src/share/vm/gc_implementation/g1/g1RemSetSummary.cpp

Fri, 29 Aug 2014 13:12:21 +0200

author
mgerdin
date
Fri, 29 Aug 2014 13:12:21 +0200
changeset 7208
7baf47cb97cb
parent 7195
c02ec279b062
child 7535
7ae4e26cb1e0
child 8439
b857e4abb00c
permissions
-rw-r--r--

8048268: G1 Code Root Migration performs poorly
Summary: Replace G1CodeRootSet with a Hashtable based implementation, merge Code Root Migration phase into Code Root Scanning
Reviewed-by: jmasa, brutisso, tschatzl

     1 /*
     2  * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    28 #include "gc_implementation/g1/heapRegion.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    31 #include "gc_implementation/g1/g1RemSetSummary.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "runtime/thread.inline.hpp"
    35 class GetRSThreadVTimeClosure : public ThreadClosure {
    36 private:
    37   G1RemSetSummary* _summary;
    38   uint _counter;
    40 public:
    41   GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) {
    42     assert(_summary != NULL, "just checking");
    43   }
    45   virtual void do_thread(Thread* t) {
    46     ConcurrentG1RefineThread* crt = (ConcurrentG1RefineThread*) t;
    47     _summary->set_rs_thread_vtime(_counter, crt->vtime_accum());
    48     _counter++;
    49   }
    50 };
    52 void G1RemSetSummary::update() {
    53   _num_refined_cards = remset()->conc_refine_cards();
    54   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
    55   _num_processed_buf_mutator = dcqs.processed_buffers_mut();
    56   _num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread();
    58   _num_coarsenings = HeapRegionRemSet::n_coarsenings();
    60   ConcurrentG1Refine * cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
    61   if (_rs_threads_vtimes != NULL) {
    62     GetRSThreadVTimeClosure p(this);
    63     cg1r->worker_threads_do(&p);
    64   }
    65   set_sampling_thread_vtime(cg1r->sampling_thread()->vtime_accum());
    66 }
    68 void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) {
    69   assert(_rs_threads_vtimes != NULL, "just checking");
    70   assert(thread < _num_vtimes, "just checking");
    71   _rs_threads_vtimes[thread] = value;
    72 }
    74 double G1RemSetSummary::rs_thread_vtime(uint thread) const {
    75   assert(_rs_threads_vtimes != NULL, "just checking");
    76   assert(thread < _num_vtimes, "just checking");
    77   return _rs_threads_vtimes[thread];
    78 }
    80 void G1RemSetSummary::initialize(G1RemSet* remset) {
    81   assert(_rs_threads_vtimes == NULL, "just checking");
    82   assert(remset != NULL, "just checking");
    84   _remset = remset;
    85   _num_vtimes = ConcurrentG1Refine::thread_num();
    86   _rs_threads_vtimes = NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC);
    87   memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes);
    89   update();
    90 }
    92 void G1RemSetSummary::set(G1RemSetSummary* other) {
    93   assert(other != NULL, "just checking");
    94   assert(remset() == other->remset(), "just checking");
    95   assert(_num_vtimes == other->_num_vtimes, "just checking");
    97   _num_refined_cards = other->num_concurrent_refined_cards();
    99   _num_processed_buf_mutator = other->num_processed_buf_mutator();
   100   _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads();
   102   _num_coarsenings = other->_num_coarsenings;
   104   memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes);
   106   set_sampling_thread_vtime(other->sampling_thread_vtime());
   107 }
   109 void G1RemSetSummary::subtract_from(G1RemSetSummary* other) {
   110   assert(other != NULL, "just checking");
   111   assert(remset() == other->remset(), "just checking");
   112   assert(_num_vtimes == other->_num_vtimes, "just checking");
   114   _num_refined_cards = other->num_concurrent_refined_cards() - _num_refined_cards;
   116   _num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator;
   117   _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads;
   119   _num_coarsenings = other->num_coarsenings() - _num_coarsenings;
   121   for (uint i = 0; i < _num_vtimes; i++) {
   122     set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i));
   123   }
   125   _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime;
   126 }
   128 static double percent_of(size_t numerator, size_t denominator) {
   129   if (denominator != 0) {
   130     return (double)numerator / denominator * 100.0f;
   131   } else {
   132     return 0.0f;
   133   }
   134 }
   136 static size_t round_to_K(size_t value) {
   137   return value / K;
   138 }
   140 class RegionTypeCounter VALUE_OBJ_CLASS_SPEC {
   141 private:
   142   const char* _name;
   144   size_t _rs_mem_size;
   145   size_t _cards_occupied;
