src/share/vm/oops/methodDataOop.cpp

Thu, 12 Mar 2009 18:16:36 -0700

author
trims
date
Thu, 12 Mar 2009 18:16:36 -0700
changeset 1063
7bb995fbd3c0
parent 631
d1605aabd0a1
child 1161
be93aad57795
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2000-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_methodDataOop.cpp.incl"
    28 // ==================================================================
    29 // DataLayout
    30 //
    31 // Overlay for generic profiling data.
    33 // Some types of data layouts need a length field.
    34 bool DataLayout::needs_array_len(u1 tag) {
    35   return (tag == multi_branch_data_tag) || (tag == arg_info_data_tag);
    36 }
    38 // Perform generic initialization of the data.  More specific
    39 // initialization occurs in overrides of ProfileData::post_initialize.
    40 void DataLayout::initialize(u1 tag, u2 bci, int cell_count) {
    41   _header._bits = (intptr_t)0;
    42   _header._struct._tag = tag;
    43   _header._struct._bci = bci;
    44   for (int i = 0; i < cell_count; i++) {
    45     set_cell_at(i, (intptr_t)0);
    46   }
    47   if (needs_array_len(tag)) {
    48     set_cell_at(ArrayData::array_len_off_set, cell_count - 1); // -1 for header.
    49   }
    50 }
    52 // ==================================================================
    53 // ProfileData
    54 //
    55 // A ProfileData object is created to refer to a section of profiling
    56 // data in a structured way.
    58 // Constructor for invalid ProfileData.
    59 ProfileData::ProfileData() {
    60   _data = NULL;
    61 }
    63 #ifndef PRODUCT
    64 void ProfileData::print_shared(outputStream* st, const char* name) {
    65   st->print("bci: %d", bci());
    66   st->fill_to(tab_width_one);
    67   st->print("%s", name);
    68   tab(st);
    69   int trap = trap_state();
    70   if (trap != 0) {
    71     char buf[100];
    72     st->print("trap(%s) ", Deoptimization::format_trap_state(buf, sizeof(buf), trap));
    73   }
    74   int flags = data()->flags();
    75   if (flags != 0)
    76     st->print("flags(%d) ", flags);
    77 }
    79 void ProfileData::tab(outputStream* st) {
    80   st->fill_to(tab_width_two);
    81 }
    82 #endif // !PRODUCT
    84 // ==================================================================
    85 // BitData
    86 //
    87 // A BitData corresponds to a one-bit flag.  This is used to indicate
    88 // whether a checkcast bytecode has seen a null value.
    91 #ifndef PRODUCT
    92 void BitData::print_data_on(outputStream* st) {
    93   print_shared(st, "BitData");
    94 }
    95 #endif // !PRODUCT
    97 // ==================================================================
    98 // CounterData
    99 //
   100 // A CounterData corresponds to a simple counter.
   102 #ifndef PRODUCT
   103 void CounterData::print_data_on(outputStream* st) {
   104   print_shared(st, "CounterData");
   105   st->print_cr("count(%u)", count());
   106 }
   107 #endif // !PRODUCT
   109 // ==================================================================
   110 // JumpData
   111 //
   112 // A JumpData is used to access profiling information for a direct
   113 // branch.  It is a counter, used for counting the number of branches,
   114 // plus a data displacement, used for realigning the data pointer to
   115 // the corresponding target bci.
   117 void JumpData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
   118   assert(stream->bci() == bci(), "wrong pos");
   119   int target;
   120   Bytecodes::Code c = stream->code();
   121   if (c == Bytecodes::_goto_w || c == Bytecodes::_jsr_w) {
   122     target = stream->dest_w();
   123   } else {
   124     target = stream->dest();
   125   }
   126   int my_di = mdo->dp_to_di(dp());
   127   int target_di = mdo->bci_to_di(target);
   128   int offset = target_di - my_di;
   129   set_displacement(offset);
   130 }
   132 #ifndef PRODUCT
   133 void JumpData::print_data_on(outputStream* st) {
   134   print_shared(st, "JumpData");
   135   st->print_cr("taken(%u) displacement(%d)", taken(), displacement());
   136 }
   137 #endif // !PRODUCT
   139 // ==================================================================
   140 // ReceiverTypeData
   141 //
   142 // A ReceiverTypeData is used to access profiling information about a
   143 // dynamic type check.  It consists of a counter which counts the total times
   144 // that the check is reached, and a series of (klassOop, count) pairs
   145 // which are used to store a type profile for the receiver of the check.
