src/share/vm/gc_implementation/g1/heapRegion.cpp

Fri, 29 Aug 2014 13:12:21 +0200

author
mgerdin
date
Fri, 29 Aug 2014 13:12:21 +0200
changeset 7208
7baf47cb97cb
parent 7195
c02ec279b062
child 7256
0fcaab91d485
permissions
-rw-r--r--

8048268: G1 Code Root Migration performs poorly
Summary: Replace G1CodeRootSet with a Hashtable based implementation, merge Code Root Migration phase into Code Root Scanning
Reviewed-by: jmasa, brutisso, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
    34 #include "gc_implementation/shared/liveRange.hpp"
    35 #include "memory/genOopClosures.inline.hpp"
    36 #include "memory/iterator.hpp"
    37 #include "memory/space.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "runtime/orderAccess.inline.hpp"
    41 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    43 int    HeapRegion::LogOfHRGrainBytes = 0;
    44 int    HeapRegion::LogOfHRGrainWords = 0;
    45 size_t HeapRegion::GrainBytes        = 0;
    46 size_t HeapRegion::GrainWords        = 0;
    47 size_t HeapRegion::CardsPerRegion    = 0;
    49 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    50                                  HeapRegion* hr, ExtendedOopClosure* cl,
    51                                  CardTableModRefBS::PrecisionStyle precision,
    52                                  FilterKind fk) :
    53   DirtyCardToOopClosure(hr, cl, precision, NULL),
    54   _hr(hr), _fk(fk), _g1(g1) { }
    56 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    57                                                    OopClosure* oc) :
    58   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    60 template<class ClosureType>
    61 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
    62                                HeapRegion* hr,
    63                                HeapWord* cur, HeapWord* top) {
    64   oop cur_oop = oop(cur);
    65   size_t oop_size = hr->block_size(cur);
    66   HeapWord* next_obj = cur + oop_size;
    67   while (next_obj < top) {
    68     // Keep filtering the remembered set.
    69     if (!g1h->is_obj_dead(cur_oop, hr)) {
    70       // Bottom lies entirely below top, so we can call the
    71       // non-memRegion version of oop_iterate below.
    72       cur_oop->oop_iterate(cl);
    73     }
    74     cur = next_obj;
    75     cur_oop = oop(cur);
    76     oop_size = hr->block_size(cur);
    77     next_obj = cur + oop_size;
    78   }
    79   return cur;
    80 }
    82 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
    83                                       HeapWord* bottom,
    84                                       HeapWord* top) {
    85   G1CollectedHeap* g1h = _g1;
    86   size_t oop_size;
    87   ExtendedOopClosure* cl2 = NULL;
    89   FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
    90   FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
    92   switch (_fk) {
    93   case NoFilterKind:          cl2 = _cl; break;
    94   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
    95   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
    96   default:                    ShouldNotReachHere();
    97   }
    99   // Start filtering what we add to the remembered set. If the object is
   100   // not considered dead, either because it is marked (in the mark bitmap)
   101   // or it was allocated after marking finished, then we add it. Otherwise
   102   // we can safely ignore the object.
   103   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   104     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   105   } else {
   106     oop_size = _hr->block_size(bottom);
   107   }
   109   bottom += oop_size;
   111   if (bottom < top) {
   112     // We replicate the loop below for several kinds of possible filters.
   113     switch (_fk) {
   114     case NoFilterKind:
   115       bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
   116       break;
   118     case IntoCSFilterKind: {
   119       FilterIntoCSClosure filt(this, g1h, _cl);
   120       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   121       break;
   122     }
   124     case OutOfRegionFilterKind: {
   125       FilterOutOfRegionClosure filt(_hr, _cl);
   126       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   127       break;
   128     }
   130     default:
   131       ShouldNotReachHere();
   132     }
   134     // Last object. Need to do dead-obj filtering here too.
   135     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   136       oop(bottom)->oop_iterate(cl2, mr);
   137     }
   138   }
   139 }
   141 size_t HeapRegion::max_region_size() {
   142   return HeapRegionBounds::max_size();
   143 }
   145 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   146   uintx region_size = G1HeapRegionSize;
   147   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   148     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   149     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
   150                        (uintx) HeapRegionBounds::min_size());
   151   }
   153   int region_size_log = log2_long((jlong) region_size);
   154   // Recalculate the region size to make sure it's a power of
   155   // 2. This means that region_size is the largest power of 2 that's
   156   // <= what we've calculated so far.
