src/share/vm/runtime/os.cpp

Thu, 12 Mar 2009 18:16:36 -0700

author
trims
date
Thu, 12 Mar 2009 18:16:36 -0700
changeset 1063
7bb995fbd3c0
parent 1014
0fbdb4381b99
parent 1055
bcedf688d882
child 1126
956304450e80
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_os.cpp.incl"
    28 # include <signal.h>
    30 OSThread*         os::_starting_thread    = NULL;
    31 address           os::_polling_page       = NULL;
    32 volatile int32_t* os::_mem_serialize_page = NULL;
    33 uintptr_t         os::_serialize_page_mask = 0;
    34 long              os::_rand_seed          = 1;
    35 int               os::_processor_count    = 0;
    36 size_t            os::_page_sizes[os::page_sizes_max];
    38 #ifndef PRODUCT
    39 int os::num_mallocs = 0;            // # of calls to malloc/realloc
    40 size_t os::alloc_bytes = 0;         // # of bytes allocated
    41 int os::num_frees = 0;              // # of calls to free
    42 #endif
    44 // Fill in buffer with current local time as an ISO-8601 string.
    45 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
    46 // Returns buffer, or NULL if it failed.
    47 // This would mostly be a call to
    48 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
    49 // except that on Windows the %z behaves badly, so we do it ourselves.
    50 // Also, people wanted milliseconds on there,
    51 // and strftime doesn't do milliseconds.
    52 char* os::iso8601_time(char* buffer, size_t buffer_length) {
    53   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
    54   //                                      1         2
    55   //                             12345678901234567890123456789
    56   static const char* iso8601_format =
    57     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
    58   static const size_t needed_buffer = 29;
    60   // Sanity check the arguments
    61   if (buffer == NULL) {
    62     assert(false, "NULL buffer");
    63     return NULL;
    64   }
    65   if (buffer_length < needed_buffer) {
    66     assert(false, "buffer_length too small");
    67     return NULL;
    68   }
    69   // Get the current time
    70   jlong milliseconds_since_19700101 = javaTimeMillis();
    71   const int milliseconds_per_microsecond = 1000;
    72   const time_t seconds_since_19700101 =
    73     milliseconds_since_19700101 / milliseconds_per_microsecond;
    74   const int milliseconds_after_second =
    75     milliseconds_since_19700101 % milliseconds_per_microsecond;
    76   // Convert the time value to a tm and timezone variable
    77   struct tm time_struct;
    78   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
    79     assert(false, "Failed localtime_pd");
    80     return NULL;
    81   }
    82   const time_t zone = timezone;
    84   // If daylight savings time is in effect,
    85   // we are 1 hour East of our time zone
    86   const time_t seconds_per_minute = 60;
    87   const time_t minutes_per_hour = 60;
    88   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
    89   time_t UTC_to_local = zone;
    90   if (time_struct.tm_isdst > 0) {
    91     UTC_to_local = UTC_to_local - seconds_per_hour;
    92   }
    93   // Compute the time zone offset.
    94   //    localtime_pd() sets timezone to the difference (in seconds)
    95   //    between UTC and and local time.
    96   //    ISO 8601 says we need the difference between local time and UTC,
    97   //    we change the sign of the localtime_pd() result.
    98   const time_t local_to_UTC = -(UTC_to_local);
    99   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
   100   char sign_local_to_UTC = '+';
   101   time_t abs_local_to_UTC = local_to_UTC;
   102   if (local_to_UTC < 0) {
   103     sign_local_to_UTC = '-';
   104     abs_local_to_UTC = -(abs_local_to_UTC);
   105   }
   106   // Convert time zone offset seconds to hours and minutes.
