src/share/vm/gc_implementation/g1/heapRegion.hpp

Fri, 29 Aug 2014 13:12:21 +0200

author
mgerdin
date
Fri, 29 Aug 2014 13:12:21 +0200
changeset 7208
7baf47cb97cb
parent 7195
c02ec279b062
child 7256
0fcaab91d485
permissions
-rw-r--r--

8048268: G1 Code Root Migration performs poorly
Summary: Replace G1CodeRootSet with a Hashtable based implementation, merge Code Root Migration phase into Code Root Scanning
Reviewed-by: jmasa, brutisso, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1AllocationContext.hpp"
    29 #include "gc_implementation/g1/g1BlockOffsetTable.hpp"
    30 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    31 #include "gc_implementation/g1/heapRegionType.hpp"
    32 #include "gc_implementation/g1/survRateGroup.hpp"
    33 #include "gc_implementation/shared/ageTable.hpp"
    34 #include "gc_implementation/shared/spaceDecorator.hpp"
    35 #include "memory/space.inline.hpp"
    36 #include "memory/watermark.hpp"
    37 #include "utilities/macros.hpp"
    39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    40 // can be collected independently.
    42 // NOTE: Although a HeapRegion is a Space, its
    43 // Space::initDirtyCardClosure method must not be called.
    44 // The problem is that the existence of this method breaks
    45 // the independence of barrier sets from remembered sets.
    46 // The solution is to remove this method from the definition
    47 // of a Space.
    49 class HeapRegionRemSet;
    50 class HeapRegionRemSetIterator;
    51 class HeapRegion;
    52 class HeapRegionSetBase;
    53 class nmethod;
    55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    56 #define HR_FORMAT_PARAMS(_hr_) \
    57                 (_hr_)->hrm_index(), \
    58                 (_hr_)->get_short_type_str(), \
    59                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
    61 // sentinel value for hrm_index
    62 #define G1_NO_HRM_INDEX ((uint) -1)
    64 // A dirty card to oop closure for heap regions. It
    65 // knows how to get the G1 heap and how to use the bitmap
    66 // in the concurrent marker used by G1 to filter remembered
    67 // sets.
    69 class HeapRegionDCTOC : public DirtyCardToOopClosure {
    70 public:
    71   // Specification of possible DirtyCardToOopClosure filtering.
    72   enum FilterKind {
    73     NoFilterKind,
    74     IntoCSFilterKind,
    75     OutOfRegionFilterKind
    76   };
    78 protected:
    79   HeapRegion* _hr;
    80   FilterKind _fk;
    81   G1CollectedHeap* _g1;
    83   // Walk the given memory region from bottom to (actual) top
    84   // looking for objects and applying the oop closure (_cl) to
    85   // them. The base implementation of this treats the area as
    86   // blocks, where a block may or may not be an object. Sub-
    87   // classes should override this to provide more accurate
    88   // or possibly more efficient walking.
    89   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
    91 public:
    92   HeapRegionDCTOC(G1CollectedHeap* g1,
    93                   HeapRegion* hr, ExtendedOopClosure* cl,
    94                   CardTableModRefBS::PrecisionStyle precision,
    95                   FilterKind fk);
    96 };
    98 // The complicating factor is that BlockOffsetTable diverged
    99 // significantly, and we need functionality that is only in the G1 version.
   100 // So I copied that code, which led to an alternate G1 version of
   101 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   102 // be reconciled, then G1OffsetTableContigSpace could go away.