   147 void ReceiverTypeData::follow_contents() {
   148   for (uint row = 0; row < row_limit(); row++) {
   149     if (receiver(row) != NULL) {
   150       MarkSweep::mark_and_push(adr_receiver(row));
   151     }
   152   }
   153 }
   155 #ifndef SERIALGC
   156 void ReceiverTypeData::follow_contents(ParCompactionManager* cm) {
   157   for (uint row = 0; row < row_limit(); row++) {
   158     if (receiver(row) != NULL) {
   159       PSParallelCompact::mark_and_push(cm, adr_receiver(row));
   160     }
   161   }
   162 }
   163 #endif // SERIALGC
   165 void ReceiverTypeData::oop_iterate(OopClosure* blk) {
   166   for (uint row = 0; row < row_limit(); row++) {
   167     if (receiver(row) != NULL) {
   168       blk->do_oop(adr_receiver(row));
   169     }
   170   }
   171 }
   173 void ReceiverTypeData::oop_iterate_m(OopClosure* blk, MemRegion mr) {
   174   for (uint row = 0; row < row_limit(); row++) {
   175     if (receiver(row) != NULL) {
   176       oop* adr = adr_receiver(row);
   177       if (mr.contains(adr)) {
   178         blk->do_oop(adr);
   179       }
   180     }
   181   }
   182 }
   184 void ReceiverTypeData::adjust_pointers() {
   185   for (uint row = 0; row < row_limit(); row++) {
   186     if (receiver(row) != NULL) {
   187       MarkSweep::adjust_pointer(adr_receiver(row));
   188     }
   189   }
   190 }
   192 #ifndef SERIALGC
   193 void ReceiverTypeData::update_pointers() {
   194   for (uint row = 0; row < row_limit(); row++) {
   195     if (receiver_unchecked(row) != NULL) {
   196       PSParallelCompact::adjust_pointer(adr_receiver(row));
   197     }
   198   }
   199 }
   201 void ReceiverTypeData::update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {
   202   // The loop bounds could be computed based on beg_addr/end_addr and the
   203   // boundary test hoisted outside the loop (see klassVTable for an example);
   204   // however, row_limit() is small enough (2) to make that less efficient.
   205   for (uint row = 0; row < row_limit(); row++) {
   206     if (receiver_unchecked(row) != NULL) {
   207       PSParallelCompact::adjust_pointer(adr_receiver(row), beg_addr, end_addr);
   208     }
   209   }
   210 }
   211 #endif // SERIALGC
   213 #ifndef PRODUCT
   214 void ReceiverTypeData::print_receiver_data_on(outputStream* st) {
   215   uint row;
   216   int entries = 0;
   217   for (row = 0; row < row_limit(); row++) {
   218     if (receiver(row) != NULL)  entries++;
   219   }
   220   st->print_cr("count(%u) entries(%u)", count(), entries);
   221   for (row = 0; row < row_limit(); row++) {
   222     if (receiver(row) != NULL) {
   223       tab(st);
   224       receiver(row)->print_value_on(st);
   225       st->print_cr("(%u)", receiver_count(row));
   226     }
   227   }
   228 }
   229 void ReceiverTypeData::print_data_on(outputStream* st) {
   230   print_shared(st, "ReceiverTypeData");
   231   print_receiver_data_on(st);
   232 }
   233 void VirtualCallData::print_data_on(outputStream* st) {
   234   print_shared(st, "VirtualCallData");
   235   print_receiver_data_on(st);
   236 }
   237 #endif // !PRODUCT
   239 // ==================================================================
   240 // RetData
   241 //
   242 // A RetData is used to access profiling information for a ret bytecode.
   243 // It is composed of a count of the number of times that the ret has
   244 // been executed, followed by a series of triples of the form
   245 // (bci, count, di) which count the number of times that some bci was the
   246 // target of the ret and cache a corresponding displacement.
   248 void RetData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
   249   for (uint row = 0; row < row_limit(); row++) {
   250     set_bci_displacement(row, -1);
   251     set_bci(row, no_bci);
   252   }
   253   // release so other threads see a consistent state.  bci is used as
   254   // a valid flag for bci_displacement.