   107   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
   108   const time_t zone_min =
   109     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
   111   // Print an ISO 8601 date and time stamp into the buffer
   112   const int year = 1900 + time_struct.tm_year;
   113   const int month = 1 + time_struct.tm_mon;
   114   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
   115                                    year,
   116                                    month,
   117                                    time_struct.tm_mday,
   118                                    time_struct.tm_hour,
   119                                    time_struct.tm_min,
   120                                    time_struct.tm_sec,
   121                                    milliseconds_after_second,
   122                                    sign_local_to_UTC,
   123                                    zone_hours,
   124                                    zone_min);
   125   if (printed == 0) {
   126     assert(false, "Failed jio_printf");
   127     return NULL;
   128   }
   129   return buffer;
   130 }
   132 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
   133 #ifdef ASSERT
   134   if (!(!thread->is_Java_thread() ||
   135          Thread::current() == thread  ||
   136          Threads_lock->owned_by_self()
   137          || thread->is_Compiler_thread()
   138         )) {
   139     assert(false, "possibility of dangling Thread pointer");
   140   }
   141 #endif
   143   if (p >= MinPriority && p <= MaxPriority) {
   144     int priority = java_to_os_priority[p];
   145     return set_native_priority(thread, priority);
   146   } else {
   147     assert(false, "Should not happen");
   148     return OS_ERR;
   149   }
   150 }
   153 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
   154   int p;
   155   int os_prio;
   156   OSReturn ret = get_native_priority(thread, &os_prio);
   157   if (ret != OS_OK) return ret;
   159   for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
   160   priority = (ThreadPriority)p;
   161   return OS_OK;
   162 }
   165 // --------------------- sun.misc.Signal (optional) ---------------------
   168 // SIGBREAK is sent by the keyboard to query the VM state
   169 #ifndef SIGBREAK
   170 #define SIGBREAK SIGQUIT
   171 #endif
   173 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
   176 static void signal_thread_entry(JavaThread* thread, TRAPS) {
   177   os::set_priority(thread, NearMaxPriority);
   178   while (true) {
   179     int sig;
   180     {
   181       // FIXME : Currently we have not decieded what should be the status
   182       //         for this java thread blocked here. Once we decide about
   183       //         that we should fix this.
   184       sig = os::signal_wait();
   185     }
   186     if (sig == os::sigexitnum_pd()) {
   187        // Terminate the signal thread
   188        return;
   189     }
   191     switch (sig) {
   192       case SIGBREAK: {
   193         // Check if the signal is a trigger to start the Attach Listener - in that
   194         // case don't print stack traces.
   195         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
   196           continue;
   197         }
   198         // Print stack traces
   199         // Any SIGBREAK operations added here should make sure to flush
   200         // the output stream (e.g. tty->flush()) after output.  See 4803766.
   201         // Each module also prints an extra carriage return after its output.
   202         VM_PrintThreads op;
   203         VMThread::execute(&op);
   204         VM_PrintJNI jni_op;
   205         VMThread::execute(&jni_op);
   206         VM_FindDeadlocks op1(tty);
   207         VMThread::execute(&op1);
   208         Universe::print_heap_at_SIGBREAK();
   209         if (PrintClassHistogram) {
   210           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */,
   211                                    true /* need_prologue */);
   212           VMThread::execute(&op1);
   213         }
   214         if (JvmtiExport::should_post_data_dump()) {
   215           JvmtiExport::post_data_dump();
   216         }
   217         break;
   218       }
   219       default: {
   220         // Dispatch the signal to java
   221         HandleMark hm(THREAD);
   222         klassOop k = SystemDictionary::resolve_or_null(vmSymbolHandles::sun_misc_Signal(), THREAD);
   223         KlassHandle klass (THREAD, k);
   224         if (klass.not_null()) {
   225           JavaValue result(T_VOID);
   226           JavaCallArguments args;
   227           args.push_int(sig);
   228           JavaCalls::call_static(
   229             &result,
   230             klass,
   231             vmSymbolHandles::dispatch_name(),
   232             vmSymbolHandles::int_void_signature(),
   233             &args,
   234             THREAD
   235           );
   236         }
   237         if (HAS_PENDING_EXCEPTION) {
   238           // tty is initialized early so we don't expect it to be null, but
   239           // if it is we can't risk doing an initialization that might
   240           // trigger additional out-of-memory conditions
   241           if (tty != NULL) {
   242             char klass_name[256];
   243             char tmp_sig_name[16];
   244             const char* sig_name = "UNKNOWN";
   245             instanceKlass::cast(PENDING_EXCEPTION->klass())->
   246               name()->as_klass_external_name(klass_name, 256);
   247             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
   248               sig_name = tmp_sig_name;
   249             warning("Exception %s occurred dispatching signal %s to handler"
   250                     "- the VM may need to be forcibly terminated",
   251                     klass_name, sig_name );
   252           }
   253           CLEAR_PENDING_EXCEPTION;
   254         }
   255       }
   256     }
   257   }
   258 }
   261 void os::signal_init() {
   262   if (!ReduceSignalUsage) {
   263     // Setup JavaThread for processing signals
   264     EXCEPTION_MARK;
   265     klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
   266     instanceKlassHandle klass (THREAD, k);
   267     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   269     const char thread_name[] = "Signal Dispatcher";
   270     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
   272     // Initialize thread_oop to put it into the system threadGroup
   273     Handle thread_group (THREAD, Universe::system_thread_group());
   274     JavaValue result(T_VOID);
   275     JavaCalls::call_special(&result, thread_oop,
   276                            klass,
   277                            vmSymbolHandles::object_initializer_name(),
   278                            vmSymbolHandles::threadgroup_string_void_signature(),
   279                            thread_group,
   280                            string,
   281                            CHECK);
   283     KlassHandle group(THREAD, SystemDictionary::threadGroup_klass());
   284     JavaCalls::call_special(&result,
   285                             thread_group,
   286                             group,
   287                             vmSymbolHandles::add_method_name(),
   288                             vmSymbolHandles::thread_void_signature(),
   289                             thread_oop,         // ARG 1
   290                             CHECK);
   292     os::signal_init_pd();
   294     { MutexLocker mu(Threads_lock);
   295       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
   297       // At this point it may be possible that no osthread was created for the
   298       // JavaThread due to lack of memory. We would have to throw an exception
   299       // in that case. However, since this must work and we do not allow
   300       // exceptions anyway, check and abort if this fails.