   146   size_t _amount;
   148   size_t _code_root_mem_size;
   149   size_t _code_root_elems;
   151   double rs_mem_size_percent_of(size_t total) {
   152     return percent_of(_rs_mem_size, total);
   153   }
   155   double cards_occupied_percent_of(size_t total) {
   156     return percent_of(_cards_occupied, total);
   157   }
   159   double code_root_mem_size_percent_of(size_t total) {
   160     return percent_of(_code_root_mem_size, total);
   161   }
   163   double code_root_elems_percent_of(size_t total) {
   164     return percent_of(_code_root_elems, total);
   165   }
   167   size_t amount() const { return _amount; }
   169 public:
   171   RegionTypeCounter(const char* name) : _name(name), _rs_mem_size(0), _cards_occupied(0),
   172     _amount(0), _code_root_mem_size(0), _code_root_elems(0) { }
   174   void add(size_t rs_mem_size, size_t cards_occupied, size_t code_root_mem_size,
   175     size_t code_root_elems) {
   176     _rs_mem_size += rs_mem_size;
   177     _cards_occupied += cards_occupied;
   178     _code_root_mem_size += code_root_mem_size;
   179     _code_root_elems += code_root_elems;
   180     _amount++;
   181   }
   183   size_t rs_mem_size() const { return _rs_mem_size; }
   184   size_t cards_occupied() const { return _cards_occupied; }
   186   size_t code_root_mem_size() const { return _code_root_mem_size; }
   187   size_t code_root_elems() const { return _code_root_elems; }
   189   void print_rs_mem_info_on(outputStream * out, size_t total) {
   190     out->print_cr("    "SIZE_FORMAT_W(8)"K (%5.1f%%) by "SIZE_FORMAT" %s regions",
   191         round_to_K(rs_mem_size()), rs_mem_size_percent_of(total), amount(), _name);
   192   }
   194   void print_cards_occupied_info_on(outputStream * out, size_t total) {
   195     out->print_cr("     "SIZE_FORMAT_W(8)" (%5.1f%%) entries by "SIZE_FORMAT" %s regions",
   196         cards_occupied(), cards_occupied_percent_of(total), amount(), _name);
   197   }
   199   void print_code_root_mem_info_on(outputStream * out, size_t total) {
   200     out->print_cr("    "SIZE_FORMAT_W(8)"K (%5.1f%%) by "SIZE_FORMAT" %s regions",
   201         round_to_K(code_root_mem_size()), code_root_mem_size_percent_of(total), amount(), _name);
   202   }
   204   void print_code_root_elems_info_on(outputStream * out, size_t total) {
   205     out->print_cr("     "SIZE_FORMAT_W(8)" (%5.1f%%) elements by "SIZE_FORMAT" %s regions",
   206         code_root_elems(), code_root_elems_percent_of(total), amount(), _name);
   207   }
   208 };
   211 class HRRSStatsIter: public HeapRegionClosure {
   212 private:
   213   RegionTypeCounter _young;
   214   RegionTypeCounter _humonguous;
   215   RegionTypeCounter _free;
   216   RegionTypeCounter _old;
   217   RegionTypeCounter _all;
   219   size_t _max_rs_mem_sz;
   220   HeapRegion* _max_rs_mem_sz_region;
   222   size_t total_rs_mem_sz() const            { return _all.rs_mem_size(); }
   223   size_t total_cards_occupied() const       { return _all.cards_occupied(); }
   225   size_t max_rs_mem_sz() const              { return _max_rs_mem_sz; }
   226   HeapRegion* max_rs_mem_sz_region() const  { return _max_rs_mem_sz_region; }
   228   size_t _max_code_root_mem_sz;
   229   HeapRegion* _max_code_root_mem_sz_region;
   231   size_t total_code_root_mem_sz() const     { return _all.code_root_mem_size(); }
   232   size_t total_code_root_elems() const      { return _all.code_root_elems(); }
   234   size_t max_code_root_mem_sz() const       { return _max_code_root_mem_sz; }
   235   HeapRegion* max_code_root_mem_sz_region() const { return _max_code_root_mem_sz_region; }
   237 public:
   238   HRRSStatsIter() : _all("All"), _young("Young"), _humonguous("Humonguous"),
   239     _free("Free"), _old("Old"), _max_code_root_mem_sz_region(NULL), _max_rs_mem_sz_region(NULL),
   240     _max_rs_mem_sz(0), _max_code_root_mem_sz(0)
   241   {}
   243   bool doHeapRegion(HeapRegion* r) {
   244     HeapRegionRemSet* hrrs = r->rem_set();
   246     // HeapRegionRemSet::mem_size() includes the
   247     // size of the strong code roots
   248     size_t rs_mem_sz = hrrs->mem_size();
   249     if (rs_mem_sz > _max_rs_mem_sz) {
   250       _max_rs_mem_sz = rs_mem_sz;
   251       _max_rs_mem_sz_region = r;
   252     }
   253     size_t occupied_cards = hrrs->occupied();
   254     size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size();
   255     if (code_root_mem_sz > max_code_root_mem_sz()) {
   256       _max_code_root_mem_sz = code_root_mem_sz;
   257       _max_code_root_mem_sz_region = r;
   258     }
   259     size_t code_root_elems = hrrs->strong_code_roots_list_length();
   261     RegionTypeCounter* current = NULL;
   262     if (r->is_free()) {