   255   OrderAccess::release();
   256 }
   258 // This routine needs to atomically update the RetData structure, so the
   259 // caller needs to hold the RetData_lock before it gets here.  Since taking
   260 // the lock can block (and allow GC) and since RetData is a ProfileData is a
   261 // wrapper around a derived oop, taking the lock in _this_ method will
   262 // basically cause the 'this' pointer's _data field to contain junk after the
   263 // lock.  We require the caller to take the lock before making the ProfileData
   264 // structure.  Currently the only caller is InterpreterRuntime::update_mdp_for_ret
   265 address RetData::fixup_ret(int return_bci, methodDataHandle h_mdo) {
   266   // First find the mdp which corresponds to the return bci.
   267   address mdp = h_mdo->bci_to_dp(return_bci);
   269   // Now check to see if any of the cache slots are open.
   270   for (uint row = 0; row < row_limit(); row++) {
   271     if (bci(row) == no_bci) {
   272       set_bci_displacement(row, mdp - dp());
   273       set_bci_count(row, DataLayout::counter_increment);
   274       // Barrier to ensure displacement is written before the bci; allows
   275       // the interpreter to read displacement without fear of race condition.
   276       release_set_bci(row, return_bci);
   277       break;
   278     }
   279   }
   280   return mdp;
   281 }
   284 #ifndef PRODUCT
   285 void RetData::print_data_on(outputStream* st) {
   286   print_shared(st, "RetData");
   287   uint row;
   288   int entries = 0;
   289   for (row = 0; row < row_limit(); row++) {
   290     if (bci(row) != no_bci)  entries++;
   291   }
   292   st->print_cr("count(%u) entries(%u)", count(), entries);
   293   for (row = 0; row < row_limit(); row++) {
   294     if (bci(row) != no_bci) {
   295       tab(st);
   296       st->print_cr("bci(%d: count(%u) displacement(%d))",
   297                    bci(row), bci_count(row), bci_displacement(row));
   298     }
   299   }
   300 }
   301 #endif // !PRODUCT
   303 // ==================================================================
   304 // BranchData
   305 //
   306 // A BranchData is used to access profiling data for a two-way branch.
   307 // It consists of taken and not_taken counts as well as a data displacement
   308 // for the taken case.
   310 void BranchData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
   311   assert(stream->bci() == bci(), "wrong pos");
   312   int target = stream->dest();
   313   int my_di = mdo->dp_to_di(dp());
   314   int target_di = mdo->bci_to_di(target);
   315   int offset = target_di - my_di;
   316   set_displacement(offset);
   317 }
   319 #ifndef PRODUCT
   320 void BranchData::print_data_on(outputStream* st) {
   321   print_shared(st, "BranchData");
   322   st->print_cr("taken(%u) displacement(%d)",
   323                taken(), displacement());
   324   tab(st);
   325   st->print_cr("not taken(%u)", not_taken());
   326 }
   327 #endif
   329 // ==================================================================
   330 // MultiBranchData
   331 //
   332 // A MultiBranchData is used to access profiling information for
   333 // a multi-way branch (*switch bytecodes).  It consists of a series
   334 // of (count, displacement) pairs, which count the number of times each
   335 // case was taken and specify the data displacment for each branch target.