   157   region_size = ((uintx)1 << region_size_log);
   159   // Now make sure that we don't go over or under our limits.
   160   if (region_size < HeapRegionBounds::min_size()) {
   161     region_size = HeapRegionBounds::min_size();
   162   } else if (region_size > HeapRegionBounds::max_size()) {
   163     region_size = HeapRegionBounds::max_size();
   164   }
   166   // And recalculate the log.
   167   region_size_log = log2_long((jlong) region_size);
   169   // Now, set up the globals.
   170   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   171   LogOfHRGrainBytes = region_size_log;
   173   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   174   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   176   guarantee(GrainBytes == 0, "we should only set it once");
   177   // The cast to int is safe, given that we've bounded region_size by
   178   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   179   GrainBytes = (size_t)region_size;
   181   guarantee(GrainWords == 0, "we should only set it once");
   182   GrainWords = GrainBytes >> LogHeapWordSize;
   183   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   185   guarantee(CardsPerRegion == 0, "we should only set it once");
   186   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   187 }
   189 void HeapRegion::reset_after_compaction() {
   190   G1OffsetTableContigSpace::reset_after_compaction();
   191   // After a compaction the mark bitmap is invalid, so we must
   192   // treat all objects as being inside the unmarked area.
   193   zero_marked_bytes();
   194   init_top_at_mark_start();
   195 }
   197 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
   198   assert(_humongous_start_region == NULL,
   199          "we should have already filtered out humongous regions");
   200   assert(_end == _orig_end,
   201          "we should have already filtered out humongous regions");
   203   _in_collection_set = false;
   205   set_allocation_context(AllocationContext::system());
   206   set_young_index_in_cset(-1);
   207   uninstall_surv_rate_group();
   208   set_free();
   209   reset_pre_dummy_top();
   211   if (!par) {
   212     // If this is parallel, this will be done later.
   213     HeapRegionRemSet* hrrs = rem_set();
   214     if (locked) {
   215       hrrs->clear_locked();
   216     } else {
   217       hrrs->clear();
   218     }
   219     _claimed = InitialClaimValue;
   220   }
   221   zero_marked_bytes();
   223   _offsets.resize(HeapRegion::GrainWords);
   224   init_top_at_mark_start();
   225   if (clear_space) clear(SpaceDecorator::Mangle);
   226 }
   228 void HeapRegion::par_clear() {
   229   assert(used() == 0, "the region should have been already cleared");
   230   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   231   HeapRegionRemSet* hrrs = rem_set();
   232   hrrs->clear();
   233   CardTableModRefBS* ct_bs =
   234                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   235   ct_bs->clear(MemRegion(bottom(), end()));
   236 }
   238 void HeapRegion::calc_gc_efficiency() {
   239   // GC efficiency is the ratio of how much space would be
   240   // reclaimed over how long we predict it would take to reclaim it.
   241   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   242   G1CollectorPolicy* g1p = g1h->g1_policy();
   244   // Retrieve a prediction of the elapsed time for this region for
   245   // a mixed gc because the region will only be evacuated during a
   246   // mixed gc.
   247   double region_elapsed_time_ms =
   248     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   249   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   250 }
   252 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   253   assert(!isHumongous(), "sanity / pre-condition");
   254   assert(end() == _orig_end,
   255          "Should be normal before the humongous object allocation");
   256   assert(top() == bottom(), "should be empty");
   257   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   259   _type.set_starts_humongous();
   260   _humongous_start_region = this;
   262   set_end(new_end);
   263   _offsets.set_for_starts_humongous(new_top);
   264 }
   266 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   267   assert(!isHumongous(), "sanity / pre-condition");
   268   assert(end() == _orig_end,
   269          "Should be normal before the humongous object allocation");
   270   assert(top() == bottom(), "should be empty");
   271   assert(first_hr->startsHumongous(), "pre-condition");
   273   _type.set_continues_humongous();
   274   _humongous_start_region = first_hr;
   275 }
   277 void HeapRegion::clear_humongous() {
   278   assert(isHumongous(), "pre-condition");
   280   if (startsHumongous()) {
   281     assert(top() <= end(), "pre-condition");
   282     set_end(_orig_end);
   283     if (top() > end()) {
   284       // at least one "continues humongous" region after it
   285       set_top(end());
   286     }
   287   } else {
   288     // continues humongous
   289     assert(end() == _orig_end, "sanity");
   290   }
   292   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   293   _humongous_start_region = NULL;
   294 }
   296 bool HeapRegion::claimHeapRegion(jint claimValue) {
   297   jint current = _claimed;
   298   if (current != claimValue) {
   299     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   300     if (res == current) {
   301       return true;
   302     }
   303   }
   304   return false;
   305 }
   307 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   308   HeapWord* low = addr;
   309   HeapWord* high = end();
   310   while (low < high) {
   311     size_t diff = pointer_delta(high, low);
   312     // Must add one below to bias toward the high amount.  Otherwise, if
   313   // "high" were at the desired value, and "low" were one less, we
   314     // would not converge on "high".  This is not symmetric, because
   315     // we set "high" to a block start, which might be the right one,
   316     // which we don't do for "low".