   104 // The idea behind time stamps is the following. Doing a save_marks on
   105 // all regions at every GC pause is time consuming (if I remember
   106 // well, 10ms or so). So, we would like to do that only for regions
   107 // that are GC alloc regions. To achieve this, we use time
   108 // stamps. For every evacuation pause, G1CollectedHeap generates a
   109 // unique time stamp (essentially a counter that gets
   110 // incremented). Every time we want to call save_marks on a region,
   111 // we set the saved_mark_word to top and also copy the current GC
   112 // time stamp to the time stamp field of the space. Reading the
   113 // saved_mark_word involves checking the time stamp of the
   114 // region. If it is the same as the current GC time stamp, then we
   115 // can safely read the saved_mark_word field, as it is valid. If the
   116 // time stamp of the region is not the same as the current GC time
   117 // stamp, then we instead read top, as the saved_mark_word field is
   118 // invalid. Time stamps (on the regions and also on the
   119 // G1CollectedHeap) are reset at every cleanup (we iterate over
   120 // the regions anyway) and at the end of a Full GC. The current scheme
   121 // that uses sequential unsigned ints will fail only if we have 4b
   122 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   123 class G1OffsetTableContigSpace: public CompactibleSpace {
   124   friend class VMStructs;
   125   HeapWord* _top;
   126  protected:
   127   G1BlockOffsetArrayContigSpace _offsets;
   128   Mutex _par_alloc_lock;
   129   volatile unsigned _gc_time_stamp;
   130   // When we need to retire an allocation region, while other threads
   131   // are also concurrently trying to allocate into it, we typically
   132   // allocate a dummy object at the end of the region to ensure that
   133   // no more allocations can take place in it. However, sometimes we
   134   // want to know where the end of the last "real" object we allocated
   135   // into the region was and this is what this keeps track.
   136   HeapWord* _pre_dummy_top;
   138  public:
   139   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   140                            MemRegion mr);
   142   void set_top(HeapWord* value) { _top = value; }
   143   HeapWord* top() const { return _top; }
   145  protected:
   146   // Reset the G1OffsetTableContigSpace.
   147   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   149   HeapWord** top_addr() { return &_top; }
   150   // Allocation helpers (return NULL if full).
   151   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
   152   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
   154  public:
   155   void reset_after_compaction() { set_top(compaction_top()); }
   157   size_t used() const { return byte_size(bottom(), top()); }
   158   size_t free() const { return byte_size(top(), end()); }
   159   bool is_free_block(const HeapWord* p) const { return p >= top(); }
   161   MemRegion used_region() const { return MemRegion(bottom(), top()); }
   163   void object_iterate(ObjectClosure* blk);
   164   void safe_object_iterate(ObjectClosure* blk);
   166   void set_bottom(HeapWord* value);
   167   void set_end(HeapWord* value);
   169   virtual HeapWord* saved_mark_word() const;
   170   void record_top_and_timestamp();
   171   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   172   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
   174   // See the comment above in the declaration of _pre_dummy_top for an
   175   // explanation of what it is.
   176   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   177     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   178     _pre_dummy_top = pre_dummy_top;
   179   }
   180   HeapWord* pre_dummy_top() {
   181     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   182   }
   183   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   185   virtual void clear(bool mangle_space);
   187   HeapWord* block_start(const void* p);
   188   HeapWord* block_start_const(const void* p) const;
   190   void prepare_for_compaction(CompactPoint* cp);
   192   // Add offset table update.
   193   virtual HeapWord* allocate(size_t word_size);
   194   HeapWord* par_allocate(size_t word_size);
   196   // MarkSweep support phase3
   197   virtual HeapWord* initialize_threshold();
   198   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   200   virtual void print() const;
   202   void reset_bot() {
   203     _offsets.reset_bot();
   204   }
   206   void update_bot_for_object(HeapWord* start, size_t word_size) {
   207     _offsets.alloc_block(start, word_size);
   208   }
   210   void print_bot_on(outputStream* out) {
   211     _offsets.print_on(out);
   212   }
   213 };
   215 class HeapRegion: public G1OffsetTableContigSpace {
   216   friend class VMStructs;
   217  private:
   219   // The remembered set for this region.
   220   // (Might want to make this "inline" later, to avoid some alloc failure
   221   // issues.)
   222   HeapRegionRemSet* _rem_set;
   224   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   226  protected:
   227   // The index of this region in the heap region sequence.
   228   uint  _hrm_index;
   230   AllocationContext_t _allocation_context;
   232   HeapRegionType _type;
   234   // For a humongous region, region in which it starts.
   235   HeapRegion* _humongous_start_region;
   236   // For the start region of a humongous sequence, it's original end().
   237   HeapWord* _orig_end;
   239   // True iff the region is in current collection_set.
   240   bool _in_collection_set;
   242   // True iff an attempt to evacuate an object in the region failed.
   243   bool _evacuation_failed;
   245   // A heap region may be a member one of a number of special subsets, each
   246   // represented as linked lists through the field below.  Currently, there
   247   // is only one set:
   248   //   The collection set.