   337 int MultiBranchData::compute_cell_count(BytecodeStream* stream) {
   338   int cell_count = 0;
   339   if (stream->code() == Bytecodes::_tableswitch) {
   340     Bytecode_tableswitch* sw = Bytecode_tableswitch_at(stream->bcp());
   341     cell_count = 1 + per_case_cell_count * (1 + sw->length()); // 1 for default
   342   } else {
   343     Bytecode_lookupswitch* sw = Bytecode_lookupswitch_at(stream->bcp());
   344     cell_count = 1 + per_case_cell_count * (sw->number_of_pairs() + 1); // 1 for default
   345   }
   346   return cell_count;
   347 }
   349 void MultiBranchData::post_initialize(BytecodeStream* stream,
   350                                       methodDataOop mdo) {
   351   assert(stream->bci() == bci(), "wrong pos");
   352   int target;
   353   int my_di;
   354   int target_di;
   355   int offset;
   356   if (stream->code() == Bytecodes::_tableswitch) {
   357     Bytecode_tableswitch* sw = Bytecode_tableswitch_at(stream->bcp());
   358     int len = sw->length();
   359     assert(array_len() == per_case_cell_count * (len + 1), "wrong len");
   360     for (int count = 0; count < len; count++) {
   361       target = sw->dest_offset_at(count) + bci();
   362       my_di = mdo->dp_to_di(dp());
   363       target_di = mdo->bci_to_di(target);
   364       offset = target_di - my_di;
   365       set_displacement_at(count, offset);
   366     }
   367     target = sw->default_offset() + bci();
   368     my_di = mdo->dp_to_di(dp());
   369     target_di = mdo->bci_to_di(target);
   370     offset = target_di - my_di;
   371     set_default_displacement(offset);
   373   } else {
   374     Bytecode_lookupswitch* sw = Bytecode_lookupswitch_at(stream->bcp());
   375     int npairs = sw->number_of_pairs();
   376     assert(array_len() == per_case_cell_count * (npairs + 1), "wrong len");
   377     for (int count = 0; count < npairs; count++) {
   378       LookupswitchPair *pair = sw->pair_at(count);
   379       target = pair->offset() + bci();
   380       my_di = mdo->dp_to_di(dp());
   381       target_di = mdo->bci_to_di(target);
   382       offset = target_di - my_di;
   383       set_displacement_at(count, offset);
   384     }
   385     target = sw->default_offset() + bci();
   386     my_di = mdo->dp_to_di(dp());
   387     target_di = mdo->bci_to_di(target);
   388     offset = target_di - my_di;
   389     set_default_displacement(offset);
   390   }
   391 }
   393 #ifndef PRODUCT
   394 void MultiBranchData::print_data_on(outputStream* st) {
   395   print_shared(st, "MultiBranchData");
   396   st->print_cr("default_count(%u) displacement(%d)",
   397                default_count(), default_displacement());
   398   int cases = number_of_cases();
   399   for (int i = 0; i < cases; i++) {
   400     tab(st);
   401     st->print_cr("count(%u) displacement(%d)",
   402                  count_at(i), displacement_at(i));
   403   }
   404 }
   405 #endif
   407 #ifndef PRODUCT
   408 void ArgInfoData::print_data_on(outputStream* st) {
   409   print_shared(st, "ArgInfoData");
   410   int nargs = number_of_args();
   411   for (int i = 0; i < nargs; i++) {
   412     st->print("  0x%x", arg_modified(i));
   413   }
   414   st->cr();
   415 }
   417 #endif
   418 // ==================================================================
   419 // methodDataOop
   420 //
   421 // A methodDataOop holds information which has been collected about
   422 // a method.
   424 int methodDataOopDesc::bytecode_cell_count(Bytecodes::Code code) {
   425   switch (code) {
   426   case Bytecodes::_checkcast:
   427   case Bytecodes::_instanceof:
   428   case Bytecodes::_aastore:
   429     if (TypeProfileCasts) {
   430       return ReceiverTypeData::static_cell_count();
   431     } else {
   432       return BitData::static_cell_count();
   433     }
   434   case Bytecodes::_invokespecial:
   435   case Bytecodes::_invokestatic:
   436     return CounterData::static_cell_count();
   437   case Bytecodes::_goto:
   438   case Bytecodes::_goto_w:
   439   case Bytecodes::_jsr:
   440   case Bytecodes::_jsr_w:
   441     return JumpData::static_cell_count();
   442   case Bytecodes::_invokevirtual:
   443   case Bytecodes::_invokeinterface:
   444     return VirtualCallData::static_cell_count();
   445   case Bytecodes::_ret:
   446     return RetData::static_cell_count();
   447   case Bytecodes::_ifeq:
   448   case Bytecodes::_ifne:
   449   case Bytecodes::_iflt:
   450   case Bytecodes::_ifge:
   451   case Bytecodes::_ifgt:
   452   case Bytecodes::_ifle:
   453   case Bytecodes::_if_icmpeq:
   454   case Bytecodes::_if_icmpne:
   455   case Bytecodes::_if_icmplt:
   456   case Bytecodes::_if_icmpge:
   457   case Bytecodes::_if_icmpgt:
   458   case Bytecodes::_if_icmple:
   459   case Bytecodes::_if_acmpeq:
   460   case Bytecodes::_if_acmpne:
   461   case Bytecodes::_ifnull:
   462   case Bytecodes::_ifnonnull:
   463     return BranchData::static_cell_count();
   464   case Bytecodes::_lookupswitch:
   465   case Bytecodes::_tableswitch:
   466     return variable_cell_count;
   467   }
   468   return no_profile_data;
   469 }
   471 // Compute the size of the profiling information corresponding to
   472 // the current bytecode.
