needed for getfield.
  2338     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2340   __ jmp(Done);
  2342   __ bind(notBool);
  2343   __ cmpl(flags, atos);
  2344   __ jcc(Assembler::notEqual, notObj);
  2345   // atos
  2346   __ load_heap_oop(rax, field);
  2347   __ push(atos);
  2348   if (!is_static) {
  2349     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2351   __ jmp(Done);
  2353   __ bind(notObj);
  2354   __ cmpl(flags, itos);
  2355   __ jcc(Assembler::notEqual, notInt);
  2356   // itos
  2357   __ movl(rax, field);
  2358   __ push(itos);
  2359   // Rewrite bytecode to be faster
  2360   if (!is_static) {
  2361     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2363   __ jmp(Done);
  2365   __ bind(notInt);
  2366   __ cmpl(flags, ctos);
  2367   __ jcc(Assembler::notEqual, notChar);
  2368   // ctos
  2369   __ load_unsigned_short(rax, field);
  2370   __ push(ctos);
  2371   // Rewrite bytecode to be faster
  2372   if (!is_static) {
  2373     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2375   __ jmp(Done);
  2377   __ bind(notChar);
  2378   __ cmpl(flags, stos);
  2379   __ jcc(Assembler::notEqual, notShort);
  2380   // stos
  2381   __ load_signed_short(rax, field);
  2382   __ push(stos);
  2383   // Rewrite bytecode to be faster
  2384   if (!is_static) {
  2385     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2387   __ jmp(Done);
  2389   __ bind(notShort);
  2390   __ cmpl(flags, ltos);
  2391   __ jcc(Assembler::notEqual, notLong);
  2392   // ltos
  2393   __ movq(rax, field);
  2394   __ push(ltos);
  2395   // Rewrite bytecode to be faster
  2396   if (!is_static) {
  2397     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2399   __ jmp(Done);
  2401   __ bind(notLong);
  2402   __ cmpl(flags, ftos);
  2403   __ jcc(Assembler::notEqual, notFloat);
  2404   // ftos
  2405   __ movflt(xmm0, field);
  2406   __ push(ftos);
  2407   // Rewrite bytecode to be faster
  2408   if (!is_static) {
  2409     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2411   __ jmp(Done);
  2413   __ bind(notFloat);
  2414 #ifdef ASSERT
  2415   __ cmpl(flags, dtos);
  2416   __ jcc(Assembler::notEqual, notDouble);
  2417 #endif
  2418   // dtos
  2419   __ movdbl(xmm0, field);
  2420   __ push(dtos);
  2421   // Rewrite bytecode to be faster
  2422   if (!is_static) {
  2423     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2425 #ifdef ASSERT
  2426   __ jmp(Done);
  2428   __ bind(notDouble);
  2429   __ stop("Bad state");
  2430 #endif
  2432   __ bind(Done);
  2433   // [jk] not needed currently
  2434   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2435   //                                              Assembler::LoadStore));
  2439 void TemplateTable::getfield(int byte_no) {
  2440   getfield_or_static(byte_no, false);
  2443 void TemplateTable::getstatic(int byte_no) {
  2444   getfield_or_static(byte_no, true);
  2447 // The registers cache and index expected to be set before call.
  2448 // The function may destroy various registers, just not the cache and index registers.
  2449 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2450   transition(vtos, vtos);
  2452   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2454   if (JvmtiExport::can_post_field_modification()) {
  2455     // Check to see if a field modification watch has been set before
  2456     // we take the time to call into the VM.
  2457     Label L1;
  2458     assert_different_registers(cache, index, rax);
  2459     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2460     __ testl(rax, rax);
  2461     __ jcc(Assembler::zero, L1);
  2463     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2465     if (is_static) {
  2466       // Life is simple.  Null out the object pointer.
  2467       __ xorl(c_rarg1, c_rarg1);
  2468     } else {
  2469       // Life is harder. The stack holds the value on top, followed by
  2470       // the object.  We don't know the size of the value, though; it
  2471       // could be one or two words depending on its type. As a result,
  2472       // we must find the type to determine where the object is.