   249   HeapRegion* _next_in_special_set;
   251   // next region in the young "generation" region set
   252   HeapRegion* _next_young_region;
   254   // Next region whose cards need cleaning
   255   HeapRegion* _next_dirty_cards_region;
   257   // Fields used by the HeapRegionSetBase class and subclasses.
   258   HeapRegion* _next;
   259   HeapRegion* _prev;
   260 #ifdef ASSERT
   261   HeapRegionSetBase* _containing_set;
   262 #endif // ASSERT
   264   // For parallel heapRegion traversal.
   265   jint _claimed;
   267   // We use concurrent marking to determine the amount of live data
   268   // in each heap region.
   269   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   270   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   272   // The calculated GC efficiency of the region.
   273   double _gc_efficiency;
   275   int  _young_index_in_cset;
   276   SurvRateGroup* _surv_rate_group;
   277   int  _age_index;
   279   // The start of the unmarked area. The unmarked area extends from this
   280   // word until the top and/or end of the region, and is the part
   281   // of the region for which no marking was done, i.e. objects may
   282   // have been allocated in this part since the last mark phase.
   283   // "prev" is the top at the start of the last completed marking.
   284   // "next" is the top at the start of the in-progress marking (if any.)
   285   HeapWord* _prev_top_at_mark_start;
   286   HeapWord* _next_top_at_mark_start;
   287   // If a collection pause is in progress, this is the top at the start
   288   // of that pause.
   290   void init_top_at_mark_start() {
   291     assert(_prev_marked_bytes == 0 &&
   292            _next_marked_bytes == 0,
   293            "Must be called after zero_marked_bytes.");
   294     HeapWord* bot = bottom();
   295     _prev_top_at_mark_start = bot;
   296     _next_top_at_mark_start = bot;
   297   }
   299   // Cached attributes used in the collection set policy information
   301   // The RSet length that was added to the total value
   302   // for the collection set.
   303   size_t _recorded_rs_length;
   305   // The predicted elapsed time that was added to total value
   306   // for the collection set.
   307   double _predicted_elapsed_time_ms;
   309   // The predicted number of bytes to copy that was added to
   310   // the total value for the collection set.
   311   size_t _predicted_bytes_to_copy;
   313  public:
   314   HeapRegion(uint hrm_index,
   315              G1BlockOffsetSharedArray* sharedOffsetArray,
   316              MemRegion mr);
   318   // Initializing the HeapRegion not only resets the data structure, but also
   319   // resets the BOT for that heap region.
   320   // The default values for clear_space means that we will do the clearing if
   321   // there's clearing to be done ourselves. We also always mangle the space.
   322   virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
   324   static int    LogOfHRGrainBytes;
   325   static int    LogOfHRGrainWords;
   327   static size_t GrainBytes;
   328   static size_t GrainWords;
   329   static size_t CardsPerRegion;
   331   static size_t align_up_to_region_byte_size(size_t sz) {
   332     return (sz + (size_t) GrainBytes - 1) &
   333                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   334   }
   336   static size_t max_region_size();
   338   // It sets up the heap region size (GrainBytes / GrainWords), as
   339   // well as other related fields that are based on the heap region
   340   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   341   // CardsPerRegion). All those fields are considered constant
   342   // throughout the JVM's execution, therefore they should only be set
   343   // up once during initialization time.
   344   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
   346   enum ClaimValues {
   347     InitialClaimValue          = 0,
   348     FinalCountClaimValue       = 1,
   349     NoteEndClaimValue          = 2,
   350     ScrubRemSetClaimValue      = 3,
   351     ParVerifyClaimValue        = 4,
   352     RebuildRSClaimValue        = 5,
   353     ParEvacFailureClaimValue   = 6,
   354     AggregateCountClaimValue   = 7,
   355     VerifyCountClaimValue      = 8,
   356     ParMarkRootClaimValue      = 9
   357   };
   359   // All allocated blocks are occupied by objects in a HeapRegion
   360   bool block_is_obj(const HeapWord* p) const;
   362   // Returns the object size for all valid block starts
   363   // and the amount of unallocated words if called on top()
   364   size_t block_size(const HeapWord* p) const;
   366   inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
   367   inline HeapWord* allocate_no_bot_updates(size_t word_size);
   369   // If this region is a member of a HeapRegionManager, the index in that
   370   // sequence, otherwise -1.