   317     HeapWord* middle = low + (diff+1)/2;
   318     if (middle == high) return high;
   319     HeapWord* mid_bs = block_start_careful(middle);
   320     if (mid_bs < addr) {
   321       low = middle;
   322     } else {
   323       high = mid_bs;
   324     }
   325   }
   326   assert(low == high && low >= addr, "Didn't work.");
   327   return low;
   328 }
   330 HeapRegion::HeapRegion(uint hrm_index,
   331                        G1BlockOffsetSharedArray* sharedOffsetArray,
   332                        MemRegion mr) :
   333     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   334     _hrm_index(hrm_index),
   335     _allocation_context(AllocationContext::system()),
   336     _humongous_start_region(NULL),
   337     _in_collection_set(false),
   338     _next_in_special_set(NULL), _orig_end(NULL),
   339     _claimed(InitialClaimValue), _evacuation_failed(false),
   340     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   341     _next_young_region(NULL),
   342     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
   343 #ifdef ASSERT
   344     _containing_set(NULL),
   345 #endif // ASSERT
   346      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   347     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   348     _predicted_bytes_to_copy(0)
   349 {
   350   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   351   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   353   initialize(mr);
   354 }
   356 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   357   assert(_rem_set->is_empty(), "Remembered set must be empty");
   359   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
   361   _orig_end = mr.end();
   362   hr_clear(false /*par*/, false /*clear_space*/);
   363   set_top(bottom());
   364   record_top_and_timestamp();
   365 }
   367 CompactibleSpace* HeapRegion::next_compaction_space() const {
   368   return G1CollectedHeap::heap()->next_compaction_region(this);
   369 }
   371 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   372                                                     bool during_conc_mark) {
   373   // We always recreate the prev marking info and we'll explicitly
   374   // mark all objects we find to be self-forwarded on the prev
   375   // bitmap. So all objects need to be below PTAMS.
   376   _prev_marked_bytes = 0;
   378   if (during_initial_mark) {
   379     // During initial-mark, we'll also explicitly mark all objects
   380     // we find to be self-forwarded on the next bitmap. So all
   381     // objects need to be below NTAMS.
   382     _next_top_at_mark_start = top();
   383     _next_marked_bytes = 0;
   384   } else if (during_conc_mark) {
   385     // During concurrent mark, all objects in the CSet (including
   386     // the ones we find to be self-forwarded) are implicitly live.
   387     // So all objects need to be above NTAMS.
   388     _next_top_at_mark_start = bottom();
   389     _next_marked_bytes = 0;
   390   }
   391 }
   393 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   394                                                   bool during_conc_mark,
   395                                                   size_t marked_bytes) {
   396   assert(0 <= marked_bytes && marked_bytes <= used(),
   397          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   398                  marked_bytes, used()));
   399   _prev_top_at_mark_start = top();
   400   _prev_marked_bytes = marked_bytes;
   401 }
   403 HeapWord*
   404 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   405                                                  ObjectClosure* cl) {
   406   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   407   // We used to use "block_start_careful" here.  But we're actually happy
   408   // to update the BOT while we do this...
   409   HeapWord* cur = block_start(mr.start());
   410   mr = mr.intersection(used_region());
   411   if (mr.is_empty()) return NULL;
   412   // Otherwise, find the obj that extends onto mr.start().
   414   assert(cur <= mr.start()
   415          && (oop(cur)->klass_or_null() == NULL ||
   416              cur + oop(cur)->size() > mr.start()),
   417          "postcondition of block_start");
   418   oop obj;
   419   while (cur < mr.end()) {
   420     obj = oop(cur);
   421     if (obj->klass_or_null() == NULL) {
   422       // Ran into an unparseable point.