   473 int methodDataOopDesc::compute_data_size(BytecodeStream* stream) {
   474   int cell_count = bytecode_cell_count(stream->code());
   475   if (cell_count == no_profile_data) {
   476     return 0;
   477   }
   478   if (cell_count == variable_cell_count) {
   479     cell_count = MultiBranchData::compute_cell_count(stream);
   480   }
   481   // Note:  cell_count might be zero, meaning that there is just
   482   //        a DataLayout header, with no extra cells.
   483   assert(cell_count >= 0, "sanity");
   484   return DataLayout::compute_size_in_bytes(cell_count);
   485 }
   487 int methodDataOopDesc::compute_extra_data_count(int data_size, int empty_bc_count) {
   488   if (ProfileTraps) {
   489     // Assume that up to 3% of BCIs with no MDP will need to allocate one.
   490     int extra_data_count = (uint)(empty_bc_count * 3) / 128 + 1;
   491     // If the method is large, let the extra BCIs grow numerous (to ~1%).
   492     int one_percent_of_data
   493       = (uint)data_size / (DataLayout::header_size_in_bytes()*128);
   494     if (extra_data_count < one_percent_of_data)
   495       extra_data_count = one_percent_of_data;
   496     if (extra_data_count > empty_bc_count)
   497       extra_data_count = empty_bc_count;  // no need for more
   498     return extra_data_count;
   499   } else {
   500     return 0;
   501   }
   502 }
   504 // Compute the size of the methodDataOop necessary to store
   505 // profiling information about a given method.  Size is in bytes.
   506 int methodDataOopDesc::compute_allocation_size_in_bytes(methodHandle method) {
   507   int data_size = 0;
   508   BytecodeStream stream(method);
   509   Bytecodes::Code c;
   510   int empty_bc_count = 0;  // number of bytecodes lacking data
   511   while ((c = stream.next()) >= 0) {
   512     int size_in_bytes = compute_data_size(&stream);
   513     data_size += size_in_bytes;
   514     if (size_in_bytes == 0)  empty_bc_count += 1;
   515   }
   516   int object_size = in_bytes(data_offset()) + data_size;
   518   // Add some extra DataLayout cells (at least one) to track stray traps.
   519   int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
   520   object_size += extra_data_count * DataLayout::compute_size_in_bytes(0);
   522   // Add a cell to record information about modified arguments.
   523   int arg_size = method->size_of_parameters();
   524   object_size += DataLayout::compute_size_in_bytes(arg_size+1);
   525   return object_size;
   526 }
   528 // Compute the size of the methodDataOop necessary to store
   529 // profiling information about a given method.  Size is in words
   530 int methodDataOopDesc::compute_allocation_size_in_words(methodHandle method) {
   531   int byte_size = compute_allocation_size_in_bytes(method);
   532   int word_size = align_size_up(byte_size, BytesPerWord) / BytesPerWord;
   533   return align_object_size(word_size);
   534 }
   536 // Initialize an individual data segment.  Returns the size of
   537 // the segment in bytes.