  2473       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2474                            Address::times_8,
  2475                            in_bytes(cp_base_offset +
  2476                                      ConstantPoolCacheEntry::flags_offset())));
  2477       __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
  2478       // Make sure we don't need to mask rcx after the above shift
  2479       ConstantPoolCacheEntry::verify_tos_state_shift();
  2480       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2481       __ cmpl(c_rarg3, ltos);
  2482       __ cmovptr(Assembler::equal,
  2483                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2484       __ cmpl(c_rarg3, dtos);
  2485       __ cmovptr(Assembler::equal,
  2486                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2488     // cache entry pointer
  2489     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2490     __ shll(rscratch1, LogBytesPerWord);
  2491     __ addptr(c_rarg2, rscratch1);
  2492     // object (tos)
  2493     __ mov(c_rarg3, rsp);
  2494     // c_rarg1: object pointer set up above (NULL if static)
  2495     // c_rarg2: cache entry pointer
  2496     // c_rarg3: jvalue object on the stack
  2497     __ call_VM(noreg,
  2498                CAST_FROM_FN_PTR(address,
  2499                                 InterpreterRuntime::post_field_modification),
  2500                c_rarg1, c_rarg2, c_rarg3);
  2501     __ get_cache_and_index_at_bcp(cache, index, 1);
  2502     __ bind(L1);
  2506 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2507   transition(vtos, vtos);
  2509   const Register cache = rcx;
  2510   const Register index = rdx;
  2511   const Register obj   = rcx;
  2512   const Register off   = rbx;
  2513   const Register flags = rax;
  2514   const Register bc    = c_rarg3;
  2516   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2517   jvmti_post_field_mod(cache, index, is_static);
  2518   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2520   // [jk] not needed currently
  2521   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2522   //                                              Assembler::StoreStore));
  2524   Label notVolatile, Done;
  2525   __ movl(rdx, flags);
  2526   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2527   __ andl(rdx, 0x1);
  2529   // field address
  2530   const Address field(obj, off, Address::times_1);
  2532   Label notByte, notBool, notInt, notShort, notChar,
  2533         notLong, notFloat, notObj, notDouble;
  2535   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2537   assert(btos == 0, "change code, btos != 0");
  2538   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2539   __ jcc(Assembler::notZero, notByte);
  2541   // btos
  2543     __ pop(btos);
  2544     if (!is_static) pop_and_check_object(obj);
  2545     __ movb(field, rax);
  2546     if (!is_static) {
  2547       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
  2549     __ jmp(Done);
  2552   __ bind(notByte);
  2553   __ cmpl(flags, ztos);
  2554   __ jcc(Assembler::notEqual, notBool);
  2556   // ztos
  2558     __ pop(ztos);
  2559     if (!is_static) pop_and_check_object(obj);
  2560     __ andl(rax, 0x1);
  2561     __ movb(field, rax);
  2562     if (!is_static) {
  2563       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
  2565     __ jmp(Done);
  2568   __ bind(notBool);
  2569   __ cmpl(flags, atos);
  2570   __ jcc(Assembler::notEqual, notObj);
  2572   // atos
  2574     __ pop(atos);
  2575     if (!is_static) pop_and_check_object(obj);
  2576     // Store into the field
  2577     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2578     if (!is_static) {
  2579       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
  2581     __ jmp(Done);
  2584   __ bind(notObj);
  2585   __ cmpl(flags, itos);
  2586   __ jcc(Assembler::notEqual, notInt);
  2588   // itos
  2590     __ pop(itos);
  2591     if (!is_static) pop_and_check_object(obj);
  2592     __ movl(field, rax);
  2593     if (!is_static) {
  2594       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
  2596     __ jmp(Done);
  2599   __ bind(notInt);
  2600   __ cmpl(flags, ctos);
  2601   __ jcc(Assembler::notEqual, notChar);
  2603   // ctos
  2605     __ pop(ctos);
  2606     if (!is_static) pop_and_check_object(obj);
  2607     __ movw(field, rax);
  2608     if (!is_static) {
  2609       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
  2611     __ jmp(Done);
  2614   __ bind(notChar);
  2615   __ cmpl(flags, stos);
  2616   __ jcc(Assembler::notEqual, notShort);
  2618   // stos
  2620     __ pop(stos);
  2621     if (!is_static) pop_and_check_object(obj);
  2622     __ movw(field, rax);
  2623     if (!is_static) {
  2624       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
  2626     __ jmp(Done);
  2629   __ bind(notShort);
  2630   __ cmpl(flags, ltos);
  2631   __ jcc(Assembler::notEqual, notLong);
  2633   // ltos
  2635     __ pop(ltos);
  2636     if (!is_static) pop_and_check_object(obj);
  2637     __ movq(field, rax);
  2638     if (!is_static) {
  2639       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
  2641     __ jmp(Done);
  2644   __ bind(notLong);
  2645   __ cmpl(flags, ftos);
  2646   __ jcc(Assembler::notEqual, notFloat);
  2648   // ftos
  2650     __ pop(ftos);
  2651     if (!is_static) pop_and_check_object(obj);
  2652     __ movflt(field, xmm0);
  2653     if (!is_static) {
  2654       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
  2656     __ jmp(Done);
  2659   __ bind(notFloat);
  2660 #ifdef ASSERT
  2661   __ cmpl(flags, dtos);
  2662   __ jcc(Assembler::notEqual, notDouble);
  2663 #endif
  2665   // dtos
  2667     __ pop(dtos);
  2668     if (!is_static) pop_and_check_object(obj);
  2669     __ movdbl(field, xmm0);
  2670     if (!is_static) {
  2671       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
  2675 #ifdef ASSERT
  2676   __ jmp(Done);
  2678   __ bind(notDouble);
  2679   __ stop("Bad state");
  2680 #endif
  2682   __ bind(Done);
  2684   // Check for volatile store
  2685   __ testl(rdx, rdx);
  2686   __ jcc(Assembler::zero, notVolatile);
  2687   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2688                                                Assembler::StoreStore));
  2689   __ bind(notVolatile);
  2692 void TemplateTable::putfield(int byte_no) {
  2693   putfield_or_static(byte_no, false);
  2696 void TemplateTable::putstatic(int byte_no) {
  2697   putfield_or_static(byte_no, true);
  2700 void TemplateTable::jvmti_post_fast_field_mod() {
  2701   if (JvmtiExport::can_post_field_modification()) {
  2702     // Check to see if a field modification watch has been set before
  2703     // we take the time to call into the VM.
  2704     Label L2;
  2705     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2706     __ testl(c_rarg3, c_rarg3);
  2707     __ jcc(Assembler::zero, L2);
  2708     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2709     __ verify_oop(rbx);
  2710     __ push_ptr(rbx);                 // put the object pointer back on tos
  2711     // Save tos values before call_VM() clobbers them. Since we have
  2712     // to do it for every data type, we use the saved values as the
  2713     // jvalue object.