   423       return cur;
   424     } else if (!g1h->is_obj_dead(obj)) {
   425       cl->do_object(obj);
   426     }
   427     if (cl->abort()) return cur;
   428     // The check above must occur before the operation below, since an
   429     // abort might invalidate the "size" operation.
   430     cur += block_size(cur);
   431   }
   432   return NULL;
   433 }
   435 HeapWord*
   436 HeapRegion::
   437 oops_on_card_seq_iterate_careful(MemRegion mr,
   438                                  FilterOutOfRegionClosure* cl,
   439                                  bool filter_young,
   440                                  jbyte* card_ptr) {
   441   // Currently, we should only have to clean the card if filter_young
   442   // is true and vice versa.
   443   if (filter_young) {
   444     assert(card_ptr != NULL, "pre-condition");
   445   } else {
   446     assert(card_ptr == NULL, "pre-condition");
   447   }
   448   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   450   // If we're within a stop-world GC, then we might look at a card in a
   451   // GC alloc region that extends onto a GC LAB, which may not be
   452   // parseable.  Stop such at the "saved_mark" of the region.
   453   if (g1h->is_gc_active()) {
   454     mr = mr.intersection(used_region_at_save_marks());
   455   } else {
   456     mr = mr.intersection(used_region());
   457   }
   458   if (mr.is_empty()) return NULL;
   459   // Otherwise, find the obj that extends onto mr.start().
   461   // The intersection of the incoming mr (for the card) and the
   462   // allocated part of the region is non-empty. This implies that
   463   // we have actually allocated into this region. The code in
   464   // G1CollectedHeap.cpp that allocates a new region sets the
   465   // is_young tag on the region before allocating. Thus we
   466   // safely know if this region is young.
   467   if (is_young() && filter_young) {
   468     return NULL;
   469   }
   471   assert(!is_young(), "check value of filter_young");
   473   // We can only clean the card here, after we make the decision that
   474   // the card is not young. And we only clean the card if we have been
   475   // asked to (i.e., card_ptr != NULL).
   476   if (card_ptr != NULL) {
   477     *card_ptr = CardTableModRefBS::clean_card_val();
   478     // We must complete this write before we do any of the reads below.
   479     OrderAccess::storeload();
   480   }
   482   // Cache the boundaries of the memory region in some const locals
   483   HeapWord* const start = mr.start();
   484   HeapWord* const end = mr.end();
   486   // We used to use "block_start_careful" here.  But we're actually happy
   487   // to update the BOT while we do this...
   488   HeapWord* cur = block_start(start);
   489   assert(cur <= start, "Postcondition");
   491   oop obj;
   493   HeapWord* next = cur;
   494   while (next <= start) {
   495     cur = next;
   496     obj = oop(cur);
   497     if (obj->klass_or_null() == NULL) {
   498       // Ran into an unparseable point.
   499       return cur;
   500     }
   501     // Otherwise...
   502     next = cur + block_size(cur);
   503   }
   505   // If we finish the above loop...We have a parseable object that
   506   // begins on or before the start of the memory region, and ends
   507   // inside or spans the entire region.
   509   assert(obj == oop(cur), "sanity");
   510   assert(cur <= start, "Loop postcondition");
   511   assert(obj->klass_or_null() != NULL, "Loop postcondition");
   512   assert((cur + block_size(cur)) > start, "Loop postcondition");
   514   if (!g1h->is_obj_dead(obj)) {
   515     obj->oop_iterate(cl, mr);
   516   }
   518   while (cur < end) {
   519     obj = oop(cur);
   520     if (obj->klass_or_null() == NULL) {
   521       // Ran into an unparseable point.
   522       return cur;
   523     };
   525     // Otherwise:
   526     next = cur + block_size(cur);
   528     if (!g1h->is_obj_dead(obj)) {
   529       if (next < end || !obj->is_objArray()) {
   530         // This object either does not span the MemRegion
   531         // boundary, or if it does it's not an array.
   532         // Apply closure to whole object.
   533         obj->oop_iterate(cl);
   534       } else {
   535         // This obj is an array that spans the boundary.
   536         // Stop at the boundary.