   538 int methodDataOopDesc::initialize_data(BytecodeStream* stream,
   539                                        int data_index) {
   540   int cell_count = -1;
   541   int tag = DataLayout::no_tag;
   542   DataLayout* data_layout = data_layout_at(data_index);
   543   Bytecodes::Code c = stream->code();
   544   switch (c) {
   545   case Bytecodes::_checkcast:
   546   case Bytecodes::_instanceof:
   547   case Bytecodes::_aastore:
   548     if (TypeProfileCasts) {
   549       cell_count = ReceiverTypeData::static_cell_count();
   550       tag = DataLayout::receiver_type_data_tag;
   551     } else {
   552       cell_count = BitData::static_cell_count();
   553       tag = DataLayout::bit_data_tag;
   554     }
   555     break;
   556   case Bytecodes::_invokespecial:
   557   case Bytecodes::_invokestatic:
   558     cell_count = CounterData::static_cell_count();
   559     tag = DataLayout::counter_data_tag;
   560     break;
   561   case Bytecodes::_goto:
   562   case Bytecodes::_goto_w:
   563   case Bytecodes::_jsr:
   564   case Bytecodes::_jsr_w:
   565     cell_count = JumpData::static_cell_count();
   566     tag = DataLayout::jump_data_tag;
   567     break;
   568   case Bytecodes::_invokevirtual:
   569   case Bytecodes::_invokeinterface:
   570     cell_count = VirtualCallData::static_cell_count();
   571     tag = DataLayout::virtual_call_data_tag;
   572     break;
   573   case Bytecodes::_ret:
   574     cell_count = RetData::static_cell_count();
   575     tag = DataLayout::ret_data_tag;
   576     break;
   577   case Bytecodes::_ifeq:
   578   case Bytecodes::_ifne:
   579   case Bytecodes::_iflt:
   580   case Bytecodes::_ifge:
   581   case Bytecodes::_ifgt:
   582   case Bytecodes::_ifle:
   583   case Bytecodes::_if_icmpeq:
   584   case Bytecodes::_if_icmpne:
   585   case Bytecodes::_if_icmplt:
   586   case Bytecodes::_if_icmpge:
   587   case Bytecodes::_if_icmpgt:
   588   case Bytecodes::_if_icmple:
   589   case Bytecodes::_if_acmpeq:
   590   case Bytecodes::_if_acmpne:
   591   case Bytecodes::_ifnull:
   592   case Bytecodes::_ifnonnull:
   593     cell_count = BranchData::static_cell_count();
   594     tag = DataLayout::branch_data_tag;
   595     break;
   596   case Bytecodes::_lookupswitch:
   597   case Bytecodes::_tableswitch:
   598     cell_count = MultiBranchData::compute_cell_count(stream);
   599     tag = DataLayout::multi_branch_data_tag;
   600     break;
   601   }
   602   assert(tag == DataLayout::multi_branch_data_tag ||
   603          cell_count == bytecode_cell_count(c), "cell counts must agree");
   604   if (cell_count >= 0) {
   605     assert(tag != DataLayout::no_tag, "bad tag");
   606     assert(bytecode_has_profile(c), "agree w/ BHP");
   607     data_layout->initialize(tag, stream->bci(), cell_count);
   608     return DataLayout::compute_size_in_bytes(cell_count);
   609   } else {
   610     assert(!bytecode_has_profile(c), "agree w/ !BHP");
   611     return 0;
   612   }
   613 }
   615 // Get the data at an arbitrary (sort of) data index.
   616 ProfileData* methodDataOopDesc::data_at(int data_index) {
   617   if (out_of_bounds(data_index)) {
   618     return NULL;
   619   }
   620   DataLayout* data_layout = data_layout_at(data_index);
   622   switch (data_layout->tag()) {
   623   case DataLayout::no_tag:
   624   default:
   625     ShouldNotReachHere();
   626     return NULL;
   627   case DataLayout::bit_data_tag:
   628     return new BitData(data_layout);
   629   case DataLayout::counter_data_tag:
   630     return new CounterData(data_layout);
   631   case DataLayout::jump_data_tag:
   632     return new JumpData(data_layout);
   633   case DataLayout::receiver_type_data_tag:
   634     return new ReceiverTypeData(data_layout);
   635   case DataLayout::virtual_call_data_tag:
   636     return new VirtualCallData(data_layout);
   637   case DataLayout::ret_data_tag:
   638     return new RetData(data_layout);
   639   case DataLayout::branch_data_tag:
   640     return new BranchData(data_layout);
   641   case DataLayout::multi_branch_data_tag:
   642     return new MultiBranchData(data_layout);
   643   case DataLayout::arg_info_data_tag:
   644     return new ArgInfoData(data_layout);
   645   };
   646 }
   648 // Iteration over data.
   649 ProfileData* methodDataOopDesc::next_data(ProfileData* current) {
   650   int current_index = dp_to_di(current->dp());
   651   int next_index = current_index + current->size_in_bytes();
   652   ProfileData* next = data_at(next_index);
   653   return next;
   654 }
   656 // Give each of the data entries a chance to perform specific
   657 // data initialization.