   301       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
   302         vm_exit_during_initialization("java.lang.OutOfMemoryError",
   303                                       "unable to create new native thread");
   304       }
   306       java_lang_Thread::set_thread(thread_oop(), signal_thread);
   307       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
   308       java_lang_Thread::set_daemon(thread_oop());
   310       signal_thread->set_threadObj(thread_oop());
   311       Threads::add(signal_thread);
   312       Thread::start(signal_thread);
   313     }
   314     // Handle ^BREAK
   315     os::signal(SIGBREAK, os::user_handler());
   316   }
   317 }
   320 void os::terminate_signal_thread() {
   321   if (!ReduceSignalUsage)
   322     signal_notify(sigexitnum_pd());
   323 }
   326 // --------------------- loading libraries ---------------------
   328 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
   329 extern struct JavaVM_ main_vm;
   331 static void* _native_java_library = NULL;
   333 void* os::native_java_library() {
   334   if (_native_java_library == NULL) {
   335     char buffer[JVM_MAXPATHLEN];
   336     char ebuf[1024];
   338     // Try to load verify dll first. In 1.3 java dll depends on it and is not
   339     // always able to find it when the loading executable is outside the JDK.
   340     // In order to keep working with 1.2 we ignore any loading errors.
   341     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
   342     dll_load(buffer, ebuf, sizeof(ebuf));
   344     // Load java dll
   345     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
   346     _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
   347     if (_native_java_library == NULL) {
   348       vm_exit_during_initialization("Unable to load native library", ebuf);
   349     }
   350   }
   351   static jboolean onLoaded = JNI_FALSE;
   352   if (onLoaded) {
   353     // We may have to wait to fire OnLoad until TLS is initialized.
   354     if (ThreadLocalStorage::is_initialized()) {
   355       // The JNI_OnLoad handling is normally done by method load in
   356       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
   357       // explicitly so we have to check for JNI_OnLoad as well
   358       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
   359       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
   360           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
   361       if (JNI_OnLoad != NULL) {
   362         JavaThread* thread = JavaThread::current();
   363         ThreadToNativeFromVM ttn(thread);
   364         HandleMark hm(thread);
   365         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
   366         onLoaded = JNI_TRUE;
   367         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
   368           vm_exit_during_initialization("Unsupported JNI version");
   369         }
   370       }
   371     }
   372   }
   373   return _native_java_library;
   374 }
   376 // --------------------- heap allocation utilities ---------------------
   378 char *os::strdup(const char *str) {
   379   size_t size = strlen(str);
   380   char *dup_str = (char *)malloc(size + 1);
   381   if (dup_str == NULL) return NULL;
   382   strcpy(dup_str, str);
   383   return dup_str;
   384 }
   388 #ifdef ASSERT
   389 #define space_before             (MallocCushion + sizeof(double))
   390 #define space_after              MallocCushion
   391 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
   392 #define size_addr_from_obj(p)    ((size_t*)p - 1)
   393 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
   394 // NB: cannot be debug variable, because these aren't set from the command line until
   395 // *after* the first few allocs already happened
   396 #define MallocCushion            16
   397 #else
   398 #define space_before             0
   399 #define space_after              0
   400 #define size_addr_from_base(p)   should not use w/o ASSERT
   401 #define size_addr_from_obj(p)    should not use w/o ASSERT
   402 #define MallocCushion            0
   403 #endif
   404 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
   406 #ifdef ASSERT
   407 inline size_t get_size(void* obj) {