   537         obj->oop_iterate(cl, mr);
   538       }
   539     }
   540     cur = next;
   541   }
   542   return NULL;
   543 }
   545 // Code roots support
   547 void HeapRegion::add_strong_code_root(nmethod* nm) {
   548   HeapRegionRemSet* hrrs = rem_set();
   549   hrrs->add_strong_code_root(nm);
   550 }
   552 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
   553   assert_locked_or_safepoint(CodeCache_lock);
   554   HeapRegionRemSet* hrrs = rem_set();
   555   hrrs->add_strong_code_root_locked(nm);
   556 }
   558 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   559   HeapRegionRemSet* hrrs = rem_set();
   560   hrrs->remove_strong_code_root(nm);
   561 }
   563 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   564   HeapRegionRemSet* hrrs = rem_set();
   565   hrrs->strong_code_roots_do(blk);
   566 }
   568 class VerifyStrongCodeRootOopClosure: public OopClosure {
   569   const HeapRegion* _hr;
   570   nmethod* _nm;
   571   bool _failures;
   572   bool _has_oops_in_region;
   574   template <class T> void do_oop_work(T* p) {
   575     T heap_oop = oopDesc::load_heap_oop(p);
   576     if (!oopDesc::is_null(heap_oop)) {
   577       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   579       // Note: not all the oops embedded in the nmethod are in the
   580       // current region. We only look at those which are.
   581       if (_hr->is_in(obj)) {
   582         // Object is in the region. Check that its less than top
   583         if (_hr->top() <= (HeapWord*)obj) {
   584           // Object is above top
   585           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
   586                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
   587                                  "top "PTR_FORMAT,
   588                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
   589           _failures = true;
   590           return;
   591         }
   592         // Nmethod has at least one oop in the current region
   593         _has_oops_in_region = true;
   594       }
   595     }
   596   }
   598 public:
   599   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   600     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   602   void do_oop(narrowOop* p) { do_oop_work(p); }
   603   void do_oop(oop* p)       { do_oop_work(p); }
   605   bool failures()           { return _failures; }
   606   bool has_oops_in_region() { return _has_oops_in_region; }
   607 };
   609 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   610   const HeapRegion* _hr;
   611   bool _failures;
   612 public:
   613   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   614     _hr(hr), _failures(false) {}
   616   void do_code_blob(CodeBlob* cb) {
   617     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   618     if (nm != NULL) {
   619       // Verify that the nemthod is live
   620       if (!nm->is_alive()) {
   621         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
   622                                PTR_FORMAT" in its strong code roots",
   623                                _hr->bottom(), _hr->end(), nm);
   624         _failures = true;
   625       } else {
   626         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   627         nm->oops_do(&oop_cl);
   628         if (!oop_cl.has_oops_in_region()) {
   629           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
   630                                  PTR_FORMAT" in its strong code roots "
   631                                  "with no pointers into region",
   632                                  _hr->bottom(), _hr->end(), nm);
   633           _failures = true;
   634         } else if (oop_cl.failures()) {
   635           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
   636                                  "failures for nmethod "PTR_FORMAT,
   637                                  _hr->bottom(), _hr->end(), nm);
   638           _failures = true;
   639         }
   640       }
   641     }
   642   }
   644   bool failures()       { return _failures; }
   645 };
   647 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   648   if (!G1VerifyHeapRegionCodeRoots) {
   649     // We're not verifying code roots.
   650     return;
   651   }
   652   if (vo == VerifyOption_G1UseMarkWord) {
   653     // Marking verification during a full GC is performed after class
   654     // unloading, code cache unloading, etc so the strong code roots
   655     // attached to each heap region are in an inconsistent state. They won't
   656     // be consistent until the strong code roots are rebuilt after the
   657     // actual GC. Skip verifying the strong code roots in this particular
   658     // time.