   658 void methodDataOopDesc::post_initialize(BytecodeStream* stream) {
   659   ResourceMark rm;
   660   ProfileData* data;
   661   for (data = first_data(); is_valid(data); data = next_data(data)) {
   662     stream->set_start(data->bci());
   663     stream->next();
   664     data->post_initialize(stream, this);
   665   }
   666 }
   668 // Initialize the methodDataOop corresponding to a given method.
   669 void methodDataOopDesc::initialize(methodHandle method) {
   670   ResourceMark rm;
   672   // Set the method back-pointer.
   673   _method = method();
   674   set_creation_mileage(mileage_of(method()));
   676   // Initialize flags and trap history.
   677   _nof_decompiles = 0;
   678   _nof_overflow_recompiles = 0;
   679   _nof_overflow_traps = 0;
   680   assert(sizeof(_trap_hist) % sizeof(HeapWord) == 0, "align");
   681   Copy::zero_to_words((HeapWord*) &_trap_hist,
   682                       sizeof(_trap_hist) / sizeof(HeapWord));
   684   // Go through the bytecodes and allocate and initialize the
   685   // corresponding data cells.
   686   int data_size = 0;
   687   int empty_bc_count = 0;  // number of bytecodes lacking data
   688   BytecodeStream stream(method);
   689   Bytecodes::Code c;
   690   while ((c = stream.next()) >= 0) {
   691     int size_in_bytes = initialize_data(&stream, data_size);
   692     data_size += size_in_bytes;
   693     if (size_in_bytes == 0)  empty_bc_count += 1;
   694   }
   695   _data_size = data_size;
   696   int object_size = in_bytes(data_offset()) + data_size;
   698   // Add some extra DataLayout cells (at least one) to track stray traps.
   699   int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
   700   int extra_size = extra_data_count * DataLayout::compute_size_in_bytes(0);
   702   // Add a cell to record information about modified arguments.
   703   // Set up _args_modified array after traps cells so that
   704   // the code for traps cells works.
   705   DataLayout *dp = data_layout_at(data_size + extra_size);
   707   int arg_size = method->size_of_parameters();
   708   dp->initialize(DataLayout::arg_info_data_tag, 0, arg_size+1);
   710   object_size += extra_size + DataLayout::compute_size_in_bytes(arg_size+1);
   712   // Set an initial hint. Don't use set_hint_di() because
   713   // first_di() may be out of bounds if data_size is 0.
   714   // In that situation, _hint_di is never used, but at
   715   // least well-defined.
   716   _hint_di = first_di();
   718   post_initialize(&stream);
   720   set_object_is_parsable(object_size);
   721 }
   723 // Get a measure of how much mileage the method has on it.
   724 int methodDataOopDesc::mileage_of(methodOop method) {
   725   int mileage = 0;
   726   int iic = method->interpreter_invocation_count();
   727   if (mileage < iic)  mileage = iic;
   729   InvocationCounter* ic = method->invocation_counter();
   730   InvocationCounter* bc = method->backedge_counter();
   732   int icval = ic->count();
   733   if (ic->carry()) icval += CompileThreshold;
   734   if (mileage < icval)  mileage = icval;
   735   int bcval = bc->count();
   736   if (bc->carry()) bcval += CompileThreshold;
   737   if (mileage < bcval)  mileage = bcval;
   738   return mileage;
   739 }
   741 bool methodDataOopDesc::is_mature() const {
   742   uint current = mileage_of(_method);
   743   uint initial = creation_mileage();
   744   if (current < initial)
   745     return true;  // some sort of overflow
   746   uint target;
   747   if (ProfileMaturityPercentage <= 0)
   748     target = (uint) -ProfileMaturityPercentage;  // absolute value
   749   else
   750     target = (uint)( (ProfileMaturityPercentage * CompileThreshold) / 100 );
   751   return (current >= initial + target);
   752 }
   754 // Translate a bci to its corresponding data index (di).