   408   size_t size = *size_addr_from_obj(obj);
   409   if (size < 0 )
   410     fatal2("free: size field of object #%p was overwritten (%lu)", obj, size);
   411   return size;
   412 }
   414 u_char* find_cushion_backwards(u_char* start) {
   415   u_char* p = start;
   416   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
   417          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
   418   // ok, we have four consecutive marker bytes; find start
   419   u_char* q = p - 4;
   420   while (*q == badResourceValue) q--;
   421   return q + 1;
   422 }
   424 u_char* find_cushion_forwards(u_char* start) {
   425   u_char* p = start;
   426   while (p[0] != badResourceValue || p[1] != badResourceValue ||
   427          p[2] != badResourceValue || p[3] != badResourceValue) p++;
   428   // ok, we have four consecutive marker bytes; find end of cushion
   429   u_char* q = p + 4;
   430   while (*q == badResourceValue) q++;
   431   return q - MallocCushion;
   432 }
   434 void print_neighbor_blocks(void* ptr) {
   435   // find block allocated before ptr (not entirely crash-proof)
   436   if (MallocCushion < 4) {
   437     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
   438     return;
   439   }
   440   u_char* start_of_this_block = (u_char*)ptr - space_before;
   441   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
   442   // look for cushion in front of prev. block
   443   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
   444   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
   445   u_char* obj = start_of_prev_block + space_before;
   446   if (size <= 0 ) {
   447     // start is bad; mayhave been confused by OS data inbetween objects
   448     // search one more backwards
   449     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
   450     size = *size_addr_from_base(start_of_prev_block);
   451     obj = start_of_prev_block + space_before;
   452   }
   454   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
   455     tty->print_cr("### previous object: %p (%ld bytes)", obj, size);
   456   } else {
   457     tty->print_cr("### previous object (not sure if correct): %p (%ld bytes)", obj, size);
   458   }
   460   // now find successor block
   461   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
   462   start_of_next_block = find_cushion_forwards(start_of_next_block);
   463   u_char* next_obj = start_of_next_block + space_before;
   464   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
   465   if (start_of_next_block[0] == badResourceValue &&
   466       start_of_next_block[1] == badResourceValue &&
   467       start_of_next_block[2] == badResourceValue &&
   468       start_of_next_block[3] == badResourceValue) {
   469     tty->print_cr("### next object: %p (%ld bytes)", next_obj, next_size);
   470   } else {
   471     tty->print_cr("### next object (not sure if correct): %p (%ld bytes)", next_obj, next_size);
   472   }
   473 }
   476 void report_heap_error(void* memblock, void* bad, const char* where) {
   477   tty->print_cr("## nof_mallocs = %d, nof_frees = %d", os::num_mallocs, os::num_frees);
   478   tty->print_cr("## memory stomp: byte at %p %s object %p", bad, where, memblock);
   479   print_neighbor_blocks(memblock);
   480   fatal("memory stomping error");
   481 }
   483 void verify_block(void* memblock) {
   484   size_t size = get_size(memblock);
   485   if (MallocCushion) {
   486     u_char* ptr = (u_char*)memblock - space_before;
   487     for (int i = 0; i < MallocCushion; i++) {
   488       if (ptr[i] != badResourceValue) {
   489         report_heap_error(memblock, ptr+i, "in front of");
   490       }
   491     }
   492     u_char* end = (u_char*)memblock + size + space_after;
   493     for (int j = -MallocCushion; j < 0; j++) {
   494       if (end[j] != badResourceValue) {
   495         report_heap_error(memblock, end+j, "after");
   496       }
   497     }
   498   }
   499 }
   500 #endif
   502 void* os::malloc(size_t size) {
   503   NOT_PRODUCT(num_mallocs++);
   504   NOT_PRODUCT(alloc_bytes += size);
   506   if (size == 0) {
   507     // return a valid pointer if size is zero
   508     // if NULL is returned the calling functions assume out of memory.