   659     assert(VerifyDuringGC, "only way to get here");
   660     return;
   661   }
   663   HeapRegionRemSet* hrrs = rem_set();
   664   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
   666   // if this region is empty then there should be no entries
   667   // on its strong code root list
   668   if (is_empty()) {
   669     if (strong_code_roots_length > 0) {
   670       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
   671                              "but has "SIZE_FORMAT" code root entries",
   672                              bottom(), end(), strong_code_roots_length);
   673       *failures = true;
   674     }
   675     return;
   676   }
   678   if (continuesHumongous()) {
   679     if (strong_code_roots_length > 0) {
   680       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
   681                              "region but has "SIZE_FORMAT" code root entries",
   682                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
   683       *failures = true;
   684     }
   685     return;
   686   }
   688   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   689   strong_code_roots_do(&cb_cl);
   691   if (cb_cl.failures()) {
   692     *failures = true;
   693   }
   694 }
   696 void HeapRegion::print() const { print_on(gclog_or_tty); }
   697 void HeapRegion::print_on(outputStream* st) const {
   698   st->print("AC%4u", allocation_context());
   699   st->print(" %2s", get_short_type_str());
   700   if (in_collection_set())
   701     st->print(" CS");
   702   else
   703     st->print("   ");
   704   st->print(" TS %5d", _gc_time_stamp);
   705   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   706             prev_top_at_mark_start(), next_top_at_mark_start());
   707   G1OffsetTableContigSpace::print_on(st);
   708 }
   710 class VerifyLiveClosure: public OopClosure {
   711 private:
   712   G1CollectedHeap* _g1h;
   713   CardTableModRefBS* _bs;
   714   oop _containing_obj;
   715   bool _failures;
   716   int _n_failures;
   717   VerifyOption _vo;
   718 public:
   719   // _vo == UsePrevMarking -> use "prev" marking information,
   720   // _vo == UseNextMarking -> use "next" marking information,
   721   // _vo == UseMarkWord    -> use mark word from object header.
   722   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   723     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   724     _failures(false), _n_failures(0), _vo(vo)
   725   {
   726     BarrierSet* bs = _g1h->barrier_set();
   727     if (bs->is_a(BarrierSet::CardTableModRef))
   728       _bs = (CardTableModRefBS*)bs;
   729   }
   731   void set_containing_obj(oop obj) {
   732     _containing_obj = obj;
   733   }
   735   bool failures() { return _failures; }
   736   int n_failures() { return _n_failures; }
   738   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   739   virtual void do_oop(      oop* p) { do_oop_work(p); }
   741   void print_object(outputStream* out, oop obj) {
   742 #ifdef PRODUCT
   743     Klass* k = obj->klass();
   744     const char* class_name = InstanceKlass::cast(k)->external_name();
   745     out->print_cr("class name %s", class_name);
   746 #else // PRODUCT
   747     obj->print_on(out);
   748 #endif // PRODUCT
   749   }
   751   template <class T>
   752   void do_oop_work(T* p) {
   753     assert(_containing_obj != NULL, "Precondition");
   754     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   755            "Precondition");
   756     T heap_oop = oopDesc::load_heap_oop(p);
   757     if (!oopDesc::is_null(heap_oop)) {
   758       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   759       bool failed = false;
   760       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   761         MutexLockerEx x(ParGCRareEvent_lock,
   762                         Mutex::_no_safepoint_check_flag);
   764         if (!_failures) {
   765           gclog_or_tty->cr();
   766           gclog_or_tty->print_cr("----------");
   767         }
   768         if (!_g1h->is_in_closed_subset(obj)) {
   769           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   770           gclog_or_tty->print_cr("Field "PTR_FORMAT
   771                                  " of live obj "PTR_FORMAT" in region "
   772                                  "["PTR_FORMAT", "PTR_FORMAT")",
   773                                  p, (void*) _containing_obj,
   774                                  from->bottom(), from->end());
   775           print_object(gclog_or_tty, _containing_obj);
   776           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   777                                  (void*) obj);
   778         } else {
   779           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   780           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   781           gclog_or_tty->print_cr("Field "PTR_FORMAT
   782                                  " of live obj "PTR_FORMAT" in region "
   783                                  "["PTR_FORMAT", "PTR_FORMAT")",
   784                                  p, (void*) _containing_obj,
   785                                  from->bottom(), from->end());
   786           print_object(gclog_or_tty, _containing_obj);
   787           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   788                                  "["PTR_FORMAT", "PTR_FORMAT")",
   789                                  (void*) obj, to->bottom(), to->end());
   790           print_object(gclog_or_tty, obj);
   791         }
   792         gclog_or_tty->print_cr("----------");
   793         gclog_or_tty->flush();
   794         _failures = true;
   795         failed = true;
   796         _n_failures++;
   797       }
   799       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
   800         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   801         HeapRegion* to   = _g1h->heap_region_containing(obj);
   802         if (from != NULL && to != NULL &&
   803             from != to &&
   804             !to->isHumongous()) {
   805           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   806           jbyte cv_field = *_bs->byte_for_const(p);
   807           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   809           bool is_bad = !(from->is_young()
   810                           || to->rem_set()->contains_reference(p)
   811                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   812                               (_containing_obj->is_objArray() ?