   371   uint hrm_index() const { return _hrm_index; }
   373   // The number of bytes marked live in the region in the last marking phase.
   374   size_t marked_bytes()    { return _prev_marked_bytes; }
   375   size_t live_bytes() {
   376     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   377   }
   379   // The number of bytes counted in the next marking.
   380   size_t next_marked_bytes() { return _next_marked_bytes; }
   381   // The number of bytes live wrt the next marking.
   382   size_t next_live_bytes() {
   383     return
   384       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   385   }
   387   // A lower bound on the amount of garbage bytes in the region.
   388   size_t garbage_bytes() {
   389     size_t used_at_mark_start_bytes =
   390       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   391     assert(used_at_mark_start_bytes >= marked_bytes(),
   392            "Can't mark more than we have.");
   393     return used_at_mark_start_bytes - marked_bytes();
   394   }
   396   // Return the amount of bytes we'll reclaim if we collect this
   397   // region. This includes not only the known garbage bytes in the
   398   // region but also any unallocated space in it, i.e., [top, end),
   399   // since it will also be reclaimed if we collect the region.
   400   size_t reclaimable_bytes() {
   401     size_t known_live_bytes = live_bytes();
   402     assert(known_live_bytes <= capacity(), "sanity");
   403     return capacity() - known_live_bytes;
   404   }
   406   // An upper bound on the number of live bytes in the region.
   407   size_t max_live_bytes() { return used() - garbage_bytes(); }
   409   void add_to_marked_bytes(size_t incr_bytes) {
   410     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   411     assert(_next_marked_bytes <= used(), "invariant" );
   412   }
   414   void zero_marked_bytes()      {
   415     _prev_marked_bytes = _next_marked_bytes = 0;
   416   }
   418   const char* get_type_str() const { return _type.get_str(); }
   419   const char* get_short_type_str() const { return _type.get_short_str(); }
   421   bool is_free() const { return _type.is_free(); }
   423   bool is_young()    const { return _type.is_young();    }
   424   bool is_eden()     const { return _type.is_eden();     }
   425   bool is_survivor() const { return _type.is_survivor(); }
   427   bool isHumongous() const { return _type.is_humongous(); }
   428   bool startsHumongous() const { return _type.is_starts_humongous(); }
   429   bool continuesHumongous() const { return _type.is_continues_humongous();   }
   431   bool is_old() const { return _type.is_old(); }
   433   // For a humongous region, region in which it starts.
   434   HeapRegion* humongous_start_region() const {
   435     return _humongous_start_region;
   436   }
   438   // Return the number of distinct regions that are covered by this region:
   439   // 1 if the region is not humongous, >= 1 if the region is humongous.
   440   uint region_num() const {
   441     if (!isHumongous()) {
   442       return 1U;
   443     } else {
   444       assert(startsHumongous(), "doesn't make sense on HC regions");
   445       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
   446       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
   447     }
   448   }
   450   // Return the index + 1 of the last HC regions that's associated
   451   // with this HS region.
   452   uint last_hc_index() const {
   453     assert(startsHumongous(), "don't call this otherwise");
   454     return hrm_index() + region_num();
   455   }
   457   // Same as Space::is_in_reserved, but will use the original size of the region.
   458   // The original size is different only for start humongous regions. They get
   459   // their _end set up to be the end of the last continues region of the
   460   // corresponding humongous object.
   461   bool is_in_reserved_raw(const void* p) const {
   462     return _bottom <= p && p < _orig_end;
   463   }
   465   // Makes the current region be a "starts humongous" region, i.e.,
   466   // the first region in a series of one or more contiguous regions
   467   // that will contain a single "humongous" object. The two parameters
   468   // are as follows:
   469   //
   470   // new_top : The new value of the top field of this region which
   471   // points to the end of the humongous object that's being
   472   // allocated. If there is more than one region in the series, top
   473   // will lie beyond this region's original end field and on the last
   474   // region in the series.
   475   //
   476   // new_end : The new value of the end field of this region which
   477   // points to the end of the last region in the series. If there is
   478   // one region in the series (namely: this one) end will be the same
   479   // as the original end of this region.