   509     size = 1;
   510   }
   512   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   513   u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
   514 #ifdef ASSERT
   515   if (ptr == NULL) return NULL;
   516   if (MallocCushion) {
   517     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
   518     u_char* end = ptr + space_before + size;
   519     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
   520     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
   521   }
   522   // put size just before data
   523   *size_addr_from_base(ptr) = size;
   524 #endif
   525   u_char* memblock = ptr + space_before;
   526   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   527     tty->print_cr("os::malloc caught, %lu bytes --> %p", size, memblock);
   528     breakpoint();
   529   }
   530   debug_only(if (paranoid) verify_block(memblock));
   531   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc %lu bytes --> %p", size, memblock);
   532   return memblock;
   533 }
   536 void* os::realloc(void *memblock, size_t size) {
   537   NOT_PRODUCT(num_mallocs++);
   538   NOT_PRODUCT(alloc_bytes += size);
   539 #ifndef ASSERT
   540   return ::realloc(memblock, size);
   541 #else
   542   if (memblock == NULL) {
   543     return os::malloc(size);
   544   }
   545   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   546     tty->print_cr("os::realloc caught %p", memblock);
   547     breakpoint();
   548   }
   549   verify_block(memblock);
   550   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   551   if (size == 0) return NULL;
   552   // always move the block
   553   void* ptr = malloc(size);
   554   if (PrintMalloc) tty->print_cr("os::remalloc %lu bytes, %p --> %p", size, memblock, ptr);
   555   // Copy to new memory if malloc didn't fail
   556   if ( ptr != NULL ) {
   557     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
   558     if (paranoid) verify_block(ptr);
   559     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   560       tty->print_cr("os::realloc caught, %lu bytes --> %p", size, ptr);
   561       breakpoint();
   562     }
   563     free(memblock);
   564   }
   565   return ptr;
   566 #endif
   567 }
   570 void  os::free(void *memblock) {
   571   NOT_PRODUCT(num_frees++);
   572 #ifdef ASSERT
   573   if (memblock == NULL) return;
   574   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   575     if (tty != NULL) tty->print_cr("os::free caught %p", memblock);
   576     breakpoint();
   577   }
   578   verify_block(memblock);
   579   if (PrintMalloc && tty != NULL)
   580     // tty->print_cr("os::free %p", memblock);
   581     fprintf(stderr, "os::free %p\n", memblock);
   582   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   583   // Added by detlefs.
   584   if (MallocCushion) {
   585     u_char* ptr = (u_char*)memblock - space_before;
   586     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
   587       guarantee(*p == badResourceValue,
   588                 "Thing freed should be malloc result.");
   589       *p = (u_char)freeBlockPad;
   590     }
   591     size_t size = get_size(memblock);
   592     u_char* end = ptr + space_before + size;
   593     for (u_char* q = end; q < end + MallocCushion; q++) {
   594       guarantee(*q == badResourceValue,
   595                 "Thing freed should be malloc result.");
   596       *q = (u_char)freeBlockPad;
   597     }
   598   }
   599 #endif
   600   ::free((char*)memblock - space_before);
   601 }
   603 void os::init_random(long initval) {
   604   _rand_seed = initval;
   605 }
   608 long os::random() {
   609   /* standard, well-known linear congruential random generator with
   610    * next_rand = (16807*seed) mod (2**31-1)
   611    * see
   612    * (1) "Random Number Generators: Good Ones Are Hard to Find",
   613    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
   614    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
   615    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
   616   */
   617   const long a = 16807;
   618   const unsigned long m = 2147483647;
   619   const long q = m / a;        assert(q == 127773, "weird math");
   620   const long r = m % a;        assert(r == 2836, "weird math");
   622   // compute az=2^31p+q
   623   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
   624   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
   625   lo += (hi & 0x7FFF) << 16;
   627   // if q overflowed, ignore the overflow and increment q
   628   if (lo > m) {
   629     lo &= m;
   630     ++lo;
   631   }
   632   lo += hi >> 15;
   634   // if (p+q) overflowed, ignore the overflow and increment (p+q)
   635   if (lo > m) {
   636     lo &= m;
   637     ++lo;
   638   }
   639   return (_rand_seed = lo);
   640 }
   642 // The INITIALIZED state is distinguished from the SUSPENDED state because the
   643 // conditions in which a thread is first started are different from those in which
   644 // a suspension is resumed.  These differences make it hard for us to apply the
   645 // tougher checks when starting threads that we want to do when resuming them.
   646 // However, when start_thread is called as a result of Thread.start, on a Java
   647 // thread, the operation is synchronized on the Java Thread object.  So there
   648 // cannot be a race to start the thread and hence for the thread to exit while
   649 // we are working on it.  Non-Java threads that start Java threads either have
   650 // to do so in a context in which races are impossible, or should do appropriate
   651 // locking.
   653 void os::start_thread(Thread* thread) {
   654   // guard suspend/resume
   655   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
   656   OSThread* osthread = thread->osthread();
   657   osthread->set_state(RUNNABLE);
   658   pd_start_thread(thread);
   659 }
   661 //---------------------------------------------------------------------------
   662 // Helper functions for fatal error handler
   664 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
   665   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
   667   int cols = 0;
   668   int cols_per_line = 0;
   669   switch (unitsize) {
   670     case 1: cols_per_line = 16; break;
   671     case 2: cols_per_line = 8;  break;
   672     case 4: cols_per_line = 4;  break;
   673     case 8: cols_per_line = 2;  break;
   674     default: return;
   675   }
   677   address p = start;
   678   st->print(PTR_FORMAT ":   ", start);
   679   while (p < end) {
   680     switch (unitsize) {
   681       case 1: st->print("%02x", *(u1*)p); break;
   682       case 2: st->print("%04x", *(u2*)p); break;
   683       case 4: st->print("%08x", *(u4*)p); break;
   684       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
   685     }
   686     p += unitsize;
   687     cols++;
   688     if (cols >= cols_per_line && p < end) {
   689        cols = 0;
   690        st->cr();
   691        st->print(PTR_FORMAT ":   ", p);
   692     } else {
   693        st->print(" ");
   694     }
   695   }
   696   st->cr();
   697 }
   699 void os::print_environment_variables(outputStream* st, const char** env_list,
   700                                      char* buffer, int len) {
   701   if (env_list) {
   702     st->print_cr("Environment Variables:");
   704     for (int i = 0; env_list[i] != NULL; i++) {
   705       if (getenv(env_list[i], buffer, len)) {
   706         st->print(env_list[i]);
   707         st->print("=");
   708         st->print_cr(buffer);
   709       }
   710     }
   711   }
   712 }
   714 void os::print_cpu_info(outputStream* st) {
   715   // cpu
   716   st->print("CPU:");
   717   st->print("total %d", os::processor_count());
   718   // It's not safe to query number of active processors after crash
   719   // st->print("(active %d)", os::active_processor_count());
   720   st->print(" %s", VM_Version::cpu_features());
   721   st->cr();
   722 }
   724 void os::print_date_and_time(outputStream *st) {
   725   time_t tloc;
   726   (void)time(&tloc);
   727   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
   729   double t = os::elapsedTime();
   730   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
   731   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
   732   //       before printf. We lost some precision, but who cares?
   733   st->print_cr("elapsed time: %d seconds", (int)t);
   734 }
   737 // Looks like all platforms except IA64 can use the same function to check
   738 // if C stack is walkable beyond current frame. The check for fp() is not
   739 // necessary on Sparc, but it's harmless.
   740 bool os::is_first_C_frame(frame* fr) {
   741 #ifdef IA64
   742   // In order to walk native frames on Itanium, we need to access the unwind
   743   // table, which is inside ELF. We don't want to parse ELF after fatal error,
   744   // so return true for IA64. If we need to support C stack walking on IA64,
   745   // this function needs to be moved to CPU specific files, as fp() on IA64
   746   // is register stack, which grows towards higher memory address.
   747   return true;
   748 #endif
   750   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
   751   // Check usp first, because if that's bad the other accessors may fault
   752   // on some architectures.  Ditto ufp second, etc.
   753   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
   754   // sp on amd can be 32 bit aligned.
   755   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
   757   uintptr_t usp    = (uintptr_t)fr->sp();
   758   if ((usp & sp_align_mask) != 0) return true;
   760   uintptr_t ufp    = (uintptr_t)fr->fp();
   761   if ((ufp & fp_align_mask) != 0) return true;
   763   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
   764   if ((old_sp & sp_align_mask) != 0) return true;
   765   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
   767   uintptr_t old_fp = (uintptr_t)fr->link();
   768   if ((old_fp & fp_align_mask) != 0) return true;
   769   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
   771   // stack grows downwards; if old_fp is below current fp or if the stack
   772   // frame is too large, either the stack is corrupted or fp is not saved
   773   // on stack (i.e. on x86, ebp may be used as general register). The stack
   774   // is not walkable beyond current frame.
   775   if (old_fp < ufp) return true;
   776   if (old_fp - ufp > 64 * K) return true;
   778   return false;
   779 }
   781 #ifdef ASSERT
   782 extern "C" void test_random() {
   783   const double m = 2147483647;
   784   double mean = 0.0, variance = 0.0, t;
   785   long reps = 10000;
   786   unsigned long seed = 1;
   788   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
   789   os::init_random(seed);
   790   long num;
   791   for (int k = 0; k < reps; k++) {
   792     num = os::random();
   793     double u = (double)num / m;
   794     assert(u >= 0.0 && u <= 1.0, "bad random number!");
   796     // calculate mean and variance of the random sequence
   797     mean += u;
   798     variance += (u*u);
   799   }
   800   mean /= reps;
   801   variance /= (reps - 1);
   803   assert(num == 1043618065, "bad seed");
   804   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
   805   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
   806   const double eps = 0.0001;
   807   t = fabsd(mean - 0.5018);
   808   assert(t < eps, "bad mean");
   809   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
   810   assert(t < eps, "bad variance");
   811 }
   812 #endif
   815 // Set up the boot classpath.
   817 char* os::format_boot_path(const char* format_string,
   818                            const char* home,
   819                            int home_len,
   820                            char fileSep,
   821                            char pathSep) {
   822     assert((fileSep == '/' && pathSep == ':') ||
   823            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
   825     // Scan the format string to determine the length of the actual
   826     // boot classpath, and handle platform dependencies as well.
   827     int formatted_path_len = 0;
   828     const char* p;
   829     for (p = format_string; *p != 0; ++p) {
   830         if (*p == '%') formatted_path_len += home_len - 1;
   831         ++formatted_path_len;
   832     }
   834     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1);
   835     if (formatted_path == NULL) {
   836         return NULL;
   837     }
   839     // Create boot classpath from format, substituting separator chars and
   840     // java home directory.
   841     char* q = formatted_path;
   842     for (p = format_string; *p != 0; ++p) {
   843         switch (*p) {
   844         case '%':
   845             strcpy(q, home);
   846             q += home_len;
   847             break;
   848         case '/':
   849             *q++ = fileSep;
   850             break;
   851         case ':':
   852             *q++ = pathSep;
   853             break;
   854         default:
   855             *q++ = *p;
   856         }
   857     }
   858     *q = '\0';
   860     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
   861     return formatted_path;
   862 }
   865 bool os::set_boot_path(char fileSep, char pathSep) {
   867     const char* home = Arguments::get_java_home();
   868     int home_len = (int)strlen(home);
   870     static const char* meta_index_dir_format = "%/lib/";
   871     static const char* meta_index_format = "%/lib/meta-index";
   872     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
   873     if (meta_index == NULL) return false;
   874     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
   875     if (meta_index_dir == NULL) return false;
   876     Arguments::set_meta_index_path(meta_index, meta_index_dir);
   878     // Any modification to the JAR-file list, for the boot classpath must be
   879     // aligned with install/install/make/common/Pack.gmk. Note: boot class
   880     // path class JARs, are stripped for StackMapTable to reduce download size.
   881     static const char classpath_format[] =
   882         "%/lib/resources.jar:"
   883         "%/lib/rt.jar:"
   884         "%/lib/sunrsasign.jar:"
   885         "%/lib/jsse.jar:"
   886         "%/lib/jce.jar:"
   887         "%/lib/charsets.jar:"
   888         "%/classes";
   889     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
   890     if (sysclasspath == NULL) return false;
   891     Arguments::set_sysclasspath(sysclasspath);
   893     return true;
   894 }
   896 void os::set_memory_serialize_page(address page) {
   897   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
   898   _mem_serialize_page = (volatile int32_t *)page;
   899   // We initialize the serialization page shift count here
   900   // We assume a cache line size of 64 bytes
   901   assert(SerializePageShiftCount == count,
   902          "thread size changed, fix SerializePageShiftCount constant");
   903   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
   904 }
   906 static volatile intptr_t SerializePageLock = 0;
   908 // This method is called from signal handler when SIGSEGV occurs while the current
   909 // thread tries to store to the "read-only" memory serialize page during state
   910 // transition.
   911 void os::block_on_serialize_page_trap() {
   912   if (TraceSafepoint) {
   913     tty->print_cr("Block until the serialize page permission restored");
   914   }
   915   // When VMThread is holding the SerializePageLock during modifying the
   916   // access permission of the memory serialize page, the following call
   917   // will block until the permission of that page is restored to rw.
   918   // Generally, it is unsafe to manipulate locks in signal handlers, but in
   919   // this case, it's OK as the signal is synchronous and we know precisely when
   920   // it can occur.