   813                                   cv_field == dirty
   814                                : cv_obj == dirty || cv_field == dirty));
   815           if (is_bad) {
   816             MutexLockerEx x(ParGCRareEvent_lock,
   817                             Mutex::_no_safepoint_check_flag);
   819             if (!_failures) {
   820               gclog_or_tty->cr();
   821               gclog_or_tty->print_cr("----------");
   822             }
   823             gclog_or_tty->print_cr("Missing rem set entry:");
   824             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   825                                    "of obj "PTR_FORMAT", "
   826                                    "in region "HR_FORMAT,
   827                                    p, (void*) _containing_obj,
   828                                    HR_FORMAT_PARAMS(from));
   829             _containing_obj->print_on(gclog_or_tty);
   830             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   831                                    "in region "HR_FORMAT,
   832                                    (void*) obj,
   833                                    HR_FORMAT_PARAMS(to));
   834             obj->print_on(gclog_or_tty);
   835             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   836                           cv_obj, cv_field);
   837             gclog_or_tty->print_cr("----------");
   838             gclog_or_tty->flush();
   839             _failures = true;
   840             if (!failed) _n_failures++;
   841           }
   842         }
   843       }
   844     }
   845   }
   846 };
   848 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   849 // We would need a mechanism to make that code skip dead objects.
   851 void HeapRegion::verify(VerifyOption vo,
   852                         bool* failures) const {
   853   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   854   *failures = false;
   855   HeapWord* p = bottom();
   856   HeapWord* prev_p = NULL;
   857   VerifyLiveClosure vl_cl(g1, vo);
   858   bool is_humongous = isHumongous();
   859   bool do_bot_verify = !is_young();
   860   size_t object_num = 0;
   861   while (p < top()) {
   862     oop obj = oop(p);
   863     size_t obj_size = block_size(p);
   864     object_num += 1;
   866     if (is_humongous != g1->isHumongous(obj_size) &&
   867         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
   868       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   869                              SIZE_FORMAT" words) in a %shumongous region",
   870                              p, g1->isHumongous(obj_size) ? "" : "non-",
   871                              obj_size, is_humongous ? "" : "non-");
   872        *failures = true;
   873        return;
   874     }
   876     // If it returns false, verify_for_object() will output the
   877     // appropriate message.
   878     if (do_bot_verify &&
   879         !g1->is_obj_dead(obj, this) &&
   880         !_offsets.verify_for_object(p, obj_size)) {
   881       *failures = true;
   882       return;
   883     }
   885     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   886       if (obj->is_oop()) {
   887         Klass* klass = obj->klass();
   888         bool is_metaspace_object = Metaspace::contains(klass) ||
   889                                    (vo == VerifyOption_G1UsePrevMarking &&
   890                                    ClassLoaderDataGraph::unload_list_contains(klass));
   891         if (!is_metaspace_object) {
   892           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   893                                  "not metadata", klass, (void *)obj);
   894           *failures = true;
   895           return;
   896         } else if (!klass->is_klass()) {
   897           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   898                                  "not a klass", klass, (void *)obj);
   899           *failures = true;
   900           return;
   901         } else {
   902           vl_cl.set_containing_obj(obj);
   903           obj->oop_iterate_no_header(&vl_cl);
   904           if (vl_cl.failures()) {
   905             *failures = true;
   906           }
   907           if (G1MaxVerifyFailures >= 0 &&
   908               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   909             return;
   910           }
   911         }
   912       } else {
   913         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
   914         *failures = true;
   915         return;
   916       }
   917     }
   918     prev_p = p;
   919     p += obj_size;
   920   }
   922   if (p != top()) {
   923     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   924                            "does not match top "PTR_FORMAT, p, top());
   925     *failures = true;
   926     return;
   927   }
   929   HeapWord* the_end = end();
   930   assert(p == top(), "it should still hold");
   931   // Do some extra BOT consistency checking for addresses in the
   932   // range [top, end). BOT look-ups in this range should yield
   933   // top. No point in doing that if top == end (there's nothing there).
   934   if (p < the_end) {
   935     // Look up top
   936     HeapWord* addr_1 = p;
   937     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   938     if (b_start_1 != p) {
   939       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
   940                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   941                              addr_1, b_start_1, p);
   942       *failures = true;
   943       return;
   944     }
   946     // Look up top + 1
   947     HeapWord* addr_2 = p + 1;
   948     if (addr_2 < the_end) {
   949       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
   950       if (b_start_2 != p) {
   951         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
   952                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   953                                addr_2, b_start_2, p);
   954         *failures = true;
   955         return;
   956       }
   957     }
   959     // Look up an address between top and end
   960     size_t diff = pointer_delta(the_end, p) / 2;
   961     HeapWord* addr_3 = p + diff;
   962     if (addr_3 < the_end) {
   963       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
   964       if (b_start_3 != p) {
   965         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
   966                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   967                                addr_3, b_start_3, p);
   968         *failures = true;
   969         return;
   970       }
   971     }
   973     // Loook up end - 1
   974     HeapWord* addr_4 = the_end - 1;
   975     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
   976     if (b_start_4 != p) {
   977       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
   978                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   979                              addr_4, b_start_4, p);
   980       *failures = true;
   981       return;
   982     }
   983   }
   985   if (is_humongous && object_num > 1) {
   986     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
   987                            "but has "SIZE_FORMAT", objects",
   988                            bottom(), end(), object_num);
   989     *failures = true;
   990     return;
   991   }
   993   verify_strong_code_roots(vo, failures);
   994 }
   996 void HeapRegion::verify() const {
   997   bool dummy = false;
   998   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
   999 }
  1001 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
  1002 // away eventually.
  1004 void G1OffsetTableContigSpace::clear(bool mangle_space) {
  1005   set_top(bottom());
  1006   set_saved_mark_word(bottom());
  1007   CompactibleSpace::clear(mangle_space);
  1008   reset_bot();
  1011 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  1012   Space::set_bottom(new_bottom);
  1013   _offsets.set_bottom(new_bottom);
  1016 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  1017   Space::set_end(new_end);
  1018   _offsets.resize(new_end - bottom());
  1021 void G1OffsetTableContigSpace::print() const {
  1022   print_short();
  1023   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
  1024                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  1025                 bottom(), top(), _offsets.threshold(), end());
  1028 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  1029   return _offsets.initialize_threshold();
  1032 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
  1033                                                     HeapWord* end) {
  1034   _offsets.alloc_block(start, end);
  1035   return _offsets.threshold();
  1038 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
  1039   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1040   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
  1041   if (_gc_time_stamp < g1h->get_gc_time_stamp())
  1042     return top();
  1043   else
  1044     return Space::saved_mark_word();
  1047 void G1OffsetTableContigSpace::record_top_and_timestamp() {
  1048   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1049   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
  1051   if (_gc_time_stamp < curr_gc_time_stamp) {
  1052     // The order of these is important, as another thread might be
  1053     // about to start scanning this region. If it does so after
  1054     // set_saved_mark and before _gc_time_stamp = ..., then the latter
  1055     // will be false, and it will pick up top() as the high water mark
  1056     // of region. If it does so after _gc_time_stamp = ..., then it
  1057     // will pick up the right saved_mark_word() as the high water mark
  1058     // of the region. Either way, the behaviour will be correct.
  1059     Space::set_saved_mark_word(top());
  1060     OrderAccess::storestore();
  1061     _gc_time_stamp = curr_gc_time_stamp;
  1062     // No need to do another barrier to flush the writes above. If
  1063     // this is called in parallel with other threads trying to
  1064     // allocate into the region, the caller should call this while
  1065     // holding a lock and when the lock is released the writes will be
  1066     // flushed.
  1070 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
  1071   object_iterate(blk);
  1074 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
  1075   HeapWord* p = bottom();
  1076   while (p < top()) {
  1077     if (block_is_obj(p)) {
  1078       blk->do_object(oop(p));
  1080     p += block_size(p);
  1084 #define block_is_always_obj(q) true
  1085 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
  1086   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
  1088 #undef block_is_always_obj
  1090 G1OffsetTableContigSpace::
  1091 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1092                          MemRegion mr) :
  1093   _offsets(sharedOffsetArray, mr),
  1094   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1095   _gc_time_stamp(0)
  1097   _offsets.set_space(this);
  1100 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
  1101   CompactibleSpace::initialize(mr, clear_space, mangle_space);
  1102   _top = bottom();
  1103   reset_bot();

mercurial