   480   //
   481   // Updating top and end as described above makes this region look as
   482   // if it spans the entire space taken up by all the regions in the
   483   // series and an single allocation moved its top to new_top. This
   484   // ensures that the space (capacity / allocated) taken up by all
   485   // humongous regions can be calculated by just looking at the
   486   // "starts humongous" regions and by ignoring the "continues
   487   // humongous" regions.
   488   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   490   // Makes the current region be a "continues humongous'
   491   // region. first_hr is the "start humongous" region of the series
   492   // which this region will be part of.
   493   void set_continuesHumongous(HeapRegion* first_hr);
   495   // Unsets the humongous-related fields on the region.
   496   void clear_humongous();
   498   // If the region has a remembered set, return a pointer to it.
   499   HeapRegionRemSet* rem_set() const {
   500     return _rem_set;
   501   }
   503   // True iff the region is in current collection_set.
   504   bool in_collection_set() const {
   505     return _in_collection_set;
   506   }
   507   void set_in_collection_set(bool b) {
   508     _in_collection_set = b;
   509   }
   510   HeapRegion* next_in_collection_set() {
   511     assert(in_collection_set(), "should only invoke on member of CS.");
   512     assert(_next_in_special_set == NULL ||
   513            _next_in_special_set->in_collection_set(),
   514            "Malformed CS.");
   515     return _next_in_special_set;
   516   }
   517   void set_next_in_collection_set(HeapRegion* r) {
   518     assert(in_collection_set(), "should only invoke on member of CS.");
   519     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   520     _next_in_special_set = r;
   521   }
   523   void set_allocation_context(AllocationContext_t context) {
   524     _allocation_context = context;
   525   }
   527   AllocationContext_t  allocation_context() const {
   528     return _allocation_context;
   529   }
   531   // Methods used by the HeapRegionSetBase class and subclasses.
   533   // Getter and setter for the next and prev fields used to link regions into
   534   // linked lists.
   535   HeapRegion* next()              { return _next; }
   536   HeapRegion* prev()              { return _prev; }
   538   void set_next(HeapRegion* next) { _next = next; }
   539   void set_prev(HeapRegion* prev) { _prev = prev; }
   541   // Every region added to a set is tagged with a reference to that
   542   // set. This is used for doing consistency checking to make sure that
   543   // the contents of a set are as they should be and it's only
   544   // available in non-product builds.
   545 #ifdef ASSERT
   546   void set_containing_set(HeapRegionSetBase* containing_set) {
   547     assert((containing_set == NULL && _containing_set != NULL) ||
   548            (containing_set != NULL && _containing_set == NULL),
   549            err_msg("containing_set: "PTR_FORMAT" "
   550                    "_containing_set: "PTR_FORMAT,
   551                    p2i(containing_set), p2i(_containing_set)));
   553     _containing_set = containing_set;
   554   }
   556   HeapRegionSetBase* containing_set() { return _containing_set; }
   557 #else // ASSERT
   558   void set_containing_set(HeapRegionSetBase* containing_set) { }
   560   // containing_set() is only used in asserts so there's no reason
   561   // to provide a dummy version of it.
   562 #endif // ASSERT
   564   HeapRegion* get_next_young_region() { return _next_young_region; }
   565   void set_next_young_region(HeapRegion* hr) {
   566     _next_young_region = hr;
   567   }
   569   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   570   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   571   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   572   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   574   HeapWord* orig_end() const { return _orig_end; }
   576   // Reset HR stuff to default values.
   577   void hr_clear(bool par, bool clear_space, bool locked = false);
   578   void par_clear();
   580   // Get the start of the unmarked area in this region.
   581   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   582   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   584   // Note the start or end of marking. This tells the heap region
   585   // that the collector is about to start or has finished (concurrently)
   586   // marking the heap.
   588   // Notify the region that concurrent marking is starting. Initialize
   589   // all fields related to the next marking info.
   590   inline void note_start_of_marking();
   592   // Notify the region that concurrent marking has finished. Copy the
   593   // (now finalized) next marking info fields into the prev marking
   594   // info fields.
   595   inline void note_end_of_marking();
   597   // Notify the region that it will be used as to-space during a GC
   598   // and we are about to start copying objects into it.