   755 address methodDataOopDesc::bci_to_dp(int bci) {
   756   ResourceMark rm;
   757   ProfileData* data = data_before(bci);
   758   ProfileData* prev = NULL;
   759   for ( ; is_valid(data); data = next_data(data)) {
   760     if (data->bci() >= bci) {
   761       if (data->bci() == bci)  set_hint_di(dp_to_di(data->dp()));
   762       else if (prev != NULL)   set_hint_di(dp_to_di(prev->dp()));
   763       return data->dp();
   764     }
   765     prev = data;
   766   }
   767   return (address)limit_data_position();
   768 }
   770 // Translate a bci to its corresponding data, or NULL.
   771 ProfileData* methodDataOopDesc::bci_to_data(int bci) {
   772   ProfileData* data = data_before(bci);
   773   for ( ; is_valid(data); data = next_data(data)) {
   774     if (data->bci() == bci) {
   775       set_hint_di(dp_to_di(data->dp()));
   776       return data;
   777     } else if (data->bci() > bci) {
   778       break;
   779     }
   780   }
   781   return bci_to_extra_data(bci, false);
   782 }
   784 // Translate a bci to its corresponding extra data, or NULL.
   785 ProfileData* methodDataOopDesc::bci_to_extra_data(int bci, bool create_if_missing) {
   786   DataLayout* dp    = extra_data_base();
   787   DataLayout* end   = extra_data_limit();
   788   DataLayout* avail = NULL;
   789   for (; dp < end; dp = next_extra(dp)) {
   790     // No need for "OrderAccess::load_acquire" ops,
   791     // since the data structure is monotonic.
   792     if (dp->tag() == DataLayout::no_tag)  break;
   793     if (dp->tag() == DataLayout::arg_info_data_tag) {
   794       dp = end; // ArgInfoData is at the end of extra data section.
   795       break;
   796     }
   797     if (dp->bci() == bci) {
   798       assert(dp->tag() == DataLayout::bit_data_tag, "sane");
   799       return new BitData(dp);
   800     }
   801   }
   802   if (create_if_missing && dp < end) {
   803     // Allocate this one.  There is no mutual exclusion,
   804     // so two threads could allocate different BCIs to the
   805     // same data layout.  This means these extra data
   806     // records, like most other MDO contents, must not be
   807     // trusted too much.
   808     DataLayout temp;
   809     temp.initialize(DataLayout::bit_data_tag, bci, 0);
   810     dp->release_set_header(temp.header());
   811     assert(dp->tag() == DataLayout::bit_data_tag, "sane");
   812     //NO: assert(dp->bci() == bci, "no concurrent allocation");
   813     return new BitData(dp);
   814   }
   815   return NULL;
   816 }
   818 ArgInfoData *methodDataOopDesc::arg_info() {
   819   DataLayout* dp    = extra_data_base();
   820   DataLayout* end   = extra_data_limit();
   821   for (; dp < end; dp = next_extra(dp)) {
   822     if (dp->tag() == DataLayout::arg_info_data_tag)
   823       return new ArgInfoData(dp);
   824   }
   825   return NULL;
   826 }
   828 #ifndef PRODUCT
   829 void methodDataOopDesc::print_data_on(outputStream* st) {
   830   ResourceMark rm;
   831   ProfileData* data = first_data();
   832   for ( ; is_valid(data); data = next_data(data)) {
   833     st->print("%d", dp_to_di(data->dp()));
   834     st->fill_to(6);
   835     data->print_data_on(st);
   836   }
   837   st->print_cr("--- Extra data:");
   838   DataLayout* dp    = extra_data_base();
   839   DataLayout* end   = extra_data_limit();
   840   for (; dp < end; dp = next_extra(dp)) {
   841     // No need for "OrderAccess::load_acquire" ops,
   842     // since the data structure is monotonic.
   843     if (dp->tag() == DataLayout::no_tag)  continue;
   844     if (dp->tag() == DataLayout::bit_data_tag) {
   845       data = new BitData(dp);
   846     } else {
   847       assert(dp->tag() == DataLayout::arg_info_data_tag, "must be BitData or ArgInfo");
   848       data = new ArgInfoData(dp);
   849       dp = end; // ArgInfoData is at the end of extra data section.
   850     }
   851     st->print("%d", dp_to_di(data->dp()));
   852     st->fill_to(6);
   853     data->print_data_on(st);
   854   }
   855 }
   856 #endif
   858 void methodDataOopDesc::verify_data_on(outputStream* st) {
   859   NEEDS_CLEANUP;
   860   // not yet implemented.
   861 }

mercurial