  2714     switch (bytecode()) {          // load values into the jvalue object
  2715     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
  2716     case Bytecodes::_fast_bputfield: // fall through
  2717     case Bytecodes::_fast_zputfield: // fall through
  2718     case Bytecodes::_fast_sputfield: // fall through
  2719     case Bytecodes::_fast_cputfield: // fall through
  2720     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
  2721     case Bytecodes::_fast_dputfield: __ push_d(); break;
  2722     case Bytecodes::_fast_fputfield: __ push_f(); break;
  2723     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
  2725     default:
  2726       ShouldNotReachHere();
  2728     __ mov(c_rarg3, rsp);             // points to jvalue on the stack
  2729     // access constant pool cache entry
  2730     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2731     __ verify_oop(rbx);
  2732     // rbx: object pointer copied above
  2733     // c_rarg2: cache entry pointer
  2734     // c_rarg3: jvalue object on the stack
  2735     __ call_VM(noreg,
  2736                CAST_FROM_FN_PTR(address,
  2737                                 InterpreterRuntime::post_field_modification),
  2738                rbx, c_rarg2, c_rarg3);
  2740     switch (bytecode()) {             // restore tos values
  2741     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
  2742     case Bytecodes::_fast_bputfield: // fall through
  2743     case Bytecodes::_fast_zputfield: // fall through
  2744     case Bytecodes::_fast_sputfield: // fall through
  2745     case Bytecodes::_fast_cputfield: // fall through
  2746     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
  2747     case Bytecodes::_fast_dputfield: __ pop_d(); break;
  2748     case Bytecodes::_fast_fputfield: __ pop_f(); break;
  2749     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
  2751     __ bind(L2);
  2755 void TemplateTable::fast_storefield(TosState state) {
  2756   transition(state, vtos);
  2758   ByteSize base = ConstantPoolCache::base_offset();
  2760   jvmti_post_fast_field_mod();
  2762   // access constant pool cache
  2763   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2765   // test for volatile with rdx
  2766   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2767                        in_bytes(base +
  2768                                 ConstantPoolCacheEntry::flags_offset())));
  2770   // replace index with field offset from cache entry
  2771   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2772                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2774   // [jk] not needed currently
  2775   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2776   //                                              Assembler::StoreStore));
  2778   Label notVolatile;
  2779   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2780   __ andl(rdx, 0x1);
  2782   // Get object from stack
  2783   pop_and_check_object(rcx);
  2785   // field address
  2786   const Address field(rcx, rbx, Address::times_1);
  2788   // access field
  2789   switch (bytecode()) {
  2790   case Bytecodes::_fast_aputfield:
  2791     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2792     break;
  2793   case Bytecodes::_fast_lputfield:
  2794     __ movq(field, rax);
  2795     break;
  2796   case Bytecodes::_fast_iputfield:
  2797     __ movl(field, rax);
  2798     break;
  2799   case Bytecodes::_fast_zputfield:
  2800     __ andl(rax, 0x1);  // boolean is true if LSB is 1
  2801     // fall through to bputfield
  2802   case Bytecodes::_fast_bputfield:
  2803     __ movb(field, rax);
  2804     break;
  2805   case Bytecodes::_fast_sputfield:
  2806     // fall through
  2807   case Bytecodes::_fast_cputfield:
  2808     __ movw(field, rax);
  2809     break;
  2810   case Bytecodes::_fast_fputfield:
  2811     __ movflt(field, xmm0);
  2812     break;
  2813   case Bytecodes::_fast_dputfield:
  2814     __ movdbl(field, xmm0);
  2815     break;
  2816   default:
  2817     ShouldNotReachHere();
  2820   // Check for volatile store
  2821   __ testl(rdx, rdx);
  2822   __ jcc(Assembler::zero, notVolatile);
  2823   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2824                                                Assembler::StoreStore));
  2825   __ bind(notVolatile);
  2829 void TemplateTable::fast_accessfield(TosState state) {
  2830   transition(atos, state);
  2832   // Do the JVMTI work here to avoid disturbing the register state below
  2833   if (JvmtiExport::can_post_field_access()) {
  2834     // Check to see if a field access watch has been set before we
  2835     // take the time to call into the VM.
  2836     Label L1;
  2837     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2838     __ testl(rcx, rcx);
  2839     __ jcc(Assembler::zero, L1);
  2840     // access constant pool cache entry
  2841     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2842     __ verify_oop(rax);
  2843     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2844     __ mov(c_rarg1, rax);
  2845     // c_rarg1: object pointer copied above
  2846     // c_rarg2: cache entry pointer
  2847     __ call_VM(noreg,
  2848                CAST_FROM_FN_PTR(address,
  2849                                 InterpreterRuntime::post_field_access),
  2850                c_rarg1, c_rarg2);
  2851     __ pop_ptr(rax); // restore object pointer
  2852     __ bind(L1);
  2855   // access constant pool cache
  2856   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2857   // replace index with field offset from cache entry
  2858   // [jk] not needed currently
  2859   // if (os::is_MP()) {
  2860   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2861   //                        in_bytes(ConstantPoolCache::base_offset() +
  2862   //                                 ConstantPoolCacheEntry::flags_offset())));
  2863   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2864   //   __ andl(rdx, 0x1);
  2865   // }
  2866   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2867                          in_bytes(ConstantPoolCache::base_offset() +
  2868                                   ConstantPoolCacheEntry::f2_offset())));
  2870   // rax: object
  2871   __ verify_oop(rax);
  2872   __ null_check(rax);
  2873   Address field(rax, rbx, Address::times_1);
  2875   // access field
  2876   switch (bytecode()) {
  2877   case Bytecodes::_fast_agetfield:
  2878     __ load_heap_oop(rax, field);
  2879     __ verify_oop(rax);
  2880     break;
  2881   case Bytecodes::_fast_lgetfield:
  2882     __ movq(rax, field);
  2883     break;
  2884   case Bytecodes::_fast_igetfield:
  2885     __ movl(rax, field);
  2886     break;
  2887   case Bytecodes::_fast_bgetfield:
  2888     __ movsbl(rax, field);
  2889     break;
  2890   case Bytecodes::_fast_sgetfield:
  2891     __ load_signed_short(rax, field);
  2892     break;
  2893   case Bytecodes::_fast_cgetfield:
  2894     __ load_unsigned_short(rax, field);
  2895     break;
  2896   case Bytecodes::_fast_fgetfield:
  2897     __ movflt(xmm0, field);
  2898     break;
  2899   case Bytecodes::_fast_dgetfield:
  2900     __ movdbl(xmm0, field);
  2901     break;
  2902   default:
  2903     ShouldNotReachHere();
  2905   // [jk] not needed currently
  2906   // if (os::is_MP()) {
  2907   //   Label notVolatile;
  2908   //   __ testl(rdx, rdx);
  2909   //   __ jcc(Assembler::zero, notVolatile);
  2910   //   __ membar(Assembler::LoadLoad);
  2911   //   __ bind(notVolatile);
  2912   //};
  2915 void TemplateTable::fast_xaccess(TosState state) {
  2916   transition(vtos, state);
  2918   // get receiver
  2919   __ movptr(rax, aaddress(0));
  2920   // access constant pool cache
  2921   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2922   __ movptr(rbx,
  2923             Address(rcx, rdx, Address::times_8,
  2924                     in_bytes(ConstantPoolCache::base_offset() +
  2925                              ConstantPoolCacheEntry::f2_offset())));
  2926   // make sure exception is reported in correct bcp range (getfield is
  2927   // next instruction)
  2928   __ increment(r13);
  2929   __ null_check(rax);
  2930   switch (state) {
  2931   case itos:
  2932     __ movl(rax, Address(rax, rbx, Address::times_1));
  2933     break;
  2934   case atos:
  2935     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2936     __ verify_oop(rax);
  2937     break;
  2938   case ftos:
  2939     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2940     break;
  2941   default:
  2942     ShouldNotReachHere();
  2945   // [jk] not needed currently
  2946   // if (os::is_MP()) {
  2947   //   Label notVolatile;
  2948   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2949   //                        in_bytes(ConstantPoolCache::base_offset() +
  2950   //                                 ConstantPoolCacheEntry::flags_offset())));
  2951   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2952   //   __ testl(rdx, 0x1);
  2953   //   __ jcc(Assembler::zero, notVolatile);
  2954   //   __ membar(Assembler::LoadLoad);
  2955   //   __ bind(notVolatile);
  2956   // }
  2958   __ decrement(r13);
  2963 //-----------------------------------------------------------------------------
  2964 // Calls
  2966 void TemplateTable::count_calls(Register method, Register temp) {
  2967   // implemented elsewhere
  2968   ShouldNotReachHere();
  2971 void TemplateTable::prepare_invoke(int byte_no,
  2972                                    Register method,  // linked method (or i-klass)
  2973                                    Register index,   // itable index, MethodType, etc.
  2974                                    Register recv,    // if caller wants to see it
  2975                                    Register flags    // if caller wants to test it
  2976                                    ) {
  2977   // determine flags
  2978   const Bytecodes::Code code = bytecode();
  2979   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2980   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2981   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2982   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2983   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2984   const bool load_receiver       = (recv  != noreg);
  2985   const bool save_flags          = (flags != noreg);
  2986   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2987   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
  2988   assert(flags == noreg || flags == rdx, "");
  2989   assert(recv  == noreg || recv  == rcx, "");
  2991   // setup registers & access constant pool cache
  2992   if (recv  == noreg)  recv  = rcx;
  2993   if (flags == noreg)  flags = rdx;
  2994   assert_different_registers(method, index, recv, flags);
  2996   // save 'interpreter return address'
  2997   __ save_bcp();
  2999   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  3001   // maybe push appendix to arguments (just before return address)
  3002   if (is_invokedynamic || is_invokehandle) {
  3003     Label L_no_push;
  3004     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
  3005     __ jcc(Assembler::zero, L_no_push);
  3006     // Push the appendix as a trailing parameter.
  3007     // This must be done before we get the receiver,
  3008     // since the parameter_size includes it.
  3009     __ push(rbx);
  3010     __ mov(rbx, index);
  3011     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
  3012     __ load_resolved_reference_at_index(index, rbx);
  3013     __ pop(rbx);
  3014     __ push(index);  // push appendix (MethodType, CallSite, etc.)
  3015     __ bind(L_no_push);
  3018   // load receiver if needed (after appendix is pushed so parameter size is correct)
  3019   // Note: no return address pushed yet
  3020   if (load_receiver) {
  3021     __ movl(recv, flags);
  3022     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
  3023     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
  3024     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
  3025     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
  3026     __ movptr(recv, recv_addr);
  3027     __ verify_oop(recv);
  3030   if (save_flags) {
  3031     __ movl(r13, flags);
  3034   // compute return type
  3035   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  3036   // Make sure we don't need to mask flags after the above shift
  3037   ConstantPoolCacheEntry::verify_tos_state_shift();
  3038   // load return address
  3040     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
  3041     ExternalAddress table(table_addr);
  3042     __ lea(rscratch1, table);
  3043     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  3046   // push return address
  3047   __ push(flags);
  3049   // Restore flags value from the constant pool cache, and restore rsi
  3050   // for later null checks.  r13 is the bytecode pointer
  3051   if (save_flags) {
  3052     __ movl(flags, r13);
  3053     __ restore_bcp();
  3058 void TemplateTable::invokevirtual_helper(Register index,
  3059                                          Register recv,
  3060                                          Register flags) {
  3061   // Uses temporary registers rax, rdx
  3062   assert_different_registers(index, recv, rax, rdx);
  3063   assert(index == rbx, "");
  3064   assert(recv  == rcx, "");
  3066   // Test for an invoke of a final method
  3067   Label notFinal;
  3068   __ movl(rax, flags);
  3069   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
  3070   __ jcc(Assembler::zero, notFinal);
  3072   const Register method = index;  // method must be rbx
  3073   assert(method == rbx,
  3074          "Method* must be rbx for interpreter calling convention");
  3076   // do the call - the index is actually the method to call
  3077   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
  3079   // It's final, need a null check here!
  3080   __ null_check(recv);
  3082   // profile this call
  3083   __ profile_final_call(rax);
  3084   __ profile_arguments_type(rax, method, r13, true);
  3086   __ jump_from_interpreted(method, rax);
  3088   __ bind(notFinal);
  3090   // get receiver klass
  3091   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  3092   __ load_klass(rax, recv);
  3094   // profile this call
  3095   __ profile_virtual_call(rax, r14, rdx);
  3097   // get target Method* & entry point
  3098   __ lookup_virtual_method(rax, index, method);
  3099   __ profile_arguments_type(rdx, method, r13, true);
  3100   __ jump_from_interpreted(method, rdx);
  3104 void TemplateTable::invokevirtual(int byte_no) {
  3105   transition(vtos, vtos);
  3106   assert(byte_no == f2_byte, "use this argument");
  3107   prepare_invoke(byte_no,
  3108                  rbx,    // method or vtable index
  3109                  noreg,  // unused itable index
  3110                  rcx, rdx); // recv, flags
  3112   // rbx: index
  3113   // rcx: receiver
  3114   // rdx: flags
  3116   invokevirtual_helper(rbx, rcx, rdx);
  3120 void TemplateTable::invokespecial(int byte_no) {
  3121   transition(vtos, vtos);
  3122   assert(byte_no == f1_byte, "use this argument");
  3123   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
  3124                  rcx);  // get receiver also for null check
  3125   __ verify_oop(rcx);
  3126   __ null_check(rcx);
  3127   // do the call
  3128   __ profile_call(rax);
  3129   __ profile_arguments_type(rax, rbx, r13, false);
  3130   __ jump_from_interpreted(rbx, rax);
  3134 void TemplateTable::invokestatic(int byte_no) {
  3135   transition(vtos, vtos);
  3136   assert(byte_no == f1_byte, "use this argument");
  3137   prepare_invoke(byte_no, rbx);  // get f1 Method*
  3138   // do the call
  3139   __ profile_call(rax);
  3140   __ profile_arguments_type(rax, rbx, r13, false);
  3141   __ jump_from_interpreted(rbx, rax);
  3144 void TemplateTable::fast_invokevfinal(int byte_no) {
  3145   transition(vtos, vtos);
  3146   assert(byte_no == f2_byte, "use this argument");
  3147   __ stop("fast_invokevfinal not used on amd64");
  3150 void TemplateTable::invokeinterface(int byte_no) {
  3151   transition(vtos, vtos);
  3152   assert(byte_no == f1_byte, "use this argument");
  3153   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
  3154                  rcx, rdx); // recv, flags
  3156   // rax: interface klass (from f1)
  3157   // rbx: itable index (from f2)
  3158   // rcx: receiver
  3159   // rdx: flags
  3161   // Special case of invokeinterface called for virtual method of
  3162   // java.lang.Object.  See cpCacheOop.cpp for details.
  3163   // This code isn't produced by javac, but could be produced by
  3164   // another compliant java compiler.
  3165   Label notMethod;
  3166   __ movl(r14, rdx);
  3167   __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
  3168   __ jcc(Assembler::zero, notMethod);
  3170   invokevirtual_helper(rbx, rcx, rdx);
  3171   __ bind(notMethod);
  3173   // Get receiver klass into rdx - also a null check
  3174   __ restore_locals();  // restore r14
  3175   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
  3176   __ load_klass(rdx, rcx);
  3178   // profile this call
  3179   __ profile_virtual_call(rdx, r13, r14);
  3181   Label no_such_interface, no_such_method;
  3183   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3184                              rdx, rax, rbx,
  3185                              // outputs: method, scan temp. reg
  3186                              rbx, r13,
  3187                              no_such_interface);
  3189   // rbx: Method* to call
  3190   // rcx: receiver
  3191   // Check for abstract method error
  3192   // Note: This should be done more efficiently via a throw_abstract_method_error
  3193   //       interpreter entry point and a conditional jump to it in case of a null
  3194   //       method.
  3195   __ testptr(rbx, rbx);
  3196   __ jcc(Assembler::zero, no_such_method);
  3198   __ profile_arguments_type(rdx, rbx, r13, true);
  3200   // do the call
  3201   // rcx: receiver
  3202   // rbx,: Method*
  3203   __ jump_from_interpreted(rbx, rdx);
  3204   __ should_not_reach_here();
  3206   // exception handling code follows...
  3207   // note: must restore interpreter registers to canonical
  3208   //       state for exception handling to work correctly!
  3210   __ bind(no_such_method);
  3211   // throw exception
  3212   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3213   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3214   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3215   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3216   // the call_VM checks for exception, so we should never return here.
  3217   __ should_not_reach_here();
  3219   __ bind(no_such_interface);
  3220   // throw exception
  3221   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3222   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3223   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3224   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3225                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3226   // the call_VM checks for exception, so we should never return here.
  3227   __ should_not_reach_here();
  3231 void TemplateTable::invokehandle(int byte_no) {
  3232   transition(vtos, vtos);
  3233   assert(byte_no == f1_byte, "use this argument");
  3234   const Register rbx_method = rbx;
  3235   const Register rax_mtype  = rax;
  3236   const Register rcx_recv   = rcx;
  3237   const Register rdx_flags  = rdx;
  3239   if (!EnableInvokeDynamic) {
  3240     // rewriter does not generate this bytecode
  3241     __ should_not_reach_here();
  3242     return;
  3245   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
  3246   __ verify_method_ptr(rbx_method);
  3247   __ verify_oop(rcx_recv);
  3248   __ null_check(rcx_recv);
  3250   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
  3251   // rbx: MH.invokeExact_MT method (from f2)
  3253   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
  3255   // FIXME: profile the LambdaForm also
  3256   __ profile_final_call(rax);
  3257   __ profile_arguments_type(rdx, rbx_method, r13, true);
  3259   __ jump_from_interpreted(rbx_method, rdx);
  3263 void TemplateTable::invokedynamic(int byte_no) {
  3264   transition(vtos, vtos);
  3265   assert(byte_no == f1_byte, "use this argument");
  3267   if (!EnableInvokeDynamic) {
  3268     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3269     // The verifier will stop it.  However, if we get past the verifier,
  3270     // this will stop the thread in a reasonable way, without crashing the JVM.
  3271     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3272                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3273     // the call_VM checks for exception, so we should never return here.
  3274     __ should_not_reach_here();
  3275     return;
  3278   const Register rbx_method   = rbx;
  3279   const Register rax_callsite = rax;
  3281   prepare_invoke(byte_no, rbx_method, rax_callsite);
  3283   // rax: CallSite object (from cpool->resolved_references[f1])
  3284   // rbx: MH.linkToCallSite method (from f2)
  3286   // Note:  rax_callsite is already pushed by prepare_invoke
  3288   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3289   // profile this call
  3290   __ profile_call(r13);
  3291   __ profile_arguments_type(rdx, rbx_method, r13, false);
  3293   __ verify_oop(rax_callsite);
  3295   __ jump_from_interpreted(rbx_method, rdx);
  3299 //-----------------------------------------------------------------------------
  3300 // Allocation
  3302 void TemplateTable::_new() {
  3303   transition(vtos, atos);
  3304   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3305   Label slow_case;
  3306   Label done;
  3307   Label initialize_header;
  3308   Label initialize_object; // including clearing the fields
  3309   Label allocate_shared;
  3311   __ get_cpool_and_tags(rsi, rax);
  3312   // Make sure the class we're about to instantiate has been resolved.
  3313   // This is done before loading InstanceKlass to be consistent with the order
  3314   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3315   const int tags_offset = Array<u1>::base_offset_in_bytes();
  3316   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3317           JVM_CONSTANT_Class);
  3318   __ jcc(Assembler::notEqual, slow_case);
  3320   // get InstanceKlass
  3321   __ movptr(rsi, Address(rsi, rdx,
  3322             Address::times_8, sizeof(ConstantPool)));
  3324   // make sure klass is initialized & doesn't have finalizer
  3325   // make sure klass is fully initialized
  3326   __ cmpb(Address(rsi,
  3327                   InstanceKlass::init_state_offset()),
  3328           InstanceKlass::fully_initialized);
  3329   __ jcc(Assembler::notEqual, slow_case);
  3331   // get instance_size in InstanceKlass (scaled to a count of bytes)
  3332   __ movl(rdx,
  3333           Address(rsi,
  3334                   Klass::layout_helper_offset()));
  3335   // test to see if it has a finalizer or is malformed in some way
  3336   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3337   __ jcc(Assembler::notZero, slow_case);
  3339   // Allocate the instance
  3340   // 1) Try to allocate in the TLAB
  3341   // 2) if fail and the object is large allocate in the shared Eden
  3342   // 3) if the above fails (or is not applicable), go to a slow case
  3343   // (creates a new TLAB, etc.)
  3345   const bool allow_shared_alloc =
  3346     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3348   if (UseTLAB) {
  3349     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3350     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3351     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3352     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3353     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3354     if (ZeroTLAB) {
  3355       // the fields have been already cleared
  3356       __ jmp(initialize_header);
  3357     } else {
  3358       // initialize both the header and fields
  3359       __ jmp(initialize_object);
  3363   // Allocation in the shared Eden, if allowed.
  3364   //
  3365   // rdx: instance size in bytes
  3366   if (allow_shared_alloc) {
  3367     __ bind(allocate_shared);
  3369     ExternalAddress top((address)Universe::heap()->top_addr());
  3370     ExternalAddress end((address)Universe::heap()->end_addr());
  3372     const Register RtopAddr = rscratch1;
  3373     const Register RendAddr = rscratch2;
  3375     __ lea(RtopAddr, top);
  3376     __ lea(RendAddr, end);
  3377     __ movptr(rax, Address(RtopAddr, 0));
  3379     // For retries rax gets set by cmpxchgq
  3380     Label retry;
  3381     __ bind(retry);
  3382     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3383     __ cmpptr(rbx, Address(RendAddr, 0));
  3384     __ jcc(Assembler::above, slow_case);
  3386     // Compare rax with the top addr, and if still equal, store the new
  3387     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3388     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3389     //
  3390     // rax: object begin
  3391     // rbx: object end
  3392     // rdx: instance size in bytes
  3393     if (os::is_MP()) {
  3394       __ lock();
  3396     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3398     // if someone beat us on the allocation, try again, otherwise continue
  3399     __ jcc(Assembler::notEqual, retry);
  3401     __ incr_allocated_bytes(r15_thread, rdx, 0);
  3404   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3405     // The object is initialized before the header.  If the object size is
  3406     // zero, go directly to the header initialization.
  3407     __ bind(initialize_object);
  3408     __ decrementl(rdx, sizeof(oopDesc));
  3409     __ jcc(Assembler::zero, initialize_header);
  3411     // Initialize object fields
  3412     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3413     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3415       Label loop;
  3416       __ bind(loop);
  3417       __ movq(Address(rax, rdx, Address::times_8,
  3418                       sizeof(oopDesc) - oopSize),
  3419               rcx);
  3420       __ decrementl(rdx);
  3421       __ jcc(Assembler::notZero, loop);
  3424     // initialize object header only.
  3425     __ bind(initialize_header);
  3426     if (UseBiasedLocking) {
  3427       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
  3428       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3429     } else {
  3430       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3431                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3433     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3434     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3435     __ store_klass(rax, rsi);      // store klass last
  3438       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3439       // Trigger dtrace event for fastpath
  3440       __ push(atos); // save the return value
  3441       __ call_VM_leaf(
  3442            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3443       __ pop(atos); // restore the return value
  3446     __ jmp(done);
  3450   // slow case
  3451   __ bind(slow_case);
  3452   __ get_constant_pool(c_rarg1);
  3453   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3454   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3455   __ verify_oop(rax);
  3457   // continue
  3458   __ bind(done);
  3461 void TemplateTable::newarray() {
  3462   transition(itos, atos);
  3463   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3464   __ movl(c_rarg2, rax);
  3465   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3466           c_rarg1, c_rarg2);
  3469 void TemplateTable::anewarray() {
  3470   transition(itos, atos);
  3471   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3472   __ get_constant_pool(c_rarg1);
  3473   __ movl(c_rarg3, rax);
  3474   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3475           c_rarg1, c_rarg2, c_rarg3);
  3478 void TemplateTable::arraylength() {
  3479   transition(atos, itos);
  3480   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3481   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3484 void TemplateTable::checkcast() {
  3485   transition(atos, atos);
  3486   Label done, is_null, ok_is_subtype, quicked, resolved;
  3487   __ testptr(rax, rax); // object is in rax
  3488   __ jcc(Assembler::zero, is_null);
  3490   // Get cpool & tags index
  3491   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3492   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3493   // See if bytecode has already been quicked
  3494   __ cmpb(Address(rdx, rbx,
  3495                   Address::times_1,
  3496                   Array<u1>::base_offset_in_bytes()),
  3497           JVM_CONSTANT_Class);
  3498   __ jcc(Assembler::equal, quicked);
  3499   __ push(atos); // save receiver for result, and for GC
  3500   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3501   // vm_result_2 has metadata result
  3502   __ get_vm_result_2(rax, r15_thread);
  3503   __ pop_ptr(rdx); // restore receiver
  3504   __ jmpb(resolved);
  3506   // Get superklass in rax and subklass in rbx
  3507   __ bind(quicked);
  3508   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3509   __ movptr(rax, Address(rcx, rbx,
  3510                        Address::times_8, sizeof(ConstantPool)));
  3512   __ bind(resolved);
  3513   __ load_klass(rbx, rdx);
  3515   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3516   // Superklass in rax.  Subklass in rbx.
  3517   __ gen_subtype_check(rbx, ok_is_subtype);
  3519   // Come here on failure
  3520   __ push_ptr(rdx);
  3521   // object is at TOS
  3522   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3524   // Come here on success
  3525   __ bind(ok_is_subtype);
  3526   __ mov(rax, rdx); // Restore object in rdx
  3528   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3529   if (ProfileInterpreter) {
  3530     __ jmp(done);
  3531     __ bind(is_null);
  3532     __ profile_null_seen(rcx);
  3533   } else {
  3534     __ bind(is_null);   // same as 'done'
  3536   __ bind(done);
  3539 void TemplateTable::instanceof() {
  3540   transition(atos, itos);
  3541   Label done, is_null, ok_is_subtype, quicked, resolved;
  3542   __ testptr(rax, rax);
  3543   __ jcc(Assembler::zero, is_null);
  3545   // Get cpool & tags index
  3546   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3547   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3548   // See if bytecode has already been quicked
  3549   __ cmpb(Address(rdx, rbx,
  3550                   Address::times_1,
  3551                   Array<u1>::base_offset_in_bytes()),
  3552           JVM_CONSTANT_Class);
  3553   __ jcc(Assembler::equal, quicked);
  3555   __ push(atos); // save receiver for result, and for GC
  3556   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3557   // vm_result_2 has metadata result
  3558   __ get_vm_result_2(rax, r15_thread);
  3559   __ pop_ptr(rdx); // restore receiver
  3560   __ verify_oop(rdx);
  3561   __ load_klass(rdx, rdx);
  3562   __ jmpb(resolved);
  3564   // Get superklass in rax and subklass in rdx
  3565   __ bind(quicked);
  3566   __ load_klass(rdx, rax);
  3567   __ movptr(rax, Address(rcx, rbx,
  3568                          Address::times_8, sizeof(ConstantPool)));
  3570   __ bind(resolved);
  3572   // Generate subtype check.  Blows rcx, rdi
  3573   // Superklass in rax.  Subklass in rdx.
  3574   __ gen_subtype_check(rdx, ok_is_subtype);
  3576   // Come here on failure
  3577   __ xorl(rax, rax);
  3578   __ jmpb(done);
  3579   // Come here on success
  3580   __ bind(ok_is_subtype);
  3581   __ movl(rax, 1);
  3583   // Collect counts on whether this test sees NULLs a lot or not.
  3584   if (ProfileInterpreter) {
  3585     __ jmp(done);
  3586     __ bind(is_null);
  3587     __ profile_null_seen(rcx);
  3588   } else {
  3589     __ bind(is_null);   // same as 'done'
  3591   __ bind(done);
  3592   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3593   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3596 //-----------------------------------------------------------------------------
  3597 // Breakpoints
  3598 void TemplateTable::_breakpoint() {
  3599   // Note: We get here even if we are single stepping..
  3600   // jbug inists on setting breakpoints at every bytecode
  3601   // even if we are in single step mode.
  3603   transition(vtos, vtos);
  3605   // get the unpatched byte code
  3606   __ get_method(c_rarg1);
  3607   __ call_VM(noreg,
  3608              CAST_FROM_FN_PTR(address,
  3609                               InterpreterRuntime::get_original_bytecode_at),
  3610              c_rarg1, r13);
  3611   __ mov(rbx, rax);
  3613   // post the breakpoint event
  3614   __ get_method(c_rarg1);
  3615   __ call_VM(noreg,
  3616              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3617              c_rarg1, r13);
  3619   // complete the execution of original bytecode
  3620   __ dispatch_only_normal(vtos);
  3623 //-----------------------------------------------------------------------------
  3624 // Exceptions
  3626 void TemplateTable::athrow() {
  3627   transition(atos, vtos);
  3628   __ null_check(rax);
  3629   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3632 //-----------------------------------------------------------------------------
  3633 // Synchronization
  3634 //
  3635 // Note: monitorenter & exit are symmetric routines; which is reflected
  3636 //       in the assembly code structure as well
  3637 //
  3638 // Stack layout:
  3639 //
  3640 // [expressions  ] <--- rsp               = expression stack top
  3641 // ..
  3642 // [expressions  ]
  3643 // [monitor entry] <--- monitor block top = expression stack bot
  3644 // ..
  3645 // [monitor entry]
  3646 // [frame data   ] <--- monitor block bot
  3647 // ...
  3648 // [saved rbp    ] <--- rbp
  3649 void TemplateTable::monitorenter() {
  3650   transition(atos, vtos);
  3652   // check for NULL object
  3653   __ null_check(rax);
  3655   const Address monitor_block_top(
  3656         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3657   const Address monitor_block_bot(
  3658         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3659   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3661   Label allocated;
  3663   // initialize entry pointer
  3664   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3666   // find a free slot in the monitor block (result in c_rarg1)
  3668     Label entry, loop, exit;
  3669     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3670                                      // starting with top-most entry
  3671     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3672                                      // of monitor block
  3673     __ jmpb(entry);
  3675     __ bind(loop);
  3676     // check if current entry is used
  3677     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3678     // if not used then remember entry in c_rarg1
  3679     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3680     // check if current entry is for same object
  3681     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3682     // if same object then stop searching
  3683     __ jccb(Assembler::equal, exit);
  3684     // otherwise advance to next entry
  3685     __ addptr(c_rarg3, entry_size);
  3686     __ bind(entry);
  3687     // check if bottom reached
  3688     __ cmpptr(c_rarg3, c_rarg2);
  3689     // if not at bottom then check this entry
  3690     __ jcc(Assembler::notEqual, loop);
  3691     __ bind(exit);
  3694   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3695   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3697   // allocate one if there's no free slot
  3699     Label entry, loop;
  3700     // 1. compute new pointers             // rsp: old expression stack top
  3701     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3702     __ subptr(rsp, entry_size);            // move expression stack top
  3703     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3704     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3705     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3706     __ jmp(entry);
  3707     // 2. move expression stack contents
  3708     __ bind(loop);
  3709     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3710                                                       // word from old location
  3711     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3712     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3713     __ bind(entry);
  3714     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3715     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3716                                             // copy next word
  3719   // call run-time routine
  3720   // c_rarg1: points to monitor entry
  3721   __ bind(allocated);
  3723   // Increment bcp to point to the next bytecode, so exception
  3724   // handling for async. exceptions work correctly.
  3725   // The object has already been poped from the stack, so the
  3726   // expression stack looks correct.
  3727   __ increment(r13);
  3729   // store object
  3730   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3731   __ lock_object(c_rarg1);
  3733   // check to make sure this monitor doesn't cause stack overflow after locking
  3734   __ save_bcp();  // in case of exception
  3735   __ generate_stack_overflow_check(0);
  3737   // The bcp has already been incremented. Just need to dispatch to
  3738   // next instruction.
  3739   __ dispatch_next(vtos);
  3743 void TemplateTable::monitorexit() {
  3744   transition(atos, vtos);
  3746   // check for NULL object
  3747   __ null_check(rax);
  3749   const Address monitor_block_top(
  3750         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3751   const Address monitor_block_bot(
  3752         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3753   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3755   Label found;
  3757   // find matching slot
  3759     Label entry, loop;
  3760     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3761                                      // starting with top-most entry
  3762     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3763                                      // of monitor block
  3764     __ jmpb(entry);
  3766     __ bind(loop);
  3767     // check if current entry is for same object
  3768     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3769     // if same object then stop searching
  3770     __ jcc(Assembler::equal, found);
  3771     // otherwise advance to next entry
  3772     __ addptr(c_rarg1, entry_size);
  3773     __ bind(entry);
  3774     // check if bottom reached
  3775     __ cmpptr(c_rarg1, c_rarg2);
  3776     // if not at bottom then check this entry
  3777     __ jcc(Assembler::notEqual, loop);
  3780   // error handling. Unlocking was not block-structured
  3781   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3782                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3783   __ should_not_reach_here();
  3785   // call run-time routine
  3786   // rsi: points to monitor entry
  3787   __ bind(found);
  3788   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3789   __ unlock_object(c_rarg1);
  3790   __ pop_ptr(rax); // discard object
  3794 // Wide instructions
  3795 void TemplateTable::wide() {
  3796   transition(vtos, vtos);
  3797   __ load_unsigned_byte(rbx, at_bcp(1));
  3798   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3799   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3800   // Note: the r13 increment step is part of the individual wide
  3801   // bytecode implementations
  3805 // Multi arrays
  3806 void TemplateTable::multianewarray() {
  3807   transition(vtos, atos);
  3808   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3809   // last dim is on top of stack; we want address of first one:
  3810   // first_addr = last_addr + (ndims - 1) * wordSize
  3811   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3812   call_VM(rax,
  3813           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3814           c_rarg1);
  3815   __ load_unsigned_byte(rbx, at_bcp(3));
  3816   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3818 #endif // !CC_INTERP

mercurial