   599   inline void note_start_of_copying(bool during_initial_mark);
   601   // Notify the region that it ceases being to-space during a GC and
   602   // we will not copy objects into it any more.
   603   inline void note_end_of_copying(bool during_initial_mark);
   605   // Notify the region that we are about to start processing
   606   // self-forwarded objects during evac failure handling.
   607   void note_self_forwarding_removal_start(bool during_initial_mark,
   608                                           bool during_conc_mark);
   610   // Notify the region that we have finished processing self-forwarded
   611   // objects during evac failure handling.
   612   void note_self_forwarding_removal_end(bool during_initial_mark,
   613                                         bool during_conc_mark,
   614                                         size_t marked_bytes);
   616   // Returns "false" iff no object in the region was allocated when the
   617   // last mark phase ended.
   618   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   620   void reset_during_compaction() {
   621     assert(isHumongous() && startsHumongous(),
   622            "should only be called for starts humongous regions");
   624     zero_marked_bytes();
   625     init_top_at_mark_start();
   626   }
   628   void calc_gc_efficiency(void);
   629   double gc_efficiency() { return _gc_efficiency;}
   631   int  young_index_in_cset() const { return _young_index_in_cset; }
   632   void set_young_index_in_cset(int index) {
   633     assert( (index == -1) || is_young(), "pre-condition" );
   634     _young_index_in_cset = index;
   635   }
   637   int age_in_surv_rate_group() {
   638     assert( _surv_rate_group != NULL, "pre-condition" );
   639     assert( _age_index > -1, "pre-condition" );
   640     return _surv_rate_group->age_in_group(_age_index);
   641   }
   643   void record_surv_words_in_group(size_t words_survived) {
   644     assert( _surv_rate_group != NULL, "pre-condition" );
   645     assert( _age_index > -1, "pre-condition" );
   646     int age_in_group = age_in_surv_rate_group();
   647     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   648   }
   650   int age_in_surv_rate_group_cond() {
   651     if (_surv_rate_group != NULL)
   652       return age_in_surv_rate_group();
   653     else
   654       return -1;
   655   }
   657   SurvRateGroup* surv_rate_group() {
   658     return _surv_rate_group;
   659   }
   661   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   662     assert( surv_rate_group != NULL, "pre-condition" );
   663     assert( _surv_rate_group == NULL, "pre-condition" );
   664     assert( is_young(), "pre-condition" );
   666     _surv_rate_group = surv_rate_group;
   667     _age_index = surv_rate_group->next_age_index();
   668   }
   670   void uninstall_surv_rate_group() {
   671     if (_surv_rate_group != NULL) {
   672       assert( _age_index > -1, "pre-condition" );
   673       assert( is_young(), "pre-condition" );
   675       _surv_rate_group = NULL;
   676       _age_index = -1;
   677     } else {
   678       assert( _age_index == -1, "pre-condition" );
   679     }
   680   }
   682   void set_free() { _type.set_free(); }
   684   void set_eden()        { _type.set_eden();        }
   685   void set_eden_pre_gc() { _type.set_eden_pre_gc(); }
   686   void set_survivor()    { _type.set_survivor();    }
   688   void set_old() { _type.set_old(); }
   690   // Determine if an object has been allocated since the last
   691   // mark performed by the collector. This returns true iff the object
   692   // is within the unmarked area of the region.
   693   bool obj_allocated_since_prev_marking(oop obj) const {
   694     return (HeapWord *) obj >= prev_top_at_mark_start();
   695   }
   696   bool obj_allocated_since_next_marking(oop obj) const {
   697     return (HeapWord *) obj >= next_top_at_mark_start();
   698   }
   700   // For parallel heapRegion traversal.
   701   bool claimHeapRegion(int claimValue);
   702   jint claim_value() { return _claimed; }
   703   // Use this carefully: only when you're sure no one is claiming...
   704   void set_claim_value(int claimValue) { _claimed = claimValue; }
   706   // Returns the "evacuation_failed" property of the region.
   707   bool evacuation_failed() { return _evacuation_failed; }
   709   // Sets the "evacuation_failed" property of the region.