   263       current = &_free;
   264     } else if (r->is_young()) {
   265       current = &_young;
   266     } else if (r->isHumongous()) {
   267       current = &_humonguous;
   268     } else if (r->is_old()) {
   269       current = &_old;
   270     } else {
   271       ShouldNotReachHere();
   272     }
   273     current->add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems);
   274     _all.add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems);
   276     return false;
   277   }
   279   void print_summary_on(outputStream* out) {
   280     RegionTypeCounter* counters[] = { &_young, &_humonguous, &_free, &_old, NULL };
   282     out->print_cr("\n Current rem set statistics");
   283     out->print_cr("  Total per region rem sets sizes = "SIZE_FORMAT"K."
   284                   " Max = "SIZE_FORMAT"K.",
   285                   round_to_K(total_rs_mem_sz()), round_to_K(max_rs_mem_sz()));
   286     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
   287       (*current)->print_rs_mem_info_on(out, total_rs_mem_sz());
   288     }
   290     out->print_cr("   Static structures = "SIZE_FORMAT"K,"
   291                   " free_lists = "SIZE_FORMAT"K.",
   292                   round_to_K(HeapRegionRemSet::static_mem_size()),
   293                   round_to_K(HeapRegionRemSet::fl_mem_size()));
   295     out->print_cr("    "SIZE_FORMAT" occupied cards represented.",
   296                   total_cards_occupied());
   297     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
   298       (*current)->print_cards_occupied_info_on(out, total_cards_occupied());
   299     }
   301     // Largest sized rem set region statistics
   302     HeapRegionRemSet* rem_set = max_rs_mem_sz_region()->rem_set();
   303     out->print_cr("    Region with largest rem set = "HR_FORMAT", "
   304                   "size = "SIZE_FORMAT "K, occupied = "SIZE_FORMAT"K.",
   305                   HR_FORMAT_PARAMS(max_rs_mem_sz_region()),
   306                   round_to_K(rem_set->mem_size()),
   307                   round_to_K(rem_set->occupied()));
   309     // Strong code root statistics
   310     HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region()->rem_set();
   311     out->print_cr("  Total heap region code root sets sizes = "SIZE_FORMAT"K."
   312                   "  Max = "SIZE_FORMAT"K.",
   313                   round_to_K(total_code_root_mem_sz()),
   314                   round_to_K(max_code_root_rem_set->strong_code_roots_mem_size()));
   315     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
   316       (*current)->print_code_root_mem_info_on(out, total_code_root_mem_sz());
   317     }
   319     out->print_cr("    "SIZE_FORMAT" code roots represented.",
   320                   total_code_root_elems());
   321     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
   322       (*current)->print_code_root_elems_info_on(out, total_code_root_elems());
   323     }
   325     out->print_cr("    Region with largest amount of code roots = "HR_FORMAT", "
   326                   "size = "SIZE_FORMAT "K, num_elems = "SIZE_FORMAT".",
   327                   HR_FORMAT_PARAMS(max_code_root_mem_sz_region()),
   328                   round_to_K(max_code_root_rem_set->strong_code_roots_mem_size()),
   329                   round_to_K(max_code_root_rem_set->strong_code_roots_list_length()));
   330   }
   331 };
   333 void G1RemSetSummary::print_on(outputStream* out) {
   334   out->print_cr("\n Recent concurrent refinement statistics");
   335   out->print_cr("  Processed "SIZE_FORMAT" cards",
   336                 num_concurrent_refined_cards());
   337   out->print_cr("  Of "SIZE_FORMAT" completed buffers:", num_processed_buf_total());
   338   out->print_cr("     "SIZE_FORMAT_W(8)" (%5.1f%%) by concurrent RS threads.",
   339                 num_processed_buf_total(),
   340                 percent_of(num_processed_buf_rs_threads(), num_processed_buf_total()));
   341   out->print_cr("     "SIZE_FORMAT_W(8)" (%5.1f%%) by mutator threads.",
   342                 num_processed_buf_mutator(),
   343                 percent_of(num_processed_buf_mutator(), num_processed_buf_total()));
   344   out->print_cr("  Did "SIZE_FORMAT" coarsenings.", num_coarsenings());
   345   out->print_cr("  Concurrent RS threads times (s)");
   346   out->print("     ");
   347   for (uint i = 0; i < _num_vtimes; i++) {
   348     out->print("    %5.2f", rs_thread_vtime(i));
   349   }
   350   out->cr();
   351   out->print_cr("  Concurrent sampling threads times (s)");
   352   out->print_cr("         %5.2f", sampling_thread_vtime());
   354   HRRSStatsIter blk;
   355   G1CollectedHeap::heap()->heap_region_iterate(&blk);
   356   blk.print_summary_on(out);
   357 }

mercurial