   921   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
   922   Thread::muxRelease(&SerializePageLock);
   923 }
   925 // Serialize all thread state variables
   926 void os::serialize_thread_states() {
   927   // On some platforms such as Solaris & Linux, the time duration of the page
   928   // permission restoration is observed to be much longer than expected  due to
   929   // scheduler starvation problem etc. To avoid the long synchronization
   930   // time and expensive page trap spinning, 'SerializePageLock' is used to block
   931   // the mutator thread if such case is encountered. See bug 6546278 for details.
   932   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
   933   os::protect_memory((char *)os::get_memory_serialize_page(),
   934                      os::vm_page_size(), MEM_PROT_READ);
   935   os::protect_memory((char *)os::get_memory_serialize_page(),
   936                      os::vm_page_size(), MEM_PROT_RW);
   937   Thread::muxRelease(&SerializePageLock);
   938 }
   940 // Returns true if the current stack pointer is above the stack shadow
   941 // pages, false otherwise.
   943 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
   944   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
   945   address sp = current_stack_pointer();
   946   // Check if we have StackShadowPages above the yellow zone.  This parameter
   947   // is dependent on the depth of the maximum VM call stack possible from
   948   // the handler for stack overflow.  'instanceof' in the stack overflow
   949   // handler or a println uses at least 8k stack of VM and native code
   950   // respectively.
   951   const int framesize_in_bytes =
   952     Interpreter::size_top_interpreter_activation(method()) * wordSize;
   953   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
   954                       * vm_page_size()) + framesize_in_bytes;
   955   // The very lower end of the stack
   956   address stack_limit = thread->stack_base() - thread->stack_size();
   957   return (sp > (stack_limit + reserved_area));
   958 }
   960 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
   961                                 uint min_pages)
   962 {
   963   assert(min_pages > 0, "sanity");
   964   if (UseLargePages) {
   965     const size_t max_page_size = region_max_size / min_pages;
   967     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
   968       const size_t sz = _page_sizes[i];
   969       const size_t mask = sz - 1;
   970       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
   971         // The largest page size with no fragmentation.
   972         return sz;
   973       }
   975       if (sz <= max_page_size) {
   976         // The largest page size that satisfies the min_pages requirement.
   977         return sz;
   978       }
   979     }
   980   }
   982   return vm_page_size();
   983 }
   985 #ifndef PRODUCT
   986 void os::trace_page_sizes(const char* str, const size_t region_min_size,
   987                           const size_t region_max_size, const size_t page_size,
   988                           const char* base, const size_t size)
   989 {
   990   if (TracePageSizes) {
   991     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
   992                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
   993                   " size=" SIZE_FORMAT,
   994                   str, region_min_size, region_max_size,
   995                   page_size, base, size);
   996   }
   997 }
   998 #endif  // #ifndef PRODUCT
  1000 // This is the working definition of a server class machine:
  1001 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
  1002 // because the graphics memory (?) sometimes masks physical memory.
  1003 // If you want to change the definition of a server class machine
  1004 // on some OS or platform, e.g., >=4GB on Windohs platforms,
  1005 // then you'll have to parameterize this method based on that state,
  1006 // as was done for logical processors here, or replicate and
  1007 // specialize this method for each platform.  (Or fix os to have
  1008 // some inheritance structure and use subclassing.  Sigh.)
  1009 // If you want some platform to always or never behave as a server
  1010 // class machine, change the setting of AlwaysActAsServerClassMachine
  1011 // and NeverActAsServerClassMachine in globals*.hpp.
  1012 bool os::is_server_class_machine() {
  1013   // First check for the early returns
  1014   if (NeverActAsServerClassMachine) {
  1015     return false;
  1017   if (AlwaysActAsServerClassMachine) {
  1018     return true;
  1020   // Then actually look at the machine
  1021   bool         result            = false;
  1022   const unsigned int    server_processors = 2;
  1023   const julong server_memory     = 2UL * G;
  1024   // We seem not to get our full complement of memory.
  1025   //     We allow some part (1/8?) of the memory to be "missing",
  1026   //     based on the sizes of DIMMs, and maybe graphics cards.
  1027   const julong missing_memory   = 256UL * M;
  1029   /* Is this a server class machine? */
  1030   if ((os::active_processor_count() >= (int)server_processors) &&
  1031       (os::physical_memory() >= (server_memory - missing_memory))) {
  1032     const unsigned int logical_processors =
  1033       VM_Version::logical_processors_per_package();
  1034     if (logical_processors > 1) {
  1035       const unsigned int physical_packages =
  1036         os::active_processor_count() / logical_processors;
  1037       if (physical_packages > server_processors) {
  1038         result = true;
  1040     } else {
  1041       result = true;
  1044   return result;

mercurial