   710   void set_evacuation_failed(bool b) {
   711     _evacuation_failed = b;
   713     if (b) {
   714       _next_marked_bytes = 0;
   715     }
   716   }
   718   // Requires that "mr" be entirely within the region.
   719   // Apply "cl->do_object" to all objects that intersect with "mr".
   720   // If the iteration encounters an unparseable portion of the region,
   721   // or if "cl->abort()" is true after a closure application,
   722   // terminate the iteration and return the address of the start of the
   723   // subregion that isn't done.  (The two can be distinguished by querying
   724   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   725   // completed.
   726   HeapWord*
   727   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   729   // filter_young: if true and the region is a young region then we
   730   // skip the iteration.
   731   // card_ptr: if not NULL, and we decide that the card is not young
   732   // and we iterate over it, we'll clean the card before we start the
   733   // iteration.
   734   HeapWord*
   735   oops_on_card_seq_iterate_careful(MemRegion mr,
   736                                    FilterOutOfRegionClosure* cl,
   737                                    bool filter_young,
   738                                    jbyte* card_ptr);
   740   // A version of block start that is guaranteed to find *some* block
   741   // boundary at or before "p", but does not object iteration, and may
   742   // therefore be used safely when the heap is unparseable.
   743   HeapWord* block_start_careful(const void* p) const {
   744     return _offsets.block_start_careful(p);
   745   }
   747   // Requires that "addr" is within the region.  Returns the start of the
   748   // first ("careful") block that starts at or after "addr", or else the
   749   // "end" of the region if there is no such block.
   750   HeapWord* next_block_start_careful(HeapWord* addr);
   752   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   753   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   754   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   756   void set_recorded_rs_length(size_t rs_length) {
   757     _recorded_rs_length = rs_length;
   758   }
   760   void set_predicted_elapsed_time_ms(double ms) {
   761     _predicted_elapsed_time_ms = ms;
   762   }
   764   void set_predicted_bytes_to_copy(size_t bytes) {
   765     _predicted_bytes_to_copy = bytes;
   766   }
   768   virtual CompactibleSpace* next_compaction_space() const;
   770   virtual void reset_after_compaction();
   772   // Routines for managing a list of code roots (attached to the
   773   // this region's RSet) that point into this heap region.
   774   void add_strong_code_root(nmethod* nm);
   775   void add_strong_code_root_locked(nmethod* nm);
   776   void remove_strong_code_root(nmethod* nm);
   778   // Applies blk->do_code_blob() to each of the entries in
   779   // the strong code roots list for this region
   780   void strong_code_roots_do(CodeBlobClosure* blk) const;
   782   // Verify that the entries on the strong code root list for this
   783   // region are live and include at least one pointer into this region.
   784   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
   786   void print() const;
   787   void print_on(outputStream* st) const;
   789   // vo == UsePrevMarking  -> use "prev" marking information,
   790   // vo == UseNextMarking -> use "next" marking information
   791   // vo == UseMarkWord    -> use the mark word in the object header
   792   //
   793   // NOTE: Only the "prev" marking information is guaranteed to be
   794   // consistent most of the time, so most calls to this should use
   795   // vo == UsePrevMarking.
   796   // Currently, there is only one case where this is called with
   797   // vo == UseNextMarking, which is to verify the "next" marking
   798   // information at the end of remark.
   799   // Currently there is only one place where this is called with
   800   // vo == UseMarkWord, which is to verify the marking during a
   801   // full GC.
   802   void verify(VerifyOption vo, bool *failures) const;
   804   // Override; it uses the "prev" marking information
   805   virtual void verify() const;
   806 };
   808 // HeapRegionClosure is used for iterating over regions.
   809 // Terminates the iteration when the "doHeapRegion" method returns "true".
   810 class HeapRegionClosure : public StackObj {
   811   friend class HeapRegionManager;
   812   friend class G1CollectedHeap;
   814   bool _complete;
   815   void incomplete() { _complete = false; }
   817  public:
   818   HeapRegionClosure(): _complete(true) {}
   820   // Typically called on each region until it returns true.
   821   virtual bool doHeapRegion(HeapRegion* r) = 0;
   823   // True after iteration if the closure was applied to all heap regions
   824   // and returned "false" in all cases.
   825   bool complete() { return _complete; }
   826 };
   828 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial